JP2016145404A - Copper powder for conductive paste and method for producing the same - Google Patents

Copper powder for conductive paste and method for producing the same Download PDF

Info

Publication number
JP2016145404A
JP2016145404A JP2015023703A JP2015023703A JP2016145404A JP 2016145404 A JP2016145404 A JP 2016145404A JP 2015023703 A JP2015023703 A JP 2015023703A JP 2015023703 A JP2015023703 A JP 2015023703A JP 2016145404 A JP2016145404 A JP 2016145404A
Authority
JP
Japan
Prior art keywords
copper powder
conductive paste
oxide film
oxygen concentration
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023703A
Other languages
Japanese (ja)
Other versions
JP6424104B2 (en
Inventor
優樹 金城
Masaki Kaneshiro
優樹 金城
健一 井上
Kenichi Inoue
健一 井上
昭雄 杉山
Akio Sugiyama
昭雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015023703A priority Critical patent/JP6424104B2/en
Publication of JP2016145404A publication Critical patent/JP2016145404A/en
Application granted granted Critical
Publication of JP6424104B2 publication Critical patent/JP6424104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide copper powder for conductive paste having high oxidation resistance and high conductivity, and a method for producing the copper powder for conductive paste.SOLUTION: The present invention provides copper powder for conductive paste in which a surface oxygen concentration per unit surface area is 0.15(mass%/g/m) or less, and an oxygen concentration increment per unit surface area under an atmosphere and after a heat resistance test for 24 hours at 100°C is 0.60(mass%/g/m) or less.SELECTED DRAWING: Figure 1

Description

本発明は、主に導電性ペーストに用いられる銅粉およびその製造方法に関する。   The present invention relates to a copper powder mainly used for a conductive paste and a method for producing the same.

近年、導電性ペーストの金属フィラーとしては、導電性、耐酸化性が要求される観点から、主に銀が使用されている。しかし、銀は貴金属であるため高コストであり、またマイグレーションを起こし易いというデメリットがある。そこで、導電性ペーストの金属フィラーとして銅を使用することが検討されている。しかしながら、銅は、銀に比べて酸化され易く、導電性が低下し易いという問題があった。   In recent years, silver is mainly used as a metal filler for conductive paste from the viewpoint of requiring electrical conductivity and oxidation resistance. However, since silver is a noble metal, it is expensive and has a demerit that it easily causes migration. Then, using copper as a metal filler of an electrically conductive paste is examined. However, copper has a problem that it is more easily oxidized than silver and its conductivity tends to decrease.

上述の問題解決の為、例えば特許文献1は、水酸化銅溶液を還元剤により還元反応させ金属銅粒子を製造する際、当該還元反応の前後または途中において、表面処理剤を添加することにより、製造される金属銅粒子の表面処理を実施することを提案している。   In order to solve the above-mentioned problem, for example, Patent Document 1 discloses that when a copper hydroxide solution is subjected to a reduction reaction with a reducing agent to produce metallic copper particles, a surface treatment agent is added before, during or during the reduction reaction. It proposes to carry out the surface treatment of the produced copper metal particles.

また特許文献2は、銅粉と固体粉末状有機化合物とを乾式混合粉砕することで、金属銅粒子の表面を有機化合物で被覆することを提案している。   Moreover, patent document 2 is proposing to coat | cover the surface of a metal copper particle with an organic compound by dry-mixing and grinding | pulverizing copper powder and a solid powdery organic compound.

一方、特許文献3は、銅粉スラリーへ、水溶性のケイ素化合物塩、水溶性のアルミニウム化合物塩、水溶性のスズ化合物塩、等の一種以上の成分を添加し、スラリーのpH値を所定の範囲に調整して、銅粉の粉粒表面に当該一種以上の成分が含有された被膜を形成させる方法を提案している。   On the other hand, in Patent Document 3, one or more components such as a water-soluble silicon compound salt, a water-soluble aluminum compound salt, and a water-soluble tin compound salt are added to a copper powder slurry, and the pH value of the slurry is set to a predetermined value. The method of adjusting to the range and forming a film containing the one or more components on the surface of the copper powder is proposed.

特開2008−285761号公報JP 2008-285761 A 特開平11−264001号公報Japanese Patent Laid-Open No. 11-264001 特開2004−217952号公報Japanese Patent Laid-Open No. 2004-217952

しかしながら、本発明者らの検討によると、特許文献1に記載の方法においては、溶液のpH値や反応時に溶液中に存在する物質等の作用により、粒子表面へ均一な表面処理を実施することは難しいと考えられた。
また特許文献2に記載の方法においては、固体の銅粉と固体の有機化合物との混合操作であるため、銅粉と固体粉末状有機化合物とを乾式混合粉砕することにより金属銅粒子の表面を有機化合物で被覆しようとしても、銅粉表面へ均一に有機化合物を被覆させることは困難と考えられた。
一方、特許文献3に記載の方法には、表面酸化した銅粉へ被膜形成することが望ましい旨、が記載されている。これでは被膜形成後の銅粉に酸化膜が残留することとなり、銅粉の導電性低下が懸念されるものであった。
However, according to the study by the present inventors, in the method described in Patent Document 1, a uniform surface treatment is performed on the particle surface by the action of the pH value of the solution and the substances present in the solution during the reaction. Was considered difficult.
Moreover, in the method of patent document 2, since it is mixing operation of solid copper powder and a solid organic compound, the surface of a metal copper particle is made by dry-mixing and grinding copper powder and a solid powdery organic compound. Even when trying to coat with an organic compound, it was considered difficult to uniformly coat the surface of the copper powder with the organic compound.
On the other hand, in the method described in Patent Document 3, it is described that it is desirable to form a film on the surface-oxidized copper powder. In this case, an oxide film remains on the copper powder after the coating is formed, and there is a concern that the conductivity of the copper powder is reduced.

本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、耐酸化性が高く、導電性も高い導電性ペースト用銅粉、および、当該導電性ペースト用銅粉の製造方法を提供することである。   The present invention has been made under the above circumstances, and the problem to be solved is copper powder for conductive paste having high oxidation resistance and high conductivity, and copper powder for conductive paste. It is to provide a manufacturing method.

上述の課題を解決する為、本発明者らは研究を行った。そして、単位表面積あたりの表面酸素濃度が0.15(質量%・g/m)以下、かつ、100℃24時間の耐熱試験後における単位表面積あたりの酸素濃度増加量が0.60(質量%・g/m)以下である導電性ペースト用銅粉に想到した。そして当該導電性ペースト用銅粉の製造方法として、原料銅粉表面の酸化膜除去工程を実施し、当該実施に続けて当該銅粉表面が酸化するのを抑制する銅粉表面処理工程を実施する導電性ペースト用銅粉の製造方法に想到し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors conducted research. And the surface oxygen concentration per unit surface area is 0.15 (mass% · g / m 2 ) or less, and the increase in oxygen concentration per unit surface area after a heat resistance test at 100 ° C. for 24 hours is 0.60 (mass%). -It came to the copper powder for electrically conductive paste which is below g / m < 2 >). And as a manufacturing method of the copper powder for the conductive paste, an oxide film removal step on the surface of the raw material copper powder is carried out, and a copper powder surface treatment step for suppressing oxidation of the copper powder surface is carried out following the implementation. The present invention was completed by conceiving a method for producing a copper powder for conductive paste.

即ち、上述の課題を解決する為の第1の発明は、
単位表面積あたりの表面酸素濃度が0.15(質量%・g/m)以下、かつ、大気下、100℃24時間の耐熱試験後における単位表面積あたりの酸素濃度増加量が0.60(質量%・g/m)以下であることを特徴とする導電性ペースト用銅粉である。
第2の発明は、
前記耐熱試験後における銅粉の体積抵抗率の値が、1.0×10Ω・cm以下であることを特徴とする第1の発明に記載の導電性ペースト用銅粉である。
第3の発明は、
銅粉表面の酸化膜を湿式法で除去する酸化膜除去工程を実施し、当該実施に続けて当該銅粉表面が酸化するのを抑制する銅粉表面処理工程を実施することを特徴とする導電性ペースト用銅粉の製造方法である。
第4の発明は、
前記酸化膜除去工程とは、前記銅粉表面の酸化膜を、キレート剤、還元剤、酸洗浄液のいずれかを用いて除去するものであることを特徴とする第3の発明に記載の導電性ペースト用銅粉の製造方法である。
第5の発明は、
前記銅粉表面処理工程とは、前記酸化膜除去工程によって酸化膜が除去された銅粉表面へ、イミダゾール、シランカップリング剤、有機酸アミン塩、ベンゾトリアゾール誘導体、脂肪酸から選択される1種以上を付着させるものであることを特徴とする第3または第4の発明に記載の導電性ペースト用銅粉の製造方法である。
That is, the first invention for solving the above-described problem is
The surface oxygen concentration per unit surface area is 0.15 (mass% · g / m 2 ) or less, and the increase in oxygen concentration per unit surface area after a heat resistance test at 100 ° C. for 24 hours in the atmosphere is 0.60 (mass) % · G / m 2 ) or less, which is a copper powder for conductive paste.
The second invention is
The copper powder for conductive paste according to the first aspect, wherein the volume resistivity value of the copper powder after the heat resistance test is 1.0 × 10 2 Ω · cm or less.
The third invention is
Conducting an oxide film removing step of removing the oxide film on the surface of the copper powder by a wet method, and conducting a copper powder surface treatment step for suppressing the oxidation of the copper powder surface following the implementation. It is a manufacturing method of the copper powder for adhesive paste.
The fourth invention is:
The conductive film according to the third aspect of the invention is characterized in that the oxide film removal step is to remove the oxide film on the surface of the copper powder by using any one of a chelating agent, a reducing agent, and an acid cleaning solution. It is a manufacturing method of the copper powder for pastes.
The fifth invention is:
The copper powder surface treatment step is one or more selected from imidazole, silane coupling agents, organic acid amine salts, benzotriazole derivatives, and fatty acids on the surface of the copper powder from which the oxide film has been removed in the oxide film removal step. It is a manufacturing method of the copper powder for electrically conductive paste as described in 3rd or 4th invention characterized by the above-mentioned.

本発明に係る導電性ペースト用銅粉は、耐酸化性が高く、導電性も高いので、導電性ペースト用の金属フィラーとなる銅粉として最適である。   Since the copper powder for conductive pastes according to the present invention has high oxidation resistance and high conductivity, it is optimal as a copper powder to be a metal filler for conductive pastes.

実施例1〜5に係る工程のフロー図である。It is a flowchart of the process which concerns on Examples 1-5. 比較例2に係る工程のフロー図である。10 is a flowchart of a process according to Comparative Example 2. FIG. 比較例3に係る工程のフロー図である。10 is a flowchart of a process according to Comparative Example 3. FIG. 比較例4に係る工程のフロー図である。10 is a flowchart of a process according to Comparative Example 4. FIG. 比較例5に係る工程のフロー図である。10 is a flowchart of a process according to Comparative Example 5. FIG.

以下、本発明を実施するための形態について、1原料銅粉、2.酸化膜除去工程、3.表面処理工程、4.耐熱性試験、5.本発明に係る銅粉についての測定結果から算定する算定値、6.測定結果の評価、の順で説明する。   Hereinafter, about the form for implementing this invention, 1 raw material copper powder, 2. 2. oxide film removing step; 3. Surface treatment process 4. heat resistance test; 5. Calculated value calculated from the measurement result of the copper powder according to the present invention, Description will be made in the order of evaluation of measurement results.

1.原料銅粉
本発明を実施するための原料銅粉としては、所謂還元銅粉やアトマイズ銅粉を好ましく用いることが出来る。
本発明において、湿式還元銅粉とは、銅塩水溶液を種々の反応工程により還元剤で還元して得られた銅粉のことである。また、アトマイズ銅粉とは、ガスアトマイズ、水アトマイズなどのアトマイズ製法によって得られた銅粉のことである。
これらの銅粉の粒径は、50%の累積粒径(D50)において、0.1〜30μm程度が好ましい。
1. Raw material copper powder As the raw material copper powder for carrying out the present invention, so-called reduced copper powder or atomized copper powder can be preferably used.
In the present invention, the wet reduced copper powder is a copper powder obtained by reducing a copper salt aqueous solution with a reducing agent by various reaction steps. The atomized copper powder is a copper powder obtained by an atomizing method such as gas atomization or water atomization.
The particle size of these copper powders is preferably about 0.1 to 30 μm at a 50% cumulative particle size (D50).

2.酸化膜除去工程
1.にて説明した本発明に係る湿式還元銅粉やアトマイズ銅粉は、表面に微量ではあるが酸化膜が存在する。銅粉が金属フィラーとして用いられている導電性ペーストにおいて、当該酸化膜は銅粉が発揮する初期の導電性を悪化させる。そこでこうした事態を回避する為、原料銅粉の酸化膜除去工程を実施する。
2. Oxide film removal process The wet-reduced copper powder and atomized copper powder according to the present invention described in (1) have an oxide film on the surface although the amount is small. In the conductive paste in which copper powder is used as a metal filler, the oxide film deteriorates the initial conductivity exhibited by the copper powder. Therefore, in order to avoid such a situation, an oxide film removal step of the raw material copper powder is performed.

当該酸化膜除去工程は、湿式法で実施することが好ましい。具体的には、10℃〜80℃温調された、pH値7〜14に調整されたエチレンジアミン四酢酸四ナトリウム塩四水和物(EDTA・4Na・4HO)を始めとするキレート剤の溶液、ヒドラジン水溶液のような還元剤の溶液、酸化銅や亜酸化銅のような銅酸化物を溶解する酸洗浄の溶液、から選択されるいずれかの溶液中へ、本発明に係る湿式還元銅粉および/またはアトマイズ銅粉を投入し撹拌する、湿式法で実施することが好ましい。
当該操作により、本発明に係る湿式還元銅粉やアトマイズ銅粉は、表面に存在する酸化膜が除去され、導電性ペーストにおいて銅粉が発揮する初期の導電性が向上する。
The oxide film removal step is preferably performed by a wet method. Specifically, chelating agents such as ethylenediaminetetraacetic acid tetrasodium salt tetrahydrate (EDTA · 4Na · 4H 2 O) adjusted to a pH value of 7 to 14 and adjusted to a temperature of 10 ° C to 80 ° C. Wet reduced copper according to the present invention into a solution, a solution of a reducing agent such as an aqueous hydrazine solution, or an acid cleaning solution that dissolves copper oxide such as copper oxide or cuprous oxide. It is preferable to carry out by a wet method in which powder and / or atomized copper powder is added and stirred.
By the said operation, the wet reduced copper powder and atomized copper powder which concern on this invention remove the oxide film which exists in the surface, and the initial electroconductivity which copper powder exhibits in an electrically conductive paste improves.

3.表面処理工程
上述した酸化膜除去によって酸化膜が除去された銅粉の表面が再酸化され、導電性ペーストにおいて銅粉が発揮する初期の導電性が低下する事態を回避する為の工程である。具体的には、酸化膜が除去された銅粉の表面へ表面処理膜を設け、当該酸化膜が除去された銅粉に耐酸化性を付与する工程である。表面処理剤としては、イミダゾール、シランカップリング剤、有機酸アミン塩、ベンゾトリアゾール誘導体、脂肪酸等、から選択される1種以上が好ましい。
表面処理操作が実施された銅粉は、窒素ガス等の不活性雰囲気中にて加熱乾燥、または、減圧状態で加熱乾燥して、乾燥物とすることが好ましい。
3. Surface treatment step This is a step for avoiding a situation where the surface of the copper powder from which the oxide film has been removed by the above-described removal of the oxide film is reoxidized and the initial conductivity exhibited by the copper powder in the conductive paste is reduced. Specifically, it is a step of providing a surface treatment film on the surface of the copper powder from which the oxide film has been removed and imparting oxidation resistance to the copper powder from which the oxide film has been removed. As the surface treatment agent, one or more selected from imidazole, silane coupling agents, organic acid amine salts, benzotriazole derivatives, fatty acids and the like are preferable.
The copper powder that has been subjected to the surface treatment operation is preferably dried by heating in an inert atmosphere such as nitrogen gas or by drying under reduced pressure.

本発明者らは、上述した酸化膜除去工程に引き続いての表面処理工程を行うことが肝要であることを知見した。具体的には、キレート剤等の酸化膜除去効果を用いて酸化膜を除去した銅粉を純水等で十分に洗浄して、当該キレート剤等を除去し、引き続いて表面処理剤を含有する溶液を通液させれば良い。
このように、酸化膜除去工程において表面が湿った状態の銅粉を乾燥させることなく、引き続いて表面処理工程を施したことで、酸化膜が除去された銅粉を表面が大気に触れることを抑制し、酸化膜除去操作により酸化膜が除去された活性の高い銅粉表面に速やかに酸化膜の生成が起こることを、回避出来たと考えられる。
The present inventors have found that it is important to perform a surface treatment process subsequent to the oxide film removal process described above. Specifically, the copper powder from which the oxide film has been removed using the effect of removing the oxide film such as a chelating agent is thoroughly washed with pure water to remove the chelating agent and the like, and subsequently contains a surface treatment agent. What is necessary is just to let a solution flow.
In this way, the surface of the copper powder from which the oxide film has been removed can be exposed to the atmosphere by performing the surface treatment process without drying the copper powder having a wet surface in the oxide film removing process. It is considered that the generation of the oxide film on the surface of the highly active copper powder from which the oxide film was removed by the suppression and the oxide film removal operation could be prevented from occurring promptly.

4.耐熱性試験
上述した導電性ペースト用銅粉の表面に表面処理膜を設けた効果は、耐熱性試験を実施することで確認できる。当該耐熱性試験は、表面に表面処理膜を設けた銅粉試料を、例えば、3L/minで大気を流入させる100℃オーブン中に24時間設置することで実施できる。
そして、当該耐熱性試験前後における銅粉の酸素濃度増加量および体積抵抗率の増加量を評価すれば良い。
4). Heat resistance test The effect of providing a surface treatment film on the surface of the copper powder for conductive paste described above can be confirmed by performing a heat resistance test. The said heat resistance test can be implemented by installing the copper powder sample which provided the surface treatment film | membrane on the surface, for example for 24 hours in 100 degreeC oven which flows in air | atmosphere at 3 L / min.
And what is necessary is just to evaluate the oxygen concentration increase amount and volume resistivity increase amount of the copper powder before and after the heat resistance test.

5.本発明に係る銅粉についての測定結果から算定する算定値
(1)銅粉の内部酸素濃度(質量%)とは、酸化膜を除去した後の原料銅粉における酸素濃度の値である。表面処理後および耐熱試験後における銅粉の内部酸素濃度の値も、同値であると考えられる。
(2)原料銅粉の表面酸素濃度(質量%)とは、原料銅粉の酸化膜中における酸素濃度の値である。原料銅粉の酸素濃度(質量%)の測定値から、銅粉の内部酸素濃度(質量%)を引いた算定値である。
(3)表面処理後における銅粉の表面酸素濃度(質量%)とは、表面処理後における銅粉の表面処理膜における酸素濃度である。表面処理後における銅粉の酸素濃度(質量%)測定値から、銅粉の内部酸素濃度(質量%)を引いた算定値である。
(4)表面処理後における銅粉の単位表面積あたりの表面酸素濃度(質量%・g/m)とは、表面処理後における銅粉の表面酸素濃度(質量%)を当該銅粉のBET値(m/g)の測定値で除した算定値である。
(5)耐熱試験後における銅粉の酸素濃度増加量(質量%)とは、耐熱試験後における銅粉の酸素濃度(質量%)から、表面処理後における銅粉の酸素濃度(質量%)を引いた算定値である。
(6)耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量(質量%・g/m)とは、耐熱試験後における銅粉の酸素濃度増加量(質量%)を、原料銅粉のBET値(m/g)の測定値で除した算定値である。
5. Calculated value calculated from the measurement result of the copper powder according to the present invention (1) The internal oxygen concentration (% by mass) of the copper powder is a value of the oxygen concentration in the raw material copper powder after the oxide film is removed. The value of the internal oxygen concentration of the copper powder after the surface treatment and after the heat resistance test is also considered to be the same value.
(2) The surface oxygen concentration (mass%) of the raw material copper powder is a value of the oxygen concentration in the oxide film of the raw material copper powder. It is a calculated value obtained by subtracting the internal oxygen concentration (mass%) of the copper powder from the measured value of the oxygen concentration (mass%) of the raw material copper powder.
(3) The surface oxygen concentration (mass%) of the copper powder after the surface treatment is the oxygen concentration in the surface treatment film of the copper powder after the surface treatment. This is a calculated value obtained by subtracting the internal oxygen concentration (mass%) of the copper powder from the measured value of oxygen concentration (mass%) of the copper powder after the surface treatment.
(4) The surface oxygen concentration per unit surface area (mass% · g / m 2 ) of the copper powder after the surface treatment is the BET value of the copper powder after the surface treatment. It is the calculated value divided by the measured value of (m 2 / g).
(5) The oxygen concentration increase (mass%) of the copper powder after the heat test is the oxygen concentration (mass%) of the copper powder after the surface treatment from the oxygen concentration (mass%) of the copper powder after the heat test. Subtracted calculated value.
(6) The increase in oxygen concentration per unit surface area of copper powder (mass% · g / m 2 ) after the heat test is the increase in oxygen concentration (mass%) of the copper powder after the heat test. The calculated value divided by the measured value of the BET value (m 2 / g).

6.測定結果の評価
酸化膜除去工程から続けての表面処理工程を実施することにより、本発明に係る導電性ペースト用銅粉において、単位表面積あたりの表面酸素濃度を0.15(質量%・g/m)以下、かつ、耐熱試験後における単位表面積あたりの酸素濃度増加量)を0.60(質量%・g/m)以下とすることが出来た。
この結果、本発明に係る導電性ペースト用銅粉において、耐熱試験後における銅粉の体積抵抗率の値を1.0×10Ω・cm以下とすることが出来た。
6). Evaluation of Measurement Results By carrying out the surface treatment process continued from the oxide film removal process, the surface oxygen concentration per unit surface area of the copper powder for conductive paste according to the present invention was 0.15 (mass% · g / m 2 ) or less, and the oxygen concentration increase per unit surface area after the heat resistance test) was 0.60 (mass% · g / m 2 ) or less.
As a result, in the copper powder for conductive paste according to the present invention, the value of the volume resistivity of the copper powder after the heat resistance test could be 1.0 × 10 2 Ω · cm or less.

以下、実施例を参照しながら本発明をより具体的に説明する。
(実施例1)
実施例に係る工程のフロー図である図1を参照しながら、実施例1に係る操作を説明する。
〈酸化膜除去工程〉
原料銅粉として粒子形状が球状の湿式還元銅粉(DOWAエレクトロニクス株式会社製、TypeT−5.5μm)を準備した。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
The operation according to the first embodiment will be described with reference to FIG. 1 which is a flowchart of the steps according to the embodiment.
<Oxide film removal process>
Wet reduced copper powder (DOWA Electronics Co., Ltd., Type T-5.5 μm) having a spherical particle shape was prepared as a raw material copper powder.

当該原料銅粉のBET値、TAP密度、酸素濃度、炭素濃度、10%の累積粒径(D10)、50%の累積粒径(D50)、および90%の累積粒径(D90)を測定した。当該測定値を表1に記載した。
本実施例においてBET値は、BET比表面積測定装置(ユアサイオニクス株式会社製 4ソーブUS)を用いてBET法により求めた。
TAP密度は、所定のホルダーに測定対象の粉体を充填して粉体層を形成し、当該粉体層へ、0.14N/m以上、0.18N/m以下の圧力を加えた後、粉体層の高さを測定し、当該粉体層の高さの測定値と、充填された粉体の重量とから測定対象の粉体の密度を求めた(詳細は、特開2007−263860号公報参照。)。
酸素濃度は、酸素・窒素分析装置(LECO社製 TC−436型)により測定した。
炭素濃度は、炭素・硫黄分析装置(堀場製作所製:EMIA−220V)により測定した。
累積粒径は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定して、累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)を求めた。
The BET value, TAP density, oxygen concentration, carbon concentration, 10% cumulative particle size (D10), 50% cumulative particle size (D50), and 90% cumulative particle size (D90) of the raw material copper powder were measured. . The measured values are shown in Table 1.
In this example, the BET value was determined by the BET method using a BET specific surface area measuring device (4 Sorb US manufactured by Your Sonics Co., Ltd.).
The TAP density is formed by filling a predetermined holder with the powder to be measured to form a powder layer, and applying a pressure of 0.14 N / m 2 or more and 0.18 N / m 2 or less to the powder layer. Thereafter, the height of the powder layer was measured, and the density of the powder to be measured was obtained from the measured value of the height of the powder layer and the weight of the filled powder (for details, see Japanese Patent Application Laid-Open No. 2007-2007). -Ref.
The oxygen concentration was measured by an oxygen / nitrogen analyzer (TC-436 type manufactured by LECO).
The carbon concentration was measured with a carbon / sulfur analyzer (manufactured by Horiba: EMIA-220V).
The cumulative particle size is measured by a laser diffraction particle size distribution device (Heros particle size distribution measurement device (HELOS & RODOS) manufactured by SYMPATEC), and the cumulative particle size is 10% (D10), 50% particle size (D50), 90% cumulative. % Particle diameter (D90) was determined.

純水691.7gを仕込み、その液温を35℃に温調した。そこへエチレンジアミン四酢酸四ナトリウム塩四水和物(EDTA・4Na・4HO)50質量%溶液50.5gを添加し10分間撹拌、炭酸アンモニウム(一級)4.7gを添加し10分間撹拌して溶液とした。
当該溶液を攪拌しながら、ここへ準備した原料銅粉168gを添加した。
原料銅粉添加後、30分間攪拌を保持して銅粉表面の酸化膜除去を実施した。
691.7 g of pure water was charged, and the liquid temperature was adjusted to 35 ° C. Thereto, 50.5 g of a 50 mass% solution of ethylenediaminetetraacetic acid tetrasodium salt tetrahydrate (EDTA.4Na.4H 2 O) was added and stirred for 10 minutes, and 4.7 g of ammonium carbonate (primary) was added and stirred for 10 minutes. Solution.
While stirring the solution, 168 g of the raw material copper powder prepared here was added.
After adding the raw copper powder, stirring was maintained for 30 minutes to remove the oxide film on the surface of the copper powder.

当該表面の酸化膜が除去された銅粉を、125mmのろうとを用いて吸引ろ過した。そして、当該吸引ろ過後の銅粉をイオン交換水で水洗して洗浄を実施した。当該水洗は、水洗に伴って発生するろ液の導電率が0.2mS/m以下になるまで実施して洗浄を完了し、銅粉のウェットケーキを得た。   The copper powder from which the oxide film on the surface was removed was suction filtered using a 125 mm wax. And the copper powder after the said suction filtration was washed with water with ion-exchange water, and washing | cleaning was implemented. The water washing was carried out until the electric conductivity of the filtrate generated along with the water washing became 0.2 mS / m or less to complete the washing, and a copper powder wet cake was obtained.

ここで、洗浄を実施した銅粉をサンプリングし、当該ウェットケーキを窒素雰囲気中において120℃で9時間乾燥し、実施例1に係る酸化膜除去後における銅粉の酸素濃度を測定した。当該測定値を表1に記載した。   Here, the cleaned copper powder was sampled, the wet cake was dried at 120 ° C. for 9 hours in a nitrogen atmosphere, and the oxygen concentration of the copper powder after removing the oxide film according to Example 1 was measured. The measured values are shown in Table 1.

〈表面処理工程〉
一方、イミダゾール(和光純薬工業株式会社製)0.87gをイオン交換水691.7gに溶解して表面処理溶液を準備した。
<Surface treatment process>
On the other hand, 0.87 g of imidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 691.7 g of ion-exchanged water to prepare a surface treatment solution.

洗浄を実施した銅粉のウェットケーキへ表面処理溶液を通液して表面処理した。そして、当該ウェットケーキを窒素雰囲気中において120℃で9時間乾燥し、実施例1に係る導電性ペースト用銅粉を得た。   The surface treatment solution was passed through the cleaned copper powder wet cake for surface treatment. And the said wet cake was dried at 120 degreeC in nitrogen atmosphere for 9 hours, and the copper powder for electrically conductive paste which concerns on Example 1 was obtained.

ここで、実施例1に係る導電性ペースト用銅粉をサンプリングし、実施例1に係る表面処理後における銅粉の酸素濃度および体積抵抗率を測定した。当該測定値を表1に記載した。   Here, the copper powder for conductive paste according to Example 1 was sampled, and the oxygen concentration and volume resistivity of the copper powder after the surface treatment according to Example 1 were measured. The measured values are shown in Table 1.

本実施例において体積抵抗率は、圧粉体抵抗測定方法によって測定した。具体的には、銅粉6.5gを、粉体抵抗測定システム(株式会社三菱化学アナリテック製、MCP−PD51型)の円筒状の容器に入れて、プレス圧20kNで圧縮成型してサンプルとした。当該サンプルの体積抵抗率を、当該粉体抵抗測定システムと接続した体積抵抗率測定装置(株式会社三菱化学アナリテック製、ロレスタGP MCP−T610型)を用いて測定した。尚、測定プローブは、粉体専用プローブ(4探針、リング電極)を使用した。   In this example, the volume resistivity was measured by a green compact resistance measurement method. Specifically, 6.5 g of copper powder is placed in a cylindrical container of a powder resistance measurement system (manufactured by Mitsubishi Chemical Analytech Co., Ltd., MCP-PD51 type), and compression-molded with a press pressure of 20 kN to obtain a sample did. The volume resistivity of the sample was measured using a volume resistivity measuring device (Made by Mitsubishi Chemical Analytech Co., Ltd., Loresta GP MCP-T610 type) connected to the powder resistance measuring system. As the measurement probe, a powder-only probe (4 probes, ring electrode) was used.

〈耐熱試験〉
3L/minで大気を供給できるオーブンを準備した。
当該オーブン中に、実施例1に係る導電性ペースト用銅粉を設置し、3L/minで大気を供給しながら温度を100℃として、24時間の耐熱試験を実施した。
<Heat resistance test>
An oven capable of supplying air at 3 L / min was prepared.
The copper powder for conductive paste according to Example 1 was installed in the oven, and a heat resistance test was performed for 24 hours at a temperature of 100 ° C. while supplying air at 3 L / min.

ここで、耐熱試験を実施した実施例1に係る導電性ペースト用銅粉をサンプリングし、上述した方法と同様の方法で、耐熱試験後における銅粉の酸素濃度および体積抵抗率を測定した。当該測定値を表1に記載した。   Here, the copper powder for conductive paste according to Example 1 in which the heat resistance test was performed was sampled, and the oxygen concentration and volume resistivity of the copper powder after the heat resistance test were measured by the same method as described above. The measured values are shown in Table 1.

〈測定結果の処理〉
以下の評価項目の値を求めた。当該算定値を表1に記載した。
(1)銅粉の内部酸素濃度(質量%)、(2)原料銅粉の表面酸素濃度(質量%)、(3)表面処理後における銅粉の表面酸素濃度(質量%)、(4)表面処理後における銅粉の単位表面積あたりの表面酸素濃度(質量%・g/m)、(5)耐熱試験後における銅粉の酸素濃度増加量(質量%)、(6)耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量(質量%・g/m)。
<Measurement result processing>
The values of the following evaluation items were obtained. The calculated values are shown in Table 1.
(1) Internal oxygen concentration (mass%) of copper powder, (2) Surface oxygen concentration (mass%) of raw copper powder, (3) Surface oxygen concentration (mass%) of copper powder after surface treatment, (4) Surface oxygen concentration per unit surface area of copper powder after surface treatment (mass% · g / m 2 ), (5) Increase in oxygen concentration (mass%) of copper powder after heat test, (6) After heat test Increase amount of oxygen concentration per unit surface area of copper powder (mass% · g / m 2 ).

(実施例2)
表面処理溶液として、シランカップリング剤(信越化学工業株式会社製:KBM−603)0.22gをイオン交換水218.2gに溶解した以外は、実施例1と同様に操作して、実施例2に係る導電性ペースト用銅粉を得た。
そして、実施例2に係る導電性ペースト用銅粉に対して、実施例1と同様に測定を実施した。そして測定値を求め、さらに算定値を求めて表1に記載した。
(Example 2)
A surface treatment solution was prepared in the same manner as in Example 1 except that 0.22 g of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-603) was dissolved in 218.2 g of ion-exchanged water. The copper powder for electrically conductive paste which concerns on was obtained.
And it measured similarly to Example 1 with respect to the copper powder for electrically conductive pastes concerning Example 2. FIG. And the measured value was calculated | required, and also the calculated value was calculated | required and it described in Table 1.

尚、表面処理後における銅粉の表面酸素濃度、および、表面処理後における銅粉の単位表面積あたりの表面酸素濃度において、算定結果が負数となっている。これは測定値の誤差に起因するものと考えられる。従って、表面処理後における銅粉の表面酸素濃度、および表面処理後における銅粉の単位表面積あたりの表面酸素濃度とも、実質的には0であると考えられる。以下、実施例3〜5においても同様である。   In addition, the calculation result is a negative number in the surface oxygen concentration of the copper powder after the surface treatment and the surface oxygen concentration per unit surface area of the copper powder after the surface treatment. This is considered to be caused by measurement error. Therefore, the surface oxygen concentration of the copper powder after the surface treatment and the surface oxygen concentration per unit surface area of the copper powder after the surface treatment are considered to be substantially zero. The same applies to Examples 3 to 5 below.

(実施例3)
有機酸アミン塩を主成分としている溶液(キレスト株式会社製:キレスライトWZ−7)6.9gをイオン交換水691.7gに溶解して表面処理溶液を準備した以外は、実施例1と同様に操作して、実施例3に係る導電性ペースト用銅粉を得た。
また、実施例3に係る導電性ペースト用銅粉に対して、実施例1と同様に測定を実施した。そして測定値を求め、さらに算定値を求めて表1に記載した。
(Example 3)
Except that a surface treatment solution was prepared by dissolving 6.9 g of a solution containing an organic acid amine salt as a main component (manufactured by Kyrest Co., Ltd .: Kireslite WZ-7) in 691.7 g of ion-exchanged water. The copper paste for conductive paste according to Example 3 was obtained by operating.
Moreover, it measured similarly to Example 1 with respect to the copper powder for electrically conductive pastes concerning Example 3. FIG. And the measured value was calculated | required, and also the calculated value was calculated | required and it described in Table 1.

(実施例4)
ベンゾトリアゾール誘導体(大和化成株式会社製、VERZONE TT250A)13.8gを、イオン交換水691.7gに溶解して表面処理溶液を準備した以外は、実施例1と同様に操作して、実施例4に係る導電性ペースト用銅粉を得た。
また、実施例4に係る導電性ペースト用銅粉に対して、実施例1と同様に測定を実施した。そして測定値を求め、さらに算定値を求めて表1に記載した。
Example 4
Example 4 was performed in the same manner as in Example 1 except that 13.8 g of a benzotriazole derivative (manufactured by Daiwa Kasei Co., Ltd., VERZONE TT250A) was dissolved in 691.7 g of ion-exchanged water to prepare a surface treatment solution. The copper powder for electrically conductive paste which concerns on was obtained.
Moreover, it measured similarly to Example 1 with respect to the copper powder for electrically conductive paste which concerns on Example 4. FIG. And the measured value was calculated | required, and also the calculated value was calculated | required and it described in Table 1.

(実施例5)
〈酸化膜除去工程〉
原料銅粉として粒子形状が球状のアトマイズ銅粉(DOWAエレクトロニクス株式会社製、アトマイズ銅粉)を準備した。
当該原料銅粉のBET値、TAP密度、酸素濃度、炭素濃度、10%の累積粒径(D10)、50%の累積粒径(D50)、および90%の累積粒径(D90)を測定した。当該測定値を表1に記載した。
(Example 5)
<Oxide film removal process>
Atomized copper powder (made by DOWA Electronics Co., Ltd., atomized copper powder) having a spherical particle shape was prepared as a raw material copper powder.
The BET value, TAP density, oxygen concentration, carbon concentration, 10% cumulative particle size (D10), 50% cumulative particle size (D50), and 90% cumulative particle size (D90) of the raw material copper powder were measured. . The measured values are shown in Table 1.

純水1037.6gを仕込み、その液温を35℃に調整した。そこへエチレンジアミン四酢酸四ナトリウム塩四水和物(EDTA・4Na・4HO)50質量%溶液81.1gを添加し撹拌、炭酸アンモニウム6.6gを添加し撹拌して溶液とした。
当該溶液を攪拌しながら、ここへ準備した原料銅粉252gを添加した。
原料銅粉添加後、30分間攪拌を保持して原料銅粉表面の酸化膜除去を実施した。
1037.6 g of pure water was charged, and the liquid temperature was adjusted to 35 ° C. Thereto was added 81.1 g of a 50% by mass ethylenediaminetetraacetic acid tetrasodium salt tetrahydrate (EDTA.4Na.4H 2 O) solution and stirred, and 6.6 g of ammonium carbonate was added and stirred to obtain a solution.
While stirring the solution, 252 g of the raw material copper powder prepared here was added.
After adding the raw copper powder, stirring was maintained for 30 minutes to remove the oxide film on the raw copper powder surface.

当該表面の酸化が除去された銅粉を、125mmのろうとを用いて吸引ろ過した。そして、当該吸引ろ過後の銅粉をイオン交換水で洗浄した。当該洗浄は、洗浄に伴って発生するろ液の導電率が0.2mS/m以下になるまで実施し、洗浄を完了した。   The copper powder from which the oxidation of the surface was removed was suction filtered using a 125 mm wax. And the copper powder after the said suction filtration was wash | cleaned with ion-exchange water. The washing was performed until the conductivity of the filtrate generated along with the washing was 0.2 mS / m or less, and the washing was completed.

ここで、洗浄を実施した銅粉をサンプリングし、実施例5に係る酸化膜除去後における銅粉の酸素濃度を測定した。そして測定値を求め、さらに算定値を求めて表1に記載した。   Here, the cleaned copper powder was sampled, and the oxygen concentration of the copper powder after the oxide film removal according to Example 5 was measured. And the measured value was calculated | required, and also the calculated value was calculated | required and it described in Table 1.

〈表面処理工程〉
一方、イミダゾール(和光純薬工業株式会社製)1.31gをイオン交換水1037.6gに溶解して表面処理溶液を準備した。
<Surface treatment process>
On the other hand, 1.31 g of imidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1037.6 g of ion-exchanged water to prepare a surface treatment solution.

上述した洗浄を実施した銅粉へ、上記表面処理溶液を通液して表面処理し、ウェットケーキを得た。そして、当該ウェットケーキを、窒素雰囲気中において120℃で乾燥を行なって、乾燥物を得た。当該得られた乾燥物の乾燥凝集を、目開き32μmの試験篩いを用いて篩いがけし、実施例5に係る導電性ペースト用銅粉を得た。   The surface treatment solution was passed through the copper powder that had been washed as described above to obtain a wet cake. And the said wet cake was dried at 120 degreeC in nitrogen atmosphere, and the dried material was obtained. The dry agglomeration of the obtained dried product was sieved using a test sieve having an opening of 32 μm to obtain a copper powder for conductive paste according to Example 5.

ここで、実施例5に係る導電性ペースト用銅粉をサンプリングし、実施例1にて説明したものと同様の方法で、実施例5に係る表面処理後における銅粉の酸素濃度および体積抵抗率を測定した。当該測定値を表1に記載した。   Here, the copper powder for conductive paste according to Example 5 was sampled, and the oxygen concentration and volume resistivity of the copper powder after the surface treatment according to Example 5 were obtained in the same manner as described in Example 1. Was measured. The measured values are shown in Table 1.

〈耐熱試験〉
上述した実施例5に係る導電性ペースト用銅粉へ、実施例1で説明した耐熱試験を実施した。
そして、耐熱試験を実施した実施例5に係る導電性ペースト用銅粉をサンプリングし、実施例1にて説明したものと同様の方法で、耐熱試験後における酸素濃度量および体積抵抗率を測定した。当該測定値を表1に記載した。
<Heat resistance test>
The heat resistance test described in Example 1 was performed on the copper powder for conductive paste according to Example 5 described above.
Then, the copper powder for conductive paste according to Example 5 in which the heat resistance test was performed was sampled, and the oxygen concentration amount and the volume resistivity after the heat resistance test were measured in the same manner as described in Example 1. . The measured values are shown in Table 1.

(比較例1)
原料銅粉として、実施例1と同様の湿式還元銅粉(DOWAエレクトロニクス株式会社製、TypeT−5.5μm)を準備した。当該湿式還元銅粉を、そのまま比較例1に係る導電性ペースト用銅粉とした。
比較例1に係る導電性ペースト用銅粉(原料銅粉)のBET値、TAP密度、酸素濃度、炭素濃度、10%の累積粒径(D10)、50%の累積粒径(D50)、および90%の累積粒径(D90)を測定した。当該測定値を表1に記載した。
また、比較例1に係る導電性ペースト用銅粉(原料銅粉)の体積抵抗率を測定した。そして測定値を求め、さらに算定値を求めて表1に記載した。
(Comparative Example 1)
As the raw material copper powder, the same wet reduced copper powder (DOWA Electronics Co., Ltd., Type T-5.5 μm) as in Example 1 was prepared. The wet reduced copper powder was used as the copper powder for conductive paste according to Comparative Example 1 as it was.
BET value, TAP density, oxygen concentration, carbon concentration, 10% cumulative particle size (D10), 50% cumulative particle size (D50), and copper powder for conductive paste according to Comparative Example 1 A 90% cumulative particle size (D90) was measured. The measured values are shown in Table 1.
Moreover, the volume resistivity of the copper powder for conductive paste (raw material copper powder) according to Comparative Example 1 was measured. And the measured value was calculated | required, and also the calculated value was calculated | required and it described in Table 1.

〈耐熱試験〉
比較例1に係る導電性ペースト用銅粉(原料銅粉)に対し、表面処理工程を実施することなく、実施例1と同様の耐熱試験を実施した。
そして、耐熱試験を実施した比較例1に係る導電性ペースト用銅粉(原料銅粉)をサンプリングし、耐熱試験後における銅粉の酸素濃度および体積抵抗率を測定した。当該測定値を表1に記載した。
<Heat resistance test>
The heat resistance test similar to Example 1 was implemented without implementing a surface treatment process with respect to the copper powder for conductive pastes (raw material copper powder) which concerns on the comparative example 1. FIG.
And the copper powder (raw material copper powder) for conductive paste which concerns on the comparative example 1 which implemented the heat test was sampled, and the oxygen concentration and volume resistivity of the copper powder after a heat test were measured. The measured values are shown in Table 1.

(比較例2)
比較例2に係る工程のフロー図である図2を参照しながら、比較例2に係る操作を説明する。
〈酸化膜除去工程〉
原料銅粉として実施例1と同様の湿式還元銅粉を準備した。
当該原料銅粉に対し、表面処理工程を実施しなかった以外は、実施例1と同様の操作により比較例2に係る導電性ペースト用銅粉を得た。
(Comparative Example 2)
The operation according to Comparative Example 2 will be described with reference to FIG. 2 which is a flowchart of the process according to Comparative Example 2.
<Oxide film removal process>
The same wet reduced copper powder as in Example 1 was prepared as the raw material copper powder.
The copper powder for conductive paste which concerns on the comparative example 2 was obtained by operation similar to Example 1 except not having implemented the surface treatment process with respect to the said raw material copper powder.

ここで、比較例2に係る導電性ペースト用銅粉をサンプリングし、酸化膜除去後における銅粉の酸素濃度を測定した。さらに算定値を求めて表1に記載した。   Here, the copper powder for conductive paste according to Comparative Example 2 was sampled, and the oxygen concentration of the copper powder after the oxide film was removed was measured. Further, the calculated values were obtained and listed in Table 1.

〈耐熱試験〉
比較例2に係る導電性ペースト用銅粉に対し、実施例1と同様の耐熱試験を実施した。
<Heat resistance test>
The same heat resistance test as in Example 1 was performed on the copper powder for conductive paste according to Comparative Example 2.

そして、耐熱試験を実施した比較例2に係る導電性ペースト用銅粉をサンプリングし、耐熱試験後における銅粉の酸素濃度よび体積抵抗率を測定し表1に記載した。さらに算定値を求めて表1に記載した。   And the copper powder for electrically conductive paste which concerns on the comparative example 2 which implemented the heat test was sampled, the oxygen concentration and volume resistivity of the copper powder after a heat test were measured, and it described in Table 1. Further, the calculated values were obtained and listed in Table 1.

(比較例3)
比較例3に係る工程のフロー図である図3を参照しながら、比較例3に係る操作を説明する。
〈酸化膜除去工程〉
原料銅粉として、実施例1と同様の湿式還元銅粉を準備した。
原料銅粉に対し、実施例1と同様の操作により酸化膜除去工程を実施した。
(Comparative Example 3)
The operation according to Comparative Example 3 will be described with reference to FIG. 3 which is a flowchart of the process according to Comparative Example 3.
<Oxide film removal process>
As the raw material copper powder, the same wet reduced copper powder as in Example 1 was prepared.
An oxide film removing step was performed on the raw material copper powder by the same operation as in Example 1.

〈表面処理工程〉
ここで、イミダゾール(和光純薬工業株式会社製)0.87gをイオン交換水7.9gに溶解して表面処理溶液を準備した。
<Surface treatment process>
Here, 0.87 g of imidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 7.9 g of ion-exchanged water to prepare a surface treatment solution.

上述した洗浄において、原料銅粉に対し30分間攪拌保持して銅粉表面の酸化膜を除去した後、このスラリー中へ、準備していた表面処理溶液を添加して30分間攪拌を保持し、銅粉を表面処理した。
当該表面処理された銅粉を、125mmのろうとを用いて吸引ろ過した。そして、当該吸引ろ過後の銅粉をイオン交換水で水洗した。当該水洗は、水洗に伴って発生するろ液の導電率が0.2mS/m以下になるまで実施し、洗浄を完了した。
In the cleaning described above, after stirring and holding the raw material copper powder for 30 minutes to remove the oxide film on the surface of the copper powder, the prepared surface treatment solution was added to this slurry, and stirring was held for 30 minutes, Copper powder was surface treated.
The surface-treated copper powder was suction filtered using a 125 mm wax. And the copper powder after the said suction filtration was washed with ion-exchange water. The water washing was performed until the conductivity of the filtrate generated along with the water washing became 0.2 mS / m or less, and the washing was completed.

洗浄後に、得られたウェットケーキを窒素雰囲気中にて120℃で9時間乾燥を行なって乾燥物とした。得られた乾燥物の乾燥凝集を目開き32μmの試験篩いで篩いがけして、比較例3に係る表面処理の施された導電性ペースト用銅粉を得た。   After washing, the obtained wet cake was dried at 120 ° C. for 9 hours in a nitrogen atmosphere to obtain a dried product. The obtained dried product was agglomerated with a test sieve having an opening of 32 μm to obtain a copper powder for conductive paste subjected to surface treatment according to Comparative Example 3.

ここで、比較例3に係る導電性ペースト用銅粉をサンプリングし、表面処理後における銅粉の酸素濃度および体積抵抗率を測定した。さらに算定値を求めて表1に記載した。   Here, the copper powder for conductive paste according to Comparative Example 3 was sampled, and the oxygen concentration and volume resistivity of the copper powder after the surface treatment were measured. Further, the calculated values were obtained and listed in Table 1.

〈耐熱試験〉
比較例3に係る導電性ペースト用銅粉に対し、実施例1と同様の耐熱試験を実施した。
<Heat resistance test>
The same heat resistance test as in Example 1 was performed on the copper powder for conductive paste according to Comparative Example 3.

そして、耐熱試験を実施した比較例3に係る導電性ペースト用銅粉をサンプリングし、耐熱試験後における銅粉の酸素濃度および体積抵抗率を測定した。さらに算定値を求めて表1に記載した。   And the copper powder for electrically conductive paste which concerns on the comparative example 3 which implemented the heat test was sampled, and the oxygen concentration and volume resistivity of the copper powder after a heat test were measured. Further, the calculated values were obtained and listed in Table 1.

(比較例4)
比較例4に係る工程のフロー図である図4を参照しながら、比較例4に係る操作を説明する。
〈表面処理工程〉
原料銅粉として実施例1と同様の湿式還元銅粉を準備した。
純水345.9gを準備し、35℃に温調した。当該純水を攪拌しながら、準備した実施例1と同様の湿式還元銅粉84gを添加した。
当該比較例においては、酸価膜除去工程を実施しなった。
ここで、イミダゾール(和光純薬工業株式会社製)0.50gをイオン交換水50.0gに溶解して表面処理溶液を準備した。
上述した、湿式還元銅粉と純水との攪拌を5分間保持後、このスラリーへ準備した表面処理溶液を添加し30分間攪拌保持して、湿式還元銅粉の表面処理を実施した。
(Comparative Example 4)
The operation according to Comparative Example 4 will be described with reference to FIG. 4 which is a flowchart of the process according to Comparative Example 4.
<Surface treatment process>
The same wet reduced copper powder as in Example 1 was prepared as the raw material copper powder.
345.9 g of pure water was prepared and the temperature was adjusted to 35 ° C. 84 g of wet reduced copper powder similar to the prepared Example 1 was added while stirring the pure water.
In the comparative example, the acid value film removal step was not performed.
Here, 0.50 g of imidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 50.0 g of ion-exchanged water to prepare a surface treatment solution.
After the above-described stirring of the wet-reduced copper powder and pure water was held for 5 minutes, the prepared surface treatment solution was added to this slurry and stirred for 30 minutes to carry out the surface treatment of the wet-reduced copper powder.

当該表面処理された湿式還元銅粉を、125mmのろうとを用いて吸引ろ過した。そして、当該吸引ろ過後の湿式還元銅粉を、イオン交換水による洗浄は行わず、得られたウェットケーキを窒素雰囲気中で、120℃で乾燥を行なって乾燥物とした。得られた乾燥物の乾燥凝集を、目開き32μmの試験篩いで篩いがけして、比較例4に係る耐酸化性表面処理の施された導電性ペースト用銅粉を得た。   The surface-treated wet reduced copper powder was suction filtered using a 125 mm wax. The wet reduced copper powder after the suction filtration was not washed with ion-exchanged water, and the obtained wet cake was dried at 120 ° C. in a nitrogen atmosphere to obtain a dried product. The dried agglomerate of the obtained dried product was sieved with a test sieve having an opening of 32 μm to obtain copper powder for conductive paste subjected to oxidation-resistant surface treatment according to Comparative Example 4.

ここで、比較例4に係る導電性ペースト用銅粉をサンプリングし、熱処理後における銅粉の酸素濃度を測定し表1に記載した。さらに算定値を求めて表1に記載した。   Here, the copper powder for conductive paste according to Comparative Example 4 was sampled, and the oxygen concentration of the copper powder after the heat treatment was measured and listed in Table 1. Further, the calculated values were obtained and listed in Table 1.

〈耐熱試験〉
比較例4に係る導電性ペースト用銅粉に対し、実施例1と同様の耐熱試験を実施した。
<Heat resistance test>
The same heat resistance test as that of Example 1 was performed on the copper powder for conductive paste according to Comparative Example 4.

そして、耐熱試験を実施した比較例4に係る導電性ペースト用銅粉をサンプリングし、耐熱試験後における銅粉の酸素濃度および体積抵抗率を測定した。さらに算定値を求めて表1に記載した。   And the copper powder for electrically conductive paste which concerns on the comparative example 4 which implemented the heat test was sampled, and the oxygen concentration and volume resistivity of the copper powder after a heat test were measured. Further, the calculated values were obtained and listed in Table 1.

(比較例5)
比較例5に係る工程のフロー図である図5を参照しながら、比較例5に係る操作を説明する。
原料銅粉として実施例5と同様のアトマイズ銅粉を準備した。
当該アトマイズ銅粉を、雰囲気制御可能な炉内(HIROCHIKU社製、多目的雰囲気炉)に設置し、Hガスを10L/minで流通させながら、140℃で9時間の還元処理を実施し、乾式による酸化膜除去工程を実施した。
銅粉として水素還元処理による乾式酸化膜除去工程を実施したアトマイズ銅粉84gを用いた以外は、比較例4と同様の操作をおこなって、比較例5に係る導電性ペースト用銅粉を得た。
(Comparative Example 5)
The operation according to Comparative Example 5 will be described with reference to FIG. 5 which is a flowchart of the process according to Comparative Example 5.
The same atomized copper powder as in Example 5 was prepared as a raw material copper powder.
The atomized copper powder is placed in a furnace (HIROCHIKU, multi-purpose atmosphere furnace) that can control the atmosphere, and a reduction process is performed at 140 ° C. for 9 hours while circulating H 2 gas at 10 L / min. An oxide film removing step was performed.
A copper powder for conductive paste according to Comparative Example 5 was obtained by performing the same operation as Comparative Example 4 except that 84 g of atomized copper powder subjected to the dry oxide film removal step by hydrogen reduction treatment was used as the copper powder. .

ここで、比較例5に係る導電性ペースト用銅粉をサンプリングし、酸化膜除去後における銅粉の酸素濃度、表面処理後における銅粉の酸素濃度および体積抵抗率を測定した。さらに算定値を求めて表1に記載した。   Here, the copper powder for conductive paste according to Comparative Example 5 was sampled, and the oxygen concentration of the copper powder after removal of the oxide film, the oxygen concentration of the copper powder after the surface treatment, and the volume resistivity were measured. Further, the calculated values were obtained and listed in Table 1.

〈耐熱試験〉
比較例5に係る導電性ペースト用銅粉に対し、実施例1と同様の耐熱試験を実施した。
<Heat resistance test>
The same heat resistance test as in Example 1 was performed on the copper powder for conductive paste according to Comparative Example 5.

そして、耐熱試験を実施した比較例5に係る導電性ペースト用銅粉をサンプリングし、耐熱試験後における銅粉の酸素濃度および体積抵抗率を測定し表1に記載した。さらに算定値を求めて表1に記載した。   And the copper powder for electrically conductive paste which concerns on the comparative example 5 which implemented the heat test was sampled, the oxygen concentration and volume resistivity of the copper powder after a heat test were measured, and it described in Table 1. Further, the calculated values were obtained and listed in Table 1.

(まとめ)
実施例1〜5に係る銅粉においては、表面処理後における銅粉の体積抵抗率の値が低く維持されており、耐熱試験後における銅粉の体積抵抗率の値も低いものであった。
これは、実施例1〜5に係る銅粉においては、原料銅粉の表面酸化膜を除去した後、当該銅粉表面が酸化するのを抑制する銅粉表面処理が良好に実施されたことの効果であると考えられる。当該効果は、表面処理後における銅粉の単位表面積あたりの表面酸素濃度の値が低いこと、および、耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量の値も抑制されていること、により裏付けられていると考えられる。
(Summary)
In the copper powder which concerns on Examples 1-5, the value of the volume resistivity of the copper powder after surface treatment was maintained low, and the value of the volume resistivity of the copper powder after a heat test was also low.
This is because, in the copper powder according to Examples 1 to 5, after the surface oxide film of the raw material copper powder was removed, the copper powder surface treatment for suppressing the oxidation of the copper powder surface was carried out satisfactorily. It is considered to be an effect. The effect is that the value of the surface oxygen concentration per unit surface area of the copper powder after the surface treatment is low, and the value of the oxygen concentration increase per unit surface area of the copper powder after the heat test is also suppressed, It is thought that it is supported by.

これに対し、比較例2、3、5に係る銅粉においては、原料銅粉の酸化膜を除去しているため、表面処理後における銅粉の体積抵抗率の値は低く維持されている。しかし、比較例2に係る銅粉においては表面処理がされておらず、比較例3、5に係る銅粉においては銅粉表面処理の方法が実施例1〜5に較べて劣るため、表面処理状態が不十分となり、耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量の値が大きくなったと考えられる。そして、比較例2、3、5に係る銅粉においては、耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量の値が大きくなったため、耐熱試験後における銅粉の体積抵抗率の値が大きくなってしまったと考えられる。   On the other hand, in the copper powder according to Comparative Examples 2, 3, and 5, since the oxide film of the raw material copper powder is removed, the volume resistivity value of the copper powder after the surface treatment is kept low. However, the copper powder according to Comparative Example 2 is not surface-treated, and the copper powder according to Comparative Examples 3 and 5 is inferior to the Examples 1 to 5 in the method of copper powder surface treatment. It is considered that the state became insufficient, and the value of the oxygen concentration increase per unit surface area of the copper powder after the heat test was increased. And in the copper powder which concerns on Comparative Examples 2, 3, and 5, since the value of the oxygen concentration increase amount per unit surface area of the copper powder after the heat test increased, the value of the volume resistivity of the copper powder after the heat test Seems to have grown.

また、比較例1、4に係る銅粉においては、原料銅粉の酸化膜除去を実施していない。このため、銅粉表面が薄い酸化膜で被覆されており、表面処理後における銅粉の単位表面積あたりの表面酸素濃度の値が高いのだと考えられる。一方、耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量の値は低い。それにも拘らず、表面処理後の体積抵抗率の値は、実施例1〜5と比較して高い。つまり、比較例1、4に係る銅粉においては、耐熱試験前における段階で、既に体積抵抗率の値が高くなってしまっているため、耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量の値が、見掛け上、低くみえることが判明した。   Moreover, in the copper powder which concerns on the comparative examples 1 and 4, the oxide film removal of raw material copper powder is not implemented. For this reason, the copper powder surface is covered with a thin oxide film, and it is considered that the value of the surface oxygen concentration per unit surface area of the copper powder after the surface treatment is high. On the other hand, the value of the oxygen concentration increase per unit surface area of the copper powder after the heat test is low. Nevertheless, the value of volume resistivity after the surface treatment is higher than that of Examples 1-5. That is, in the copper powder according to Comparative Examples 1 and 4, since the volume resistivity value has already been high at the stage before the heat test, the oxygen concentration per unit surface area of the copper powder after the heat test is increased. It was found that the quantity value seemed to be low.

以上の結果より、表面処理後における銅粉の単位表面積あたりの表面酸素濃度の値が0.15(質量%・g/m)以下、かつ、大気下、100℃24時間の耐熱試験後における銅粉の単位表面積あたりの酸素濃度増加量が0.60(質量%・g/m)以下である実施例1〜5に係る銅粉は、耐熱試験前後において低い体積抵抗率の値を維持しており、高い耐酸化性を有した銅粉といえると考えられる。
これらの結果より、実施例1〜5に係る銅粉は、耐熱試験前後において低い体積抵抗率の値を維持しており、高い耐酸化性を有した銅粉であるといえる。
From the above results, the value of the surface oxygen concentration per unit surface area of the copper powder after the surface treatment is 0.15 (mass% · g / m 2 ) or less, and after a heat resistance test at 100 ° C. for 24 hours in the air. The copper powder which concerns on Examples 1-5 whose oxygen concentration increase per unit surface area of a copper powder is 0.60 (mass% * g / m < 2 >) or less maintains the value of a low volume resistivity before and after a heat test. Therefore, it can be said that the copper powder has high oxidation resistance.
From these results, it can be said that the copper powder according to Examples 1 to 5 is a copper powder having a low volume resistivity before and after the heat resistance test and having high oxidation resistance.

Figure 2016145404
Figure 2016145404

Claims (5)

単位表面積あたりの表面酸素濃度が0.15(質量%・g/m)以下、かつ、大気下、100℃24時間の耐熱試験後における単位表面積あたりの酸素濃度増加量が0.60(質量%・g/m)以下であることを特徴とする導電性ペースト用銅粉。 The surface oxygen concentration per unit surface area is 0.15 (mass% · g / m 2 ) or less, and the increase in oxygen concentration per unit surface area after a heat resistance test at 100 ° C. for 24 hours in the atmosphere is 0.60 (mass) % · G / m 2 ) or less, a copper powder for conductive paste. 前記耐熱試験後における銅粉の体積抵抗率の値が、1.0×10Ω・cm以下であることを特徴とする請求項1に記載の導電性ペースト用銅粉。 The copper powder for conductive paste according to claim 1, wherein the volume resistivity value of the copper powder after the heat test is 1.0 × 10 2 Ω · cm or less. 銅粉表面の酸化膜を湿式法で除去する酸化膜除去工程を実施し、当該実施に続けて当該銅粉表面が酸化するのを抑制する銅粉表面処理工程を実施することを特徴とする導電性ペースト用銅粉の製造方法。   Conducting an oxide film removing step of removing the oxide film on the surface of the copper powder by a wet method, and conducting a copper powder surface treatment step for suppressing the oxidation of the copper powder surface following the implementation. Of producing copper powder for adhesive paste. 前記酸化膜除去工程とは、前記銅粉表面の酸化膜を、キレート剤、還元剤、酸洗浄液のいずれかを用いて除去するものであることを特徴とする請求項3に記載の導電性ペースト用銅粉の製造方法。   4. The conductive paste according to claim 3, wherein the oxide film removing step is to remove the oxide film on the surface of the copper powder by using any one of a chelating agent, a reducing agent, and an acid cleaning solution. Method for producing copper powder. 前記銅粉表面処理工程とは、前記酸化膜除去工程によって酸化膜が除去された銅粉表面へ、イミダゾール、シランカップリング剤、有機酸アミン塩、ベンゾトリアゾール誘導体、脂肪酸から選択される1種以上を付着させるものであることを特徴とする請求項3または4に記載の導電性ペースト用銅粉の製造方法。   The copper powder surface treatment step is one or more selected from imidazole, silane coupling agents, organic acid amine salts, benzotriazole derivatives, and fatty acids on the surface of the copper powder from which the oxide film has been removed in the oxide film removal step. 5. The method for producing copper powder for conductive paste according to claim 3, wherein the copper powder is attached.
JP2015023703A 2015-02-09 2015-02-09 Copper powder for conductive paste and method for producing the same Active JP6424104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023703A JP6424104B2 (en) 2015-02-09 2015-02-09 Copper powder for conductive paste and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023703A JP6424104B2 (en) 2015-02-09 2015-02-09 Copper powder for conductive paste and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016145404A true JP2016145404A (en) 2016-08-12
JP6424104B2 JP6424104B2 (en) 2018-11-14

Family

ID=56685247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023703A Active JP6424104B2 (en) 2015-02-09 2015-02-09 Copper powder for conductive paste and method for producing the same

Country Status (1)

Country Link
JP (1) JP6424104B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165382A (en) * 2017-03-28 2018-10-25 日油株式会社 Method for producing a surface-coated copper filler intermediate product
CN110211934A (en) * 2019-05-29 2019-09-06 深圳第三代半导体研究院 A kind of surface carries out the copper particle, low-temperature sintering copper cream and the sintering process using it of anti-oxidation protection
CN110238388A (en) * 2019-07-26 2019-09-17 昆山卡德姆新材料科技有限公司 A kind of metal powder and its preparation method and application wrapped up by high molecular material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013837A (en) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd Fine copper powder and its manufacturing method
WO2012157704A1 (en) * 2011-05-18 2012-11-22 戸田工業株式会社 Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013837A (en) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd Fine copper powder and its manufacturing method
WO2012157704A1 (en) * 2011-05-18 2012-11-22 戸田工業株式会社 Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165382A (en) * 2017-03-28 2018-10-25 日油株式会社 Method for producing a surface-coated copper filler intermediate product
CN110211934A (en) * 2019-05-29 2019-09-06 深圳第三代半导体研究院 A kind of surface carries out the copper particle, low-temperature sintering copper cream and the sintering process using it of anti-oxidation protection
WO2020238142A1 (en) * 2019-05-29 2020-12-03 深圳第三代半导体研究院 Copper particles with anti-oxidation protection on surface, low-temperature sintered copper paste and sintering process using same
CN110211934B (en) * 2019-05-29 2021-07-20 深圳第三代半导体研究院 Copper particle with oxidation resistance protection, sintered copper paste and sintering process using copper particle
CN110238388A (en) * 2019-07-26 2019-09-17 昆山卡德姆新材料科技有限公司 A kind of metal powder and its preparation method and application wrapped up by high molecular material
CN110238388B (en) * 2019-07-26 2021-07-27 昆山卡德姆新材料科技有限公司 Metal powder wrapped by high polymer material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6424104B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP5631910B2 (en) Silver coated copper powder
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
JP5571435B2 (en) Method for producing silver-plated copper fine powder
JP6165399B1 (en) Silver coated copper powder
JP5631841B2 (en) Silver coated copper powder
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
CN107737949A (en) A kind of silver-coated copper powder and preparation method thereof
CN107427912A (en) Cover silver-bearing copper powder and the conductive paste, conductive coating paint, conductive sheet of silver-bearing copper powder are covered using this
JP6424104B2 (en) Copper powder for conductive paste and method for producing the same
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
TWI703224B (en) Silver-coated copper powder and method for producing same
JP6278969B2 (en) Silver coated copper powder
TW201639787A (en) Copper powder and conductive composition containing same
JP2016130365A (en) Silver-coated copper powder and method for producing the same
JP6271231B2 (en) Silver-coated copper powder and conductive paste
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP6213301B2 (en) Method for producing nickel powder
WO2016031210A1 (en) Silver-coated copper powder and production method for same
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
CN107914009B (en) A kind of production method of tin plating copper powder
JP2017002364A (en) Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6424104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250