JP4081901B2 - Single crystal puller - Google Patents

Single crystal puller Download PDF

Info

Publication number
JP4081901B2
JP4081901B2 JP02913799A JP2913799A JP4081901B2 JP 4081901 B2 JP4081901 B2 JP 4081901B2 JP 02913799 A JP02913799 A JP 02913799A JP 2913799 A JP2913799 A JP 2913799A JP 4081901 B2 JP4081901 B2 JP 4081901B2
Authority
JP
Japan
Prior art keywords
heat insulating
heater
crucible
single crystal
insulating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02913799A
Other languages
Japanese (ja)
Other versions
JP2000226294A (en
Inventor
総一郎 近藤
勝人 槇山
康弘 木暮
学 西元
秀樹 藤原
洋 森田
宮本  勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP02913799A priority Critical patent/JP4081901B2/en
Publication of JP2000226294A publication Critical patent/JP2000226294A/en
Application granted granted Critical
Publication of JP4081901B2 publication Critical patent/JP4081901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CZ法(チョクラルスキー法)による単結晶の引上げに使用される単結晶引上げ装置に関する。
【0002】
【従来の技術】
半導体デバイスの素材であるシリコン単結晶の製造には、CZ法による引上げが多用されている。CZ法による単結晶の引上げには、一般に図9のような引上げ装置が使用される。
【0003】
即ち、メインチャンバー1内には、その中心部に位置してルツボ2が配置される。ルツボ2の外側にはヒータ3が配置され、ヒータ3の更に外側には、断熱筒4がメインチャンバー1の内面に沿って配置される。ルツボ2は内側の石英ルツボ2aを外側の黒鉛ルツボ2bで保持する二重構造になっており、ペディスタルと呼ばれる支持軸5の上に載置される。支持軸5は、ルツボ2の回転及び昇降のために、周方向及び軸方向に駆動される。
【0004】
単結晶の引上げでは、第1段階として、ルツボ2内に装填された原料(多結晶シリコン)がヒータ3により外側から加熱されて溶融される。第2段階として、メインチャンバー1上に連結された小径のプルチャンバー6内を通って引上げ軸7がメインチャンバー1内に下ろされ、その下端のチャック8に装着された種結晶がルツボ2内の原料融液10に漬けられる。そして、引上げ軸7が回転しながら上昇することにより、種結晶の下方に単結晶11が育成され、プルチャンバー6内に引き込まれる。
【0005】
操業中は、チャンバー内が所定の減圧状態に真空排気されると共に、そのチャンバー内に上から下へ不活性ガスが流通される。また、ルツボ2は周方向に回転し、且つ原料融液10の消費による液面低下を相殺するべく上昇する。
【0006】
ここで、断熱筒4はヒータ熱の逸散を防止してヒータ電力を軽減するために設けられる。この効果を高めるために、断熱筒4には、その上端部から内側へ略水平に延出するリング状の断熱板12が組み合わされることが多い。ルツボ2の上方に逆錐形状をしたフランジ付きのガス整流筒を配置する場合は、ガス整流筒の上端部から外側へ張り出すフランジ状の保持部が、この断熱板12となる。断熱板12はヒータ熱の逸散防止だけでなく、ガス整流機能も有する。
【0007】
【発明が解決しようとする課題】
このような単結晶引上げ装置では、ルツボ2、特に石英ルツボ2aの加熱温度が約1500℃を超えると、石英ルツボ2aの軟化が始まり、更に温度が高くなり1550℃以上になると石英ルツボ2aに自重や外的要因により変形が生じる。この変形としては、図10(a)に示すように石英ルツボ2aの中段部が屈曲や垂れ下がりにより膨出する膨れ現象と、図10(b)に示すようにルツボ2aの上端部が内側へ傾く倒れ現象がある。
【0008】
このようなルツボ変形は、これまでは操業上の工夫等もあってそれほど顕著ではなかった。しかし、最近の単結晶の大径化に伴い、この変形が顕著となり、特に大きな問題になってきた。単結晶の大径化によってルツボ変形が顕著化する理由は以下の通りである。
【0009】
図11はルツボ内の融液面レベルでの温度分布をルツボ直径が小さい場合と大きい場合について示す。同図に示されるように、単結晶11の大径化によりルツボ2の直径が大きくなるが、ルツボ2内の中心部における加熱温度は、ルツボ径に関係なくシリコン融点(1420℃)を維持する必要がある。この中心部における温度維持のため、ルツボ2の直径が大きくなるほどヒータ出力が増大され、その結果として、ヒータ3に包囲されたルツボ2の側壁部の加熱温度が上昇し、石英ルツボ2aの変形が顕著となる。
【0010】
そして、石英ルツボの変形が顕著になった場合は、ルツボ内の融液面変動やガス乱流による歩留り低下が問題になり、ルツボの上方に逆錐形状のガス整流筒を配置する操業では、ルツボの上昇に伴ってガス整流筒にルツボが当たり、引上げの中断を余儀なくされることもある。
【0011】
本発明の目的は、大径ルツボを使用する場合もその変形を効果的に抑制できる単結晶引上げ装置を提供することある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、石英ルツボが操業中に上昇し、ヒータ及び断熱部材に対する位置関係が変化することから、石英ルツボが操業中に受ける熱履歴に着目し、その熱履歴に対する断熱部材の形状等の影響度を伝熱シミュレーションにより検討した。その結果、以下の事実が判明した。
【0013】
石英ルツボの変形を支配する要因としては加熱温度と加熱時間が関係し、加熱温度が石英ガラスの軟化点を超える1650℃以上の温度域では短時間で石英ルツボの変形が起こり、軟化点以下の1500℃以下の温度であっても長時間にわたって加熱されると石英ルツボの変形が起こる。
【0014】
従来の単結晶引上げ装置で石英ルツボが変形する主たる原因は、引上げの進行に伴い石英ルツボが上昇し、石英ルツボの内側にシリコン融液がない部分がヒータ上端部より突出するにもかかわらず、当該部分が1500℃程度の軟化点より若干低い温度域で長時間にわたって保持されることにあり、この変形原因を取り除くためには、断熱部材のヒータ上端より上方の部分で断熱性能を限定的に低下させて、当該部分の石英ルツボの温度を低下させることが有効である。
【0015】
しかし、この断熱性能を低下させる領域をヒータ上端より下方の部分まで広げると、放熱を伴うために大きなヒータ電力が必要になり、特に大きなヒータ電力はメルト時やディップ時に、石英ルツボの温度を軟化点を遙かに超える温度まで上昇させ、逆に石英ルツボの変形を促進する原因になる。
【0016】
本発明の単結晶引上げ装置は、かかる知見に基づいて開発されたものであり、第1の構成として、ヒータの外側に配置される断熱筒のヒータ上端近傍より上方に位置する部分の断熱性能を低下させる手段を講じたものである。
【0017】
また第2の構成として、断熱筒の上端部から内側へ略水平に延出するリング状の断熱板の気流遮蔽機能を低下させずにその断熱性能を低下させる手段を講じたものである。
【0018】
第1の構成での断熱性能を低下させる手段、即ち断熱筒のヒータ上端近傍より上方に位置する部分の断熱性能を低下させる手段としては、断熱筒のヒータ上端近傍より上方に位置する部分の厚みT2を、断熱筒のヒータ上端近傍より下方に位置する部分の厚みT1より部分的又は全体的に薄くすることや、断熱筒のヒータ上端近傍より上方に位置する部分に貫通開口部を設けることなどがあり、複数種類の手段を組み合わせて用いることも可能である。
【0019】
断熱筒のヒータ上端近傍より上方に位置する部分の厚みT2を、断熱筒のヒータ上端近傍より下方に位置する部分の厚みT1より全体的に薄くする場合、T2は(T1×0.2〜0.7)以下が好ましい。T2が(T1×0.7)を超えると、ルツボの高温状態が長時間続き、ルツボ変形を抑える効果が不十分となる。T2が(T1×0.2)未満の場合は、ヒータ出力の増大が顕著になり、短時間とは言え、メルト時やディップ時にルツボが軟化点を超える1650℃以上の高い温度に加熱され、その変形を抑える効果が不十分となる。
【0020】
断熱筒のヒータ上端近傍より上方に位置する部分に貫通開口部を設ける場合、貫通開口部の合計面積をS2、断熱筒のヒータ上端近傍より上方に位置する部分の内周面の面積をS1として、S2は(S1×0.2〜0.8)が好ましい。S2が(S1×0.2)未満の場合は、ルツボの高温状態が長時間続き、ルツボ変形を抑える効果が不十分となる。S2が(S1×0.8)を超えると、ヒータ出力の増大が顕著になることにより、短時間とはメルト時やディップ時にルツボが軟化点を超える1650℃以上の高い温度に加熱され、その変形を抑える効果が不十分となる。
【0021】
断熱筒のヒータ上端近傍より上方に位置する部分の厚みT2を、断熱筒のヒータ上端近傍より下方に位置する部分の厚みT1より部分的に薄くする場合や、断熱筒のヒータ上端近傍より上方に位置する部分に貫通開口部を設ける場合、これらの放熱促進部は断熱筒の周方向に均等に設けることが重要である。
【0022】
第2の構成での断熱性能を低下させる手段、即ち、断熱板の気流遮蔽機能を低下させずにその断熱性能を低下させる手段としては、断熱性能が部分的に低い部分を断熱板に形成することなどがある。
【0023】
断熱性能が部分的に低い部分を断熱板に形成する手段としては、断熱板を部分的に薄くすることや、断熱板が外側のシェル部と内側の充填部とからなるボックス構造の場合は、内側の充填部を抜き取る所謂肉抜きなどがある。いずれの手段の場合も、断熱性能が部分的に低い部分、即ち放熱促進部は、断熱板の周方向に均等に形成することが重要である。
【0024】
断熱板の肉抜きを行う場合、その肉抜き部の合計面積をS2′、断熱板の断熱筒から内側へ突出する部分の片側の表面積をS1′として、S2′は(S1′×0.2〜0.7)が好ましい。S2′が(S1′×0.2)未満の場合は、ルツボの高温状態が長時間続き、ルツボ変形を抑える効果が不十分となる。S2′が(S1′×0.7)を超えると、ヒータ出力の増大が顕著になることにより、ルツボが1650℃以上の高い温度に加熱され、その変形を抑える効果が不十分となる。
【0025】
第2の構成では、断熱板によるガス整流作用を変化させないために、断熱板の気流遮蔽機能を低下させないことが必要であり、このために貫通開口部は除外される。
【0026】
本発明は、ルツボ変形が特に問題となる直径が22インチ以上の石英ルツボを使用する単結晶引上げ装置に特に有効である。
【0027】
本発明の単結晶引上げ装置は、断熱部材に断熱性能を低下させる手段、換言すれば放熱を促進する手段を講じることにより、ルツボ上端部の加熱温度を変形が問題にならない1550℃以下に抑えることができる。放熱を促進するための各種の具体的手段は、ルツボ上端部の加熱温度が1550℃以下に抑えられるように設計することが望まれる。
【0028】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の第1実施形態に係る単結晶引上げ装置の縦断面図、図2は同単結晶引上げ装置の主要部の縦断面図、図3は同主要部の斜視図である。
【0029】
第1実施形態に係る単結晶引上げ装置は、図9に示した従来の単結晶引上げ装置と比較して断熱筒4の構造が相違する。他の部分の構造は、図9に示した従来の単結晶引上げ装置と同じであるので、詳しい説明を省略する。
【0030】
断熱筒4は、ルツボ2を加熱する環状のヒータ3の外側に、メインチャンバーの内面に沿って設けられる円筒体である。断熱筒4の上部は、ヒータ3の上端より上方に突出しており、その突出部分42、即ち断熱筒4のヒータ上端より上方の部分は、断熱筒4のヒータ上端より下方の本体部分41より全周にわたって薄肉とされている。具体的には、突出部分42の外面側の部分を除去することで、突出部分42の厚みT2を全周にわたって本体部分41の厚みT1の(0.2〜0.7)倍としている。
【0031】
断熱筒4の上端部には、内側へ略水平に延出したリング状の断熱板12が一体的に設けられている。断熱板12及び断熱筒4は、カーボンシェル内にカーボンファイバーを充填したボックス構造である。
【0032】
このような単結晶引上げ装置では、断熱筒4の突出部分42の厚みT2を本体部分41の厚みT1より薄くしたことにより、ルツボ2、特に石英ルツボ2aの側壁部が通過する位置での温度分布は図4のように変更される。
【0033】
即ち、図4は石英ルツボの側壁部が通過する位置での高さ方向の温度分布図であり、図中の温度分布曲線Aは断熱筒が全高にわたって一定厚の従来装置の場合、温度分布曲線Bは突出部分の厚みを本体部分の厚みの0.5倍とした本発明装置の場合、温度分布曲線Cは断熱筒のヒータ中段より上方の部分の厚みを薄くした比較装置の場合、温度分布曲線Dは断熱筒のヒータ外側部分の厚みを薄くした比較装置の場合をそれぞれ示す。
【0034】
石英ルツボは引上げの進行に伴って上昇する。断熱筒が全高にわたって一定厚の従来装置(A)の場合、ヒータ内側で1500℃を超えるだけでなく、ヒータ上端より上方、即ち断熱筒の突出部分内側でも広い領域にわたって1500℃を超える。その結果、石英ルツボの側壁部、特にその上端部は操業中の長い期間にわたって変形が問題になる1500℃以上の高温にさらされる。
【0035】
しかるに、断熱筒の突出部分の厚みをその下方の本体部分の厚みより薄くした本発明装置(B)では、全体的な断熱性能の低下によるヒータ出力の増大によりヒータ内側では若干温度が上がるが、ヒータ上端より上方、即ち断熱筒の突出部分内側では極端に温度が下がり、1500℃以下に維持される。その結果、石英ルツボの側壁部、特にその上端部の加熱温度は1500℃以下に抑えられる。
【0036】
断熱筒のヒータ中段より上方で厚みを薄くした比較装置(C)の場合は、ヒータ上端より上方、即ち断熱筒の突出部分内側では温度が下がるが、全体的な断熱性能の低下によるヒータ出力の増大が顕著になり、ヒータ内側での温度が極端に上昇する。その結果、メルト時やディップ時に石英ルツボの変形が問題になる。断熱筒のヒータ上端より上方で厚みを極端に薄くした場合にも同様の傾向となる。
【0037】
断熱筒のヒータ外側で厚みを薄くした比較装置(D)の場合は、ヒータ出力の大幅増大により広い領域で温度が上がる。
【0038】
なお、本発明の単結晶引上げ装置においてもヒータ3の内周域に位置する石英ルツボ2の温度は1550℃を超えるが、石英ルツボ2内にはシリコン融液が存在し、このシリコン融液の内圧により、問題となる石英ルツボ2の変形は生じ難い。その後、石英ルツボ2の上端がヒータ3の上端部を越えると、突出した当該部分の温度は低下し、高温にさらされる時間が短くなり、その変形が顕著に抑制される。
【0039】
第1実施形態では、突出部分42の厚みを全周にわたって薄くしたが、周方向の複数箇所で厚みを薄くすることも可能である。即ち、薄肉の放熱促進部を周方向に複数設けることも可能である。
【0040】
図5は本発明の第2実施形態に係る単結晶引上げ装置の主要部の斜視図である。
【0041】
第2実施形態に係る単結晶引上げ装置では、断熱筒4の突出部分42の厚さが本体部分41の厚さと同一であり、その代わり、突出部分42に、複数の貫通開口部43,43・・からなる放熱促進部が周方向に等間隔で設けられている。貫通開口部43,43・・の合計面積S2は、突出部分42の内周面の面積S1の(S1×0.2〜0.8)に設定されている。これ以外の構造は、第1実施形態に係る単結晶引上げ装置と同一である。
【0042】
第2実施形態に係る単結晶引上げ装置でも、第1実施形態に係る単結晶引上げ装置と同様に、断熱筒4の突出部分42で放熱が促進されることにより、石英ルツボの側壁部が高温にさられる時間が短くなり、その変形が抑制される。ちなみに、図4中の温度分布曲線Bは、第2実施形態に係る単結晶引上げ装置で貫通開口部43,43・・の合計面積S2を突出部分42の内周面の面積S1の0.5倍としたときに略対応する。
【0043】
図6は断熱筒の突出部分の厚さ及び突出部分に設けられた貫通開口部の合計面積が石英ルツボの変形量に及ぼす影響を示す図表である。ルツボ変形量は直径が34インチの石英ルツボを使用して直径が12インチのシリコン単結晶を引上げたときの石英ルツボの変形による正規内面からの最大突出量である。
【0044】
断熱筒が全高にわたって等厚で、突出部分に貫通開口部をもたない場合、ルツボ変形量は約40mmに達するが、断熱筒の突出部分の厚さをその下の本体部分の厚さより薄くすることにより、ルツボ変形量が小さくなり、T2≦0.7×T1ではルツボ変形量は5mm以下に抑制される。また、突出部分に貫通開口部を設けることによってもルツボ変形量は小さくなり、S2≧0.2×S1ではルツボ変形量は5mm以下に抑制される。
【0045】
第2実施形態では、貫通開口部は角形であるが、円形でもよく、その形状は問わない。
【0046】
第2実施形態では又、突出部分はその下の本体部分と等厚であるが、突出部分を本体部分より薄くした上で、その突出部分に貫通開口部を設けることも可能である。
【0047】
図7は本発明の第3実施形態に係る単結晶引上げ装置の主要部の縦断面図である。
【0048】
第3実施形態に係る単結晶引上げ装置では、断熱筒4の上端部から内側へ略水平に突出するリング状の断熱板12が部分的な肉抜き構造とされている。即ち、カーボンシェルの内側に充填されたカーボンファイバーを抜き取ることにより形成された放熱促進部としての肉抜き部12′が断熱板12に部分的に設けられている。
【0049】
肉抜き部12′は、ここでは断熱板12の半径方向一部に全周連続して設けられているが、周方向の複数位置に設けることもできる。また、周方向の複数位置で半径方向の全体に設けることもできる。
【0050】
肉抜き部12′の合計面積S2′は、断熱板12の断熱筒4から内側へ突出する部分の片側の表面積S1′に対する比率で表して0.2〜0.8とされている。
【0051】
第3実施形態に係る単結晶引上げ装置では、断熱板12に肉抜き部12′を設けたことにより、第1実施形態及び第2実施形態に係る単結晶引上げ装置と同様に、ヒータ3より上方での熱逸散が促進され、雰囲気温度が低下することにより、石英ルツボの側壁部が高温にさられる時間が短くなり、その変形が抑制される。ちなみに、図4中の温度分布曲線Bは、第3実施形態に係る単結晶引上げ装置では肉抜き部12′の合計面積S2′を、断熱板12の断熱筒4から内側へ突出する部分の片側の表面積S1′の0.4倍としたときに略対応する。
【0052】
また、肉抜き部12′ではシェルがそのまま残され、ガス流通がないので、整流機能は不変である。
【0053】
図8は断熱板に設けられた肉抜き部の面積が石英ルツボの変形量に及ぼす影響を示す図表である。ルツボ変形量は直径が34インチの石英ルツボを使用して直径が12インチのシリコン単結晶を引上げたときの石英ルツボの変形による正規内面からの最大突出量である。
【0054】
放熱促進部である肉抜き部が断熱板に設けられていない場合、ルツボ変形量は約35mmに達するが、肉抜き部を設けることにより、ルツボ変形量は小さくなり、S2′≧0.2×S1′ではルツボ変形量は5mm以下に抑制される。しかし、S2′>0.7×S1′では、ヒータ出力の増大によりルツボ変形量は再び増大する。
【0055】
第3実施形態では、断熱筒の突出部分はその下の本体部分と等厚であるが、突出部分を本体部分より薄くしたり、その突出部分に貫通開口部を設けることも可能である。
【0056】
【発明の効果】
以上に説明した通り、本発明の単結晶引上げ装置は、ヒータの外側に設けられる断熱部材の上部で限定的に断熱性能を低下させ、放熱を促進する手段を講じることにより、石英ルツボの直径が大きい場合もその変形を効果的に防止することができる。従って、ルツボ変形に起因するルツボ内の融液面変動やガス乱流による歩留り低下や、ルツボの上方に逆錐形状のガス整流筒を配置する操業で問題となる引上げの中断を回避することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る単結晶引上げ装置の縦断面図である。
【図2】同単結晶引上げ装置の主要部の縦断面図である。
【図3】同主要部の斜視図である。
【図4】石英ルツボの側壁部が通過する位置での温度分布図である。
【図5】本発明の第2実施形態に係る単結晶引上げ装置の主要部の斜視図である。
【図6】断熱筒の突出部分の厚さ及び突出部分に設けられた貫通開口部の合計面積が石英ルツボの変形量に及ぼす影響を示す図表である。
【図7】本発明の第3実施形態に係る単結晶引上げ装置の主要部の縦断面図である。
【図8】断熱板に設けられた肉抜き部の面積が石英ルツボの変形量に及ぼす影響を示す図表である。
【図9】従来の単結晶引上げ装置の縦断面図である。
【図10】石英ルツボの変形を説明するための模式図である。
【図11】融液面レベルでの水平方向の温度分布図である。
【符号の説明】
1 メインチャンバー
2 ルツボ
2a 石英ルツボ
2b 黒鉛ルツボ
3 ヒータ
4 断熱筒
41 本体部分
42 突出部分(ヒータ上端より上方の部分)
43 貫通開口部(放熱促進部)
5 支持軸
6 プルチャンバー
7 引上げ軸
8 チャック
10 原料融液
11 シリコン単結晶
12 断熱板
12′ 肉抜き部(放熱促進部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal pulling apparatus used for pulling a single crystal by a CZ method (Czochralski method).
[0002]
[Prior art]
In the manufacture of a silicon single crystal that is a material of a semiconductor device, pulling by the CZ method is frequently used. A pulling apparatus as shown in FIG. 9 is generally used for pulling a single crystal by the CZ method.
[0003]
That is, the crucible 2 is disposed in the main chamber 1 at the center thereof. A heater 3 is disposed outside the crucible 2, and a heat insulating cylinder 4 is disposed along the inner surface of the main chamber 1 further outside the heater 3. The crucible 2 has a double structure in which an inner quartz crucible 2a is held by an outer graphite crucible 2b, and is placed on a support shaft 5 called a pedestal. The support shaft 5 is driven in the circumferential direction and the axial direction for rotation and elevation of the crucible 2.
[0004]
In the pulling of the single crystal, as a first step, the raw material (polycrystalline silicon) charged in the crucible 2 is heated from the outside by the heater 3 and melted. As a second stage, the pulling shaft 7 is lowered into the main chamber 1 through the small-diameter pull chamber 6 connected to the main chamber 1, and the seed crystal attached to the chuck 8 at the lower end thereof is stored in the crucible 2. It is immersed in the raw material melt 10. Then, when the pulling shaft 7 is raised while rotating, the single crystal 11 is grown below the seed crystal and pulled into the pull chamber 6.
[0005]
During operation, the chamber is evacuated to a predetermined reduced pressure, and an inert gas is circulated in the chamber from top to bottom. Also, the crucible 2 rotates in the circumferential direction and rises to offset the liquid level drop due to consumption of the raw material melt 10.
[0006]
Here, the heat insulating cylinder 4 is provided in order to prevent the dissipation of the heater heat and reduce the heater power. In order to enhance this effect, the heat insulating cylinder 4 is often combined with a ring-shaped heat insulating plate 12 extending substantially horizontally inward from the upper end portion thereof. When a gas rectifying cylinder with a flange having an inverted conical shape is disposed above the crucible 2, a flange-shaped holding part that projects outward from the upper end of the gas rectifying cylinder serves as the heat insulating plate 12. The heat insulating plate 12 has a gas rectifying function as well as preventing heat dissipation of the heater.
[0007]
[Problems to be solved by the invention]
In such a single crystal pulling apparatus, when the heating temperature of the crucible 2, particularly the quartz crucible 2 a exceeds about 1500 ° C., the quartz crucible 2 a starts to soften, and when the temperature rises to 1550 ° C. or higher, the quartz crucible 2 a has its own weight. Deformation occurs due to external factors. As this deformation, as shown in FIG. 10 (a), the middle part of the quartz crucible 2a bulges due to bending or sagging, and the upper end of the crucible 2a tilts inward as shown in FIG. 10 (b). There is a fall phenomenon.
[0008]
Such crucible deformation has not been so noticeable until now due to operational improvements. However, with the recent increase in the diameter of single crystals, this deformation has become prominent and has become a particularly serious problem. The reason why crucible deformation becomes conspicuous as the diameter of a single crystal increases is as follows.
[0009]
FIG. 11 shows the temperature distribution at the melt surface level in the crucible when the crucible diameter is small and large. As shown in the figure, the diameter of the crucible 2 is increased by increasing the diameter of the single crystal 11, but the heating temperature at the center of the crucible 2 maintains the silicon melting point (1420 ° C.) regardless of the diameter of the crucible. There is a need. In order to maintain the temperature in the central portion, the heater output increases as the diameter of the crucible 2 increases. As a result, the heating temperature of the side wall portion of the crucible 2 surrounded by the heater 3 rises, and the deformation of the quartz crucible 2a occurs. Become prominent.
[0010]
And when the deformation of the quartz crucible becomes remarkable, the yield level drop due to the melt surface fluctuation and gas turbulence in the crucible becomes a problem, and in the operation of arranging the inverted conical gas rectifying cylinder above the crucible, As the crucible rises, the crucible hits the gas flow straightening cylinder and the pulling may be interrupted.
[0011]
An object of the present invention is to provide a single crystal pulling apparatus capable of effectively suppressing deformation even when a large-diameter crucible is used.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the inventors of the present invention pay attention to the thermal history that the quartz crucible receives during operation because the quartz crucible rises during operation and the positional relationship with respect to the heater and the heat insulating member changes. The influence of the shape of the heat insulating member on the heat history was examined by heat transfer simulation. As a result, the following facts were found.
[0013]
Factors governing the deformation of the quartz crucible relate to the heating temperature and the heating time, and the deformation of the quartz crucible occurs in a short time at a temperature range of 1650 ° C. or higher where the heating temperature exceeds the softening point of the quartz glass, and below the softening point. Even when the temperature is 1500 ° C. or lower, the quartz crucible is deformed when heated for a long time.
[0014]
The main cause of the deformation of the quartz crucible in the conventional single crystal pulling apparatus is that the quartz crucible rises as the pulling progresses, and despite the fact that the portion without the silicon melt inside the quartz crucible protrudes from the upper end of the heater, This part is to be held for a long time in a temperature range slightly lower than the softening point of about 1500 ° C. In order to remove the cause of this deformation, the heat insulating performance is limited in the part above the upper end of the heater of the heat insulating member. It is effective to lower the temperature of the quartz crucible in that portion.
[0015]
However, if the area that degrades the heat insulation performance is extended to a portion below the upper end of the heater, a large amount of heater power is required because of heat dissipation. Especially, the large heater power softens the temperature of the quartz crucible during melting and dipping. It raises the temperature far beyond the point, and conversely causes the quartz crucible to be deformed.
[0016]
The single crystal pulling apparatus of the present invention has been developed based on such knowledge. As a first configuration, the heat insulating performance of the portion located above the vicinity of the upper end of the heater of the heat insulating cylinder disposed outside the heater is provided. It takes measures to lower it.
[0017]
Further, as a second configuration, means for reducing the heat insulation performance without reducing the air flow shielding function of the ring-shaped heat insulating plate extending substantially horizontally inward from the upper end of the heat insulating cylinder is provided.
[0018]
As means for lowering the heat insulation performance in the first configuration, that is, means for lowering the heat insulation performance of the portion located above the vicinity of the upper end of the heater of the heat insulation cylinder, the thickness of the portion located above the vicinity of the upper end of the heater of the heat insulation cylinder T2 is made partially or entirely thinner than the thickness T1 of the portion located below the upper end of the heater in the heat insulating cylinder, or a through opening is provided in a portion located above the upper end of the heater in the heat insulating cylinder. It is also possible to use a combination of a plurality of types of means.
[0019]
When the thickness T2 of the portion positioned above the vicinity of the upper end of the heater of the heat insulating cylinder is made thinner than the thickness T1 of the section positioned below the vicinity of the upper end of the heater of the heat insulating cylinder, T2 is (T1 × 0.2 to 0). .7) The following is preferable. When T2 exceeds (T1 × 0.7), the high temperature state of the crucible continues for a long time, and the effect of suppressing crucible deformation becomes insufficient. When T2 is less than (T1 × 0.2), the increase in heater output becomes remarkable, and although it is a short time, the crucible is heated to a high temperature of 1650 ° C. or more exceeding the softening point at the time of melting or dipping, The effect of suppressing the deformation becomes insufficient.
[0020]
When a through opening is provided in a portion located above the vicinity of the upper end of the heater of the heat insulating cylinder, the total area of the through opening is S2, and the area of the inner peripheral surface of the portion located above the upper end of the heater of the heat insulating cylinder is defined as S1. , S2 is preferably (S1 × 0.2 to 0.8). When S2 is less than (S1 × 0.2), the high temperature state of the crucible continues for a long time, and the effect of suppressing crucible deformation becomes insufficient. When S2 exceeds (S1 × 0.8), the increase in the heater output becomes remarkable, so that the crucible is heated to a high temperature of 1650 ° C. or more exceeding the softening point at the time of melting or dipping. The effect of suppressing deformation is insufficient.
[0021]
When the thickness T2 of the portion located above the vicinity of the upper end of the heater of the heat insulating cylinder is partially made thinner than the thickness T1 of the section positioned below the vicinity of the upper end of the heater of the heat insulating cylinder, or above the vicinity of the upper end of the heater of the heat insulating cylinder. In the case where the through openings are provided in the located portions, it is important that these heat radiation promoting portions are provided evenly in the circumferential direction of the heat insulating cylinder.
[0022]
As a means for lowering the heat insulation performance in the second configuration, that is, a means for lowering the heat insulation performance without lowering the air flow shielding function of the heat insulation board, a part having a low heat insulation performance is formed on the heat insulation board. There are things.
[0023]
As a means of forming a part with low heat insulation performance on the heat insulating plate, the heat insulating plate is partially thinned, or in the case of a box structure in which the heat insulating plate is composed of an outer shell portion and an inner filling portion, There is so-called meat removal or the like in which the inner filling portion is extracted. In any case, it is important to form a portion having a low heat insulating performance, that is, a heat radiation promoting portion, uniformly in the circumferential direction of the heat insulating plate.
[0024]
In the case where the heat insulation plate is thinned, S2 ′ is (S1 ′ × 0.2), where S2 ′ is the total area of the thinned portions and S1 ′ is the surface area of one side of the heat insulation plate protruding from the heat insulation cylinder. ~ 0.7) is preferred. When S2 ′ is less than (S1 ′ × 0.2), the high temperature state of the crucible continues for a long time, and the effect of suppressing crucible deformation becomes insufficient. When S2 ′ exceeds (S1 ′ × 0.7), the heater output increases remarkably, and the crucible is heated to a high temperature of 1650 ° C. or higher, and the effect of suppressing the deformation becomes insufficient.
[0025]
In the second configuration, in order not to change the gas rectifying action by the heat insulating plate, it is necessary not to lower the air flow shielding function of the heat insulating plate. For this reason, the through opening is excluded.
[0026]
The present invention is particularly effective for a single crystal pulling apparatus using a quartz crucible having a diameter of 22 inches or more in which crucible deformation is particularly problematic.
[0027]
The single crystal pulling apparatus of the present invention suppresses the heating temperature at the upper end of the crucible to 1550 ° C. or less where deformation does not become a problem by providing the heat insulating member with a means for reducing the heat insulating performance, in other words, a means for promoting heat dissipation. Can do. It is desirable that various specific means for promoting heat dissipation be designed so that the heating temperature at the upper end of the crucible can be suppressed to 1550 ° C. or lower.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a single crystal pulling apparatus according to the first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a main part of the single crystal pulling apparatus, and FIG. 3 is a perspective view of the main part.
[0029]
The single crystal pulling apparatus according to the first embodiment differs from the conventional single crystal pulling apparatus shown in FIG. 9 in the structure of the heat insulating cylinder 4. The structure of the other parts is the same as that of the conventional single crystal pulling apparatus shown in FIG.
[0030]
The heat insulation cylinder 4 is a cylindrical body provided along the inner surface of the main chamber outside the annular heater 3 that heats the crucible 2. The upper part of the heat insulating cylinder 4 protrudes upward from the upper end of the heater 3, and the protruding part 42, that is, the part above the heater upper end of the heat insulating cylinder 4 is entirely from the main body part 41 below the heater upper end of the heat insulating cylinder 4. It is said to be thin over the circumference. Specifically, by removing a portion on the outer surface side of the protruding portion 42, the thickness T2 of the protruding portion 42 is set to (0.2 to 0.7) times the thickness T1 of the main body portion 41 over the entire circumference.
[0031]
A ring-shaped heat insulating plate 12 extending substantially horizontally inward is integrally provided at the upper end of the heat insulating cylinder 4. The heat insulating plate 12 and the heat insulating cylinder 4 have a box structure in which carbon fibers are filled in a carbon shell.
[0032]
In such a single crystal pulling apparatus, the thickness T2 of the protruding portion 42 of the heat insulating cylinder 4 is made thinner than the thickness T1 of the main body portion 41, so that the temperature distribution at the position where the crucible 2, particularly the side wall of the quartz crucible 2a passes. Is changed as shown in FIG.
[0033]
That is, FIG. 4 is a temperature distribution diagram in the height direction at the position where the side wall of the quartz crucible passes, and the temperature distribution curve A in the figure is a temperature distribution curve in the case of a conventional apparatus in which the heat insulating cylinder has a constant thickness over the entire height. B shows the temperature distribution curve C in the case of the device of the present invention in which the thickness of the protruding portion is 0.5 times the thickness of the main body portion, and the temperature distribution curve C shows the temperature distribution in the case of the comparison device in which the thickness of the portion above the middle stage of the heater Curve D shows the case of the comparison device in which the thickness of the heater outer portion of the heat insulating cylinder is reduced.
[0034]
The quartz crucible rises as the pulling progresses. In the case of the conventional apparatus (A) in which the heat insulation cylinder has a constant thickness over the entire height, it not only exceeds 1500 ° C. inside the heater but also exceeds 1500 ° C. over a wide region above the upper end of the heater, that is, inside the protruding portion of the heat insulation cylinder. As a result, the side wall portion of the quartz crucible, particularly the upper end portion thereof, is exposed to a high temperature of 1500 ° C. or higher where deformation becomes a problem over a long period of operation.
[0035]
However, in the device (B) of the present invention in which the thickness of the protruding portion of the heat insulating cylinder is thinner than the thickness of the main body portion below, the temperature inside the heater rises slightly due to the increase in the heater output due to the decrease in the overall heat insulating performance, The temperature is extremely lowered above the upper end of the heater, that is, inside the protruding portion of the heat insulating cylinder, and maintained at 1500 ° C. or lower. As a result, the heating temperature of the side wall portion of the quartz crucible, particularly the upper end portion thereof, is suppressed to 1500 ° C. or lower.
[0036]
In the case of the comparative device (C) in which the thickness is reduced above the middle stage of the heater of the heat insulation cylinder, the temperature is lowered above the upper end of the heater, that is, inside the protruding portion of the heat insulation cylinder, but the heater output is reduced due to a decrease in overall heat insulation performance. The increase becomes remarkable, and the temperature inside the heater rises extremely. As a result, deformation of the quartz crucible becomes a problem during melting or dipping. The same tendency occurs when the thickness is extremely thin above the upper end of the heater of the heat insulating cylinder.
[0037]
In the case of the comparison device (D) in which the thickness is reduced outside the heater of the heat insulating cylinder, the temperature rises in a wide region due to a significant increase in the heater output.
[0038]
In the single crystal pulling apparatus of the present invention, the temperature of the quartz crucible 2 located in the inner peripheral region of the heater 3 exceeds 1550 ° C., but a silicon melt exists in the quartz crucible 2, and the silicon melt Due to the internal pressure, the quartz crucible 2 which is a problem is hardly deformed. Thereafter, when the upper end of the quartz crucible 2 exceeds the upper end portion of the heater 3, the temperature of the protruding portion decreases, the time of exposure to the high temperature is shortened, and the deformation is remarkably suppressed.
[0039]
In the first embodiment, the thickness of the protruding portion 42 is reduced over the entire circumference, but it is also possible to reduce the thickness at a plurality of locations in the circumferential direction. That is, it is also possible to provide a plurality of thin heat dissipation promoting portions in the circumferential direction.
[0040]
FIG. 5 is a perspective view of the main part of the single crystal pulling apparatus according to the second embodiment of the present invention.
[0041]
In the single crystal pulling apparatus according to the second embodiment, the thickness of the protruding portion 42 of the heat insulating cylinder 4 is the same as the thickness of the main body portion 41. Instead, the protruding portion 42 has a plurality of through openings 43, 43. -The heat dissipation promotion part which consists of is provided in the circumferential direction at equal intervals. The total area S2 of the through openings 43, 43... Is set to (S1 × 0.2 to 0.8) of the area S1 of the inner peripheral surface of the protruding portion 42. Other structures are the same as those of the single crystal pulling apparatus according to the first embodiment.
[0042]
Also in the single crystal pulling apparatus according to the second embodiment, similarly to the single crystal pulling apparatus according to the first embodiment, the heat radiation is promoted by the projecting portion 42 of the heat insulating cylinder 4 so that the side wall portion of the quartz crucible is heated to a high temperature. The time spent is shortened and its deformation is suppressed. Incidentally, the temperature distribution curve B in FIG. 4 shows the total area S2 of the through openings 43, 43... 0.5 of the area S1 of the inner peripheral surface of the protruding portion 42 in the single crystal pulling apparatus according to the second embodiment. It corresponds approximately when it is doubled.
[0043]
FIG. 6 is a chart showing the influence of the thickness of the protruding portion of the heat insulating cylinder and the total area of the through openings provided in the protruding portion on the deformation amount of the quartz crucible. The crucible deformation amount is the maximum protrusion amount from the normal inner surface due to deformation of the quartz crucible when a silicon single crystal having a diameter of 12 inches is pulled using a quartz crucible having a diameter of 34 inches.
[0044]
If the heat insulating cylinder is of the same thickness over the entire height and the projecting part does not have a through opening, the crucible deformation amount reaches about 40 mm, but the thickness of the projecting part of the heat insulating cylinder is made thinner than the thickness of the body part below it. As a result, the crucible deformation amount becomes small, and the crucible deformation amount is suppressed to 5 mm or less at T2 ≦ 0.7 × T1. Also, the crucible deformation amount is reduced by providing a through opening in the protruding portion, and the crucible deformation amount is suppressed to 5 mm or less when S2 ≧ 0.2 × S1.
[0045]
In the second embodiment, the through opening is square, but it may be circular and the shape is not limited.
[0046]
In the second embodiment, the protruding portion has the same thickness as the main body portion below it. However, the protruding portion can be made thinner than the main body portion, and a through opening can be provided in the protruding portion.
[0047]
FIG. 7 is a longitudinal sectional view of the main part of the single crystal pulling apparatus according to the third embodiment of the present invention.
[0048]
In the single crystal pulling apparatus according to the third embodiment, the ring-shaped heat insulating plate 12 that protrudes inward substantially horizontally from the upper end of the heat insulating cylinder 4 has a partial thinning structure. In other words, the heat insulation plate 12 is partially provided with a lightening portion 12 ′ as a heat dissipation promoting portion formed by extracting the carbon fiber filled inside the carbon shell.
[0049]
In this example, the lightening portions 12 ′ are continuously provided on a part of the heat insulating plate 12 in the radial direction, but may be provided at a plurality of positions in the circumferential direction. Moreover, it can also provide in the whole radial direction in the several position of the circumferential direction.
[0050]
The total area S2 'of the lightening portion 12' is 0.2 to 0.8 in terms of the ratio to the surface area S1 'on one side of the portion of the heat insulating plate 12 protruding inward from the heat insulating cylinder 4.
[0051]
In the single crystal pulling apparatus according to the third embodiment, the heat insulating plate 12 is provided with the thinned portion 12 ', so that the single crystal pulling apparatus is above the heater 3 similarly to the single crystal pulling apparatus according to the first and second embodiments. The heat dissipation in the glass is promoted and the ambient temperature is lowered, so that the time during which the side wall of the quartz crucible is brought to a high temperature is shortened, and deformation thereof is suppressed. Incidentally, the temperature distribution curve B in FIG. 4 shows the total area S2 ′ of the thinned portion 12 ′ in one side of the portion of the heat insulating plate 12 protruding inward from the heat insulating cylinder 4 in the single crystal pulling apparatus according to the third embodiment. This corresponds approximately to 0.4 times the surface area S1 ′.
[0052]
Further, since the shell is left as it is in the lightening portion 12 'and there is no gas flow, the rectification function is unchanged.
[0053]
FIG. 8 is a table showing the influence of the area of the lightening portion provided on the heat insulating plate on the deformation amount of the quartz crucible. The crucible deformation amount is the maximum protrusion amount from the normal inner surface due to deformation of the quartz crucible when a silicon single crystal having a diameter of 12 inches is pulled using a quartz crucible having a diameter of 34 inches.
[0054]
When the heat sink is not provided with the lightening part, the crucible deformation amount reaches about 35 mm. However, by providing the lightening part, the crucible deformation amount becomes small, and S2 ′ ≧ 0.2 × In S1 ′, the crucible deformation amount is suppressed to 5 mm or less. However, when S2 ′> 0.7 × S1 ′, the crucible deformation amount increases again due to an increase in the heater output.
[0055]
In the third embodiment, the protruding portion of the heat insulating cylinder is equal in thickness to the main body portion below it, but it is also possible to make the protruding portion thinner than the main body portion or to provide a through opening in the protruding portion.
[0056]
【The invention's effect】
As described above, the single crystal pulling apparatus of the present invention has a quartz crucible diameter reduced by taking measures to reduce heat insulation performance and promote heat dissipation in a limited manner above the heat insulation member provided outside the heater. Even when it is large, the deformation can be effectively prevented. Therefore, it is possible to avoid the lowering of the yield due to the melt surface fluctuation and gas turbulence in the crucible due to the deformation of the crucible, and the interruption of the pulling which is a problem in the operation of arranging the inverted conical gas rectifying cylinder above the crucible. it can.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a single crystal pulling apparatus according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a main part of the single crystal pulling apparatus.
FIG. 3 is a perspective view of the main part.
FIG. 4 is a temperature distribution diagram at a position where a side wall portion of the quartz crucible passes.
FIG. 5 is a perspective view of a main part of a single crystal pulling apparatus according to a second embodiment of the present invention.
FIG. 6 is a table showing the influence of the thickness of the protruding portion of the heat insulating cylinder and the total area of the through openings provided in the protruding portion on the deformation amount of the quartz crucible.
FIG. 7 is a longitudinal sectional view of a main part of a single crystal pulling apparatus according to a third embodiment of the present invention.
FIG. 8 is a chart showing the influence of the area of the lightening portion provided on the heat insulating plate on the deformation amount of the quartz crucible.
FIG. 9 is a longitudinal sectional view of a conventional single crystal pulling apparatus.
FIG. 10 is a schematic diagram for explaining deformation of a quartz crucible.
FIG. 11 is a temperature distribution diagram in the horizontal direction at the melt surface level.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main chamber 2 Crucible 2a Quartz crucible 2b Graphite crucible 3 Heater 4 Heat insulation cylinder 41 Main-body part 42 Projection part (part above a heater upper end)
43 Through-opening (heat dissipation promoting part)
5 Support shaft 6 Pull chamber 7 Pulling shaft 8 Chuck 10 Raw material melt 11 Silicon single crystal 12 Heat insulation plate 12 ′ Meat removal part (heat dissipation promotion part)

Claims (3)

原料を収容する直径が22インチ以上の石英ルツボと、前記石英ルツボ内の原料を前記石英ルツボの外側から加熱して溶融するヒータと、これらを取り囲むように配置される断熱筒とを具備するCZ法による単結晶引上げ装置において、前記断熱筒のヒータ上端より上方に位置する部分の厚みをT2とし、前記断熱筒のヒータ上端より下方に位置する部分の厚みをT1とするとき、T2をT1×0.2〜0.7として、前記断熱筒のヒータ上端より上方に位置する部分の断熱性能を低下させたことを特徴とする単結晶引上げ装置。A CZ comprising a quartz crucible having a diameter of 22 inches or more for containing the raw material, a heater for heating and melting the raw material in the quartz crucible from the outside of the quartz crucible, and a heat insulating cylinder arranged so as to surround them. In the single crystal pulling apparatus according to the method, when the thickness of the portion located above the upper end of the heater of the heat insulating cylinder is T2, and the thickness of the portion located below the upper end of the heater of the heat insulating cylinder is T1, T2 is T1 × A single crystal pulling apparatus characterized in that, as 0.2 to 0.7, the heat insulating performance of a portion located above the upper end of the heater of the heat insulating cylinder is lowered. 原料を収容する直径が22インチ以上の石英ルツボと、前記石英ルツボ内の原料を前記石英ルツボの外側から加熱して溶融するヒータと、これらを取り囲むように配置される断熱筒とを具備するCZ法による単結晶引上げ装置において、前記断熱筒のヒータ上端より上方に位置する部分に貫通開口部を設けて、前記貫通開口部の合計面積をS2とし、前記断熱筒のヒータ上端より上方に位置する部分の内周面の面積をS1とするとき、S2をS1×0.2〜0.8として、前記断熱筒のヒータ上端より上方に位置する部分の断熱性能を低下させたことを特徴とする単結晶引上げ装置。A CZ comprising a quartz crucible having a diameter of 22 inches or more for containing the raw material, a heater for heating and melting the raw material in the quartz crucible from the outside of the quartz crucible, and a heat insulating cylinder arranged so as to surround them. In the single crystal pulling apparatus according to the method, a through opening is provided in a portion located above the upper end of the heater of the heat insulating cylinder, the total area of the through opening is S2, and the upper end of the heat insulating cylinder is located above the heater upper end. When the area of the inner peripheral surface of the part is S1, S2 is set to S1 × 0.2 to 0.8, and the heat insulating performance of the part located above the upper end of the heater of the heat insulating cylinder is reduced. Single crystal pulling device. 原料を収容する直径が22インチ以上の石英ルツボと、前記石英ルツボ内の原料を前記石英ルツボの外側から加熱して溶融するヒータと、これらを取り囲むように配置される断熱筒とを具備するCZ法による単結晶引上げ装置において、前記断熱筒のヒータ上端より上方に位置する部分の厚みをT2とし、前記断熱筒のヒータ上端より下方に位置する部分の厚みをT1とするとき、T2をT1×0.2〜0.7とするとともに、前記断熱筒のヒータ上端より上方に位置する部分に貫通開口部を設けて、前記貫通開口部の合計面積をS2とし、前記断熱筒のヒータ上端より上方に位置する部分の内周面の面積をS1とするとき、S2をS1×0.2〜0.8とすることにより、前記断熱筒のヒータ上端より上方に位置する部分の断熱性能を低下させたことを特徴とする単結晶引上げ装置。A CZ comprising a quartz crucible having a diameter of 22 inches or more for containing the raw material, a heater for heating and melting the raw material in the quartz crucible from the outside of the quartz crucible, and a heat insulating cylinder arranged so as to surround them. In the single crystal pulling apparatus according to the method, when the thickness of the portion located above the upper end of the heater of the heat insulating cylinder is T2, and the thickness of the portion located below the upper end of the heater of the heat insulating cylinder is T1, T2 is T1 × 0.2 to 0.7, and a through-opening is provided in a portion located above the upper end of the heater of the heat insulating cylinder, and the total area of the through-opening is S2, above the upper end of the heater of the heat insulating cylinder. When the area of the inner peripheral surface of the part located at S is S1, the heat insulation performance of the part located above the upper end of the heater of the heat insulation cylinder is lowered by setting S2 to S1 × 0.2 to 0.8. A single crystal pulling apparatus characterized in that
JP02913799A 1999-02-05 1999-02-05 Single crystal puller Expired - Lifetime JP4081901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02913799A JP4081901B2 (en) 1999-02-05 1999-02-05 Single crystal puller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02913799A JP4081901B2 (en) 1999-02-05 1999-02-05 Single crystal puller

Publications (2)

Publication Number Publication Date
JP2000226294A JP2000226294A (en) 2000-08-15
JP4081901B2 true JP4081901B2 (en) 2008-04-30

Family

ID=12267905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02913799A Expired - Lifetime JP4081901B2 (en) 1999-02-05 1999-02-05 Single crystal puller

Country Status (1)

Country Link
JP (1) JP4081901B2 (en)

Also Published As

Publication number Publication date
JP2000226294A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
US6527859B2 (en) Apparatus for growing a single crystalline ingot
US6482263B1 (en) Heat shield assembly for crystal pulling apparatus
KR20010102396A (en) Heat shield assembly for crystal puller
KR20030093268A (en) Heat shield assembly for crystal puller
KR20100013854A (en) Manufacturing device for crystal ingot
JPH10297992A (en) Crucible for pulling crystal and part for pulling crystal
JP4081901B2 (en) Single crystal puller
JP2002220296A (en) Device for crystal pulling
JP3741418B2 (en) Silicon single crystal pulling device
KR100843019B1 (en) Module providing thermal environment in apparatus for growing semiconductor single crystal based on Czochralski and Apparatus using the same
JPH11240790A (en) Apparatus for producing single crystal
JP2004123516A (en) Device for pulling up single crystal
KR100358029B1 (en) Thermal shield device and crystal-pulling apparatus using the same
KR20110024866A (en) Single crystal grower having structure for reducing quartz degradation and seed chuck structure thereof
JP2816633B2 (en) Single crystal pulling apparatus and pulling method
JP3181443B2 (en) Graphite crucible for semiconductor single crystal growing equipment
JP2504550Y2 (en) Single crystal pulling device
JP3664103B2 (en) Single crystal growth method
KR20060072692A (en) An apparatus of growing single crystal ingot
JPS5950627B2 (en) Single crystal silicon pulling equipment
KR20040049358A (en) An apparatus for growing silicon single crystals
JP3151327B2 (en) Single crystal production equipment
JP2000211991A (en) Single crystal growth
JPH0859387A (en) Graphite parts for pulling up single crystal
JP2006069803A (en) Heat-shielding member for silicon single crystal pulling apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20020415

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040127

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term