JP2002224586A - Method of selecting fine particle by magnetic selection - Google Patents

Method of selecting fine particle by magnetic selection

Info

Publication number
JP2002224586A
JP2002224586A JP2001023466A JP2001023466A JP2002224586A JP 2002224586 A JP2002224586 A JP 2002224586A JP 2001023466 A JP2001023466 A JP 2001023466A JP 2001023466 A JP2001023466 A JP 2001023466A JP 2002224586 A JP2002224586 A JP 2002224586A
Authority
JP
Japan
Prior art keywords
magnetic
powder
sorting
liquid
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001023466A
Other languages
Japanese (ja)
Inventor
Hideyuki Hara
秀行 原
Toshihiro Yamamoto
利広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Magnetic Dressing Co
Original Assignee
Nippon Magnetic Dressing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Magnetic Dressing Co filed Critical Nippon Magnetic Dressing Co
Priority to JP2001023466A priority Critical patent/JP2002224586A/en
Publication of JP2002224586A publication Critical patent/JP2002224586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of selecting a fine particle by magnetic selection at a high recovery ratio of the magnetic material and non-magnetic materials with respectively high qualities after the magnetic selection by evenly dispersion a powder having magnetism in a liquid. SOLUTION: After a powder 23 containing a magnetic substance mainly having an average particle diameter of less than 10 μm is charged into a liquid 24 and dispersed in the liquid 24, magnetic material is magnetically selected from the powder 23 and non-magnetic materials are recovered from the powder 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性物を含む粉体
を液中に分散させた後、磁力選別機によって液中に分散
した磁性物を除去し、非磁性物を回収する磁力選別によ
る微粒子の選別方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic separation method in which a powder containing a magnetic substance is dispersed in a liquid, and then the magnetic substance dispersed in the liquid is removed by a magnetic separator to recover a non-magnetic substance. The present invention relates to a method for sorting fine particles.

【0002】[0002]

【従来の技術】従来、例えば磁性物を含む廃棄物から非
磁性物である有価物を回収する場合、廃棄物を所定の大
きさ、平均粒径が例えば10μm程度まで粉砕する。こ
のように、廃棄物を粉砕することで、互いに結びついた
磁性物と非磁性物とを分離することが可能となる。次
に、この粉砕した廃棄物を水中に投入した後、磁力選別
機を用いて、この懸濁液中の磁性物を磁着除去し、水中
に実質的に有価物のみを残存させる。そして、この磁性
物が除去された懸濁液を脱水処理し、更に脱水処理で除
去できなかった有価物に付着している水分を、例えば乾
燥機等を用いて除去することで、乾燥状態の有価物を回
収している。これにより、廃棄物中から多くの有価物を
回収できると共に、回収した有価物の品位を高めること
が可能となる。
2. Description of the Related Art Conventionally, when recovering valuable non-magnetic materials from waste containing magnetic substances, for example, the waste is ground to a predetermined size and an average particle size of, for example, about 10 μm. As described above, by grinding the waste, it is possible to separate the magnetic and non-magnetic substances that are linked to each other. Next, after the pulverized waste is put into water, the magnetic substance in the suspension is magnetically removed using a magnetic separator, and substantially only valuable substances remain in the water. Then, the suspension from which the magnetic substance has been removed is subjected to a dehydration treatment, and moisture attached to valuables that cannot be removed by the dehydration treatment is removed using, for example, a dryer or the like, whereby the dried state is obtained. Collecting valuables. Thereby, many valuables can be collected from the waste, and the quality of the collected valuables can be improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、廃棄物
中からより多くの有価物を回収するため、廃棄物の平均
粒径を例えば10μmより細かく粉砕し、この粉体中か
ら有価物(非磁性物)を回収する場合、また廃棄物が粉
々になり易く、平均粒径が例えば10μmより細かくな
った粉体中から有価物を回収する場合、以下の問題があ
る。磁力選別を行うため有価物を含む粉体を水に投入し
た場合、水に対する粉体の馴染み(濡れ性)が悪いた
め、有価物を含む粉体は、水中で凝集し擬似粒子を形成
し易い。このため、水中での粉体の分散が不十分となる
ため、有価物が磁性物に付着したまま磁力選別される可
能性があり、有価物の回収率が低減する。また、上記し
た粒径を有する粉体を磁力選別する場合、高磁束密度の
磁力選別機を使用する必要があるが、水中で粉体が均一
に分散していないため、有価物は磁力選別機による磁性
物の吸着(磁着)時に同時吸着される可能性があり、選
別効果が高くない。本発明はかかる事情に鑑みてなされ
たもので、磁性物を有する粉体を液中で均一に分散さ
せ、磁力選別後の磁性物及び非磁性物の回収率及び品位
をそれぞれ高める磁力選別による微粒子の選別方法を提
供することを目的とする。
However, in order to recover more valuable resources from the waste, the average particle size of the waste is pulverized to, for example, less than 10 μm. ), Or when recovering valuable materials from powders in which the waste is liable to be shattered and the average particle size is smaller than, for example, 10 μm, there are the following problems. When powder containing valuables is put into water for magnetic separation, the powder containing the valuables is poorly adapted to water (wettability), so that the powder containing valuables easily aggregates in water to form pseudo particles. . For this reason, since the dispersion of the powder in water becomes insufficient, there is a possibility that the valuable material is magnetically separated while adhering to the magnetic material, and the recovery rate of the valuable material is reduced. In addition, when magnetically separating powder having the above-mentioned particle size, it is necessary to use a magnetic separator having a high magnetic flux density. However, since the powder is not uniformly dispersed in water, valuable materials are used as a magnetic separator. There is a possibility that the magnetic substance is adsorbed at the same time when the magnetic substance is adsorbed (magnetically adhered), and the sorting effect is not high. The present invention has been made in view of the above circumstances, and fine particles by magnetic force sorting to increase the recovery rate and quality of magnetic and non-magnetic materials after magnetic force by uniformly dispersing powder having a magnetic material in a liquid. The purpose of the present invention is to provide a method of sorting.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う第1の発
明に係る磁力選別による微粒子の選別方法は、平均粒径
が10μm未満を主体とする磁性物を含む粉体を液中に
投入し、液中に粉体を分散させた後、磁力選別機によっ
て粉体から磁性物を磁力選別して、粉体から非磁性物を
回収する。このように、凝集状態を形成し易い粉体を液
中に投入し、粉体を液中に分散させることで、液中に磁
性物と非磁性物の粒子を個別に存在させることが可能と
なる。前記目的に沿う第2の発明に係る磁力選別による
微粒子の選別方法は、第1の発明に係る磁力選別による
微粒子の選別方法において、液中に投入した粉体に超音
波及び/又はジェット噴流をあて、液中でキャビテーシ
ョンを発生させて、液中での粉体の分散を促進させる。
このように、液中に投入した粉体に超音波及び/又はジ
ェット噴流をあてることで、液中でキャビテーションが
発生するため、粉体を液中で凝集させることなく、磁性
物と非磁性物の粒子を液中に個別に存在させることが可
能となる。
According to the first aspect of the present invention, there is provided a method for sorting fine particles by magnetic force sorting, wherein a powder containing a magnetic substance mainly having an average particle diameter of less than 10 μm is charged into a liquid. After dispersing the powder in the liquid, the magnetic substance is magnetically separated from the powder by a magnetic separator to collect the non-magnetic substance from the powder. In this way, the powder that easily forms an agglomerated state is put into the liquid and the powder is dispersed in the liquid, so that the magnetic substance and the non-magnetic substance particles can be individually present in the liquid. Become. According to a second aspect of the present invention, there is provided a method for sorting fine particles by magnetic force according to the first aspect of the present invention, wherein an ultrasonic wave and / or a jet jet is applied to the powder introduced into the liquid. Cavitation is generated in the liquid to promote dispersion of the powder in the liquid.
As described above, since cavitation occurs in the liquid by applying ultrasonic waves and / or jet jets to the powder charged in the liquid, the magnetic substance and the non-magnetic substance do not aggregate in the liquid. Can be individually present in the liquid.

【0005】前記目的に沿う第3の発明に係る磁力選別
による微粒子の選別方法は、第1、第2の発明に係る磁
力選別による微粒子の選別方法において、液中でエアレ
ーションを行い、液中での粉体の分散を促進させる。こ
こで、エアレーションとは、液中にガスの一例である空
気を吹き込む操作を言う。このように、エアレーション
を行うことで、粉体を液中で凝集させることなく、粉体
を液中に均一に分散させることが可能となる。前記目的
に沿う第4の発明に係る磁力選別による微粒子の選別方
法は、第1〜第3の発明に係る磁力選別による微粒子の
選別方法において、交流磁極により液中に投入した粉体
に交流磁界を生じさせ、液中での粉体の分散を促進させ
る。このように、粉体に交流磁界を生じさせることで、
粉体に撹拌作用を付加することができるため、粉体を液
中で凝集させることなく、粉体を液中に均一に分散させ
ることが可能となる。
According to a third aspect of the present invention, there is provided a method of sorting fine particles by magnetic force according to the first and second aspects of the present invention, wherein aeration is performed in a liquid, and Promotes powder dispersion. Here, aeration refers to an operation of blowing air, which is an example of a gas, into a liquid. As described above, by performing aeration, the powder can be uniformly dispersed in the liquid without aggregating the powder in the liquid. According to a fourth aspect of the present invention, there is provided a method for selecting fine particles by magnetic force separation according to the fourth aspect of the present invention, wherein the fine particles introduced into the liquid by an AC magnetic pole are subjected to an AC magnetic field. And promote the dispersion of the powder in the liquid. In this way, by generating an alternating magnetic field in the powder,
Since a stirring action can be added to the powder, the powder can be uniformly dispersed in the liquid without aggregating the powder in the liquid.

【0006】前記目的に沿う第5の発明に係る磁力選別
による微粒子の選別方法は、第1〜第4の発明に係る磁
力選別による微粒子の選別方法において、液を所定温度
まで加温し、液中での粉体の分散を促進させる。なお、
ここで、所定温度とは、例えば25〜60℃程度にする
ことが好ましい。このように、液を加温することで、粉
体を液中で凝集させることなく、粉体を液中に更に均一
に分散させることが可能となる。前記目的に沿う第6の
発明に係る磁力選別による微粒子の選別方法は、第1〜
第5の発明に係る磁力選別による微粒子の選別方法にお
いて、液に水溶性の界面活性剤を添加した水を使用し、
この液中での前記粉体の分散を促進させる。なお、水溶
性の界面活性剤には、ポリカルボン酸型アニオン界面活
性剤を使用することが好ましい。このように、液に水溶
性の界面活性剤を添加した水を使用することで、粉体を
液中で凝集させることなく、粉体が液中に均一に分散し
た状態を維持させることが可能となる。
According to a fifth aspect of the present invention, there is provided a method for sorting fine particles by magnetic force according to the first to fourth aspects of the present invention, wherein the liquid is heated to a predetermined temperature. Promotes the dispersion of powders inside. In addition,
Here, the predetermined temperature is preferably, for example, about 25 to 60 ° C. As described above, by heating the liquid, the powder can be more uniformly dispersed in the liquid without aggregating the powder in the liquid. According to a sixth aspect of the present invention, there is provided a method for sorting fine particles by magnetic force sorting,
In the method for sorting fine particles by magnetic force sorting according to the fifth invention, using water obtained by adding a water-soluble surfactant to a liquid,
The dispersion of the powder in the liquid is promoted. In addition, it is preferable to use a polycarboxylic acid type anionic surfactant as the water-soluble surfactant. In this way, by using water in which a water-soluble surfactant is added to the liquid, it is possible to maintain a state in which the powder is uniformly dispersed in the liquid without aggregating the powder in the liquid. Becomes

【0007】前記目的に沿う第7の発明に係る磁力選別
による微粒子の選別方法は、第1〜第6の発明に係る磁
力選別による微粒子の選別方法において、磁力選別機に
高磁束密度の磁力選別機を用いる。このように、磁力選
別機に高磁束密度の磁力選別機を用いることで、粉体中
の磁性物をより多く回収することが可能となる。前記目
的に沿う第8の発明に係る磁力選別による微粒子の選別
方法は、第7の発明に係る磁力選別による微粒子の選別
方法において、液中に粉体を分散させた後、低磁束密度
の磁力選別機によって粉体中の強磁性物を除去し、更に
高磁束密度の磁力選別機で磁力選別を行って、非磁性物
の品位を高める。このように、磁束密度の異なる磁力選
別機を用い、液中の粉体を磁力選別することで、粉体中
の磁性物を一度に除去することなく、最初に粉体中の強
磁性物のみを除去し、更に粉体中の残りの磁性物を除去
することが可能となる。
According to a seventh aspect of the present invention, there is provided a method for sorting fine particles by magnetic force sorting according to the first to sixth aspects of the present invention, wherein the magnetic force sorting machine is provided with a magnetic force sorting device having a high magnetic flux density. Machine. As described above, by using the magnetic separator having a high magnetic flux density as the magnetic separator, it is possible to collect more magnetic substances in the powder. The method for sorting fine particles by magnetic force sorting according to the eighth invention according to the above object is the method for sorting fine particles by magnetic force sorting according to the seventh invention, wherein the powder is dispersed in a liquid, The ferromagnetic substance in the powder is removed by a separator, and the magnetic force is further separated by a magnetic separator having a high magnetic flux density to improve the quality of the non-magnetic substance. In this way, by using magnetic separators with different magnetic flux densities and magnetically separating the powder in the liquid, it is possible to first remove only the ferromagnetic material in the powder without removing the magnetic material in the powder at once. , And the remaining magnetic substance in the powder can be further removed.

【0008】[0008]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る磁力選別による微粒子の選別方法の工程説明
図、図2は同磁力選別による微粒子の選別方法に適用さ
れる高磁束密度の磁力選別機の構造の説明図、図3は同
磁力選別による微粒子の選別方法に適用される高磁束密
度の磁力選別機の磁極部の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a process explanatory view of a method of sorting fine particles by magnetic force sorting according to an embodiment of the present invention, and FIG. 2 shows a magnetic force sorting machine of high magnetic flux density applied to the method of sorting fine particles by magnetic force sorting. FIG. 3 is an explanatory view of a structure, and FIG. 3 is an explanatory view of a magnetic pole portion of a magnetic flux separator having a high magnetic flux density applied to a method of sorting fine particles by the same magnetic force sorting.

【0009】本発明の一実施の形態に係る磁力選別によ
る微粒子の選別方法に適用される高磁束密度の磁力選別
機10について説明する。図2、図3に示すように、高
磁束密度の磁力選別機10は、液中の磁性物を含む粉体
を磁力選別し、粉体中の磁性物を回収除去して、非磁性
物が残存する液を造るものであり、例えば2.5〜3.
0テスラ程度の高磁束密度の磁力選別機である。以下、
詳しく説明する。
A description will be given of a magnetic force separator 10 having a high magnetic flux density applied to a method of sorting fine particles by magnetic force separation according to an embodiment of the present invention. As shown in FIG. 2 and FIG. 3, the magnetic force separator 10 having a high magnetic flux density magnetically separates the powder containing the magnetic substance in the liquid, collects and removes the magnetic substance in the powder, and removes the non-magnetic substance. This is for producing a remaining liquid, for example, 2.5 to 3.
It is a magnetic separator with a high magnetic flux density of about 0 Tesla. Less than,
explain in detail.

【0010】この高磁束密度の磁力選別機10は、懸濁
液(磁性物を含む粉体が投入された液)中から磁性物を
回収するため、管11の内部に鉄球22を備えると共に
その周囲に鉄球22を磁化するコイル20を備えた磁極
部12と、この管11の磁極部12を除く上流側及び下
流側にそれぞれ設けられた原料供給部13と分別品排出
部14とを有する。この原料供給部13には、懸濁液を
磁極部12に送るための原料供給管15が、一方、分別
品排出部14には、磁極部12により磁性物が回収除去
された懸濁液を排出する分別品排出管16がそれぞれ配
設されている。また、原料供給部13には、磁極部12
により回収除去された磁性物を排出する磁性物排出管1
7が、一方、分別品排出部14には、磁極部12内部及
び分別品排出部14等に残留している粉体(以下、残留
物とも言う)を排出する残留物排出管18がそれぞれ配
設されている。
The magnetic separator 10 having a high magnetic flux density is provided with an iron ball 22 inside the tube 11 in order to recover a magnetic substance from a suspension (a liquid into which a powder containing a magnetic substance is charged). A magnetic pole part 12 provided with a coil 20 for magnetizing an iron ball 22 around the raw material supply part 13 and a raw material supply part 13 and a separated product discharge part 14 provided on the upstream and downstream sides of the tube 11 except for the magnetic pole part 12, respectively. Have. The raw material supply section 13 is provided with a raw material supply pipe 15 for sending the suspension to the magnetic pole section 12, while the separated product discharge section 14 is provided with the suspension from which the magnetic substance has been collected and removed by the magnetic pole section 12. Separated product discharge pipes 16 to be discharged are provided respectively. The raw material supply unit 13 includes a magnetic pole unit 12.
Discharge tube 1 for discharging the magnetic material collected and removed
On the other hand, a residue discharge pipe 18 for discharging powder (hereinafter, also referred to as residue) remaining inside the magnetic pole portion 12 and in the separation product discharge section 14 and the like is arranged in the separated product discharge section 14, respectively. Has been established.

【0011】そして、原料供給部13と分別品排出部1
4には、基点を同じとし、磁性物と残留物を、磁性物排
出管17と残留物排出管18にそれぞれ流すことが可能
なように、洗浄水を流すための洗浄水用送水管19が配
設されている。これにより、残留物排出管18から回収
した残留物をもとに再度懸濁液を造り、この懸濁液を原
料供給管15から内部に磁場が形成された通液空間を有
する磁極部12に送水することで、粉体中からの非磁性
物の回収率を更に高くすることが可能となる。なお、洗
浄水用送水管19には、洗浄水の代わりに空気を吹き込
むことも可能である。また、原料供給管15、分別品排
出管16、磁性物排出管17、残留物排出管18、洗浄
水用送水管19にはそれぞれバルブ(図示しない)が設
けられているため、必要な配管のみに液を送水すること
が可能となる。そして、磁極部12は、前述のように、
管11を囲むコイル20が設けられ、更に管11の内部
に多数の鉄球22が充填され、コイル20に直流電流を
流すことで、磁極部12の管11内に充填された多数の
鉄球22を磁化させ、隣り合う鉄球22の隙間に通液性
磁気空間部を形成している。
Then, the raw material supply section 13 and the separated product discharge section 1
4 is provided with a flush water supply pipe 19 for flushing water so that the magnetic substance and the residue can flow to the magnetic substance discharge pipe 17 and the residue discharge pipe 18, respectively, with the same base point. It is arranged. In this way, a suspension is formed again based on the residue collected from the residue discharge pipe 18, and the suspension is supplied from the raw material supply pipe 15 to the magnetic pole part 12 having a liquid passing space in which a magnetic field is formed. By sending water, it becomes possible to further increase the recovery rate of non-magnetic substances from the powder. In addition, it is also possible to blow air into the water pipe 19 for washing water instead of washing water. Also, since the raw material supply pipe 15, the separated product discharge pipe 16, the magnetic substance discharge pipe 17, the residue discharge pipe 18, and the washing water supply pipe 19 are provided with valves (not shown), only necessary pipes are provided. It is possible to feed the liquid. And the magnetic pole part 12 is, as described above,
A coil 20 surrounding the tube 11 is provided. Further, the inside of the tube 11 is filled with a large number of iron balls 22, and a direct current is applied to the coil 20 so that a large number of iron balls filled in the tube 11 of the magnetic pole portion 12. The magnet 22 is magnetized to form a liquid-permeable magnetic space in a gap between the adjacent iron balls 22.

【0012】次に、上記した高磁束密度の磁力選別機1
0の動作方法について説明する。まず、懸濁液を、例え
ば給鉱ポンプ(図示しない)によって、原料供給管15
より磁極部12へ送水する。このとき、磁極部12のコ
イル20に予め直流電流を流すことで、複数の鉄球22
が磁化されているため、磁極部12に送水された懸濁液
中の磁性物は複数の鉄球22に磁着(吸着)され、懸濁
液から磁性物が除去される。この磁性物が除去された懸
濁液は、分別品排出管16から排出され、回収される
(図2中の実線参照)。
Next, the above-described high-magnetic-flux-density magnetic separator 1
The operation method of 0 will be described. First, the suspension is supplied to a raw material supply pipe 15 by, for example, a mineral feed pump (not shown).
More water is sent to the magnetic pole portion 12. At this time, by supplying a direct current to the coil 20 of the magnetic pole portion 12 in advance, the plurality of iron balls 22
Is magnetized, the magnetic substance in the suspension fed to the magnetic pole portion 12 is magnetically attached (adsorbed) to the plurality of iron balls 22, and the magnetic substance is removed from the suspension. The suspension from which the magnetic substances have been removed is discharged from the fractionated product discharge pipe 16 and collected (see the solid line in FIG. 2).

【0013】上記した操作が終了した後、原料供給部1
3に配設された洗浄水用送水管19に洗浄水の一例であ
る水を流し、磁極部12内部及び分別品排出部14等に
残存する残留物を水と共に残留物排出管18から排出す
る。このとき、磁極部12のコイル20には直流電流を
流し続けているため、複数の鉄球22に磁着した磁性物
は、複数の鉄球22に磁着した状態を維持する(図2中
の2点鎖線参照)。残留物を残留物排出管18から排出
した後、磁極部12のコイル20へ流し続けた直流電流
を一定時間止め、複数の鉄球22を消磁する。その後、
分別品排出部14に配設された洗浄水用送水管19に水
を流し、鉄球に磁着していた磁性物を、水と共に磁性物
排出管17から排出する(図2中の点線参照)。
After the above operation is completed, the raw material supply unit 1
Water, which is an example of washing water, is flowed into the washing water supply pipe 19 provided in 3, and the residue remaining inside the magnetic pole section 12 and the separated product discharge section 14 is discharged from the residue discharge pipe 18 together with the water. . At this time, since a DC current continues to flow through the coil 20 of the magnetic pole portion 12, the magnetic substance magnetically attached to the plurality of iron balls 22 maintains the state of being magnetically attached to the plurality of iron balls 22 (in FIG. 2). 2). After the residue is discharged from the residue discharge pipe 18, the DC current continuously flowing to the coil 20 of the magnetic pole part 12 is stopped for a certain time, and the plurality of iron balls 22 are demagnetized. afterwards,
Water is flowed into the washing water supply pipe 19 provided in the separated product discharge section 14, and the magnetic substance magnetically attached to the iron ball is discharged from the magnetic substance discharge pipe 17 together with the water (see the dotted line in FIG. 2). ).

【0014】続いて、本発明の一実施の形態に係る磁力
選別による微粒子の選別方法を、前記した高磁束密度の
磁力選別機10を用いて説明する。図1に示すように、
本発明の一実施の形態に係る磁力選別による微粒子の選
別方法は、平均粒径が10μm未満を主体とする磁性物
の一例であるステンレス材を含む粉体(この実施の形態
では、酸化鉛、シリカ、ステンレス材が主成分)23を
液(この実施の形態では、水溶性の界面活性剤の一例で
あるポリカルボン酸型アニオン界面活性剤を添加した
水)24中に投入し、液24中に粉体23を分散させた
後、磁力選別機の一例である高磁束密度の磁力選別機1
0によって粉体23からステンレス材を磁力選別して、
粉体23から非磁性物の一例である鉛ガラス原料(例え
ば、酸化鉛、シリカ等)25を回収する方法である。以
下、詳しく説明する。
Next, a method for sorting fine particles by magnetic force sorting according to an embodiment of the present invention will be described using the magnetic force sorting machine 10 having a high magnetic flux density described above. As shown in FIG.
In the method for sorting fine particles by magnetic force sorting according to one embodiment of the present invention, a powder containing a stainless material as an example of a magnetic substance having an average particle diameter of less than 10 μm (in this embodiment, lead oxide, A silica (stainless steel material) is charged into a liquid (in this embodiment, water to which a polycarboxylic acid-type anionic surfactant, which is an example of a water-soluble surfactant), is added. After the powder 23 is dispersed in the magnetic material, a high magnetic flux density magnetic force
Magnetic separation of stainless steel from powder 23 by 0
This is a method of recovering a lead glass raw material (for example, lead oxide, silica, etc.) 25 which is an example of a nonmagnetic substance from the powder 23. The details will be described below.

【0015】まず、平均粒径が10μm未満を主体(こ
の実施の形態では、例えば2〜3μm程度)とするステ
ンレス材を含む粉体23を、ポリカルボン酸型アニオン
界面活性剤(以下、界面活性剤と言う)が添加された液
24に対して例えば1〜30重量%程度投入する。な
お、ここでは、粉体23の平均粒径を10μm未満とし
たが、好ましくは7μm未満、更には5μm未満とする
ことが好ましい。また、界面活性剤は、界面活性剤が3
0〜60重量%程度(この実施の形態では、43重量%
程度)、残部が水からなる界面活性剤の水溶液26とし
た後使用する。このため、この界面活性剤の水溶液26
を、水に対して例えば0.1〜5重量%程度(この実施
の形態では1重量%程度)添加し、液24を造る。次
に、液24中に投入した粉体23に、超音波装置を用い
て1時間程度超音波をあて、液24中でキャビテーショ
ンを発生させて、液24中での粉体23の分散を促進さ
せると共に、この液24を所定温度、例えば25〜60
℃程度(この実施の形態では40℃程度)まで加温し、
液24中での粉体23の分散を更に促進させる。
First, a powder 23 containing a stainless steel having an average particle diameter of less than 10 μm (in this embodiment, for example, about 2 to 3 μm) is mixed with a polycarboxylic acid type anionic surfactant (hereinafter referred to as a surfactant). ) Is added to the liquid 24 to which the agent 24 has been added. Here, the average particle size of the powder 23 is less than 10 μm, but is preferably less than 7 μm, and more preferably less than 5 μm. In addition, as for the surfactant, the surfactant is 3
About 0 to 60% by weight (in this embodiment, 43% by weight
Approximately), and the remainder is made into an aqueous solution 26 of a surfactant composed of water before use. Therefore, the aqueous solution 26 of this surfactant is used.
Is added, for example, to water in an amount of about 0.1 to 5% by weight (about 1% by weight in this embodiment) to form a liquid 24. Next, ultrasonic waves are applied to the powder 23 charged in the liquid 24 for about 1 hour using an ultrasonic device to generate cavitation in the liquid 24 to promote dispersion of the powder 23 in the liquid 24. At the same time, the liquid 24 is heated to a predetermined temperature, for example, 25 to 60.
℃ (about 40 ℃ in this embodiment),
The dispersion of the powder 23 in the liquid 24 is further promoted.

【0016】これを、従来公知の例えば0.05〜0.
3テスラ程度(この実施の形態では0.15テスラ)の
低磁束密度の磁力選別機27を用いて、液24中に含ま
れるステンレス材の中でも、強磁性物のステンレス材2
8のみを除去する。この強磁性物のステンレス材28を
除去した液29を、更に前記した高磁束密度の磁力選別
機10を用いて磁力選別することで、強磁性物のステン
レス材28を除去した液29中に残存するステンレス
材、例えば弱磁性物のステンレス材30を除去した鉛ガ
ラス原料25を含む液31を造る。このように、最初に
低磁束密度の磁力選別機27を用い、液24中のステン
レス材中の強磁性物のステンレス材28のみを除去し、
更に高磁束密度の磁力選別機10を用いて、強磁性物の
ステンレス材28を除去した液29中から弱磁性物のス
テンレス材30等を除去することで、高磁束密度の磁力
選別機10による磁性物吸着時に鉛ガラス原料25の同
時吸着(巻込み)を減少させ、磁力選別後のステンレス
材、鉛ガラス原料25の各々の品位、歩留りを向上させ
ることが可能となる。この鉛ガラス原料25を含む液3
1を、例えばろ過や遠心分離機等を用いて脱水処理し、
僅かな水分が付着した鉛ガラス原料25を回収した後、
これを例えば乾燥機等を用いて乾燥させ、乾燥状態の鉛
ガラス原料25を回収する。
This can be carried out by using a conventionally known method, for example, 0.05 to 0.1.
Using a magnetic separator 27 having a low magnetic flux density of about 3 Tesla (0.15 Tesla in this embodiment), a ferromagnetic stainless steel material 2 among the stainless steel materials contained in the liquid 24 is used.
Remove only 8 The liquid 29 from which the ferromagnetic stainless material 28 has been removed is further subjected to magnetic separation using the above-described magnetic flux separator 10 having a high magnetic flux density, so that the liquid 29 remaining in the liquid 29 from which the ferromagnetic stainless material 28 has been removed is removed. A liquid 31 containing a lead glass raw material 25 from which a stainless steel material to be removed, for example, a stainless steel material 30 of a weak magnetic material is removed. Thus, first, using the magnetic separator 27 having a low magnetic flux density, only the ferromagnetic stainless steel material 28 in the stainless steel material in the liquid 24 is removed,
Further, by using a magnetic flux separator 10 having a high magnetic flux density to remove the stainless steel material 30 such as a weak magnetic material from the liquid 29 from which the stainless steel material 28 having the ferromagnetic material has been removed, the magnetic force separator 10 having a high magnetic flux density can be used. Simultaneous adsorption (roll-in) of the lead glass raw material 25 at the time of magnetic substance adsorption can be reduced, and the quality and yield of each of the stainless steel material and the lead glass raw material 25 after magnetic force separation can be improved. Liquid 3 containing this lead glass raw material 25
1 is dehydrated using, for example, filtration or a centrifuge,
After recovering the lead glass raw material 25 to which a small amount of water has adhered,
This is dried using, for example, a dryer or the like, and the lead glass material 25 in a dry state is recovered.

【0017】[0017]

【実施例】本発明に係る磁力選別による微粒子の選別方
法を適用し、試験を行った結果について説明する。な
お、発明例1〜3、比較例1、2では、平均粒径が2〜
3μmを主体とするステンレス材を含む粉体(粉体中の
92重量%が鉛ガラス原料)を、1〜30重量%程度水
中に投入した懸濁液を用いて試験を行っている。この結
果を表1に示す。
EXAMPLES The results of a test performed by applying the method for sorting fine particles by magnetic force sorting according to the present invention will be described. In addition, in Invention Examples 1-3 and Comparative Examples 1 and 2, the average particle size was 2 to 2.
A test is conducted using a suspension in which a powder containing stainless steel mainly composed of 3 μm (92% by weight of the powder is a raw material of lead glass) is put into water at about 1 to 30% by weight. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、非磁性物の歩留は、水中に投入した
粉体の重量に対する回収した鉛ガラス原料の重量の百分
率を示し、回収率は粉体中に含まれる鉛ガラス原料の全
重量に対する回収した鉛ガラス原料の重量の百分率を示
している。また、品位は、2.0テスラの磁束密度の検
定器を用い、磁力選別後の液中に残存する磁着物を検定
器の磁着部に磁着させ、この磁着物を目視により確認し
て、極少量でも確認された場合を×、全く確認されなか
った場合を○として示している。
The yield of the nonmagnetic material indicates the percentage of the weight of the lead glass raw material recovered with respect to the weight of the powder charged in water, and the recovery rate is based on the total weight of the lead glass raw material contained in the powder. The percentage of the weight of the recovered lead glass raw material is shown. The quality was measured using a 2.0 Tesla magnetic flux density tester, and the magnetic substance remaining in the liquid after the magnetic separation was magnetically adhered to the magnetic part of the tester, and the magnetic substance was visually checked. , The case where the amount was confirmed even in a very small amount is indicated by x, and the case where no amount was confirmed was indicated by ○.

【0020】発明例1は、界面活性剤の水溶液を水に対
して1重量%添加した水中に粉体を投入し、この粉体に
1時間程度超音波をあてながら水を40℃程度まで加温
し、水中での粉体の分散を促進させた懸濁液を用いて、
0.15テスラの低磁束密度の磁力選別機による磁力選
別を行った後、更に2.8テスラの高磁束密度の磁力選
別機による磁力選別を行っている。この場合、非磁性物
の歩留は91.98重量%で、鉛ガラス原料の回収率は
99.98重量%となり、粉体中の鉛ガラスのほとんど
全量を回収できたことが分かった。なお、検定器による
検定においても、磁着部へのステンレス材の磁着は確認
できなかった。発明例2は、界面活性剤を添加していな
い水中に粉体を投入し、この粉体に1時間程度超音波を
あてながら水を40℃程度まで加温し、水中での粉体の
分散を促進させた懸濁液を用いて、0.15テスラの低
磁束密度の磁力選別機による磁力選別を行った後、更に
2.8テスラの高磁束密度の磁力選別機による磁力選別
を行っている。この場合、鉛ガラス原料の回収率は8
5.23重量%となり、発明例1と比較して回収率は低
下するが、検定器による検定において、磁着部へのステ
ンレス材の磁着は確認できなかった。従って、回収した
鉛ガラス原料の品位は高いため、回収した鉛ガラス原料
の再利用に問題はない。
In Inventive Example 1, a powder was put into water in which an aqueous solution of a surfactant was added at 1% by weight with respect to water, and water was added to the powder to about 40 ° C. while applying ultrasonic waves for about 1 hour. Using a suspension that warms and promotes the dispersion of the powder in water,
After performing a magnetic separation by a magnetic separator having a low magnetic flux density of 0.15 Tesla, a magnetic separator is further performed by a magnetic separator having a high magnetic flux density of 2.8 Tesla. In this case, the yield of the nonmagnetic material was 91.98% by weight, and the recovery rate of the lead glass raw material was 99.98% by weight, indicating that almost all of the lead glass in the powder could be recovered. In addition, even in the test using the tester, the magnetic adhesion of the stainless steel material to the magnetically bonded portion could not be confirmed. Inventive Example 2 is a method in which a powder is put into water to which a surfactant is not added, and the powder is heated to about 40 ° C. while applying ultrasonic waves to the powder for about 1 hour to disperse the powder in water. Using the suspension that promoted the above, the magnetic force was sorted by a magnetic force sorter having a low magnetic flux density of 0.15 Tesla, and then the magnetic force was sorted by a magnetic force sorter having a high magnetic flux density of 2.8 Tesla. I have. In this case, the recovery rate of the lead glass raw material is 8
The recovery rate was 5.23% by weight, and the recovery rate was lower than that of Inventive Example 1. However, no magnetic adhesion of the stainless steel to the magnetically bonded portion was confirmed by the test using the tester. Therefore, since the quality of the recovered lead glass raw material is high, there is no problem in reusing the recovered lead glass raw material.

【0021】発明例3は、界面活性剤を添加していない
水中に粉体を投入し、水を加温することなく水中に投入
した粉体に1時間程度超音波をあて、水中での粉体の分
散を促進させた懸濁液を用いて、0.15テスラの低磁
束密度の磁力選別機による磁力選別を行った後、更に
2.8テスラの高磁束密度の磁力選別機による磁力選別
を行っている。この場合、鉛ガラス原料の回収率は6
2.13重量%となり、発明例1と比較して回収率は更
に低下するが、検定器による検定において、磁着部への
ステンレス材の磁着は確認できなかった。従って、回収
した鉛ガラス原料の品位は高いため、回収した鉛ガラス
原料の再利用に問題はない。
Inventive Example 3 is a method in which a powder is charged into water to which no surfactant is added, and the powder charged into the water without heating the water is irradiated with ultrasonic waves for about one hour, and the powder in the water is heated. Using a suspension that promotes dispersion of the body, a magnetic force is sorted by a magnetic force sorter with a low magnetic flux density of 0.15 Tesla, and then a magnetic force sorter with a magnetic force sorter with a high magnetic flux density of 2.8 Tesla. It is carried out. In this case, the recovery rate of the lead glass raw material is 6
It was 2.13% by weight, and the recovery rate was further reduced as compared with Inventive Example 1. However, in the test performed by the tester, the magnetic adhesion of the stainless steel to the magnetically bonded portion could not be confirmed. Therefore, since the quality of the recovered lead glass raw material is high, there is no problem in reusing the recovered lead glass raw material.

【0022】比較例1は、液中に粉体を分散させること
なく、水中に粉体を投入しただけの前記した懸濁液を用
いて、0.15テスラの低磁束密度の磁力選別機による
磁力選別を行った後、更に2.8テスラの高磁束密度の
磁力選別機による磁力選別を行っている。この場合、鉛
ガラス原料の回収率は50.25重量%となり、発明例
3と比較して回収率は更に低下し、更に検定器による検
定においても、磁着部へのステンレス材の磁着が確認さ
れた。これは、ステンレス材と鉛ガラス原料とが凝集し
た状態で、磁力選別されたことに起因しており、回収し
た鉛ガラス原料の品位が低いため、回収した鉛ガラス原
料の再利用に問題がある。
Comparative Example 1 uses a magnetic separator having a low magnetic flux density of 0.15 Tesla using the above-mentioned suspension in which the powder was merely introduced into water without dispersing the powder in the liquid. After performing magnetic force sorting, magnetic force sorting is further performed by a magnetic force sorting machine having a high magnetic flux density of 2.8 Tesla. In this case, the recovery rate of the lead glass raw material was 50.25% by weight, and the recovery rate was further reduced as compared with Inventive Example 3. Further, even in the test using the tester, the magnetic adhesion of the stainless steel to the magnetically bonded portion was suppressed. confirmed. This is due to magnetic separation in a state where the stainless steel material and the lead glass raw material are aggregated, and there is a problem in reusing the recovered lead glass raw material because the quality of the recovered lead glass raw material is low. .

【0023】比較例2は、液中に粉体を分散させること
なく、水中に粉体を投入しただけの前記した懸濁液を用
いて、2.8テスラの高磁束密度の磁力選別機による磁
力選別のみを行っている。この場合、鉛ガラス原料の回
収率は37.82重量%となり、比較例1と比較しても
回収率は低く、更に検定器による検定においても、磁着
部へのステンレス材の磁着が確認された。これは、水中
での粉体の分散が行われていない懸濁液を、磁力選別機
によって磁力選別することで、高磁束密度の磁力選別機
による磁性物吸着時に鉛ガラス原料の同時吸着(巻込
み)が発生したことに起因する。上記のことから、発明
例1〜3のように、水中での粉体の分散を促進させた
後、磁力選別機によって磁力選別することで、磁力選別
機による磁性物吸着時に鉛ガラス原料の同時吸着を減少
させ、磁力選別後のステンレス材、鉛ガラス原料の各々
の品位、歩留りを向上させることが可能となる。
In Comparative Example 2, a magnetic force sorter having a high magnetic flux density of 2.8 Tesla was used by using the above-mentioned suspension in which the powder was merely introduced into water without dispersing the powder in the liquid. Only magnetic force sorting is performed. In this case, the recovery rate of the lead glass raw material was 37.82% by weight, the recovery rate was lower than that of Comparative Example 1, and the magnetic adhesion of the stainless steel to the magnetically bonded portion was confirmed by the test using the tester. Was done. This is because the suspension in which the powder is not dispersed in water is subjected to magnetic separation by a magnetic separator, thereby simultaneously adsorbing lead glass raw materials during magnetic substance adsorption by a magnetic separator having a high magnetic flux density. ) Occurred. From the above, as in Invention Examples 1 to 3, after promoting the dispersion of the powder in water, the magnetic force is sorted by a magnetic force sorter so that the lead glass material is simultaneously adsorbed when the magnetic material is adsorbed by the magnetic force sorter. Adsorption can be reduced, and the quality and yield of each of the stainless steel material and the lead glass raw material after magnetic force separation can be improved.

【0024】以上、本発明を、一実施の形態を参照して
説明してきたが、本発明は何ら上記した実施の形態に記
載の構成に限定されるものではなく、特許請求の範囲に
記載されている事項の範囲内で考えられるその他の実施
の形態や変形例も含むものである。例えば、前記実施の
形態においては、液に界面活性剤を添加した水を使用し
た場合について示したが、液中での粉体の分散状態を良
好にできるものであれば、他の液、例えばアルコール、
灯油、ガソリン、他の有機溶媒等を使用することも可能
である。前記実施の形態においては、界面活性剤が添加
された水中に粉体を投入し、水中に投入した粉体に超音
波をあてながら加温し、水中での粉体の分散を促進させ
た懸濁液を造り、この懸濁液を用いて磁力選別した場合
について説明した。しかし、水中に投入した粉体にジェ
ット噴流をあて、水中でキャビテーションを発生させ、
水中での粉体の分散を促進させることも、また水中に投
入した粉体に超音波及びジェット噴流をあて、水中でキ
ャビテーションを発生させ、水中での粉体の分散を促進
させることも可能である。そして、水中でエアレーショ
ンを行い、水中での粉体の分散を促進させることも可能
である。更に、例えば粉体を投入した液の流路に交流磁
極を配置し、この交流磁極により液中に投入した粉体に
交流磁界を生じさせることで、粉体に撹拌作用を付加
し、液中での粉体の分散を促進させることも可能であ
る。
As described above, the present invention has been described with reference to an embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. It also includes other embodiments and modifications that can be considered within the scope of the matters described. For example, in the above-described embodiment, the case where water in which a surfactant is added to a liquid is used, but other liquids can be used as long as the dispersion state of the powder in the liquid can be improved. alcohol,
It is also possible to use kerosene, gasoline, other organic solvents and the like. In the above-described embodiment, the suspension is prepared by charging a powder into water to which a surfactant is added, heating the powder while applying ultrasonic waves to the powder, and dispersing the powder in water. A case was described in which a suspension was prepared, and magnetic separation was performed using this suspension. However, a jet jet is applied to the powder charged in the water, causing cavitation in the water,
It is possible to promote the dispersion of powder in water, or to apply sonication and jet jet to the powder put in water to generate cavitation in water and promote the dispersion of powder in water. is there. Then, it is also possible to perform aeration in water to promote dispersion of the powder in water. Further, for example, an AC magnetic pole is arranged in a flow path of the liquid into which the powder is charged, and an AC magnetic field is generated in the powder charged into the liquid by the AC magnetic pole, thereby adding a stirring action to the powder, and It is also possible to promote the dispersion of the powder in the process.

【0025】また、粉体の成分や、処理コスト等を考慮
し、界面活性剤の添加、加温、超音波、ジェット噴流、
エアレーション、交流磁極の使用のいずれか1、又は2
以上を行い、水中での粉体の分散を促進させた後、磁力
選別機により磁力選別を行うことも可能である。そし
て、前記実施の形態においては、低磁束密度の磁力選別
機と高磁束密度の磁力選別機の2台の磁力選別機を用い
た場合について示したが、3台以上の磁力選別機を用い
て磁力選別を行うことも、また同じ磁力選別機により複
数回の磁力選別を行うことも可能である。更に、前記実
施の形態においては、非磁着物を有価物として示した
が、磁着物が有価物である場合、また非磁着物及び磁着
物が共に有価物である場合もある。
In consideration of the components of the powder, the processing cost, etc., addition of a surfactant, heating, ultrasonic wave, jet jet,
Either aeration or the use of alternating magnetic poles 1 or 2
After performing the above and promoting the dispersion of the powder in water, it is also possible to perform magnetic separation by a magnetic separator. And in the said embodiment, the case where two magnetic separators of the magnetic separator of low magnetic flux density and the magnetic separator of high magnetic flux density were used was shown, However, three or more magnetic separators were used. It is possible to perform magnetic force sorting, or to perform magnetic force sorting a plurality of times by the same magnetic force sorting machine. Further, in the above-described embodiment, the non-magnetic material is shown as a valuable material. However, the magnetic material may be a valuable material, or both the non-magnetic material and the magnetic material may be a valuable material.

【0026】[0026]

【発明の効果】請求項1〜8記載の磁力選別による微粒
子の選別方法においては、凝集状態を形成し易い粉体を
液中に投入し、粉体を液中に分散させることで、液中に
磁性物と非磁性物の粒子を個別に存在させることが可能
となる。これにより、磁力選別時に回収した磁性物中へ
の非磁性物の混入を低減できるため、磁力選別後の非磁
性物の回収率及び品位を高めることが可能となる。従っ
て、作業性及び経済性が良好な磁力選別による微粒子の
選別方法を提供することが可能となる。特に、請求項2
記載の磁力選別による微粒子の選別方法においては、液
中に投入した粉体に超音波及び/又はジェット噴流をあ
てることで、液中でキャビテーションが発生するため、
粉体を液中で凝集させることなく、磁性物と非磁性物の
粒子を液中に個別に存在させることが可能となる。従っ
て、容易に液中に粉体を分散させることができるため、
作業性が良好な磁力選別による微粒子の選別方法を提供
することが可能となる。
According to the method for sorting fine particles by magnetic force sorting according to the first to eighth aspects of the present invention, powder which easily forms an agglomerated state is put into a liquid, and the powder is dispersed in the liquid. In this case, particles of a magnetic substance and particles of a non-magnetic substance can be separately present. This can reduce the incorporation of non-magnetic substances into the magnetic substances collected at the time of magnetic separation, and thus can increase the recovery rate and quality of the non-magnetic substances after magnetic separation. Therefore, it is possible to provide a method for sorting fine particles by magnetic force sorting, which has good workability and economy. In particular, claim 2
In the method for sorting fine particles by magnetic force described in the described method, cavitation occurs in the liquid by applying ultrasonic waves and / or jet jet to the powder charged in the liquid,
The particles of the magnetic substance and the non-magnetic substance can be individually present in the liquid without aggregating the powder in the liquid. Therefore, since the powder can be easily dispersed in the liquid,
It is possible to provide a method of sorting fine particles by magnetic force sorting with good workability.

【0027】請求項3記載の磁力選別による微粒子の選
別方法においては、エアレーションを行うことで、粉体
を液中で凝集させることなく、粉体を液中に均一に分散
させることが可能となる。従って、容易に液中に粉体を
分散させることができるため、より作業性が良好な磁力
選別による微粒子の選別方法を提供することが可能とな
る。請求項4記載の磁力選別による微粒子の選別方法に
おいては、粉体に交流磁界を生じさせることで、粉体に
撹拌作用を付加することができるため、粉体を液中で凝
集させることなく、粉体を液中に均一に分散させること
が可能となる。従って、容易に液中に粉体を分散させる
ことができるため、より作業性が良好な磁力選別による
微粒子の選別方法を提供することが可能となる。
According to the third aspect of the present invention, by performing aeration, it is possible to uniformly disperse the powder in the liquid without aggregating the powder in the liquid. . Therefore, since the powder can be easily dispersed in the liquid, it is possible to provide a method of sorting fine particles by magnetic force sorting with better workability. In the method for sorting fine particles by magnetic force sorting according to claim 4, by generating an alternating magnetic field in the powder, it is possible to add a stirring action to the powder, without aggregating the powder in the liquid, The powder can be uniformly dispersed in the liquid. Therefore, since the powder can be easily dispersed in the liquid, it is possible to provide a method of sorting fine particles by magnetic force sorting with better workability.

【0028】請求項5記載の磁力選別による微粒子の選
別方法においては、液を加温することで、粉体を液中で
凝集させることなく、粉体を液中に更に均一に分散させ
ることが可能となる。従って、容易に液中に粉体を分散
させることができるため、更に作業性が良好な磁力選別
による微粒子の選別方法を提供することが可能となる。
請求項6記載の磁力選別による微粒子の選別方法におい
ては、粉体を液中で凝集させることなく、粉体が液中に
均一に分散した状態を維持させることが可能となる。従
って、粉体を液中で凝集させることなく、粉体を液中に
均一に分散させた状態を維持することが可能となるた
め、磁力選別後の非磁性物の回収率及び品位を高めるこ
とが可能となる。
[0028] In the method for sorting fine particles by magnetic force sorting according to the fifth aspect, the powder can be more uniformly dispersed in the liquid by heating the liquid without causing the powder to agglomerate in the liquid. It becomes possible. Therefore, since the powder can be easily dispersed in the liquid, it is possible to provide a method for selecting fine particles by magnetic force selection, which has better workability.
In the method for sorting fine particles by magnetic force sorting according to the sixth aspect, it is possible to maintain a state in which the powder is uniformly dispersed in the liquid without aggregating the powder in the liquid. Therefore, it is possible to maintain a state in which the powder is uniformly dispersed in the liquid without aggregating the powder in the liquid, thereby improving the recovery rate and the quality of the non-magnetic material after the magnetic separation. Becomes possible.

【0029】請求項7記載の磁力選別による微粒子の選
別方法においては、磁力選別機に高磁束密度の磁力選別
機を用いることで、粉体中の磁性物をより多く回収する
ことが可能となる。従って、粉体中の磁性物、非磁性物
の各回収率をそれぞれ高めることができるので、経済性
が良好な磁力選別による微粒子の選別方法を提供するこ
とが可能となる。請求項8記載の磁力選別による微粒子
の選別方法においては、磁束密度の異なる磁力選別機を
用い、液中の粉体を磁力選別することで、粉体中の磁性
物を一度に除去することなく、最初に粉体中の強磁性物
のみを除去し、更に粉体中の残りの磁性物を除去するこ
とが可能となる。これにより、液中に含まれる磁性物を
段階的に減少させることができるので、磁力選別機に磁
着される磁性物に巻き込まれ、この磁性物と共に除去さ
れる非磁性物を減少させることが可能となる。従って、
粉体中の磁性物、非磁性物の各回収率をそれぞれ更に高
めることができるので、経済性が良好な磁力選別による
微粒子の選別方法を提供することが可能となる。
In the method for separating fine particles by magnetic force sorting according to the seventh aspect, by using a magnetic force sorting machine having a high magnetic flux density for the magnetic force sorting machine, it is possible to collect more magnetic substances in the powder. . Accordingly, the recovery rate of each of the magnetic substance and the non-magnetic substance in the powder can be increased, so that it is possible to provide a method for sorting fine particles by magnetic force sorting, which is economically favorable. In the method for sorting fine particles by magnetic force sorting according to claim 8, by using a magnetic force sorting machine having a different magnetic flux density and magnetically sorting the powder in the liquid without removing the magnetic substance in the powder at once. First, only the ferromagnetic substance in the powder can be removed, and the remaining magnetic substance in the powder can be further removed. As a result, the magnetic substance contained in the liquid can be reduced stepwise, so that it is possible to reduce the amount of non-magnetic substances that are caught in the magnetic substance magnetically attached to the magnetic separator and removed together with the magnetic substance. It becomes possible. Therefore,
Since the respective recovery rates of the magnetic substance and the non-magnetic substance in the powder can be further increased, it is possible to provide a method for sorting fine particles by magnetic force sorting which is economically favorable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る磁力選別による微
粒子の選別方法の工程説明図である。
FIG. 1 is a process explanatory view of a method for sorting fine particles by magnetic force sorting according to an embodiment of the present invention.

【図2】同磁力選別による微粒子の選別方法に適用され
る高磁束密度の磁力選別機の構造の説明図である。
FIG. 2 is an explanatory diagram of a structure of a magnetic flux separator having a high magnetic flux density applied to a method of sorting fine particles by the same magnetic force sorting.

【図3】同磁力選別による微粒子の選別方法に適用され
る高磁束密度の磁力選別機の磁極部の説明図である。
FIG. 3 is an explanatory view of a magnetic pole portion of a magnetic force separator having a high magnetic flux density applied to a method for sorting fine particles by the same magnetic force sorting.

【符号の説明】 10:高磁束密度の磁力選別機(磁力選別機)、11:
管、12:磁極部、13:原料供給部、14:分別品排
出部、15:原料供給管、16:分別品排出管、17:
磁性物排出管、18:残留物排出管、19:洗浄水用送
水管、20:コイル、22:鉄球、23:粉体、24:
液、25:鉛ガラス原料(非磁性物)、26:界面活性
剤の水溶液、27:低磁束密度の磁力選別機、28:強
磁性物のステンレス材、29:強磁性物のステンレス材
を除去した液、30:弱磁性物のステンレス材、31:
鉛ガラス原料を含む液
[Description of Signs] 10: High magnetic flux density magnetic separator (magnetic separator), 11:
Tube, 12: magnetic pole portion, 13: raw material supply portion, 14: separated product discharge portion, 15: raw material supply tube, 16: separated product discharge tube, 17:
Magnetic substance discharge pipe, 18: residue discharge pipe, 19: water supply pipe for washing water, 20: coil, 22: iron ball, 23: powder, 24:
Liquid, 25: Lead glass raw material (non-magnetic substance), 26: Surfactant aqueous solution, 27: Low magnetic flux density magnetic separator, 28: Ferromagnetic stainless steel, 29: Ferromagnetic stainless steel removed Liquid, 30: weak magnetic stainless steel, 31:
Liquid containing lead glass raw material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B02C 19/18 B02C 19/18 E 23/06 23/06 23/08 23/08 Z B03C 1/02 B03C 1/02 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B02C 19/18 B02C 19/18 E 23/06 23/06 23/08 23/08 Z B03C 1/02 B03C 1/02 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が10μm未満を主体とする磁
性物を含む粉体を液中に投入し、該液中に前記粉体を分
散させた後、磁力選別機によって前記粉体から前記磁性
物を磁力選別して、前記粉体から非磁性物を回収するこ
とを特徴とする磁力選別による微粒子の選別方法。
1. A powder containing a magnetic substance mainly having an average particle diameter of less than 10 μm is charged into a liquid, and the powder is dispersed in the liquid. Then, the powder is dispersed from the powder by a magnetic separator. A method for sorting fine particles by magnetic force sorting, wherein a magnetic material is magnetically separated and a non-magnetic material is recovered from the powder.
【請求項2】 請求項1記載の磁力選別による微粒子の
選別方法において、前記液中に投入した前記粉体に超音
波及び/又はジェット噴流をあて、該液中でキャビテー
ションを発生させて、前記液中での前記粉体の分散を促
進させることを特徴とする磁力選別による微粒子の選別
方法。
2. The method for sorting fine particles by magnetic force sorting according to claim 1, wherein said powder introduced into said liquid is subjected to ultrasonic and / or jet jet to generate cavitation in said liquid, A method for sorting fine particles by magnetic force sorting, wherein the dispersion of the powder in a liquid is promoted.
【請求項3】 請求項1又は2記載の磁力選別による微
粒子の選別方法において、前記液中でエアレーションを
行い、該液中での前記粉体の分散を促進させることを特
徴とする磁力選別による微粒子の選別方法。
3. The method for sorting fine particles by magnetic force sorting according to claim 1, wherein aeration is performed in the liquid to promote dispersion of the powder in the liquid. A method for sorting fine particles.
【請求項4】 請求項1〜3のいずれか1項に記載の磁
力選別による微粒子の選別方法において、交流磁極によ
り前記液中に投入した前記粉体に交流磁界を生じさせ、
前記液中での前記粉体の分散を促進させることを特徴と
する磁力選別による微粒子の選別方法。
4. The method for sorting fine particles by magnetic force sorting according to any one of claims 1 to 3, wherein an AC magnetic pole generates an AC magnetic field in the powder introduced into the liquid.
A method of sorting fine particles by magnetic force sorting, wherein the dispersion of the powder in the liquid is promoted.
【請求項5】 請求項1〜4のいずれか1項に記載の磁
力選別による微粒子の選別方法において、前記液を所定
温度まで加温し、該液中での前記粉体の分散を促進させ
ることを特徴とする磁力選別による微粒子の選別方法。
5. The method for sorting fine particles by magnetic force sorting according to claim 1, wherein the liquid is heated to a predetermined temperature to promote dispersion of the powder in the liquid. A method for sorting fine particles by magnetic force sorting.
【請求項6】 請求項1〜5のいずれか1項に記載の磁
力選別による微粒子の選別方法において、前記液に水溶
性の界面活性剤を添加した水を使用し、この液中での前
記粉体の分散を促進させることを特徴とする磁力選別に
よる微粒子の選別方法。
6. The method for sorting fine particles by magnetic force sorting according to any one of claims 1 to 5, wherein water obtained by adding a water-soluble surfactant to the liquid is used. A method for sorting fine particles by magnetic force sorting, which promotes dispersion of powder.
【請求項7】 請求項1〜6のいずれか1項に記載の磁
力選別による微粒子の選別方法において、前記磁力選別
機に高磁束密度の磁力選別機を用いることを特徴とする
磁力選別による微粒子の選別方法。
7. The method for sorting fine particles by magnetic force sorting according to claim 1, wherein a magnetic force sorting machine having a high magnetic flux density is used as the magnetic force sorting machine. Sorting method.
【請求項8】 請求項7記載の磁力選別による微粒子の
選別方法において、前記液中に前記粉体を分散させた
後、低磁束密度の磁力選別機によって該粉体中の強磁性
物を除去し、更に前記高磁束密度の磁力選別機で磁力選
別を行って、前記非磁性物の品位を高めることを特徴と
する磁力選別による微粒子の選別方法。
8. The method for sorting fine particles by magnetic force sorting according to claim 7, wherein after dispersing the powder in the liquid, a ferromagnetic substance in the powder is removed by a magnetic force sorting machine having a low magnetic flux density. And a magnetic force sorting device that performs a magnetic force sorting with the magnetic force sorting machine having a high magnetic flux density to enhance the quality of the non-magnetic material.
JP2001023466A 2001-01-31 2001-01-31 Method of selecting fine particle by magnetic selection Pending JP2002224586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023466A JP2002224586A (en) 2001-01-31 2001-01-31 Method of selecting fine particle by magnetic selection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023466A JP2002224586A (en) 2001-01-31 2001-01-31 Method of selecting fine particle by magnetic selection

Publications (1)

Publication Number Publication Date
JP2002224586A true JP2002224586A (en) 2002-08-13

Family

ID=18888749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023466A Pending JP2002224586A (en) 2001-01-31 2001-01-31 Method of selecting fine particle by magnetic selection

Country Status (1)

Country Link
JP (1) JP2002224586A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187302A (en) * 2003-12-26 2005-07-14 Mitsubishi Rayon Co Ltd High purity non-magnetic metal oxide powder and its producing method
JP2006273927A (en) * 2005-03-28 2006-10-12 Sanyu Rec Co Ltd Method for improving electrical insulation property of inorganic filler
WO2010084635A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Mixture treatment method and treatment device
JP2015534603A (en) * 2012-09-19 2015-12-03 ヴィソケー ウセニ テクニケ フ ブルネ Method for producing magnetic powder by cavitation and apparatus for carrying out the method
WO2018186066A1 (en) * 2017-04-05 2018-10-11 株式会社神戸製鋼所 Method for pretreating iron-making starting material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187302A (en) * 2003-12-26 2005-07-14 Mitsubishi Rayon Co Ltd High purity non-magnetic metal oxide powder and its producing method
JP4691321B2 (en) * 2003-12-26 2011-06-01 三菱レイヨン株式会社 Method for producing high-purity silicon oxide powder
JP2006273927A (en) * 2005-03-28 2006-10-12 Sanyu Rec Co Ltd Method for improving electrical insulation property of inorganic filler
WO2010084635A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Mixture treatment method and treatment device
WO2010084945A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Method and apparatus for processing mixed material
JP4714823B2 (en) * 2009-01-23 2011-06-29 国立大学法人大阪大学 Method of processing the mixture
US8916049B2 (en) 2009-01-23 2014-12-23 Osaka University Method and apparatus for processing mixture
JP2015534603A (en) * 2012-09-19 2015-12-03 ヴィソケー ウセニ テクニケ フ ブルネ Method for producing magnetic powder by cavitation and apparatus for carrying out the method
WO2018186066A1 (en) * 2017-04-05 2018-10-11 株式会社神戸製鋼所 Method for pretreating iron-making starting material

Similar Documents

Publication Publication Date Title
US8741023B2 (en) Ore beneficiation
CN102527504B (en) Magnetic ore dressing method
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
JPWO2010084945A1 (en) Method of processing the mixture
JP5504992B2 (en) Method for recovering manganese oxide from dry cells
CN112566725A (en) Combination of carrier-magnetic separation and other separations for mineral processing
CN102275930B (en) Recycling method for silicon powder
JPH0487648A (en) Method for refining molybdenum ore
JP2002224586A (en) Method of selecting fine particle by magnetic selection
Hu et al. Development of a high-gradient magnetic separator for enhancing selective separation: A review
CN114072235A (en) Method for concentrating an iron ore stream
US20130292339A1 (en) Method and apparatus for separation of oil and water using hydrophobic and hydrophilic functional solid particles
JP5444821B2 (en) Method for recovering manganese oxide from dry cells
US20140124450A1 (en) Method and device for separating first substance from flowable primary substance flow, and control unit
KR900008927B1 (en) Process and method for separating noniron ores
JP3013040B1 (en) Drum type magnetic separator combined with electrostatic separator
JPS62254851A (en) Dry magnetic separation of fine powder
RU2315662C1 (en) Separator
CN109158206B (en) Multi-stage grading and pre-magnetic self-strengthening magnetic separation method
CN116328938B (en) Weak-field strong high-gradient magnetic separator for recovering magnetite and configuration and beneficiation process thereof
JP6275733B2 (en) Removal of uranium from copper concentrate by magnetic separation
Sultanovich et al. Kaolin beneficiation in a high–gradient magnetic separator with a ball matrix
Cao et al. Preconcentration of Low-Grade Ta–Nb Deposit Using Physical Separation Methods
Cohen et al. The application of a superconducting magnet system to the cleaning and desulphurization of coal
JPS59154148A (en) Separation of magnetic particles and nonmagnetic particles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201