JP2006273927A - Method for improving electrical insulation property of inorganic filler - Google Patents

Method for improving electrical insulation property of inorganic filler Download PDF

Info

Publication number
JP2006273927A
JP2006273927A JP2005091870A JP2005091870A JP2006273927A JP 2006273927 A JP2006273927 A JP 2006273927A JP 2005091870 A JP2005091870 A JP 2005091870A JP 2005091870 A JP2005091870 A JP 2005091870A JP 2006273927 A JP2006273927 A JP 2006273927A
Authority
JP
Japan
Prior art keywords
inorganic filler
dispersion
metallic foreign
foreign matter
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091870A
Other languages
Japanese (ja)
Inventor
Noritaka Oyama
紀隆 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyu Rec Co Ltd
Original Assignee
Sanyu Rec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyu Rec Co Ltd filed Critical Sanyu Rec Co Ltd
Priority to JP2005091870A priority Critical patent/JP2006273927A/en
Publication of JP2006273927A publication Critical patent/JP2006273927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving electrical insulation properties of an inorganic filler, capable of surely conducting improvement of the electrical insulation properties of the inorganic filler in which metallic foreign matter is mixed in a production process of the inorganic filler. <P>SOLUTION: In this method, the inorganic filler is dispersed in a dispersing medium inside a vessel. Then, a dispersion formed by dispersing the inorganic filler in the dispersing medium and a magnet are relatively movement, therefore magnetic force is acted all over the suspension, so that the metallic foreign matter mixed in the inorganic filler is caught by the magnet. Further, the dispersing medium is volatilized by heating the dispersion, so that the remaining inorganic filler is recovered. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体などの封止材料に配合される無機充填材の絶縁性改善方法に関する。   The present invention relates to a method for improving insulation of an inorganic filler blended in a sealing material such as a semiconductor.

従来より、半導体封止樹脂には、線膨張率を下げる、熱伝導率を上げる、強度を上げる、耐熱性を向上させる、耐湿性を向上させるなどの目的で、シリカやアルミナなどの無機充填材が配合されているが、無機充填材には、その製造工程において金属性異物が混入することがある。金属性異物が混入する原因は、無機充填材が金属に比べて硬いため、その製造工程内の配管等の金属と接触する際にその金属部分を削り、その金属の微細粉が無機充填材中に混入することによることが多い。このように、封止樹脂に配合される無機充填材中に金属性異物が混入していると、この金属性異物によって半導体上のワイヤ等の配線間の短絡事故等が発生することがある。   Conventionally, for semiconductor sealing resins, inorganic fillers such as silica and alumina are used for the purpose of lowering the coefficient of linear expansion, increasing the thermal conductivity, increasing the strength, improving the heat resistance, and improving the moisture resistance. However, metallic foreign substances may be mixed in the inorganic filler during the manufacturing process. The reason why the metallic foreign matter is mixed is that the inorganic filler is harder than the metal, so the metal part is scraped when it comes into contact with the metal such as piping in the manufacturing process, and the fine metal powder is contained in the inorganic filler. Often due to contamination. As described above, when a metallic foreign matter is mixed in the inorganic filler mixed in the sealing resin, a short circuit accident between wirings such as wires on the semiconductor may occur due to the metallic foreign matter.

そのため、無機充填材メーカーでは、シリカ等の無機充填材の製造工程の最終段階で、永久磁石等を用いた除鉄の作業が行われている。例えば、特許文献1には、棒状の永久磁石を千鳥状に配置することにより落下する半導体封止材料などの粉体中の不要な鉄粉を除去することができる金属除去装置が開示されている。
特開平11−47633号公報
Therefore, in the inorganic filler manufacturer, iron removal work using a permanent magnet or the like is performed at the final stage of the manufacturing process of the inorganic filler such as silica. For example, Patent Document 1 discloses a metal removing device that can remove unnecessary iron powder in powder such as a semiconductor sealing material falling by arranging rod-like permanent magnets in a staggered manner. .
JP 11-47633 A

ところが、このような磁石を用いた除鉄による金属性異物の除去方法においては、除鉄器の磁力が有効な範囲内を通過する金属性異物しか除去できないこと、さらに、一旦磁石に捕捉された金属性異物が後からこの磁石部分を通過しようとする無機充填材または金属性異物と接触した場合に脱落することがあることから、無機充填材中に混入している金属性異物を十分に除去することが困難であり、未だなお半導体上のワイヤ等の配線間の短絡事故等が発生している。   However, in the method for removing metallic foreign matters by iron removal using such a magnet, only metallic foreign matters that pass through the effective range of the magnetic force of the iron remover can be removed, and further, the metal once captured by the magnet. The metallic foreign matter mixed in the inorganic filler is sufficiently removed because it may fall off when the metallic foreign matter comes into contact with the inorganic filler or metallic foreign matter that will later pass through this magnet portion. However, there are still short circuit accidents between wires such as wires on a semiconductor.

特に、近年の携帯電話、パソコン等の電子機器の軽薄短小化の流れに伴い、これらに組み込まれる電子デバイスについても軽薄短小化が進展し、これに使用される半導体上のワイヤ等の配線が高密度化されている。そのため、封止樹脂に配合される無機充填材中に混入している金属性異物が微細なものであっても、この金属性異物によって高密度化された配線間の短絡事故等の発生が多くなっている。また、この流れにおいては、半導体封止材料も粒度の細かいものが広範に使用されるようになっているため金属性異物を含んだ形で凝集しやすくなっている。その結果、上述の磁石を用いた除鉄による金属性異物の除去方法においては、磁石の磁力を金属性異物に有効に作用させることができなくなっているため、無機充填材中の金属性異物を除去することがより困難になり、上述の短絡事故等の発生がより顕著になっている。   In particular, along with the recent trend of thinning and miniaturization of electronic devices such as mobile phones and personal computers, the thinning and miniaturization of electronic devices incorporated in these devices has progressed, and the wiring such as wires on semiconductors used therefor has increased. Densified. Therefore, even if the metallic foreign matter mixed in the inorganic filler compounded in the sealing resin is fine, there are many occurrences of short-circuit accidents between wirings that are densified by the metallic foreign matter. It has become. Further, in this flow, since the semiconductor sealing material having a fine particle size is widely used, the semiconductor sealing material is easily aggregated in a form including metallic foreign matters. As a result, in the method for removing metallic foreign matter by iron removal using the magnet described above, the magnetic force of the magnet cannot be effectively applied to the metallic foreign matter, so that the metallic foreign matter in the inorganic filler is removed. It becomes more difficult to remove, and the occurrence of the above-mentioned short-circuit accident or the like has become more prominent.

本発明は、このような問題を解決すべくなされたものであって、無機充填材の絶縁性の改善を確実に行うことができる無機充填材の絶縁性改善方法の提供を目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for improving the insulating property of an inorganic filler, which can reliably improve the insulating property of the inorganic filler.

本発明の前記目的は、封止材料に配合する無機充填材の絶縁性改善方法であって、無機充填材を容器中の分散媒に分散させる無機充填材分散ステップと、前記分散媒中に前記無機物充填材を分散させた分散液と磁石との相対的な移動により前記分散液全体に磁力を作用させ、前記無機充填材に混入している金属性異物を前記磁石に捕捉させる金属性異物捕捉ステップと、前記分散液を加熱して前記分散媒を揮発させ、残存する前記無機充填材を回収する無機充填材回収ステップとを備えることを特徴とする無機充填材の絶縁性改善方法により達成される。   The object of the present invention is a method for improving the insulating property of an inorganic filler to be blended in a sealing material, wherein the inorganic filler is dispersed in a dispersion medium in a container, and the inorganic filler is dispersed in the dispersion medium. Metal foreign matter trapping that causes the magnetic force to act on the entire dispersion liquid by the relative movement of the dispersion liquid in which the inorganic filler is dispersed and the magnet, and traps the metallic foreign matter mixed in the inorganic filler into the magnet. And an inorganic filler recovery step of heating the dispersion to volatilize the dispersion medium and recovering the remaining inorganic filler. The

この無機充填材の絶縁性改善方法は、前記無機充填材分散ステップと前記金属性異物捕捉ステップとの間に、前記分散液をフィルターに通過させる濾過ステップを備えることが好ましい。   It is preferable that the method for improving the insulating property of the inorganic filler includes a filtration step of allowing the dispersion to pass through a filter between the inorganic filler dispersion step and the metallic foreign matter capturing step.

更に、前記無機充填材回収ステップの後に、前記無機充填材を加熱して酸化させる焼成ステップを更に備えることが好ましい。   Furthermore, it is preferable that the method further comprises a firing step for heating and oxidizing the inorganic filler after the inorganic filler recovery step.

本発明によれば、無機充填材の絶縁性の改善を確実に行うことができる無機充填材の絶縁性改善方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the insulation improvement method of the inorganic filler which can improve the insulation of an inorganic filler reliably can be provided.

以下、無機充填材の絶縁性改善方法の各実施形態を説明する。   Hereinafter, each embodiment of the insulation improvement method of an inorganic filler will be described.

(第1の実施形態)
以下、本発明の第1の実施形態に係る無機充填材の絶縁性改善方法について説明する。
(First embodiment)
Hereinafter, the insulation improvement method of the inorganic filler according to the first embodiment of the present invention will be described.

まず、プラスチックなどでできた容器に分散媒を入れ、製造工程において金属性異物が混入された無機充填材を分散媒に分散させる。そして、無機物充填材を分散媒に分散させた分散液と磁石との相対的な移動により分散液全体に磁力を作用させ、磁石表面に金属性異物を捕捉させて磁石を取り出すことで金属性異物を除去する。本実施形態においては、この方法として、分散液全体を棒状の永久磁石でかき混ぜる方法が挙げられる。   First, a dispersion medium is put in a container made of plastic or the like, and an inorganic filler mixed with metallic foreign matters is dispersed in the dispersion medium in the manufacturing process. Then, the relative movement of the dispersion liquid in which the inorganic filler is dispersed in the dispersion medium and the magnet causes a magnetic force to act on the entire dispersion liquid, capture the metallic foreign matter on the magnet surface, and take out the magnet to remove the metallic foreign matter. Remove. In the present embodiment, as this method, there is a method in which the entire dispersion is stirred with a rod-shaped permanent magnet.

分散媒としては、例えば、蒸留水、純水、アルコール類(メタノール、IPA(イソプロピルアルコール)等)の他、各種有機溶剤が挙げられる。無機充填材としては、シリカ、アルミナ等の無機物が挙げられる。無機充填材の粒径は、半導体上の電極間隔またはリード間隔より小さくなるように選択されることから、例えば、封止する半導体上の電極間隔が30μmの場合は、無機充填材の最大粒径が20μm以下のものを選択するのが好ましい。特に、最大粒径が50μm程度以下のものは、電極間隔またはリード間隔の狭い半導体の封止に使用されることが多いため、絶縁性改善の必要性がある。また、無機充填材に混入している金属は、前述したように無機充填材の製造工程における金属製配管等と無機充填材が接触し、磨耗することにより発生するステンレスや鉄などの微細粉であり、その粒径は、一般に数μm〜200μm程度の大きさである。   Examples of the dispersion medium include distilled water, pure water, alcohols (methanol, IPA (isopropyl alcohol), etc.), and various organic solvents. Examples of the inorganic filler include inorganic substances such as silica and alumina. Since the particle size of the inorganic filler is selected to be smaller than the electrode interval or lead interval on the semiconductor, for example, when the electrode interval on the semiconductor to be sealed is 30 μm, the maximum particle size of the inorganic filler Is preferably 20 μm or less. In particular, those having a maximum particle size of about 50 μm or less are often used for sealing a semiconductor having a narrow electrode interval or lead interval, and thus there is a need to improve insulation. In addition, as described above, the metal mixed in the inorganic filler is a fine powder such as stainless steel or iron that is generated when the inorganic filler is brought into contact with the metal pipe in the manufacturing process of the inorganic filler. In general, the particle size is about several μm to 200 μm.

無機充填材を分散媒に分散させた分散液粘度は、高すぎると、磁石の磁力が作用する範囲内にある分散液中の金属性異物が磁石表面へ移動しにくくなり、また、磁石が分散液から受ける抵抗が大きいことによって一旦磁石に捕捉された金属性異物が脱落するという問題が生じることから、1〜100Pa・sとすることが好ましく、1〜20Pa・sとすることがより好ましい。分散液粘度の調整方法は、例えば、分散液の粘度を測定し、高ければ分散媒を追加して所定の粘度になるように無機充填材と分散媒の混合率を調整する方法が挙げられる。   If the viscosity of the dispersion liquid in which the inorganic filler is dispersed in the dispersion medium is too high, the metallic foreign matter in the dispersion liquid within the range in which the magnetic force of the magnet acts is difficult to move to the magnet surface, and the magnet is dispersed. Since the problem that the metallic foreign matter once captured by the magnet falls off due to the large resistance received from the liquid, it is preferably 1 to 100 Pa · s, and more preferably 1 to 20 Pa · s. Examples of the method for adjusting the dispersion viscosity include a method of measuring the viscosity of the dispersion and, if higher, adding a dispersion medium and adjusting the mixing ratio of the inorganic filler and the dispersion medium so as to obtain a predetermined viscosity.

分散液と磁石との相対的な移動により分散液全体に磁力を作用させ、磁石表面に金属性異物を捕捉させて磁石を取り出すことで金属性異物を除去する方法としては、分散液全体を棒状の永久磁石でかき混ぜる方法に限定されるものではなく、例えば、別の容器内に磁石を固定し、分散液が磁石表面に沿って流れるように分散液を流し入れる方法、または、分散液で満たされた容器内に磁石を固定し、その分散液を非磁性の棒などでかき混ぜる方法等が挙げられる。   As a method of removing the metallic foreign matter by removing the metallic foreign matter by taking out the magnet by causing the magnetic force to act on the entire dispersion by relative movement between the dispersion and the magnet, and capturing the metallic foreign matter on the magnet surface. It is not limited to the method of stirring with a permanent magnet of, for example, a method in which a magnet is fixed in another container and the dispersion is poured so that the dispersion flows along the surface of the magnet, or filled with the dispersion. For example, a method may be used in which a magnet is fixed in a container and the dispersion is stirred with a non-magnetic rod.

また、磁石は永久磁石に限られず、例えば、分散液と接触しない部分には電磁石を用いてもよい。   Moreover, a magnet is not restricted to a permanent magnet, For example, you may use an electromagnet for the part which does not contact a dispersion liquid.

次に、金属性異物除去後の分散液が入った容器を熱風循環式炉または遠赤外線炉の中に入れ、例えば、150〜300℃の温度領域で8〜24時間加熱し、分散媒を揮発させ、残留した無機充填剤の粒子を回収する。   Next, the container containing the dispersion liquid after removing the metallic foreign matter is placed in a hot-air circulating furnace or a far-infrared furnace and heated, for example, in a temperature range of 150 to 300 ° C. for 8 to 24 hours to volatilize the dispersion medium. The remaining inorganic filler particles are recovered.

以上のように、本実施形態の無機充填材の絶縁性改善方法によれば、金属性異物を含んだ形で凝集している無機充填材を分散媒に分散させることで、無機充填材と金属性異物の各粒子を分離し、無機充填材が分散した分散液全体に磁石の磁力を作用させるようにしているので、無機充填材全体に金属性異物の除去効果を奏することができる。さらに、無機充填材を分散媒に分散させた分散液粘度を、1〜100Pa・s、好ましくは、1〜20Pa・sとすることにより、分散液中の金属性異物が磁石表面に移動しやすくなるので、金属性異物の捕捉を容易にすることができると共に、磁石が分散液から受ける抵抗を小さくすることができるので、一旦捕捉された金属性異物が脱落しにくくなる。この結果、金属性異物を確実に捕捉できるため、無機充填材の絶縁性を改善することができる。   As described above, according to the method for improving the insulating property of the inorganic filler of the present embodiment, the inorganic filler and the metal are dispersed by dispersing the inorganic filler aggregated in a form including metallic foreign matters in the dispersion medium. Since the particles of the conductive foreign matter are separated and the magnetic force of the magnet is applied to the entire dispersion liquid in which the inorganic filler is dispersed, the effect of removing the metallic foreign matter can be exerted on the entire inorganic filler. Furthermore, by setting the viscosity of the dispersion liquid in which the inorganic filler is dispersed in the dispersion medium to 1 to 100 Pa · s, preferably 1 to 20 Pa · s, the metallic foreign matter in the dispersion liquid easily moves to the magnet surface. As a result, the metallic foreign matter can be easily captured and the resistance that the magnet receives from the dispersion liquid can be reduced, so that the captured metallic foreign matter is not easily dropped off. As a result, since the metallic foreign matter can be reliably captured, the insulating property of the inorganic filler can be improved.

(第2の実施形態)
以下、本発明の第2の実施形態に係る無機充填材の絶縁性改善方法について説明する。
(Second Embodiment)
Hereinafter, the insulation improvement method of the inorganic filler according to the second embodiment of the present invention will be described.

まず、容器に分散媒を入れ、無機充填材を分散媒に分散させる。無機充填材を分散媒に分散させた分散液をフィルターに通すことによって濾過し、金属性異物を除去する。フィルターは、無機充填材の最大粒径より大きな開口径を有するフィルターを用いるのが好ましい。但し、フィルター開口径が無機充填材の最大粒径より大きすぎると、その分多くの金属性異物がフィルターを通過してしまうことになり、金属性異物の除去効率が低下する。例えば、無機充填材の最大粒径より20%〜200%大きい開口径を有するフィルターを用いることが好ましい。また、フィルターは、分散液を濾過する際に用いるフィルターによる更なる金属性異物の混入を防ぐため、ナイロン、テトロン等の非金属繊維でできたものを用いるのが好ましい。   First, a dispersion medium is put into a container, and an inorganic filler is dispersed in the dispersion medium. A dispersion liquid in which an inorganic filler is dispersed in a dispersion medium is filtered through a filter to remove metallic foreign matters. It is preferable to use a filter having an opening diameter larger than the maximum particle diameter of the inorganic filler. However, if the filter opening diameter is too larger than the maximum particle size of the inorganic filler, a larger amount of metallic foreign matter will pass through the filter, and the removal efficiency of the metallic foreign matter will be reduced. For example, it is preferable to use a filter having an opening diameter 20% to 200% larger than the maximum particle diameter of the inorganic filler. In addition, it is preferable to use a filter made of non-metallic fibers such as nylon and tetron in order to prevent further metallic foreign matters from being mixed by the filter used when filtering the dispersion.

このように無機充填材を分散媒に分散させ、フィルターに通すことによって金属性異物を除去した後、さらに、分散液と磁石との相対的な移動により分散液の全体に磁力を作用させ、磁石表面に金属性異物を捕捉させて磁石を取り出した後、容器に入っている分散液を加熱し、分散媒を揮発させて、残留した無機充填材を回収する。   In this way, after dispersing the inorganic filler in the dispersion medium and passing through the filter to remove the metallic foreign matter, the magnetic force acts on the entire dispersion liquid by the relative movement of the dispersion liquid and the magnet, and the magnet After capturing the metallic foreign matter on the surface and taking out the magnet, the dispersion in the container is heated to volatilize the dispersion medium, and the remaining inorganic filler is recovered.

以上のように、本実施形態の無機充填材の絶縁性改善方法によれば、分散液と磁石との相対的な移動により分散液全体に磁力を作用させ磁石表面に金属性異物を捕捉する前に、無機充填材分散後の分散液をフィルターに通すことにより無機充填材に混入している金属性異物を予め除去するようにしている。この結果、金属性異物の除去が効率的に行われ、無機充填材の絶縁性をさらに改善することができる。   As described above, according to the method for improving the insulating property of the inorganic filler according to the present embodiment, before the metallic foreign matter is captured on the magnet surface by applying a magnetic force to the entire dispersion by the relative movement between the dispersion and the magnet. In addition, metallic foreign matters mixed in the inorganic filler are removed in advance by passing the dispersion liquid after dispersion of the inorganic filler through a filter. As a result, the metallic foreign matter can be efficiently removed, and the insulating properties of the inorganic filler can be further improved.

また、無機充填材を分散媒に分散させることにより、無機充填材粒子の凝集を防止することができるので、フィルター径を小さくできる。この結果、無機充填材の粒子は通過させつつ、金属性異物の粒子は除去することができるので、除去効率が上がり、無機充填材の絶縁性を改善できる。   Further, by dispersing the inorganic filler in the dispersion medium, the aggregation of the inorganic filler particles can be prevented, so that the filter diameter can be reduced. As a result, since the particles of the metallic foreign matter can be removed while allowing the particles of the inorganic filler to pass through, the removal efficiency can be improved and the insulating properties of the inorganic filler can be improved.

(第3の実施形態)
以下、本発明の第3の実施形態に係る無機充填材の絶縁性改善方法について説明する。
(Third embodiment)
Hereinafter, the insulation improvement method of the inorganic filler according to the third embodiment of the present invention will be described.

この方法は、第1の実施形態に係る無機充填材の絶縁性改善方法を行った後に、さらに、以下に記載するように焼成工程を追加して行うものである。   In this method, after the method for improving the insulating property of the inorganic filler according to the first embodiment is performed, a firing step is further added as described below.

回収した無機充填材を耐熱性の容器に入れ、電気炉を用いて、例えば、600〜1200℃の温度領域で8〜72時間加熱して、混入している金属性異物の少なくとも表面を酸化させる。この結果、金属性異物が非導電性となり、半導体封止材料などの無機充填材に金属性異物が混入していても、封止された半導体の電極間の短絡事故を防止することができる。   The recovered inorganic filler is put into a heat-resistant container and heated in a temperature range of 600 to 1200 ° C. for 8 to 72 hours, for example, using an electric furnace to oxidize at least the surface of the mixed metallic foreign matter. . As a result, the metallic foreign matter becomes non-conductive, and even if the metallic foreign matter is mixed in an inorganic filler such as a semiconductor sealing material, a short circuit accident between the sealed semiconductor electrodes can be prevented.

以上のように本実施形態の無機充填材の絶縁性改善方法によれば、第1の実施形態に記載の絶縁性改善方法を行った後に、回収した無機充填材中に万が一金属性異物が残っていたとしても、さらに、上記のような焼成工程を追加して行うことにより、無機充填材中の金属性異物を非導電性にするようにしているので、無機充填材の絶縁性を格段に改善することができる。   As described above, according to the method for improving the insulating property of the inorganic filler according to the present embodiment, after performing the insulating property improving method described in the first embodiment, metallic foreign matters should remain in the recovered inorganic filler. Even if it is, since the metallic foreign matter in the inorganic filler is made non-conductive by additionally performing the above baking process, the insulation of the inorganic filler is remarkably improved. Can be improved.

(第4の実施形態)
以下、本発明の第4の実施形態に係る無機充填材の絶縁性改善方法について説明する。
(Fourth embodiment)
Hereinafter, the insulation improvement method of the inorganic filler according to the fourth embodiment of the present invention will be described.

この方法は、第2の実施形態に係る無機充填材の絶縁性改善方法を行った後に、さらに、以下に記載するように焼成工程を追加して行うものである。   In this method, after the method for improving the insulating property of the inorganic filler according to the second embodiment is performed, a firing step is further added as described below.

回収した無機充填材を耐熱性の容器に入れ、電気炉を用いて、例えば、600〜1200℃の温度領域で8〜72時間加熱して、混入している金属性異物の少なくとも表面を酸化させる。この結果、金属性異物が非導電性となり、半導体封止材料などの無機充填材に金属性異物が混入していても、封止された半導体の電極間の短絡事故を防止することができる。   The recovered inorganic filler is put into a heat-resistant container and heated in a temperature range of 600 to 1200 ° C. for 8 to 72 hours, for example, using an electric furnace to oxidize at least the surface of the mixed metallic foreign matter. . As a result, the metallic foreign matter becomes non-conductive, and even if the metallic foreign matter is mixed in an inorganic filler such as a semiconductor sealing material, a short circuit accident between the sealed semiconductor electrodes can be prevented.

以上のように本実施形態の無機充填材の絶縁性改善方法によれば、第2の実施形態に記載の絶縁性改善方法を行った後に、回収した無機充填材中に万が一金属性異物が残っていたとしても、さらに、上記のような焼成工程を追加して行うことにより、無機充填材中の金属性異物を非導電性にするようにしているので、無機充填材の絶縁性を格段に改善することができる。   As described above, according to the insulation improvement method of the inorganic filler of the present embodiment, after performing the insulation improvement method described in the second embodiment, any metallic foreign matter should remain in the recovered inorganic filler. Even if it is, since the metallic foreign matter in the inorganic filler is made non-conductive by additionally performing the above baking process, the insulation of the inorganic filler is remarkably improved. Can be improved.

本発明に係る無機充填材の絶縁性改善方法に関して評価を行った。これを以下の実施例に基づき具体的に説明する。   Evaluation was performed on the method for improving the insulation of the inorganic filler according to the present invention. This will be specifically described based on the following examples.

(実施例1)
第1の実施形態の評価方法において、分散媒として純水を使用し、無機充填材を純水に分散させ、この分散液の粘度を100Pa・sとなるように調整した。無機充填材としては、球状シリカである電気化学工業(株)製「FB−5SDX」(平均粒径4.2μm、最大粒径24μm、メーカーにおいて磁石棒を使った除鉄機を通して乾式除鉄による金属性異物の除去がされているもの)を用いた(以下の実施例および比較例においても同じものを用いた。)。次に、分散液全体を5000Gの磁石棒で30分間ゆっくりとかき混ぜた後、磁石棒を取り出し、容器に入った分散液を160℃で24時間加熱し揮発させて、残留した無機充填材を回収した。
Example 1
In the evaluation method of the first embodiment, pure water was used as the dispersion medium, the inorganic filler was dispersed in pure water, and the viscosity of this dispersion was adjusted to 100 Pa · s. As the inorganic filler, “FB-5SDX” manufactured by Denki Kagaku Kogyo Co., Ltd., which is a spherical silica (average particle size 4.2 μm, maximum particle size 24 μm, by dry iron removal through a iron removal machine using a magnet rod in the manufacturer (The same thing was used in the following Examples and Comparative Examples). Next, after slowly stirring the entire dispersion with a 5000 G magnet rod for 30 minutes, the magnet rod is taken out and the dispersion in the container is heated at 160 ° C. for 24 hours to volatilize to recover the remaining inorganic filler. did.

そして、回収した無機充填材中に残存する金属性異物の量を、以下の方法で評価した。   And the quantity of the metallic foreign material which remains in the collect | recovered inorganic filler was evaluated with the following method.

まず、プラスチック製の容器にIPAを200ml入れ、この中に回収した無機充填材を50g加え、分散させた。この分散液全体を4200Gの磁石棒で1分間ゆっくりとかき混ぜた後、磁石棒を取り出し、磁石に捕捉された金属性異物を粘着テープに移し取り、その金属性異物を300倍の光学顕微鏡で観察し、その粒径毎の個数を測定した。この結果を表1の実施例1として示す。   First, 200 ml of IPA was placed in a plastic container, and 50 g of the recovered inorganic filler was added and dispersed therein. The entire dispersion is slowly stirred with a 4200G magnetic rod for 1 minute, then the magnetic rod is removed, the metallic foreign matter captured by the magnet is transferred to an adhesive tape, and the metallic foreign matter is observed with a 300 × optical microscope. The number of particles for each particle size was measured. The results are shown as Example 1 in Table 1.

(比較例1)
上述した市販の無機充填材中の金属性異物の量を評価するため、実施例1に記載の方法により評価した結果を表1の比較例1として示す。
(Comparative Example 1)
In order to evaluate the amount of metallic foreign matter in the above-mentioned commercially available inorganic filler, the result of evaluation by the method described in Example 1 is shown as Comparative Example 1 in Table 1.

(実施例1と比較例1の結果の比較)
実施例1と比較例1の結果を比較すると、比較例1より実施例1の方が、各粒径で金属性異物の個数が減少していることがわかった。この結果より、第1の実施形態に係る無機充填材の絶縁性改善方法の効果があることがわかった。
(Comparison of the results of Example 1 and Comparative Example 1)
When the results of Example 1 and Comparative Example 1 were compared, it was found that Example 1 had a smaller number of metallic foreign matters at each particle size than Comparative Example 1. From this result, it was found that there was an effect of the method for improving the insulating property of the inorganic filler according to the first embodiment.

(比較例2)
第1の実施形態の評価方法において、無機充填材を純水に分散させた分散液の粘度が150Pa・sとなるように調整する他は実施例1と同様とした。この結果を表1の比較例2として示す。
(Comparative Example 2)
In the evaluation method of the first embodiment, the same procedure as in Example 1 was performed except that the viscosity of the dispersion liquid in which the inorganic filler was dispersed in pure water was adjusted to 150 Pa · s. This result is shown as Comparative Example 2 in Table 1.

(実施例1と比較例2の結果の比較)
実施例1と比較例2の結果を比較すると、比較例2より実施例1の方が各粒径で金属性異物の個数が減少していることがわかった。この結果より、第1の実施形態において無機充填材を純水に分散させた分散液の粘度が150Pa・sの場合は金属性異物の除去効果が良好でなく、100Pa・sとすることにより無機充填材の絶縁性改善方法の効果が大きくなることがわかった。
(Comparison of the results of Example 1 and Comparative Example 2)
Comparing the results of Example 1 and Comparative Example 2, it was found that Example 1 had a smaller number of metallic foreign matters at each particle size than Comparative Example 2. From this result, when the viscosity of the dispersion liquid in which the inorganic filler is dispersed in pure water in the first embodiment is 150 Pa · s, the removal effect of the metallic foreign matter is not good, and the inorganic substance can be obtained by setting the viscosity to 100 Pa · s. It was found that the effect of the method for improving the insulating property of the filler is increased.

(実施例2)
第1の実施形態の評価方法において、無機充填材を純水に分散させた分散液の粘度が20Pa・sとなるように調整する他は実施例1と同様とした。この結果を表1の実施例2として示す。
(Example 2)
In the evaluation method of the first embodiment, the same procedure as in Example 1 was performed except that the viscosity of the dispersion obtained by dispersing the inorganic filler in pure water was adjusted to 20 Pa · s. The results are shown as Example 2 in Table 1.

(実施例1と実施例2の結果の比較)
実施例1と実施例2の結果を比較すると、実施例1より実施例2の方が各粒径で金属性異物の個数が減少していることがわかった。この結果より、第1の実施形態において無機充填材を純水に分散させた分散液の粘度が20Pa・sとすることにより、無機充填材の絶縁性改善方法のより大きな効果が得られることがわかった。
(Comparison of the results of Example 1 and Example 2)
Comparing the results of Example 1 and Example 2, it was found that Example 2 had a smaller number of metallic foreign matters at each particle size than Example 1. From this result, it is possible to obtain a greater effect of the method for improving the insulation of the inorganic filler by setting the viscosity of the dispersion obtained by dispersing the inorganic filler in pure water in the first embodiment to 20 Pa · s. all right.

(実施例3)
第2の実施形態の評価方法において、分散媒として純水を使用し、無機充填材を純水に分散させ、この分散液の粘度を20Pa・sとなるように調整した。次に、分散液を開口径24μmのテトロン製のフィルターによって濾過し、金属性異物を除去した。さらに追加して、容器に入っている分散液全体を5000Gの磁石棒で30分間ゆっくりとかき混ぜた後、磁石棒を取り出し、容器に入った分散液を160℃で24時間加熱し、分散媒を揮発させて、残存した無機充填材を回収した。そして、実施例1に記載の方法により無機充填材中の金属性異物の量を評価した。この結果を表1の実施例3として示す。
(Example 3)
In the evaluation method of the second embodiment, pure water was used as a dispersion medium, the inorganic filler was dispersed in pure water, and the viscosity of this dispersion was adjusted to 20 Pa · s. Next, the dispersion was filtered through a Tetron filter having an opening diameter of 24 μm to remove metallic foreign matters. In addition, after slowly stirring the entire dispersion in the container with a 5000 G magnet rod for 30 minutes, the magnet rod is taken out and the dispersion in the container is heated at 160 ° C. for 24 hours to remove the dispersion medium. The remaining inorganic filler was recovered by volatilization. Then, the amount of metallic foreign matter in the inorganic filler was evaluated by the method described in Example 1. The results are shown as Example 3 in Table 1.

(実施例2と実施例3の結果の比較)
実施例2と実施例3の結果を比較すると、実施例2より実施例3の方が金属性異物の個数が減少していることがわかった。この結果より、分散液と磁石との相対的な移動により分散液全体に磁力を作用させ、磁石表面に金属性異物を捕捉する前に、無機充填材分散後の分散液をフィルターに通した方が、金属性異物の除去が効率的に行われ、絶縁性改善方法の効果がより大きくなることがわかった。
(Comparison of the results of Example 2 and Example 3)
Comparing the results of Example 2 and Example 3, it was found that Example 3 had a smaller number of metallic foreign matters than Example 2. From this result, the magnetic dispersion acts on the entire dispersion by the relative movement of the dispersion and the magnet, and before the metallic foreign matter is trapped on the magnet surface, the dispersion after dispersion of the inorganic filler is passed through the filter. However, it has been found that the removal of metallic foreign substances is efficiently performed, and the effect of the insulation improvement method is further increased.

(比較例3)
分散媒として純水を使用し、無機充填材を10倍の重量の分散媒に分散させ、この分散後の分散液をフィルターに通すことによって濾過し、金属性異物を除去した。次に、金属性異物除去後の分散液を160℃で24時間加熱し、分散媒を揮発させて、残存した無機充填材を回収した。そして、実施例1に記載の方法により無機充填材中の金属性異物の量を評価した。この結果を表1の比較例として示す。
(Comparative Example 3)
Pure water was used as a dispersion medium, the inorganic filler was dispersed in a dispersion medium having a weight of 10 times, and the dispersed liquid was filtered through a filter to remove metallic foreign matters. Next, the dispersion liquid after removing the metallic foreign matter was heated at 160 ° C. for 24 hours to volatilize the dispersion medium, and the remaining inorganic filler was recovered. Then, the amount of metallic foreign matter in the inorganic filler was evaluated by the method described in Example 1. This result is shown as a comparative example in Table 1.

(実施例3と比較例3の結果の比較)
実施例3と比較例3の結果を比較すると、比較例3より実施例3の方が金属性異物の個数が減少していることがわかった。この結果より、比較例3に記載したようなフィルターによる金属性異物の除去を単独で行うより、分散液と磁石との相対的な移動により分散液全体に磁力を作用させ、磁石表面に金属性異物を捕捉する前に、分散液をフィルターに通した方が金属性異物の除去が効率的に行われ、絶縁性改善方法の効果がより大きくなることがわかった。
(Comparison of the results of Example 3 and Comparative Example 3)
Comparing the results of Example 3 and Comparative Example 3, it was found that Example 3 had a smaller number of metallic foreign matters than Comparative Example 3. From this result, it is possible to apply a magnetic force to the entire dispersion liquid by relative movement of the dispersion liquid and the magnet, rather than removing the metallic foreign matter by the filter as described in Comparative Example 3 alone. It was found that the metallic foreign matter can be efficiently removed by passing the dispersion liquid through a filter before the foreign matter is captured, and the effect of the insulation improvement method becomes greater.

(実施例4)
第3の実施形態と同様の手順において、分散媒として純水を使用し、無機充填材を純水に分散させ、この分散液の粘度を20Pa・sとなるように調整した。次に、分散液全体を5000Gの磁石棒で30分間ゆっくりとかき混ぜた後、磁石棒を取り出し、容器に入った分散液を160℃で24時間加熱し、分散媒を揮発させて、残留した無機充填材を回収した。
Example 4
In the same procedure as in the third embodiment, pure water was used as a dispersion medium, the inorganic filler was dispersed in pure water, and the viscosity of this dispersion was adjusted to 20 Pa · s. Next, after slowly stirring the entire dispersion with a 5000 G magnet rod for 30 minutes, the magnet rod is taken out, and the dispersion in the container is heated at 160 ° C. for 24 hours to volatilize the dispersion medium and leave the residual inorganic The filler was recovered.

さらに、回収した無機充填材を耐熱性の容器に入れ、電気炉を用いて900℃で24時間加熱した後、無機充填材を回収した。そして、実施例1に記載の方法により無機充填材中の金属性異物の量を評価した。この結果を表1の実施例4として示す。尚、無機充填材を加熱した後の無機充填材中の金属性異物とは、非導電性であるもの以外のものとした。非導電性であるかどうかの判定は、金属性異物粒子の光沢のないものが酸化鉄である三価の鉄Fe3+であることから、光沢のないものを非導電性とし、光沢のあるものを導電性とすることによって行った(以下の各実施例においても同じとする。)。 Furthermore, the recovered inorganic filler was put in a heat-resistant container and heated at 900 ° C. for 24 hours using an electric furnace, and then the inorganic filler was recovered. Then, the amount of metallic foreign matter in the inorganic filler was evaluated by the method described in Example 1. The results are shown as Example 4 in Table 1. The metallic foreign matter in the inorganic filler after heating the inorganic filler was other than non-conductive. Judgment of whether or not it is non-conductive is because the non-glossy metallic foreign particle is trivalent iron Fe 3+, which is iron oxide. Was made conductive (the same applies to the following examples).

(実施例2と実施例4の結果の比較)
実施例2と実施例4の結果を比較すると、実施例2より実施例4の方が金属性異物の個数が減少していることがわかった。この結果より、無機充填材が分散している分散液全体に磁力を作用させ磁石表面に金属性異物を捕捉し、分散液を加熱し、分散媒を揮発させて、残留した無機充填材を回収した後に、さらに、回収した無機充填材を焼成する工程を追加して行った方が、金属性異物の除去が効率的に行われ、絶縁性改善方法の効果がより大きくなることがわかった。
(Comparison of the results of Example 2 and Example 4)
Comparing the results of Example 2 and Example 4, it was found that Example 4 had a smaller number of metallic foreign matters than Example 2. From this result, a magnetic force acts on the entire dispersion in which the inorganic filler is dispersed to capture metallic foreign matter on the magnet surface, the dispersion is heated, the dispersion medium is volatilized, and the remaining inorganic filler is recovered. After that, it was found that the addition of the step of firing the recovered inorganic filler more efficiently removes the metallic foreign matter, and the effect of the insulation improvement method becomes greater.

(比較例4)
上述した市販の無機充填材を耐熱性の容器に入れ、電気炉を用いて900℃で24時間加熱した後、無機充填材を回収した。そして実施例1に記載の方法により無機充填材中の金属性異物の量を評価した。この結果を表1の比較例4として示す。尚、無機充填材を加熱した後の無機充填材中の金属性異物とは、実施例4と同様に非導電性であるもの以外のものとした。
(Comparative Example 4)
The above-mentioned commercially available inorganic filler was put in a heat-resistant container and heated at 900 ° C. for 24 hours using an electric furnace, and then the inorganic filler was recovered. And the quantity of the metallic foreign material in an inorganic filler was evaluated by the method as described in Example 1. This result is shown as Comparative Example 4 in Table 1. In addition, the metallic foreign material in the inorganic filler after heating the inorganic filler was other than the non-conductive one as in Example 4.

(実施例4と比較例4の結果の比較)
実施例4と比較例4の結果を比較すると、比較例4より実施例4の方が金属性異物の個数が減少していることがわかった。この結果より、無機充填材が分散している分散液全体に磁力を作用させ磁石表面に金属性異物を捕捉し、分散液を加熱し、分散媒を揮発させて、残存した無機充填材を回収した後に、さらに、回収した無機充填材を焼成する工程を追加して行った方が、金属性異物の除去が効率的に行われ、比較例4に記載したような金属性異物を焼成することによる金属性異物の除去を単独で行うより、絶縁性改善方法の効果がより大きくなることがわかった。
(Comparison of the results of Example 4 and Comparative Example 4)
Comparing the results of Example 4 and Comparative Example 4, it was found that Example 4 had a smaller number of metallic foreign matters than Comparative Example 4. From this result, a magnetic force is applied to the entire dispersion in which the inorganic filler is dispersed to capture metallic foreign matter on the magnet surface, the dispersion is heated, the dispersion medium is volatilized, and the remaining inorganic filler is recovered. After that, the process of adding the step of firing the recovered inorganic filler is performed more efficiently to remove the metallic foreign matter, and the metallic foreign matter as described in Comparative Example 4 is fired. It has been found that the effect of the insulation improvement method is greater than the removal of the metallic foreign matter by means of alone.

(実施例5)
第4の実施形態と同様の手順において、分散媒として純水を使用し、無機充填材を純水に分散させ、この分散液の粘度を20Pa・sとなるように調整した。次に、無機充填材分散後の純水を開口径24μmのテトロン製のフィルターによって濾過し、金属性異物を除去した後、容器に入っている分散液全体を5000Gの磁石棒で30分間ゆっくりとかき混ぜ、磁石棒を取り出し、容器に入った分散液を160℃で24時間加熱し、分散媒を揮発させて、残存した無機充填材を回収した。さらに、回収した無機充填材を耐熱性の容器に入れ、電気炉を用いて900℃で24時間加熱し、無機充填材を回収した。そして、実施例1に記載の方法により無機充填材中の金属性異物の量を評価した。この結果を表1の実施例5として示す。
(Example 5)
In the same procedure as in the fourth embodiment, pure water was used as a dispersion medium, the inorganic filler was dispersed in pure water, and the viscosity of this dispersion was adjusted to 20 Pa · s. Next, the pure water after dispersion of the inorganic filler is filtered through a Tetron filter having an opening diameter of 24 μm to remove metallic foreign matters, and then the entire dispersion in the container is slowly removed with a 5000 G magnet rod for 30 minutes. The mixture was stirred, the magnetic rod was taken out, and the dispersion in the container was heated at 160 ° C. for 24 hours to volatilize the dispersion medium, and the remaining inorganic filler was recovered. Furthermore, the recovered inorganic filler was put in a heat-resistant container and heated at 900 ° C. for 24 hours using an electric furnace to recover the inorganic filler. Then, the amount of metallic foreign matter in the inorganic filler was evaluated by the method described in Example 1. The results are shown as Example 5 in Table 1.

(実施例5と上記各実施例の結果の比較)
実施例5と上記各実施例の結果を比較すると、上記各実施例のどの実施例よりも実施例5の方が無機充填材中の絶縁性改善方法の効果が大きいことがわかった。この結果より、容器に入った無機充填材を分散させた分散液をフィルターに通し、分散媒に分散している無機充填材全体に磁石の磁力を作用させ磁石表面に金属性異物を捕捉し、分散液を加熱し、分散媒を揮発させて、残存した無機充填材を回収した後、さらに、回収した無機充填材を焼成する工程を追加して行った方が、金属性異物の除去が効率的に行われ、無機充填材の絶縁性を格段に改善することができる。
(Comparison of the results of Example 5 and the above examples)
When the results of Example 5 and each of the above examples were compared, it was found that Example 5 had a greater effect of the insulation improvement method in the inorganic filler than any of the above examples. From this result, the dispersion liquid in which the inorganic filler contained in the container is dispersed is passed through a filter, the magnetic force of the magnet is applied to the entire inorganic filler dispersed in the dispersion medium, and metallic foreign matters are captured on the magnet surface. Heating the dispersion, volatilizing the dispersion medium, collecting the remaining inorganic filler, and then adding an additional step of firing the collected inorganic filler is more efficient in removing metallic foreign matter The insulation of the inorganic filler can be remarkably improved.

Figure 2006273927
Figure 2006273927

Claims (6)

封止材料に配合する無機充填材の絶縁性改善方法であって、
無機充填材を容器中の分散媒に分散させる無機充填材分散ステップと、
前記分散媒に前記無機充填材を分散させた分散液と磁石との相対的な移動により前記分散液全体に磁力を作用させ、前記無機充填材に混入している金属性異物を前記磁石に捕捉させる金属性異物捕捉ステップと、
前記分散液を加熱して前記分散媒を揮発させ、残存する前記無機充填材を回収する無機充填材回収ステップとを備えることを特徴とする無機充填材の絶縁性改善方法。
A method for improving insulation of an inorganic filler to be blended with a sealing material,
An inorganic filler dispersion step for dispersing the inorganic filler in the dispersion medium in the container;
A magnetic force acts on the entire dispersion liquid by the relative movement of the dispersion liquid in which the inorganic filler is dispersed in the dispersion medium and the magnet, and the metallic foreign matter mixed in the inorganic filler is captured by the magnet. A metallic foreign matter capturing step,
An inorganic filler recovering method comprising heating the dispersion to volatilize the dispersion medium and recovering the remaining inorganic filler.
前記無機充填材を前記分散媒に分散させた分散液粘度を1〜100Paとすることを特徴とする請求項1に記載の無機充填材の絶縁性改善方法。   The method for improving insulation properties of an inorganic filler according to claim 1, wherein the viscosity of the dispersion obtained by dispersing the inorganic filler in the dispersion medium is 1 to 100 Pa. 前記金属性異物捕捉ステップは、前記分散媒を棒状の永久磁石でかき混ぜるステップを備えることを特徴とする請求項1に記載の無機充填材の絶縁性改善方法。   The method for improving insulation of an inorganic filler according to claim 1, wherein the metallic foreign matter capturing step includes a step of stirring the dispersion medium with a rod-shaped permanent magnet. 前記無機充填材分散ステップと前記金属性異物捕捉ステップとの間に、
前記分散液をフィルターに通過させる濾過ステップを備えることを特徴とする請求項1に記載の無機充填材の絶縁性改善方法。
Between the inorganic filler dispersion step and the metallic foreign matter capturing step,
The method for improving insulation of an inorganic filler according to claim 1, further comprising a filtration step of passing the dispersion through a filter.
前記フィルターは、前記無機充填材の最大粒径より大きな開口径を有することを特徴とする請求項4に記載の無機充填材の絶縁性改善方法。   The said filter has an opening diameter larger than the maximum particle size of the said inorganic filler, The insulation improvement method of the inorganic filler of Claim 4 characterized by the above-mentioned. 前記無機充填材回収ステップの後に、
前記無機充填材を加熱して酸化させる焼成ステップを更に備えることを特徴とする請求項1から5のいずれかに記載の無機充填材の絶縁性改善方法。
After the inorganic filler recovery step,
The method for improving the insulating property of an inorganic filler according to any one of claims 1 to 5, further comprising a firing step of heating and oxidizing the inorganic filler.
JP2005091870A 2005-03-28 2005-03-28 Method for improving electrical insulation property of inorganic filler Pending JP2006273927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091870A JP2006273927A (en) 2005-03-28 2005-03-28 Method for improving electrical insulation property of inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091870A JP2006273927A (en) 2005-03-28 2005-03-28 Method for improving electrical insulation property of inorganic filler

Publications (1)

Publication Number Publication Date
JP2006273927A true JP2006273927A (en) 2006-10-12

Family

ID=37208988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091870A Pending JP2006273927A (en) 2005-03-28 2005-03-28 Method for improving electrical insulation property of inorganic filler

Country Status (1)

Country Link
JP (1) JP2006273927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280473A (en) * 2008-05-26 2009-12-03 Denki Kagaku Kogyo Kk Spherical metal oxide powder in which magnetizable foreign substance is reduced, and its production method and application
WO2019146454A1 (en) * 2018-01-26 2019-08-01 デンカ株式会社 Amorphous silica powder, production method therefor, and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126007A (en) * 1993-10-26 1995-05-16 Mitsui Zosen Eng Kk Method for dissolving silica flocculation solution raw material, method and device for producing silica flocculation solution
JPH1147633A (en) * 1997-08-07 1999-02-23 Toshiba Chem Corp Metal removing device
JP2002224586A (en) * 2001-01-31 2002-08-13 Nippon Magnetic Dressing Co Ltd Method of selecting fine particle by magnetic selection
JP2004010420A (en) * 2002-06-06 2004-01-15 Mitsubishi Rayon Co Ltd High purity nonmagnetic metal oxide powder and its producing method
JP2004167480A (en) * 2002-11-05 2004-06-17 Shin Etsu Chem Co Ltd Separation method and separating equipment for magnetic metal particle as well as method for manufacturing resin powder for semiconductor sealing
JP2004189577A (en) * 2002-12-13 2004-07-08 Tokuyama Corp Method of manufacturing inorganic oxide particle having improved insulating characteristic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126007A (en) * 1993-10-26 1995-05-16 Mitsui Zosen Eng Kk Method for dissolving silica flocculation solution raw material, method and device for producing silica flocculation solution
JPH1147633A (en) * 1997-08-07 1999-02-23 Toshiba Chem Corp Metal removing device
JP2002224586A (en) * 2001-01-31 2002-08-13 Nippon Magnetic Dressing Co Ltd Method of selecting fine particle by magnetic selection
JP2004010420A (en) * 2002-06-06 2004-01-15 Mitsubishi Rayon Co Ltd High purity nonmagnetic metal oxide powder and its producing method
JP2004167480A (en) * 2002-11-05 2004-06-17 Shin Etsu Chem Co Ltd Separation method and separating equipment for magnetic metal particle as well as method for manufacturing resin powder for semiconductor sealing
JP2004189577A (en) * 2002-12-13 2004-07-08 Tokuyama Corp Method of manufacturing inorganic oxide particle having improved insulating characteristic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280473A (en) * 2008-05-26 2009-12-03 Denki Kagaku Kogyo Kk Spherical metal oxide powder in which magnetizable foreign substance is reduced, and its production method and application
WO2019146454A1 (en) * 2018-01-26 2019-08-01 デンカ株式会社 Amorphous silica powder, production method therefor, and use thereof
KR20200111686A (en) * 2018-01-26 2020-09-29 덴카 주식회사 Amorphous silica powder and its manufacturing method and use
JPWO2019146454A1 (en) * 2018-01-26 2021-01-28 デンカ株式会社 Amorphous silica powder and its manufacturing method, application
JP7197514B2 (en) 2018-01-26 2022-12-27 デンカ株式会社 Amorphous silica powder and its production method and use
KR102578962B1 (en) 2018-01-26 2023-09-14 덴카 주식회사 Amorphous silica powder and its production method and uses

Similar Documents

Publication Publication Date Title
JP5847516B2 (en) Flaky silver powder and conductive paste
JP5631910B2 (en) Silver coated copper powder
KR101730305B1 (en) Metal powder paste and method for producing same
CN106433133B (en) Polymer matrix/three-dimensional graphene thermal interface composite material and preparation method and application thereof
JP6065788B2 (en) Silver powder and method for producing the same
JP2013053347A (en) Dendritic copper powder
JP2008208370A (en) Conductive material
JP5631841B2 (en) Silver coated copper powder
JP2007095510A (en) Conductive paste
JP2010534932A (en) Method for forming electrically conductive copper pattern layer by laser irradiation
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
JP6369797B2 (en) Method for recovering metals from waste electronic substrates
JP2015092017A (en) Silver coated copper powder and manufacturing method therefor, and conductive paste
Gries et al. Preparation of Continuous Gold Nanowires by Electrospinning of High‐Concentration Aqueous Dispersions of Gold Nanoparticles
CN110315090A (en) A kind of high temperature sintering type electrocondution slurry bronze and preparation method thereof
JP2006273927A (en) Method for improving electrical insulation property of inorganic filler
JP2013136818A (en) Copper powder
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
EP2638991A1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP2007005346A (en) Method of removing metallic foreign matter
JP2011208278A (en) Flaky silver powder and method for producing the same
JP5087136B2 (en) Spark plug
CN107705952A (en) A kind of preparation method of thermistor CuO GO self assembly hydrogen reducing combination electrodes
JP2013108120A (en) Silver powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A02