JP2008013837A - Fine copper powder and its manufacturing method - Google Patents

Fine copper powder and its manufacturing method Download PDF

Info

Publication number
JP2008013837A
JP2008013837A JP2006188928A JP2006188928A JP2008013837A JP 2008013837 A JP2008013837 A JP 2008013837A JP 2006188928 A JP2006188928 A JP 2006188928A JP 2006188928 A JP2006188928 A JP 2006188928A JP 2008013837 A JP2008013837 A JP 2008013837A
Authority
JP
Japan
Prior art keywords
copper powder
fine copper
fine
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006188928A
Other languages
Japanese (ja)
Other versions
JP5181434B2 (en
Inventor
Yuji Kawakami
裕二 川上
Eiji Ishida
栄治 石田
Keiji Kamata
啓嗣 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006188928A priority Critical patent/JP5181434B2/en
Publication of JP2008013837A publication Critical patent/JP2008013837A/en
Application granted granted Critical
Publication of JP5181434B2 publication Critical patent/JP5181434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper powder which has fine particle size, nearly spherical shape and high tap density and exhibits low resistance value when hardened with resin addition and can be suitably used for a conductive paste. <P>SOLUTION: Dendritic electrolytic copper powder having 0.8 to 2.0 g/cm<SP>3</SP>bulk density is ground and densified using a jet mill of high-pressure jet stream swirling vortex type. The resultant fine copper powder has a spherical or granular shape of 1 to 6μm average particle size, and tap density after the surface is coated with fats and oils is ≥4.5 g/cm<SP>3</SP>. When resin is added to the fine copper powder to undergo hardening at 200°C, a specific resistance value ranging from 1×10<SP>-5</SP>to 1×10<SP>-4</SP>Ωcm can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、球状あるいは粒状の微小銅粉、より詳細には、導電ペースト用、例えば電子回路におけるスルーホール用、ビア埋め用、MLCC外部電極用などのペーストに使用される微小銅粉、及びその製造方法に関する。   The present invention relates to a spherical or granular fine copper powder, more specifically, a fine copper powder used for a conductive paste, for example, a paste for an electronic circuit through hole, via filling, MLCC external electrode, and the like. It relates to a manufacturing method.

近年、OA機器、移動体通信機器等の電子部品実装技術において、配線やビア埋め、スルーホールなどの分野で、耐酸化性や低抵抗値などのために銀が用いられることが多い。しかし、銀を用いた場合、特にマイグレーションの影響などから製品としての不安定面が指摘され、ユーザーサイドで更にオーバーコート等の処理を施すか、完全に銀の使用を拒否するユーザーもある。   In recent years, in electronic component mounting technologies such as OA equipment and mobile communication equipment, silver is often used for oxidation resistance, low resistance value, and the like in the fields of wiring, via filling, and through holes. However, when silver is used, an unstable surface as a product is pointed out particularly due to the influence of migration, and there are some users who further perform processing such as overcoat on the user side or completely refuse the use of silver.

上記のマイグレーション防止ないし抑制のひとつの手段として、パラジウムを添加した銀−パラジウムが良く用いられるが、パラジウムが高価であるため、コスト面が需要拡大のネックになっているのも事実である。そこで、高価な銀や銀−パラジウムに代えて、安価で且つマイグレーションの影響をほとんど無視できる銅微粉の需要が高まってきている。   As one means for preventing or suppressing the migration, silver-palladium to which palladium is added is often used. However, since palladium is expensive, it is a fact that the cost is a bottleneck in demand expansion. Therefore, in place of expensive silver and silver-palladium, there is an increasing demand for copper fine powder that is inexpensive and can almost ignore the influence of migration.

また、最近の電子機器類などの小型化・軽量化に伴い、電子回路のファインピッチ化が進んでおり、配線幅、スルーホール径、ビア径などが微細化される傾向にある。そのため、これらの用途に使用される導電ペースト用の銅粉についても、平均粒径が従来の10μmから5μm以下へと移行しつつある。更に、スクリーン印刷やスルーホール用の導電ペーストに使用される銅粉は、丸みのある形状のものが求められ、高タップ密度で良好な導電性を示すものが望まれている。   In addition, with recent miniaturization and weight reduction of electronic devices and the like, fine pitches of electronic circuits are progressing, and the wiring width, through-hole diameter, via diameter, etc. tend to be miniaturized. Therefore, also about the copper powder for electrically conductive pastes used for these uses, the average particle diameter is shifting from the conventional 10 micrometers to 5 micrometers or less. Furthermore, the copper powder used for the conductive paste for screen printing and through-holes is required to have a round shape, and a high tap density and good conductivity are desired.

一般に、銅粉の製造方法としては、アトマイズ法、電解法、湿式合成法などが採用されている。銅粉の需要は年間5,000トンを遥かに超えると言われているが、ほとんどが上記方法で製造された粉末冶金用の銅粉であり、特に非常に安価な電解銅粉が主に使用されている。ただし、電解銅粉は安価であるが、形状が樹脂状であり、タップ密度が低いという問題があるため、導電ペースト用としては不適当である。   Generally, as a method for producing copper powder, an atomizing method, an electrolytic method, a wet synthesis method, or the like is employed. Although the demand for copper powder is said to exceed 5,000 tons per year, most are copper powder for powder metallurgy manufactured by the above-mentioned method. Especially, very cheap electrolytic copper powder is mainly used. Has been. However, although electrolytic copper powder is inexpensive, it has a problem that the shape is resinous and the tap density is low, so that it is unsuitable for a conductive paste.

導電ペースト用としては、従来からアトマイズ銅粉が用いられている。しかしながら、アトマイズ銅粉は平均粒径10〜数十μm程度が主であるため、数μmのものを得るには分級が必要となり、生産効率が悪く高級品として販売されている。最近では、高圧水アトマイズ法によって平均粒径5μm以下のものも製造されているが、分級による製品歩留悪化の改善は十分ではなく、経済的に不利である。また、湿式合成法によれば、平均粒径0.2〜5μm程度でよく揃った粒度分布のものが得られやすいが、製造コストが高く、廃液処理等の環境面への配慮が必要である。   Conventionally, atomized copper powder has been used for a conductive paste. However, since the atomized copper powder mainly has an average particle size of about 10 to several tens of μm, classification is necessary to obtain a particle having a size of several μm, and the production efficiency is poor and it is sold as a high-quality product. Recently, products having an average particle size of 5 μm or less have been produced by the high-pressure water atomization method, but the improvement of product yield deterioration by classification is not sufficient, which is economically disadvantageous. In addition, according to the wet synthesis method, it is easy to obtain a well-equalized particle size distribution with an average particle size of about 0.2 to 5 μm, but the production cost is high, and environmental considerations such as waste liquid treatment are necessary. .

一方、特開昭62−199705号公報には、比表面積が0.2m/g以上の樹枝状電解銅粉を、流体エネルギーミルを用いた粒子相互の衝突により解砕、微粉化する微細粒状銅粉の製造方法が開示されている。しかし、具体例として示されている通常のジェットミルのような流体エネルギーミルでは、粒子の衝突により得られるエネルギーが低く、樹枝状に発達した電解銅粉の枝部を折ることによって粒状化するのみであり、粒子内部は密度の低い電解銅粉に近く、高タップ密度の銅粉を得ることはできない。 On the other hand, JP-A-62-199705 discloses a fine granular material in which dendritic electrolytic copper powder having a specific surface area of 0.2 m 2 / g or more is crushed and pulverized by collision between particles using a fluid energy mill. A method for producing copper powder is disclosed. However, in a fluid energy mill such as a normal jet mill shown as a specific example, the energy obtained by the collision of particles is low, and it is only granulated by folding branches of electrolytic copper powder that has developed into a dendritic shape. The inside of the particle is close to the electrolytic copper powder having a low density, and a copper powder having a high tap density cannot be obtained.

また、特開平2−182809号公報には、比表面積が0.12m/g以上の樹枝状電解銅粉の表面を油脂で被覆した後、流体エネルギーミルで微粉化する方法が開示されている。しかしながら、この方法も上記特開昭62−199705号公報記載の方法と同様に、通常のジェットミルのような流体エネルギーミルを用いるものであるため、銅粉の高タップ密度化は不可能であり、導電性ペーストにしたときの導電性にも劣るという問題があった。 Japanese Patent Application Laid-Open No. 2-182809 discloses a method in which the surface of a dendritic electrolytic copper powder having a specific surface area of 0.12 m 2 / g or more is coated with oil and then pulverized with a fluid energy mill. . However, this method also uses a fluid energy mill such as an ordinary jet mill as in the method described in JP-A-62-199705, so that it is impossible to increase the tap density of copper powder. There was a problem that the conductivity was inferior when made into a conductive paste.

更に、特開2000−80408号公報には、平均粒径が25〜35μm、嵩密度が0.5〜0.8g/cmの樹枝状電解銅粉の表面を油脂で被覆した後、衝突板方式のジェットミルを用いて微粉化する方法が記載されている。しかしながら、この方法では、衝突板からの不純物の混入が懸念されるばかりか、得られる銅粉は粒状と枝状の混在したものであり、球形で高タップ密度であることが要求される導電ペースト用銅粉には不適であった。また樹脂を添加して硬化させた後の比抵抗率も1×10−4Ω・cmに留まり、低抵抗化の要求を満足すべきものではなかった。 Furthermore, JP-A-2000-80408 discloses that a surface of a dendritic electrolytic copper powder having an average particle size of 25 to 35 μm and a bulk density of 0.5 to 0.8 g / cm 3 is coated with an oil and fat, A method of pulverizing using a jet mill of the type is described. However, in this method, not only is there concern about the contamination of impurities from the collision plate, but the obtained copper powder is a mixture of grains and branches, and is a conductive paste that is required to be spherical and have a high tap density. It was unsuitable for copper powder. Further, the specific resistivity after the resin was added and cured remained at 1 × 10 −4 Ω · cm, and the requirement for lowering resistance was not satisfied.

特開昭62−199705号公報Japanese Patent Laid-Open No. 62-199705 特開平2−182809号公報JP-A-2-182809 特開2000−80408号公報JP 2000-80408 A

本発明は、上記した従来の事情に鑑み、粒径が微細で形状が球形に近く且つ高タップ密度であり、樹脂を添加して熱硬化させたとき低い抵抗値を示し、導電性ペースト用として好適な銅粉を提供すること、並びに、その銅粉を安価且つ簡便に大量生産することができる製造方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention has a fine particle size, a shape close to a sphere, and a high tap density. When the resin is added and thermally cured, it exhibits a low resistance value. An object is to provide a suitable copper powder and to provide a production method capable of mass-producing the copper powder inexpensively and easily.

本発明者らは、上記課題を解決するため、樹枝状電解銅粉の粉砕・微粉化に関する研究を進めた結果、高圧ジェット気流旋回渦方式のジェットミルを用いて樹枝状電解銅粉を粉砕及び緻密化することによって、平均粒径が微細で且つ粒径分布が狭く、球状あるいは粒状の微小銅粉が得られること、しかも従来の流体エネルギーミルや衝突板方式ジェットミルでは不可能であった高タップ密度化が可能であることを見出し、本発明をなすに至ったものである。   In order to solve the above problems, the present inventors have conducted research on pulverization and pulverization of dendritic electrolytic copper powder, and as a result, pulverized dendritic electrolytic copper powder using a jet mill of a high-pressure jet stream swirl vortex method and By densifying, the average particle size is fine, the particle size distribution is narrow, and spherical or granular fine copper powder can be obtained, and the high pressure that was impossible with conventional fluid energy mills and impingement plate type jet mills It has been found that tap density can be increased, and the present invention has been made.

即ち、本発明による微小銅粉の製造方法は、嵩密度0.8〜2.0g/cmの樹枝状電解銅粉を、大気雰囲気中又は不活性雰囲気中において高圧ジェット気流旋回渦方式のジェットミルを用いて粉砕及び緻密化し、平均粒径1〜6μmの球状あるいは粒状の微小銅粉を得ることを特徴とする。 That is, the method for producing a fine copper powder according to the present invention comprises using a dendritic electrolytic copper powder having a bulk density of 0.8 to 2.0 g / cm 3 in a high-pressure jet stream swirl vortex method in an air atmosphere or an inert atmosphere. It is characterized by pulverizing and densifying using a mill to obtain spherical or granular fine copper powder having an average particle diameter of 1 to 6 μm.

上記本発明の微小銅粉の製造方法においては、前記高圧ジェット気流旋回渦方式のジェットミルによる粉砕圧力が6〜15kg/cmであることを特徴とする。また、前記高圧ジェット気流旋回渦方式のジェットミルによる粉砕後、得られた微小銅粉を酸処理し、同時に又はその後微小銅粉の表面を油脂で被覆することにより、耐防食性及び耐酸化性を向上させることができる。 In the method for producing fine copper powder of the present invention, the pulverization pressure by the high-pressure jet stream swirl vortex jet mill is 6 to 15 kg / cm 2 . In addition, after pulverization by the jet mill of the high-pressure jet airflow swirl vortex method, the obtained fine copper powder is acid-treated, and at the same time or after that, the surface of the fine copper powder is coated with oil and fat, thereby providing corrosion resistance and oxidation resistance. Can be improved.

また、本発明が提供する微小銅粉は、上記本発明方法で得られた平均粒径1〜6μmで球状あるいは粒状の微小銅粉であって、その表面が油脂で被覆され、タップ密度が4.5g/cm以上であることを特徴とするものである。この本発明の微小銅粉は、樹脂を添加して大気雰囲気中において200℃で硬化することにより、1×10−5〜1×10−4Ω・cmの比抵抗値が得られることを特徴とする。 Moreover, the fine copper powder provided by the present invention is a spherical or granular fine copper powder having an average particle diameter of 1 to 6 μm obtained by the method of the present invention, and the surface thereof is coated with oil and fat, and the tap density is 4 It is characterized by being not less than 0.5 g / cm 3 . The fine copper powder of the present invention is characterized in that a specific resistance value of 1 × 10 −5 to 1 × 10 −4 Ω · cm can be obtained by adding a resin and curing at 200 ° C. in an air atmosphere. And

本発明によれば、平均粒径が1〜6μmと微細で、形状が球形に近く、しかもタップ密度が4.5g/cm以上と高タップ密度である微小銅粉を、大量生産可能な方法により製造し、安価に提供することができる。また、本発明の微小銅粉は、上記した特性を有すると共に、硬化後に1×10−5〜1×10−4Ω・cmの比抵抗値を示すことから、導電ペースト用などとして極めて好適なものである。 According to the present invention, a method capable of mass-producing fine copper powder having an average particle size as fine as 1 to 6 μm, a shape close to a sphere, and a tap density as high as 4.5 g / cm 3 or more. Can be manufactured at low cost. Moreover, since the micro copper powder of the present invention has the above-described characteristics and exhibits a specific resistance value of 1 × 10 −5 to 1 × 10 −4 Ω · cm after curing, it is extremely suitable as a conductive paste. Is.

本発明の製造方法において出発原料として用いる樹枝状電解銅粉は、嵩密度が0.8〜2.0g/cmのものである。嵩密度が0.8g/cm未満の樹枝状電解銅粉を用いた場合、大気雰囲気中での粉砕により銅粉が燃えたり、表面に過度の酸化物が形成されるため好ましくない。また、樹枝状電解銅粉の嵩密度が2.0g/cmを超えると、平均粒径1〜6μmの微小銅粉を得ることが困難である。尚、原料として用いる樹枝状電解銅粉は、その平均粒径が20〜45μmであることが好ましい。 The dendritic electrolytic copper powder used as a starting material in the production method of the present invention has a bulk density of 0.8 to 2.0 g / cm 3 . When a dendritic electrolytic copper powder having a bulk density of less than 0.8 g / cm 3 is used, it is not preferable because the copper powder burns by pulverization in an air atmosphere or excessive oxide is formed on the surface. Moreover, when the bulk density of the dendritic electrolytic copper powder exceeds 2.0 g / cm 3 , it is difficult to obtain fine copper powder having an average particle diameter of 1 to 6 μm. In addition, it is preferable that the average particle diameter of the dendritic electrolytic copper powder used as a raw material is 20-45 micrometers.

上記樹枝状電解銅粉は、高圧ジェット気流旋回渦方式のジェットミルを用いて粉砕することによって、球状あるいは粒状の微細な銅粉となると同時に緻密化され、サイクロンやバグフィルターによって回収される。この高圧ジェット気流旋回渦方式ジェットミルによる粉砕・緻密化は、大気雰囲気中あるいは不活性雰囲気中で行うことが出来るが、大気雰囲気中で粒径3μm以下の微小銅粉を作製した場合は表面酸化が過度に起こるため、不活性雰囲気中で行うことが好ましい。尚、粒径3μm以上の微小銅粉は、大気雰囲気中で粉砕・緻密化することができるため、低コストでの作製が可能である。   The dendritic electrolytic copper powder is pulverized using a high-pressure jet airflow swirl vortex jet mill to become a spherical or granular fine copper powder, which is simultaneously densified and collected by a cyclone or a bag filter. Grinding and densification by this high-pressure jet airflow swirl vortex jet mill can be performed in an air atmosphere or in an inert atmosphere, but surface oxidation occurs when a fine copper powder having a particle size of 3 μm or less is produced in the air atmosphere. Since this occurs excessively, it is preferably performed in an inert atmosphere. Note that a fine copper powder having a particle diameter of 3 μm or more can be pulverized and densified in an air atmosphere, so that it can be produced at low cost.

本発明で用いる高圧ジェット気流旋回渦方式のジェットミルは、大気あるいは不活性ガスによる高圧ジェット気流の同心円状旋回渦を形成し、その高圧ジェット気流旋回渦中で樹枝状電解銅粉の粒子同士を相互に衝突させる。その結果、樹枝状電解銅粉の樹枝部分が微細な粒子に分解された後、更なる衝突を繰り返すことにより粒子の角ばった部分が押しつぶされ、球状あるいは表面凹凸が少ない粒状の微小銅粉が得られる。   The jet mill of the high-pressure jet stream swirl vortex method used in the present invention forms a concentric swirl vortex of the high-pressure jet stream by the atmosphere or an inert gas, and the dendritic electrolytic copper powder particles are mutually connected in the high-pressure jet stream swirl vortex. Collide with. As a result, after the dendritic portion of the electrolytic copper powder is broken down into fine particles, repeated collisions cause the angular portions of the particles to be crushed, resulting in a granular or fine copper powder with less surface irregularities. It is done.

しかも、上記高圧ジェット気流旋回渦方式のジェットミルでは、従来の流体エネルギーミルや衝突板方式ジェットミルよりも粉砕圧力が高く、具体的には6kg/cmを超え15kg/cm程度までの粉砕圧力が可能であって、気流も均一に制御されている。そのため、高い衝突エネルギーが得られ、樹枝状電解銅粉を容易に粉砕・微粉化すると同時に、内部まで容易に緻密化して、高密度な微小銅粉とすることができる。 Moreover, the jet mill of the high-pressure jet stream swirling vortex method, higher grinding pressure than conventional fluid energy mill or a collision plate type jet mill, specifically grinding until 15 kg / cm 2 about exceed 6 kg / cm 2 Pressure is possible and the airflow is also controlled uniformly. Therefore, high collision energy can be obtained, and the dendritic electrolytic copper powder can be easily pulverized and pulverized, and at the same time, the dendritic electrolytic copper powder can be easily densified into a high-density fine copper powder.

このような高圧ジェット気流旋回渦方式のジェットミルとしては、(株)徳寿工作所製のNJ式ナノグラインディングミルを例示することができる。   An example of such a high-pressure jet airflow swirl vortex jet mill is an NJ nanogrinding mill manufactured by Tokuju Factory.

上記した本発明方法によって得られる微小銅粉は、平均粒径が1〜6μmの球状あるいは粒状であって、表面が非常に平滑で凹凸が少ない。尚、平均粒径が1μm未満の場合は高充填できず、逆に平均粒径が6μmを超え場合には微細なスルーホールなどに使用できない。また、球状あるいは粒状とすることにより、微小銅粉のタップ密度を上げることができ、成膜・硬化後の比抵抗率を低くすることができる。従って、本発明の微小銅粉は、スルーホール用などの導電ペーストのフィラーとして好適であり、スクリーン印刷にも適している。   The fine copper powder obtained by the above-described method of the present invention is spherical or granular with an average particle diameter of 1 to 6 μm, and has a very smooth surface and few irregularities. When the average particle size is less than 1 μm, high filling cannot be performed. Conversely, when the average particle size exceeds 6 μm, it cannot be used for fine through holes. Moreover, by making it spherical or granular, the tap density of the fine copper powder can be increased, and the specific resistivity after film formation and curing can be lowered. Therefore, the fine copper powder of the present invention is suitable as a filler for conductive pastes for through holes and the like, and is also suitable for screen printing.

また、本発明の微小銅粉は、上記した微粉化と緻密化の後に、その粒子表面を油脂により被覆することが好ましい。従来から酸化防止のために粉砕前の原料粉を油脂被覆することは知られているが、流体エネルギーミルや衝突板方式ジェットミルでの粉砕中に油脂が摩擦などで剥ぎ取られ、粒子の表面が酸化することが避けられないため、成膜・硬化したときの低抵抗化が困難であった。   Moreover, it is preferable that the fine copper powder of this invention coat | covers the particle | grain surface with fats and oils after the above-mentioned micronization and densification. Conventionally, it is known to coat raw material powder before grinding to prevent oxidation, but during grinding with a fluid energy mill or a collision plate type jet mill, the grease is stripped off due to friction, etc. Since it is unavoidable that the film is oxidized, it is difficult to reduce the resistance when the film is formed and cured.

一方、本発明では、高圧ジェット気流旋回渦方式ジェットミルでの粉砕後に、得られた微小銅粉を酸処理し、同時に又はその後、微小銅粉の表面を油脂で被覆する。例えば、粉砕後の微小銅粉を酸の水溶液中に投入して撹拌し、続いて、得られたスラリーに脂肪酸のアルカリ金属塩を添加して撹拌保持した後、ろ過・乾燥する。このとき、微小銅粉を水に投入してスラリーとした後に酸を添加してもよいし、酸の水溶液中に脂肪酸のアルカリ金属塩を添加して、酸処理と油脂被覆を同時に行うこともできる。また、脂肪酸のアルカリ金属塩の添加時に、アスコルビン酸などの還元剤を同時に添加してもよい。   On the other hand, in the present invention, after pulverization in a high-pressure jet airflow swirl vortex jet mill, the obtained fine copper powder is acid-treated, and simultaneously or thereafter, the surface of the fine copper powder is coated with oil. For example, the pulverized fine copper powder is put into an acid aqueous solution and stirred. Subsequently, an alkali metal salt of a fatty acid is added to the resulting slurry and held, and then filtered and dried. At this time, the acid may be added after adding the fine copper powder into water to form a slurry, or the acid treatment and the oil / fat coating may be performed simultaneously by adding an alkali metal salt of a fatty acid to the acid aqueous solution. it can. Moreover, you may add reducing agents, such as ascorbic acid, at the time of addition of the alkali metal salt of a fatty acid.

上記酸処理により、微小銅粉の表面酸化膜を取り除くことができる。用いる酸としては、酢酸、ギ酸、硫酸、リン酸、硝酸が好ましい。また、酸の添加量は過剰に入れる必要はなく、粒子表面の酸化膜や汚染層が除去できる程度のものであればよい。次に、この酸処理によって清浄化された微小銅粉の表面に、油脂を被覆することにより、耐酸化性を付与すると同時に、より高タップ密度化を達成でき、導電用ペーストとして成膜・硬化したときの低抵抗化が可能となる。   By the acid treatment, the surface oxide film of the fine copper powder can be removed. As the acid used, acetic acid, formic acid, sulfuric acid, phosphoric acid, and nitric acid are preferable. Further, it is not necessary to add an excessive amount of acid as long as the oxide film and the contamination layer on the particle surface can be removed. Next, the surface of the fine copper powder cleaned by this acid treatment is coated with oils and fats to provide oxidation resistance and at the same time a higher tap density can be achieved. It is possible to reduce the resistance.

微小銅粉の表面に被覆される油脂は、炭素数8以上の脂肪酸が好ましい。かかる脂肪酸としては、例えば、オクタン酸(炭素数8)、デカン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(不飽和、炭素数18)などが挙げられる。炭素数18を超える脂肪酸も使用できるが、高価であるうえ、操作性もよくないため、炭素数18のステアリン酸までが実用的である。   Fats and oils coated on the surface of the fine copper powder are preferably fatty acids having 8 or more carbon atoms. Examples of such fatty acids include octanoic acid (8 carbon atoms), decanoic acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid ( Examples thereof include carbon number 18) and oleic acid (unsaturated, carbon number 18). Fatty acids having more than 18 carbon atoms can be used, but since they are expensive and have poor operability, stearic acid having 18 carbon atoms is practical.

炭素数8以上の脂肪酸は水に対してほとんど溶解しないが、脂肪酸のナトリウム塩やカリウム塩などアルカリ金属塩であれば溶解度があるため、水溶液中で微小銅粉の表面に脂肪酸の被膜を形成することができる。尚、脂肪酸のアルカリ金属塩の添加量は水に対する臨界ミセル濃度付近でよく、未溶解分が発生するほど過剰に添加する必要はない。   Fatty acids having 8 or more carbon atoms are hardly soluble in water, but are soluble in alkali metal salts such as sodium salts and potassium salts of fatty acids. Therefore, a fatty acid film is formed on the surface of fine copper powder in an aqueous solution. be able to. In addition, the addition amount of the alkali metal salt of the fatty acid may be in the vicinity of the critical micelle concentration with respect to water, and it is not necessary to add it excessively so that an undissolved part is generated.

上記した表面被覆処理により、微小銅粉の表面に分子1層分の脂肪酸がイオン配位して、過剰な脂肪酸の付着がない綺麗な油脂被膜を形成することができ、その結果、本発明の微小銅粉はタップ密度が更に向上して4.5g/cm以上となる。タップ密度が4.5g/cm以上になると、成膜・硬化したときに粒子間の導電パスが増加することや、膜内の銅粉体積が増加することから、一層の低抵抗化を実現することができる。タップ密度は5.0g/cm以上が更に好ましく、より低抵抗化が可能となるが、本発明の平均粒径では6.0g/cmを超えるものを得ることは実質的に困難である。 By the surface coating treatment described above, the fatty acid for one layer of molecules is ion-coordinated on the surface of the fine copper powder, and a beautiful oil film without excessive fatty acid adhesion can be formed. The fine copper powder further improves the tap density to 4.5 g / cm 3 or more. When the tap density is 4.5 g / cm 3 or higher, the conductive path between the particles increases when the film is formed and cured, and the volume of copper powder in the film increases, further reducing the resistance. can do. The tap density is more preferably 5.0 g / cm 3 or more, and the resistance can be further reduced. However, it is substantially difficult to obtain a tap density exceeding 6.0 g / cm 3 with the average particle diameter of the present invention. .

本発明の微小銅粉は、上記した高いタップ密度に加えて、清浄な表面が脂肪酸で被覆されていて硬化中の粒子表面の酸化が低減されるため、樹脂を添加して大気雰囲気中において200℃で硬化させたとき、1×10−5〜1×10−4Ω・cmの低い比抵抗値を示し、導電ペースト用銅粉として好適なものである。使用する樹脂としては、熱硬化性を持った樹脂であれば特に限定されないが、フェノール樹脂、アクリル樹脂などの硬化時に収縮する樹脂が好ましい。 In addition to the above-described high tap density, the fine copper powder of the present invention has a clean surface coated with a fatty acid so that oxidation of the particle surface during curing is reduced. When cured at 0 ° C., it exhibits a low specific resistance value of 1 × 10 −5 to 1 × 10 −4 Ω · cm and is suitable as a copper powder for conductive paste. The resin to be used is not particularly limited as long as it is a thermosetting resin, but a resin that shrinks upon curing, such as a phenol resin and an acrylic resin, is preferable.

尚、ここで用いる硬化温度では、微小銅粉同士の焼結が進まず、熱硬化性樹脂の収縮によるコンタクトのみで低抵抗化するため、比抵抗値の下限はバルクの比抵抗値に比べて高い1×10−5Ω・cm程度である。しかしながら、この大気雰囲気中200℃での硬化により1×10−5〜1×10−4Ω・cmの低抵抗化が実現できれば、ポリイミド基板などに使用可能となる。更に160℃以下の硬化温度で同程度の低い比抵抗値が得られれば、ガラスエポキシ基板にも使用することができる。 In addition, at the curing temperature used here, sintering between the fine copper powders does not proceed, and the resistance is reduced only by the contact due to shrinkage of the thermosetting resin, so the lower limit of the specific resistance value is lower than the specific resistance value of the bulk The height is about 1 × 10 −5 Ω · cm. However, if a low resistance of 1 × 10 −5 to 1 × 10 −4 Ω · cm can be realized by curing at 200 ° C. in the air atmosphere, it can be used for a polyimide substrate or the like. Furthermore, if a comparable specific resistance value is obtained at a curing temperature of 160 ° C. or lower, the glass epoxy substrate can be used.

[実施例1]
樹枝状電解銅粉(ネクセルジャパン製、電解銅粉Cu−300)を、高圧ジェット気流旋回渦方式ジェットミルである(株)徳寿工作所製のNJ式ナノグラインディングミル(NJ−30)を用いて、空気流量200リットル/分、粉砕圧力10kg/cm、約400g/時間で8パス実施して、粉砕・微粉化した。上記樹枝状電解銅粉の平均粒径は30.5μm、嵩密度は1.6g/cm、BET法比表面積は0.23m/gであった。この出発原料である樹枝状電解銅粉の走査型電子顕微鏡写真を図1に示す。
[Example 1]
Dendritic electrolytic copper powder (manufactured by Nextel Japan, electrolytic copper powder Cu-300) is a high-pressure jet airflow swirl vortex jet mill, using an NJ nanogrinding mill (NJ-30) manufactured by Tokuju Kogakusho Co., Ltd. Then, 8 passes were performed at an air flow rate of 200 liters / minute, a pulverization pressure of 10 kg / cm 2 , and about 400 g / hour, and pulverized and pulverized. The dendritic electrolytic copper powder had an average particle size of 30.5 μm, a bulk density of 1.6 g / cm 3 , and a BET specific surface area of 0.23 m 2 / g. A scanning electron micrograph of the dendritic electrolytic copper powder as the starting material is shown in FIG.

上記微粉化により得られた銅粉は粒状であり、平均粒径は5.67μm、嵩密度は3.11g/cm、BET法比表面積は0.25m/gであった。尚、平均粒径は、日機装(株)製のMICROTRAC HRA9320X−100を用いて求めた。また、嵩密度は粉体の体積と粒子の質量の比から求めた。上記微粉化により得られた微小銅粉の走査型電子顕微鏡写真を図2に示す。 The copper powder obtained by the pulverization was granular, the average particle size was 5.67 μm, the bulk density was 3.11 g / cm 3 , and the BET specific surface area was 0.25 m 2 / g. In addition, the average particle diameter was calculated | required using Nikkiso Co., Ltd. MICROTRAC HRA9320X-100. The bulk density was determined from the ratio of the powder volume to the particle mass. A scanning electron micrograph of the fine copper powder obtained by the above micronization is shown in FIG.

次に、上記微粉化により得られた微小銅粉に対し、表面被覆処理を行った。即ち、純水200ml中にギ酸(和光純薬工業(株)製、和光1級)25mlを溶解した溶液に、微小銅粉100gを分散させた後、純水50mlにステアリン酸ナトリウム(和光純薬工業(株)製、試薬)0.2gを溶解した溶液を添加し、撹拌しながら1時間保持した。その後、濾過して微小銅粉を回収し、60℃で真空加熱乾燥した。得られた微小銅粉(ステアリン酸で表面被覆)のタップ密度を測定したところ、5.3g/cmであった。 Next, the surface coating process was performed with respect to the fine copper powder obtained by the said fine pulverization. That is, after dispersing 100 g of fine copper powder in a solution in which 25 ml of formic acid (Wako Pure Chemical Industries, Ltd., Wako Grade 1) is dissolved in 200 ml of pure water, sodium stearate (Wako Pure Chemical Industries) is added to 50 ml of pure water. A solution in which 0.2 g of a reagent manufactured by Kogyo Co., Ltd. was dissolved was added and held for 1 hour with stirring. Then, it filtered and collect | recovered micro copper powder, and vacuum-dried at 60 degreeC. When the tap density of the obtained fine copper powder (surface coated with stearic acid) was measured, it was 5.3 g / cm 3 .

このようにして得られた微小銅粉85重量部に、フェノール樹脂(群栄化学(株)製、PL−2211)15重量部、ブチルセロソルブ(関東化学(株)製、鹿特級)10重量部を混合し、小型ニーダー(日本精機製作所製、ノンバブリングニーダーNBK−1)を用い、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。   To 85 parts by weight of the fine copper powder thus obtained, 15 parts by weight of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by weight of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are added. Using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), the mixture was kneaded at 1200 rpm for 3 minutes three times to form a paste. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.

上記導電ペーストの硬化により得られた被膜の比抵抗値は、それぞれ1.6×10−4Ω・cm(硬化温度150℃)、4.3×10−5Ω・cm(硬化温度200℃)であった。尚、被膜の比抵抗値は、低抵抗率計(三菱化学(株)製、Loresta−GP MCP−T600)を用いて四端子法によりシート抵抗値を測定し、表面粗さ形状測定器(東京精密(株)製、SURFCOM130A)により被膜の膜厚を測定して、上記シート抵抗値を膜厚で除することによって求めた。 The specific resistance values of the films obtained by curing the conductive paste are 1.6 × 10 −4 Ω · cm (curing temperature 150 ° C.) and 4.3 × 10 −5 Ω · cm (curing temperature 200 ° C.), respectively. Met. In addition, the specific resistance value of a film measured the sheet resistance value by a four-terminal method using a low resistivity meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), and a surface roughness shape measuring instrument (Tokyo) The film thickness of the film was measured by SURFCOM130A) manufactured by Seimitsu Co., Ltd., and obtained by dividing the sheet resistance value by the film thickness.

[比較例1]
平均粒径40.0μm、嵩密度2.2g/cm、BET法比表面積0.17m/gの樹枝状電解銅粉(三井金属鉱業(株)製、電解銅粉MD−1)を、高圧ジェット気流旋回渦方式ジェットミルである(株)徳寿工作所製のNJ式ナノグラインディングミル(NJ−30)を用いて、上記実施例1と同様にして、粉砕圧力10kg/cm、約400g/時間で3パス実施して、で粉砕・微粉化した。
[Comparative Example 1]
Dendritic electrolytic copper powder (Mitsui Metal Mining Co., Ltd., electrolytic copper powder MD-1) having an average particle size of 40.0 μm, a bulk density of 2.2 g / cm 3 and a BET specific surface area of 0.17 m 2 / g, Using a NJ-type nanogrinding mill (NJ-30) manufactured by Tokuju Factory, which is a high-pressure jet airflow swirl vortex type jet mill, in the same manner as in Example 1 above, a pulverization pressure of 10 kg / cm 2 , about Three passes were performed at 400 g / hour, and pulverized and pulverized.

得られた銅微粉は粒状であり、平均粒径は14.89μmであった。この比較例1では、出発原料として嵩密度が2.0g/cmを超える樹枝状電解銅粉を用いているため、平均粒径1〜6μmの微小銅粉は作製できなかった。 The obtained copper fine powder was granular, and the average particle size was 14.89 μm. In Comparative Example 1, since a dendritic electrolytic copper powder having a bulk density exceeding 2.0 g / cm 3 was used as a starting material, a fine copper powder having an average particle diameter of 1 to 6 μm could not be produced.

[比較例2]
平均粒径40.0μm、嵩密度2.2g/cm、BET法比表面積0.17m/gの樹枝状電解銅粉(三井金属鉱業(株)製、電解銅粉MD−1)を、通常のジェットミル((株)栗本鐵工所社製、KJ−50)を用いて、粉砕圧力6kg/cm、約2000g/時間で粉砕・微粉化した。
[Comparative Example 2]
Dendritic electrolytic copper powder (Mitsui Metal Mining Co., Ltd., electrolytic copper powder MD-1) having an average particle size of 40.0 μm, a bulk density of 2.2 g / cm 3 and a BET specific surface area of 0.17 m 2 / g, Using an ordinary jet mill (KJ-50, manufactured by Kurimoto Steel Co., Ltd.), the mixture was pulverized and pulverized at a pulverization pressure of 6 kg / cm 2 and about 2000 g / hour.

得られた銅微粉は粒状であり、平均粒径が3.58μm、嵩密度が2.55g/cm、BET法比表面積が0.61m/gであった。この銅微粉に上記実施例1と同様にしてステアリン酸を被覆したところ、タップ密度は4.4g/cmであった。 The obtained copper fine powder was granular, the average particle size was 3.58 μm, the bulk density was 2.55 g / cm 3 , and the BET specific surface area was 0.61 m 2 / g. When this copper fine powder was coated with stearic acid in the same manner as in Example 1, the tap density was 4.4 g / cm 3 .

更に、得られた銅微粉を、上記実施例1と同様にして、ペースト化し、その導電ペーストを用いて被膜を形成した。得られた被膜の比抵抗値を上記実施例1と同様に測定したところ、それぞれ4.6×10Ω・cm(硬化温度150℃)、1.0×10Ω・cm(硬化温度200℃)であった。この比較例2では、通常のジェットミルを用いて粉砕したことによって、得られた銅微粉の粒度分布が広く且つ粒径1μm以下の微粒が酸化されたため、硬化後の比抵抗値が極めて高くなっている。 Further, the obtained copper fine powder was made into a paste in the same manner as in Example 1, and a film was formed using the conductive paste. When the specific resistance value of the obtained film was measured in the same manner as in Example 1, it was 4.6 × 10 5 Ω · cm (curing temperature 150 ° C.), 1.0 × 10 6 Ω · cm (curing temperature 200). ° C). In Comparative Example 2, since the particle size distribution of the obtained copper fine powder was wide and fine particles having a particle size of 1 μm or less were oxidized by pulverization using an ordinary jet mill, the specific resistance value after curing became extremely high. ing.

[実施例2]
平均粒径20.3μm、嵩密度0.8g/cm、BET法比表面積0.40m/gの樹枝状電解銅粉(福田金属箔粉工業(株)製、電解粉FCC−115)を、高圧ジェット気流旋回渦方式ジェットミルである(株)徳寿工作所製のNJ式ナノグラインディングミル(NJ−100)を用い、上記実施例1と同様にして、粉砕圧力10kg/cm、約2000g/時間で8パス実施して、粉砕・微粉化した。
[Example 2]
Dendritic electrolytic copper powder having an average particle size of 20.3 μm, bulk density of 0.8 g / cm 3 and BET specific surface area of 0.40 m 2 / g (made by Fukuda Metal Foil Powder Industry Co., Ltd., electrolytic powder FCC-115) In the same manner as in Example 1 above, a grinding pressure of 10 kg / cm 2 , about 8 passes were performed at 2000 g / hour, and pulverized and pulverized.

上記微粉化により得られた銅粉は粒状であり、平均粒径が3.67μm、嵩密度が2.27g/cm、BET法比表面積が0.74m/gであった。また、この微小銅粉を、上記実施例1と同様にしてステアリン酸を被覆したところ、表面被覆後のタップ密度は5.0g/cmであった。更に、この微小銅粉を、上記実施例1と同様にペースト化し、その導電ペーストを用いて形成した被膜の比抵抗値を上記実施例1と同様に測定したところ、それぞれ7.5×10−5Ω・cm(硬化温度150℃)、4.3×10−5Ω・cm(硬化温度200℃)であった。 The copper powder obtained by the above pulverization was granular, with an average particle size of 3.67 μm, a bulk density of 2.27 g / cm 3 , and a BET specific surface area of 0.74 m 2 / g. Further, when this fine copper powder was coated with stearic acid in the same manner as in Example 1, the tap density after surface coating was 5.0 g / cm 3 . Furthermore, when this fine copper powder was pasted in the same manner as in Example 1, and the specific resistance value of the film formed using the conductive paste was measured in the same manner as in Example 1, it was 7.5 × 10 − It was 5 Ω · cm (curing temperature 150 ° C.), 4.3 × 10 −5 Ω · cm (curing temperature 200 ° C.).

[実施例3]
粉砕圧力を6kg/cm、12kg/cmと変化させた以外は、上記実施例1と同様にして、樹枝状電解銅粉を粉砕・微粉化した。上記粉砕圧力6kg/cmで得られた微小銅粉は、平均粒径が2.64μmであり、上記実施例1と同様にしてステアリン酸を被覆した後の微小銅粉のタップ密度は4.7g/cmであった。
[Example 3]
The dendritic electrolytic copper powder was pulverized and pulverized in the same manner as in Example 1 except that the pulverization pressure was changed to 6 kg / cm 2 and 12 kg / cm 2 . The fine copper powder obtained at the pulverization pressure of 6 kg / cm 2 has an average particle diameter of 2.64 μm, and the tap density of the fine copper powder after coating with stearic acid in the same manner as in Example 1 is 4. It was 7 g / cm 3 .

また、上記粉砕圧力12g/cmで得られた微小銅粉は、平均粒径が2.39μmであった。この微小銅粉の粒度分布を図3に示す。図3から、非常に良好な粒度分布を示していることが分る。また、表面被覆後の微小銅粉のタップ密度は4.5g/cmであった。 The fine copper powder obtained at the pulverization pressure of 12 g / cm 2 had an average particle size of 2.39 μm. The particle size distribution of the fine copper powder is shown in FIG. It can be seen from FIG. 3 that the particle size distribution is very good. Moreover, the tap density of the fine copper powder after the surface coating was 4.5 g / cm 3 .

実施例1で出発原料として用いた樹枝状電解銅粉の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of dendritic electrolytic copper powder used as a starting material in Example 1. FIG. 実施例1で得られた本発明の微小銅粉の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the fine copper powder of the present invention obtained in Example 1. FIG. 実施例3で得られた本発明の微小銅粉の粒度分布を示すグラフである。4 is a graph showing the particle size distribution of the fine copper powder of the present invention obtained in Example 3. FIG.

Claims (5)

嵩密度0.8〜2.0g/cmの樹枝状電解銅粉を、大気雰囲気中又は不活性雰囲気中において高圧ジェット気流旋回渦方式のジェットミルを用いて粉砕及び緻密化し、平均粒径1〜6μmの球状あるいは粒状の微小銅粉を得ることを特徴とする微小銅粉の製造方法。 Dendritic electrolytic copper powder having a bulk density of 0.8 to 2.0 g / cm 3 is pulverized and densified using a high-pressure jet stream swirl vortex jet mill in an air atmosphere or an inert atmosphere, and an average particle diameter of 1 A method for producing fine copper powder characterized by obtaining spherical or granular fine copper powder of -6 μm. 前記高圧ジェット気流旋回渦方式のジェットミルによる粉砕圧力が6〜15kg/cmであることを特徴とする、請求項1に記載の微小銅粉の製造方法。 2. The method for producing fine copper powder according to claim 1, wherein a pulverization pressure by the high-pressure jet stream swirl vortex jet mill is 6 to 15 kg / cm 2 . 前記高圧ジェット気流旋回渦方式のジェットミルによる粉砕後、得られた微小銅粉を酸処理し、同時に又はその後微小銅粉の表面を油脂で被覆することを特徴とする、請求項1又は2に記載の微小銅粉の製造方法。   3. The fine copper powder obtained after pulverization by the high-pressure jet stream swirl vortex jet mill is subjected to acid treatment, and simultaneously or after that, the surface of the fine copper powder is coated with oil or fat. The manufacturing method of the fine copper powder of description. 請求項1〜3のいずれかに記載の方法で得られた平均粒径1〜6μmで球状あるいは粒状の微小銅粉であって、その表面が油脂で被覆され、タップ密度が4.5g/cm以上であることを特徴とする微小銅粉。 A spherical or granular fine copper powder having an average particle diameter of 1 to 6 μm obtained by the method according to claim 1, the surface of which is coated with oil and fat, and the tap density is 4.5 g / cm. A fine copper powder characterized by being 3 or more. 樹脂を添加して大気雰囲気中において200℃で硬化することにより、1×10−5〜1×10−4Ω・cmの比抵抗値が得られることを特徴とする、請求項4に記載の微小銅粉。


5. The specific resistance value of 1 × 10 −5 to 1 × 10 −4 Ω · cm can be obtained by adding a resin and curing at 200 ° C. in an air atmosphere. Fine copper powder.


JP2006188928A 2006-07-10 2006-07-10 Fine copper powder and method for producing the same Expired - Fee Related JP5181434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188928A JP5181434B2 (en) 2006-07-10 2006-07-10 Fine copper powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188928A JP5181434B2 (en) 2006-07-10 2006-07-10 Fine copper powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008013837A true JP2008013837A (en) 2008-01-24
JP5181434B2 JP5181434B2 (en) 2013-04-10

Family

ID=39071138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188928A Expired - Fee Related JP5181434B2 (en) 2006-07-10 2006-07-10 Fine copper powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5181434B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095402A (en) * 2008-10-16 2010-04-30 Tokyo Institute Of Technology Cement admixture, production method and cement concrete using the same
JP2013053347A (en) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd Dendritic copper powder
JP2013089576A (en) * 2011-10-21 2013-05-13 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder
CN103817319A (en) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 Copper-bearing bimetallic nanometer material with dentritic structure and method for manufacturing copper-bearing bimetallic nanometer material
WO2015194347A1 (en) * 2014-06-16 2015-12-23 三井金属鉱業株式会社 Copper powder, method for producing same and conductive composition comprising same
WO2016052275A1 (en) * 2014-10-01 2016-04-07 協立化学産業株式会社 Coated copper particles and production method therefor
JP2016145404A (en) * 2015-02-09 2016-08-12 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
KR20170003639A (en) 2014-07-07 2017-01-09 스미토모 긴조쿠 고잔 가부시키가이샤 Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
CN107876795A (en) * 2017-12-05 2018-04-06 深圳市中金岭南科技有限公司 A kind of preparation method of monocrystalline copper powder
CN108127126A (en) * 2017-12-26 2018-06-08 安徽工业大学 A kind of preparation and its application of thin slice leaf shape structure nano Cu
JP7000621B1 (en) * 2021-06-17 2022-01-19 古河ケミカルズ株式会社 Method for manufacturing copper fine particles
CN115740431A (en) * 2022-12-21 2023-03-07 北京有研粉末新材料研究院有限公司 Compound copper powder and preparation method and application thereof
JP7557626B2 (en) 2021-11-11 2024-09-27 江蘇博遷新材料股▲ふん▼有限公司 Method for producing alloy powder, and alloy powder, paste, and capacitor produced by the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JP2000080408A (en) * 1998-08-31 2000-03-21 Mitsui Mining & Smelting Co Ltd Production of fine copper powder
JP2000297303A (en) * 1999-04-09 2000-10-24 Murata Mfg Co Ltd Pulverizing method for electrical conductive powder, and electrical conductive coating using the same
JP2005118725A (en) * 2003-10-17 2005-05-12 Ace Giken:Kk Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JP2006117959A (en) * 2004-10-19 2006-05-11 Fukuda Metal Foil & Powder Co Ltd Copper powder for electronic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199705A (en) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk Production of fine-grained copper powder
JP2000080408A (en) * 1998-08-31 2000-03-21 Mitsui Mining & Smelting Co Ltd Production of fine copper powder
JP2000297303A (en) * 1999-04-09 2000-10-24 Murata Mfg Co Ltd Pulverizing method for electrical conductive powder, and electrical conductive coating using the same
JP2005118725A (en) * 2003-10-17 2005-05-12 Ace Giken:Kk Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JP2006117959A (en) * 2004-10-19 2006-05-11 Fukuda Metal Foil & Powder Co Ltd Copper powder for electronic material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095402A (en) * 2008-10-16 2010-04-30 Tokyo Institute Of Technology Cement admixture, production method and cement concrete using the same
JP2013053347A (en) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd Dendritic copper powder
JP2013089576A (en) * 2011-10-21 2013-05-13 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder
CN103817319A (en) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 Copper-bearing bimetallic nanometer material with dentritic structure and method for manufacturing copper-bearing bimetallic nanometer material
CN103817319B (en) * 2012-11-19 2016-08-03 中国科学院大连化学物理研究所 A kind of cupric bimetal nano material with dendritic structure and preparation method thereof
WO2015194347A1 (en) * 2014-06-16 2015-12-23 三井金属鉱業株式会社 Copper powder, method for producing same and conductive composition comprising same
KR20170003639A (en) 2014-07-07 2017-01-09 스미토모 긴조쿠 고잔 가부시키가이샤 Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
CN106457387A (en) * 2014-07-07 2017-02-22 住友金属矿山株式会社 Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
KR20170067785A (en) * 2014-10-01 2017-06-16 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and production method therefor
TWI648111B (en) * 2014-10-01 2019-01-21 日商協立化學產業股份有限公司 Coated copper particles, a method for producing the same, and a conductive composition and circuit formation
JP2016069716A (en) * 2014-10-01 2016-05-09 協立化学産業株式会社 Coated copper particle and method for producing the same
WO2016052275A1 (en) * 2014-10-01 2016-04-07 協立化学産業株式会社 Coated copper particles and production method therefor
CN107073578A (en) * 2014-10-01 2017-08-18 协立化学产业株式会社 Coated copper particle and its manufacture method
KR102200822B1 (en) 2014-10-01 2021-01-12 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and production method therefor
JP2016145404A (en) * 2015-02-09 2016-08-12 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
CN107876795A (en) * 2017-12-05 2018-04-06 深圳市中金岭南科技有限公司 A kind of preparation method of monocrystalline copper powder
CN107876795B (en) * 2017-12-05 2020-06-05 深圳市中金岭南科技有限公司 Preparation method of single crystal copper powder
CN108127126A (en) * 2017-12-26 2018-06-08 安徽工业大学 A kind of preparation and its application of thin slice leaf shape structure nano Cu
JP7000621B1 (en) * 2021-06-17 2022-01-19 古河ケミカルズ株式会社 Method for manufacturing copper fine particles
WO2022264541A1 (en) * 2021-06-17 2022-12-22 古河ケミカルズ株式会社 Method for producing copper microparticles
KR20220169454A (en) * 2021-06-17 2022-12-27 후루카와 케미컬즈 가부시키가이샤 Method for producing fine copper particles
TWI790950B (en) * 2021-06-17 2023-01-21 日商古河化學股份有限公司 Method for manufacturing copper fine particle
KR102546162B1 (en) 2021-06-17 2023-06-20 후루카와 케미컬즈 가부시키가이샤 Method for producing fine copper particles
JP7557626B2 (en) 2021-11-11 2024-09-27 江蘇博遷新材料股▲ふん▼有限公司 Method for producing alloy powder, and alloy powder, paste, and capacitor produced by the method
CN115740431A (en) * 2022-12-21 2023-03-07 北京有研粉末新材料研究院有限公司 Compound copper powder and preparation method and application thereof

Also Published As

Publication number Publication date
JP5181434B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5181434B2 (en) Fine copper powder and method for producing the same
JP5937730B2 (en) Method for producing copper powder
KR20100096111A (en) Copper powder for electrically conductive paste, and electrically conductive paste
JP2006161081A (en) Silvered copper powder, its manufacturing method, and conductive paste
JP2007100155A (en) Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder
JP5092630B2 (en) Fine silver powder, method for producing the same, and dispersion liquid for conductive paste using the fine silver powder
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
WO2004101201A1 (en) Fine copper powder and method for producing the same
KR20150104194A (en) Flake-like fine particles
KR20200062263A (en) Silver powder and its manufacturing method
KR20130079315A (en) Copper powder for conductive paste, and conductive paste
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
KR20130101980A (en) Copper powder for electrically conductive paste, and electrically conductive paste
WO2016125355A1 (en) Electroconductive microparticles
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP4136106B2 (en) Flat micro copper powder and method for producing the same
JP4230017B2 (en) Method for producing fine copper powder
JP2020050947A (en) Easily crushable copper powder and method for producing the same
TWI659114B (en) Copper powder
CN113242774B (en) Silver paste
JP6060225B1 (en) Copper powder and method for producing the same
TWI719560B (en) Method for imparting easy pulverization to copper powder and manufacturing method of easy pulverization copper powder
TW202236308A (en) Conductive composition for bonding, bonding structure using same, and manufacturing method thereof
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
Park et al. Electrical properties of silver paste prepared from nanoparticles and lead-free frit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5181434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees