JP4080230B2 - Image blur prevention device - Google Patents

Image blur prevention device Download PDF

Info

Publication number
JP4080230B2
JP4080230B2 JP2002112756A JP2002112756A JP4080230B2 JP 4080230 B2 JP4080230 B2 JP 4080230B2 JP 2002112756 A JP2002112756 A JP 2002112756A JP 2002112756 A JP2002112756 A JP 2002112756A JP 4080230 B2 JP4080230 B2 JP 4080230B2
Authority
JP
Japan
Prior art keywords
shaft
correction lens
hinge
support frame
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002112756A
Other languages
Japanese (ja)
Other versions
JP2003307761A (en
Inventor
勝 山本
隆 佐藤
隆夫 小川
朋来 幸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2002112756A priority Critical patent/JP4080230B2/en
Publication of JP2003307761A publication Critical patent/JP2003307761A/en
Application granted granted Critical
Publication of JP4080230B2 publication Critical patent/JP4080230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光学的防振装置に関し、特に画像振動を補正するためにレンズ鏡筒に設置する画像振れ防止装置の構造に関する。
【0002】
【従来の技術】
撮影レンズを構成する一部の補正レンズを光軸と垂直な方向に移動する機構は、例えばカメラにおいて像振れの原因であるカメラ振れの加速度を検知することによって像振れを予測し、この予測信号に基づいてレンズを光軸と直角の方向に移動することによって、像振れを抑制する防振装置が提案され、商品化されている。
【0003】
これら防振装置については種々の方法が提案されているが、前記述のように撮影者の撮影姿勢によっては、如何なる方向に対しても補正レンズを光軸に直角方向に移動可能な機構でなくてはならなく、例えば特開平10−26783号公報に示しているように画像振れを補正するために補正レンズ鏡枠側面の3箇所から放射状に案内軸12aを設け、防振装置本体側面に設けられている3箇所の案内溝13aにそれぞれを挿入し、XとY方向移動のためのムービングコイル16y及び16pの合成力によって、光軸に直角な移動量と方向を決定するシステムを提案しているが、案内軸12aにローラを設置して移動時の接触抵抗を軽減せしめることも提案しているが、精度を高めるために案内溝13aにおけるローラを含めた案内軸12aの許容誤差を出来るだけ僅少に押さえると移動負荷が増え、方向によってはローラーの回転方向に対して直角な合成力が働いた場合、ローラの表面と案内溝表面が大きい摩擦抵抗を示し、移動負荷が大きくなり、補正レンズの光軸移動方向によっては移動速度が遅れ、画像振れ防止装置の正確な機能を発揮することが出来ない問題があった。
【0004】
【発明が解決しようとする課題】
上記問題に鑑み、補正レンズの移動を如何なる方向であってもより軽快且つ高精度で移動できる機構が望まれている。補正レンズの移動ばらつきの原因は補正レンズの保持構造において、摩擦抵抗要因が大きくかかわっているため、摩擦抵抗を軽減する構造にする必要がある。
【0005】
【課題を解決するための手段】
従来の機構において、補正レンズを光軸に対して垂直面で移動可能なように案内溝における面保持構造を改め、補正レンズを光軸に平行に設置する一個のヒンジ軸で支持し、該軸を全方向に傾倒可能な構造によって、補正レンズの移動を可能にした。
【0006】
【発明の実施の形態】
以下、図面等を参照して本発明の最も良好な実施形態を説明する。
【0007】
図1は本発明を適応した防振装置における補正レンズ移動機構の実施例を示し、図2は全方向ヒンジの構造断面図で、図3はヒンジ軸が全方向に傾倒する状態を示している。図4はヒンジ軸の傾倒動作と補正レンズ移動の様子を示している。図5は実用化製品の分解斜視図である。
【0008】
図1に示す画像振れ防止装置における補正レンズ2の移動機構はレンズ鏡筒の固定側の保持枠3の内側において、光軸1に対してほぼ垂直に、且つ全方向に移動可能なように、補正レンズ2と保持枠3の間に一部輪形の可動枠6が設置されていて、可動枠6にはYガイド軸8を軸架する二つ支持部7があり、この二つの支持部の間には補正レンズ2の支持枠4の片側に固設されている2個の支持腕5がYガイド軸8を貫通する状態で設置されている。これは可動枠6に対して、補正レンズ2がY方向にスライド可能であり、且つYガイド軸8を中心に回転可能なことを意味している。
【0009】
可動枠6に設置されている二つの支持部7に対して丁度90°離れた位置に同じような二つ支持部9が有り、固定側の保持枠3の内周の円弧の一部に軸架されているXガイド軸10を貫通していて、可動枠6が固定側の保持枠3に対してYガイド軸8とは90°異なる方向にスライド可能で且つXガイド軸10を中心に回転可能な構造になっている。
【0010】
次に補正レンズ2を支持している支持枠4には図に示すようにツバ11が有り、補正レンズ2を中心にしてそれぞれ90°異なる方向に向いたY駆動コイル12とX駆動コイル14が固定されていて、本体の保持枠3に設置されたヨーク16に固着した二つマグネット13をY駆動コイル12に、他の二つのマグネット15はX駆動コイル14に対向させ、各コイルを挟んでヨーク17を設置すれば磁路が形成され、X駆動コイル14に通電すればX方向に、Y駆動コイルに通電すればY方向に移動可能となり、X駆動コイル14とY駆動コイル12に電流方向と電流量の合成によって全方向に移動が可能となる。
【0011】
補正レンズ2は本体の保持枠3に対して、可動枠6を通してXガイド軸10で支持されているほか、図1に示すように補正レンズ2のツバ11に固定されているY駆動コイル12とX駆動コイル14の交叉位置にAヒンジ軸受け18が固定されていて、該Aヒンジ軸受け18と本体の保持枠3に固定されているBヒンジ軸受け19で受けるヒンジ軸20で支持されている。
【0012】
次に本発明の特徴であるヒンジ構造について詳述すると、補正レンズ2の移動側のAヒンジ軸受け18と固定側のBヒンジ軸受け19は同一構造で、図2に代表して示してあるがヒンジ軸20の両端末20aと20bは球形となっていて、Aヒンジ軸受け18及びBヒンジ軸受けは2部品で構成している。Aヒンジ軸受け18はヒンジ軸20側の板18aと外側の板18b、Bヒンジ軸受け19はヒンジ軸20側の板19aと外側の板19bで構成し、Aヒンジ軸受け18の板18aと18bには中心にヒンジ軸20の球形の端末20aを保持すべく穴の対面に直線又は一部球形の面取りのテーパー穴18c及び18dが施してあり、Bヒンジ軸受け19の板19aと19bには中心にヒンジ軸20の他方の球形の端末20bを保持すべく穴の対面にテーパー穴19c及び19dが施されていてAヒンジ軸受け18は板18aと18bでヒンジ軸20の球形の端末20aを、Bヒンジ軸受け19は板19aと19bでヒンジ軸20の球形の端末20bを図のように両部品の面取り側に挟み、サンドイッチ状にして固定したものである。
【0013】
図3は全方向に傾倒可能なヒンジ動作を示したものでヒンジ軸20の端末20aの球形面はAヒンジ軸受け18の板18aと18bのテーパー穴18c、18dと、ヒンジ軸20の端末20bの球形面はBヒンジ軸受け19の板19aと19bのテーパー穴19c、19dとが接触する構成で、ヒンジ軸20の両端にヒンジ機能を持たせ、端末20aと20bがAヒンジ軸受け18及びBヒンジ軸受けに補足されて外れない。このようにヒンジ軸20の傾倒動作では、球形の端末の接触抵抗は極めて軽微に抑えられるため、ヒンジ動作は極めてスムーズとなる。
【0014】
次に実際の動作について説明すると画像振れ防止モードに設定された場合、レンズ鏡筒に図示してない振動検知手段により、振動検知から得られる信号に基づいて、振動方向と大きさが算出され、X駆動コイル14及びY駆動コイル12に駆動電流として出力される。今X駆動コイル14にある方向の電流が流れるとマグネット15とヨーク17の間の磁力線の作用によって該X駆動コイル14に第一方向の推力が発生するが、これが光軸1に対して外側であればプラス方向で、逆電流であれば内側のマイナス方向に推力が発生し、補正レンズ2を伴って、支持枠4の支持腕5からYガイド軸8を通して可動枠6の支持部9をXガイド軸10に従って滑動することになる。
【0015】
次にY駆動コイル12に電流が出力された場合、同じくマグネット13とヨーク17の間の磁力線の作用によって、該Y駆動コイル12に第一方向に対して直角の第二方向の推力が発生するが、これが光軸1に対して外側であればプラス方向で、逆電流であれば内側のマイナス方向に推力が発生し、補正レンズ2を伴って、支持枠4の支持腕5が可動枠6の支持部7に軸架しているYガイド軸8に従って滑動することになる。
【0016】
他の方向に対しては第一と第二の方向の合成ベクトルで求められるため、図示していない第一方向と第二方向の移動方向と移動量の検知手段によって、X駆動コイル14とY駆動コイル12に出力する電流制御で得られる。
【0017】
今単純化するために図4にX駆動コイル14に流した電流によって生じた第一方向の動作について図示しているが図4(I)は動作外の通常状態で、補正レンズ2の光軸が鏡筒の光軸1と一致した状態にある。補正レンズ2と支持枠4は固定側の保持枠3に対してAヒンジ軸受け18とBヒンジ軸受け19で受けるヒンジ軸20で支持され、他方はYガイド軸8から可動枠6の支持部9を通して、保持枠3に軸架されているXガイド軸によって支持されている。
【0018】
今、X駆動コイル14に電流が流れ、光軸1に向かった方向、すなわち図4(II)のような下方向に推力が働くと、ヒンジ軸20上の点nからpに向かって移動するため、ヒンジ軸20は球形の端末20bを支点にして、Aヒンジ軸受け18の球形の端末20aは円弧状に左回転するように倒れ、支持腕5とYガイド軸8は矢印の下方向に移動しながらYガイド軸8を中心に補正レンズ2と支持枠4が微少角右に回転しつつ移動する事になる。
【0019】
また、X駆動コイル14に流れる電流によって、図4(III)のような上方向の推力が働くとヒンジ軸20上の点nはqに向かって移動するため、ヒンジ軸20は球形の端末20bを支点にして、Aヒンジ軸受け18の球形の端末20aは円弧状に右回転するように倒れ、支持腕5とYガイド軸8は矢印の上方向に移動しながらYガイド軸8を中心に補正レンズ2と支持枠4が微少角右に回転しつつ移動する事になる。
【0020】
以上のように図4はX駆動コイル12に働く第一方向についての動作について考察したがY駆動コイル12に働く第二方向の動作についても同様で光軸移動に際して、Xガイド軸10を中心に補正レンズ2と支持枠4が微少角右に回転しつつ移動することになり、第一と第二方向が合成された全方向移動に際しても、補正レンズ2と支持枠4の微少角右回転の現象が伴うが、最大移動X1及びX2において、補正レンズ2の光軸の右方向の微少傾きは補正レンズ2のシフト量とヒンジ軸20の長さ及びBヒンジ軸受け19の固定位置からYガイド軸8までの距離で決まるが実質補正に必要なシフト量に対して極微少な量に抑えられる事から画像振れ防止の性能上は無視できるものとする。
【0021】
上記説明の中でヒンジ軸20とAヒンジ軸受け18,Bヒンジ軸受け19の構造は多様に考えられ、ヒンジ軸20の製法上、球形の端末20a及び20bは別物で結合したものでもよく、本出願の図2に示すヒンジ軸20に球形の端末20a及び20bが一体化されたものに対してはAヒンジ軸受け18及びBヒンジ軸受け19の軸側の板18aと19aはヒンジ軸20に挿入するには中心に対して二つに分割されたものでなければならないことは言うまでもない。
【0022】
上記説明したように本発明は画像振れ防止のために行う補正レンズ2の光軸移動動作においてXガイド軸10及びYガイド軸8の滑動のほかヒンジ軸20の傾倒に際しAヒンジ軸受け18及びBヒンジ軸受け19がほぼ平行に保つようヒンジ軸20の球形の端末20a及び20bが該Aヒンジ軸受け18,Bヒンジ軸受け19内部で転がる構造により可能にしたため、極めて確実で軽快な動作が保証されることになる。
【0023】
上記説明において、図1に示すヒンジ軸20の全方向の傾倒動作に対して、Xガイド軸10を支持部9が微少回転を伴ったスライド。或いはYガイド軸8を支持腕5が微少回転を伴ったスライドすることを説明したが、この回転スライドをX,Yどちらか一方だけに簡略化出来ることから、実用化製品の分解図例を図5に示したので、これについて簡単に説明する。保持枠30には光軸1を中心にしてヨーク16とこれに対向した位置に、ガイド受け32が設置されている。ヨーク16には図のように直角に配置したX駆動用対のマグネット15とY駆動用対のマグネット13が固定されていて、これらマグネットに対して、或る間隔を維持した別なヨーク17が固定され、磁気回路を形成している。一方のガイド受け32の両端には立ち上った支持部33とラック(直進歯車)34を有している。
【0024】
前記ヨーク16に在るマグネット13,15とヨーク17で構成する空隙に挿入する形で画像振れ補正レンズの支持枠31を設置するが、当該支持枠31には直角に配置した、X駆動コイル14とY駆動コイル12が有り、この中央にヒンジ軸受け皿36が設けられている。光軸1を挟んだ対向位置にガイド軸受け35が設置されていて、両端にはガイド軸37がスライド可能なガイド穴35aと35bが開けられている。
【0025】
支持枠31が光軸1に対して約直角の全方向に移動可能なように、ヒンジ軸20で支持されているがこの構造は図1の機構で述べたのと同じで、ヒンジ軸20の両端末20aと20bは球形で、Aヒンジ軸受け18とBヒンジ軸受け19によって受けられている。このヒンジ軸20とAヒンジ軸受け18,Bヒンジ軸受け19の構造は図2に示す通りで、Aヒンジ軸受け18はテーパー穴18cを持った板18aとテーパー穴18d(隠れて見えない)を持った板18bで構成され、ヒンジ軸20の球形の端末20aを挟んだ状態で受け、Bヒンジ軸受け19はテーパー穴19c(隠れて見えない)を持った板19aとテーパー穴19dを持った板19bで構成され、もう片方の球形の端末20bを挟んだ状態で受けいる。
【0026】
ヒンジ軸20が保持枠30と支持枠31を貫通した状態にし、Aヒンジ軸受け18は支持枠31のヒンジ軸受け皿36に固定し、他方のBヒンジ軸受け19は保持枠30の裏側から部品押さえ板39とともに保持枠30に固定されている。これによって、支持枠31の片方が保持枠30にヒンジ軸20で支えられた形となる。
【0027】
支持枠31のヒンジ軸受け皿36に対向した位置にあるガイド軸受け35は保持枠30にあるガイド受32の両方の支持部33の間に受けられ、ガイド軸37によって支持部33の長穴33aから、ガイド軸受け35のガイド穴35a及び35bを通し支持部33の他方の長穴33bに貫通していて、このガイド軸37の両端にピニオン38の右ピニオン38aと左ピニオン38baが固定されている。これらピニオン38はガイド受け32のラック34と噛み合っていて、右ピニオン38aは右ラック34aと、左ピニオン38bは左ラック34bと噛み合っているため、支持枠31はガイド受け32に対して、ラック34上をピニオン38が転がることによって、捩れる事なく垂直に移動出来る。
【0028】
ヒンジ軸20とガイド受32で支えられた支持枠31上のX駆動コイル14とY駆動コイル12は保持枠30に固定されているヨーク16のマグネット対13と15と上部のヨーク17で作る磁路の空隙の中間位置に来るよう構成されているため、X駆動コイル14とY駆動コイル12に電流を流した時、電磁作用によって、駆動力が発生し、この合成ベクトルによって、支持枠31の移動が可能となる。この駆動力による図5における移動形態は支持枠31のガイド軸受け35に貫通しているガイド軸37がピニオン38の回転によってラック34上を転がる場合、上下に移動し、ガイド軸受け35がガイド軸37上を左右に滑動する場合は左右に移動することになるため、ピニオン38の回転とガイド軸37上のガイド軸受35の滑動動作の合成によって、支持枠31は回転成分が伴わないで、全方向に移動出来ることが判る。
【0029】
図5の例も図1の機構と同じく、一本支持のヒンジ軸20は支持枠31の全方向移動に対して、傾倒動作をすることになり、図4で示す通りヒンジ軸20の傾倒に従ってガイド軸37を軸芯にして微少の回転を伴うが、性能上は無視出来るもので、画像振れ防止装置の構成の簡易性と移動摩擦の減少等の作動効率の観点から優位性の高い機構が実現できる。
【0030】
【発明の効果】
補正レンズを光軸に対して垂直面で移動可能なように案内溝における面保持構造を改め、補正レンズを光軸に平行に設置する一個のヒンジ軸で支持し、該軸を全方向に傾倒可能な構造によって、補正レンズの移動を如何なる方向であってもより軽快且つ高精度で移動できる画像振れ防止装置が得られた。また、補正レンズの移動ばらつきの原因は補正レンズの保持構造にあるが、摩擦抵抗を軽減する構造にすることにより摩擦抵抗の少ない補正レンズの移動を可能にし、移動速度の遅れ、画像振れ防止装置の正確な機能を発揮することができる。
【図面の簡単な説明】
【図1】本発明を適応した防振装置における補正レンズ移動機構の斜視図である。
【図2】全方向ヒンジの構造断面図である。
【図3】ヒンジ軸が全方向に傾倒する状態を示す説明図である。
【図4】ヒンジ軸の傾倒動作と補正レンズ移動の様子を示す説明図である。
【図5】実用化製品の分解斜視図である。
【符号の説明】
1 光軸
2 補正レンズ
3 保持枠
4 支持枠
5 支持腕
6 可動枠
7 支持部
8 Yガイド軸
9 支持部
10 Xガイド軸
11 ツバ
12 Y駆動コイル
13 マグネット
14 X駆動コイル
15 マグネット
16 ヨーク
17 ヨーク
18 Aヒンジ軸受け
19 Bヒンジ軸受け
20 ヒンジ軸
30 保持枠
31 支持枠
32 ガイド受け
33 支持部
34 ラック
35 ガイド軸受け
36 ヒンジ軸受け皿
37 ガイド軸
38 ピニオン
39 部品押さえ板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical image stabilizer, and more particularly to a structure of an image shake preventer installed in a lens barrel in order to correct image vibration.
[0002]
[Prior art]
The mechanism that moves some of the correction lenses that make up the photographic lens in the direction perpendicular to the optical axis predicts image blur, for example, by detecting the camera shake acceleration that causes image blur in the camera. Based on the above, a vibration isolator that suppresses image blur by moving the lens in a direction perpendicular to the optical axis has been proposed and commercialized.
[0003]
Various methods have been proposed for these anti-vibration devices. However, as described above, depending on the photographing posture of the photographer, it is not a mechanism that can move the correction lens in a direction perpendicular to the optical axis in any direction. For example, as shown in Japanese Patent Laid-Open No. 10-26783, guide shafts 12a are provided radially from three locations on the side surface of the correction lens frame in order to correct image blur, and provided on the side surface of the vibration isolator main body. A system is proposed in which each of the three guide grooves 13a is inserted and the amount of movement and direction perpendicular to the optical axis is determined by the combined force of the moving coils 16y and 16p for movement in the X and Y directions. Although it has been proposed to reduce the contact resistance during movement by installing a roller on the guide shaft 12a, the guide shaft 12a including the roller in the guide groove 13a is improved in order to improve accuracy. If the error is suppressed as little as possible, the moving load increases, and depending on the direction, when a combined force perpendicular to the rotation direction of the roller acts, the roller surface and the guide groove surface show a large frictional resistance, and the moving load is There is a problem that the movement speed is delayed depending on the optical axis movement direction of the correction lens, and the accurate function of the image blur prevention device cannot be exhibited.
[0004]
[Problems to be solved by the invention]
In view of the above problems, there is a demand for a mechanism that can move the correction lens more lightly and with high accuracy in any direction. The cause of the variation in the movement of the correction lens is that the frictional resistance factor is greatly related to the holding structure of the correction lens. Therefore, it is necessary to reduce the frictional resistance.
[0005]
[Means for Solving the Problems]
In the conventional mechanism, the surface holding structure in the guide groove is modified so that the correction lens can be moved in a plane perpendicular to the optical axis, and the correction lens is supported by a single hinge shaft installed parallel to the optical axis. The lens can be tilted in all directions, allowing the correction lens to move.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.
[0007]
1 shows an embodiment of a correction lens moving mechanism in a vibration isolator to which the present invention is applied, FIG. 2 is a sectional view of the structure of an omnidirectional hinge, and FIG. 3 shows a state in which the hinge shaft is tilted in all directions. . FIG. 4 shows how the hinge shaft tilts and the correction lens moves. FIG. 5 is an exploded perspective view of a practical product.
[0008]
The moving mechanism of the correction lens 2 in the image blur prevention device shown in FIG. 1 is movable inside the holding frame 3 on the fixed side of the lens barrel so as to be substantially perpendicular to the optical axis 1 and in all directions. A partially ring-shaped movable frame 6 is installed between the correction lens 2 and the holding frame 3, and the movable frame 6 has two support portions 7 that support the Y guide shaft 8. In between, two support arms 5 fixed on one side of the support frame 4 of the correction lens 2 are installed so as to penetrate the Y guide shaft 8. This means that the correction lens 2 can slide in the Y direction with respect to the movable frame 6 and can rotate about the Y guide shaft 8.
[0009]
There are two similar support portions 9 at a position just 90 ° away from the two support portions 7 installed on the movable frame 6, and the shaft is arranged on a part of the arc on the inner periphery of the holding frame 3 on the fixed side. The movable frame 6 is slidable in a direction different from the Y guide shaft 8 by 90 ° with respect to the fixed-side holding frame 3 and rotates around the X guide shaft 10. It has a possible structure.
[0010]
Next, the support frame 4 that supports the correction lens 2 has a flange 11 as shown in the figure, and a Y drive coil 12 and an X drive coil 14 that are oriented 90 degrees different from each other about the correction lens 2. Two magnets 13 fixed and fixed to a yoke 16 installed on the holding frame 3 of the main body are opposed to the Y drive coil 12, and the other two magnets 15 are opposed to the X drive coil 14, and each coil is sandwiched between them. If the yoke 17 is installed, a magnetic path is formed, and if the X drive coil 14 is energized, it can move in the X direction, and if the Y drive coil is energized, it can move in the Y direction, and the X drive coil 14 and the Y drive coil 12 have a current direction. And the amount of current can be moved in all directions.
[0011]
The correction lens 2 is supported by the X guide shaft 10 through the movable frame 6 with respect to the holding frame 3 of the main body, and a Y drive coil 12 fixed to the flange 11 of the correction lens 2 as shown in FIG. An A hinge bearing 18 is fixed at the crossing position of the X drive coil 14 and is supported by a hinge shaft 20 received by the A hinge bearing 18 and a B hinge bearing 19 fixed to the holding frame 3 of the main body.
[0012]
Next, the hinge structure, which is a feature of the present invention, will be described in detail. The moving-side A hinge bearing 18 and the fixed-side B hinge bearing 19 of the correction lens 2 have the same structure and are representatively shown in FIG. Both ends 20a and 20b of the shaft 20 are spherical, and the A hinge bearing 18 and the B hinge bearing are composed of two parts. The A hinge bearing 18 comprises a hinge shaft 20 side plate 18a and an outer plate 18b, and the B hinge bearing 19 comprises a hinge shaft 20 side plate 19a and an outer plate 19b, and the plates 18a and 18b of the A hinge bearing 18 include In order to hold the spherical end 20a of the hinge shaft 20 in the center, straight or partially spherical chamfered taper holes 18c and 18d are formed on the opposite side of the hole, and the plates 19a and 19b of the B hinge bearing 19 are hinged in the center. Tapered holes 19c and 19d are formed on the opposite side of the hole to hold the other spherical end 20b of the shaft 20, and the A hinge bearing 18 is replaced with the plates 18a and 18b by the spherical end 20a of the hinge shaft 20 and the B hinge bearing. Reference numeral 19 denotes plates 19a and 19b in which a spherical end 20b of the hinge shaft 20 is sandwiched between the chamfered sides of both parts as shown in the figure and fixed in a sandwich shape.
[0013]
FIG. 3 shows a hinge operation that can be tilted in all directions. The spherical surface of the end 20a of the hinge shaft 20 has tapered holes 18c and 18d of the plates 18a and 18b of the A hinge bearing 18 and the ends 20b of the hinge shaft 20. The spherical surface has a configuration in which the tapered holes 19c and 19d of the plates 19a and 19b of the B hinge bearing 19 are in contact with each other, the hinge function is provided at both ends of the hinge shaft 20, and the terminals 20a and 20b are connected to the A hinge bearing 18 and the B hinge bearing. It is not supplemented by. In this manner, in the tilting operation of the hinge shaft 20, the contact resistance of the spherical terminal is extremely suppressed, and the hinge operation becomes extremely smooth.
[0014]
Next, the actual operation will be described. When the image shake prevention mode is set, the vibration direction and the magnitude are calculated based on the signal obtained from the vibration detection by the vibration detection means not shown in the lens barrel. A drive current is output to the X drive coil 14 and the Y drive coil 12. When a current in a certain direction flows in the X drive coil 14, a thrust in the first direction is generated in the X drive coil 14 by the action of the magnetic lines of force between the magnet 15 and the yoke 17. If there is a reverse current, thrust is generated in the plus direction if there is a reverse current, and the supporting portion 9 of the movable frame 6 is moved from the support arm 5 of the support frame 4 through the Y guide shaft 8 together with the correction lens 2 to the X direction. It slides along the guide shaft 10.
[0015]
Next, when a current is output to the Y drive coil 12, a thrust in the second direction perpendicular to the first direction is generated in the Y drive coil 12 by the action of the magnetic lines of force between the magnet 13 and the yoke 17. However, if this is outside the optical axis 1, a thrust is generated in the plus direction, and if it is a reverse current, a thrust is generated in the minus direction on the inside, and the support arm 5 of the support frame 4 is attached to the movable frame 6 along with the correction lens 2. It slides according to the Y guide shaft 8 pivoted on the support portion 7.
[0016]
Since the other direction is obtained by the combined vector of the first and second directions, the X driving coil 14 and the Y direction are detected by the moving direction and moving amount detecting means (not shown). This is obtained by controlling the current output to the drive coil 12.
[0017]
For the sake of simplicity, FIG. 4 shows the operation in the first direction caused by the current passed through the X drive coil 14, but FIG. 4 (I) shows the optical axis of the correction lens 2 in the normal state outside the operation. Is aligned with the optical axis 1 of the lens barrel. The correction lens 2 and the support frame 4 are supported by the hinge shaft 20 received by the A hinge bearing 18 and the B hinge bearing 19 with respect to the holding frame 3 on the fixed side, and the other through the support portion 9 of the movable frame 6 from the Y guide shaft 8. The X frame is supported by an X guide shaft pivoted on the holding frame 3.
[0018]
Now, when a current flows through the X drive coil 14 and a thrust is applied in a direction toward the optical axis 1, that is, a downward direction as shown in FIG. 4 (II), it moves from a point n on the hinge shaft 20 toward p. Therefore, the hinge shaft 20 is tilted so that the spherical end 20b of the A hinge bearing 18 rotates counterclockwise with the spherical end 20b as a fulcrum, and the support arm 5 and the Y guide shaft 8 move downward in the direction of the arrow. However, the correction lens 2 and the support frame 4 move around the Y guide shaft 8 while rotating to the right by a small angle.
[0019]
Further, when an upward thrust as shown in FIG. 4 (III) is exerted by the current flowing through the X drive coil 14, the point n on the hinge shaft 20 moves toward q, so the hinge shaft 20 has a spherical end 20b. The spherical end 20a of the A hinge bearing 18 is tilted so as to rotate clockwise in the arc shape with the fulcrum as a fulcrum, and the support arm 5 and the Y guide shaft 8 are corrected around the Y guide shaft 8 while moving upward in the direction of the arrow. The lens 2 and the support frame 4 move while rotating to the right by a small angle.
[0020]
As described above, FIG. 4 considered the operation in the first direction acting on the X drive coil 12, but the same applies to the operation in the second direction acting on the Y drive coil 12. The correction lens 2 and the support frame 4 move while rotating to the right by a small angle, and the correction lens 2 and the support frame 4 are rotated by a small angle to the right even when the first and second directions are combined. Although there is a phenomenon, in the maximum movements X1 and X2, the slight inclination in the right direction of the optical axis of the correction lens 2 is caused by the shift amount of the correction lens 2, the length of the hinge shaft 20, and the fixed position of the B hinge bearing 19 Although it is determined by the distance up to 8, it can be neglected in terms of image blur prevention performance because it can be suppressed to a very small amount with respect to the shift amount necessary for substantial correction.
[0021]
In the above description, the structure of the hinge shaft 20, the A hinge bearing 18, and the B hinge bearing 19 can be considered in various ways, and the spherical ends 20a and 20b may be combined with each other in terms of the manufacturing method of the hinge shaft 20. 2 is integrated with the spherical shafts 20a and 20b, the shaft-side plates 18a and 19a of the A hinge bearing 18 and the B hinge bearing 19 are inserted into the hinge shaft 20. Needless to say, must be divided in two with respect to the center.
[0022]
As described above, according to the present invention, in the movement of the optical axis of the correction lens 2 to prevent image blurring, the X-guide shaft 10 and the Y-guide shaft 8 slide and the hinge shaft 20 tilts as well as the A-hinge bearing 18 and the B-hinge. Since the spherical ends 20a and 20b of the hinge shaft 20 are rolled inside the A hinge bearing 18 and the B hinge bearing 19 so that the bearing 19 is kept substantially parallel, extremely reliable and light operation is guaranteed. Become.
[0023]
In the above description, with respect to the tilting operation of the hinge shaft 20 shown in FIG. Alternatively, it has been described that the support arm 5 slides with a slight rotation of the Y guide shaft 8. However, since this rotation slide can be simplified to only one of X and Y, an example of an exploded view of a practical product is shown. This will be described briefly. A guide receiver 32 is installed in the holding frame 30 at a position opposite to the yoke 16 with the optical axis 1 as the center. As shown in the drawing, an X driving pair magnet 15 and a Y driving pair magnet 13 are fixed to the yoke 16 as shown in the figure, and another yoke 17 maintaining a certain distance is provided to these magnets. It is fixed and forms a magnetic circuit. At one end of one guide receiver 32, a support portion 33 and a rack (straight gear) 34 are provided.
[0024]
A support frame 31 of an image blur correction lens is installed so as to be inserted into a gap formed by the magnets 13 and 15 and the yoke 17 in the yoke 16, and the X drive coil 14 arranged at a right angle on the support frame 31. The Y drive coil 12 is provided, and a hinge bearing tray 36 is provided at the center thereof. Guide bearings 35 are installed at opposing positions with the optical axis 1 in between, and guide holes 35a and 35b in which the guide shaft 37 can slide are formed at both ends.
[0025]
The support frame 31 is supported by the hinge shaft 20 so that the support frame 31 can move in all directions approximately perpendicular to the optical axis 1, but this structure is the same as that described in the mechanism of FIG. Both terminals 20a and 20b are spherical and are received by an A hinge bearing 18 and a B hinge bearing 19. The structure of the hinge shaft 20, the A hinge bearing 18, and the B hinge bearing 19 is as shown in FIG. 2, and the A hinge bearing 18 has a plate 18a having a tapered hole 18c and a tapered hole 18d (hidden invisible). The B hinge bearing 19 is constituted by a plate 19b having a tapered hole 19c (hidden and invisible) and a plate 19b having a tapered hole 19d. It is configured and received with the other spherical terminal 20b sandwiched therebetween.
[0026]
The hinge shaft 20 passes through the holding frame 30 and the support frame 31, the A hinge bearing 18 is fixed to the hinge bearing tray 36 of the support frame 31, and the other B hinge bearing 19 is a component pressing plate from the back side of the holding frame 30. 39 is fixed to the holding frame 30 together. Thus, one side of the support frame 31 is supported by the holding frame 30 by the hinge shaft 20.
[0027]
The guide bearing 35 at a position facing the hinge bearing tray 36 of the support frame 31 is received between both support portions 33 of the guide receiver 32 on the holding frame 30, and is guided from the elongated hole 33 a of the support portion 33 by the guide shaft 37. The guide pin 35 passes through the guide holes 35 a and 35 b and passes through the other elongated hole 33 b of the support portion 33. The right pinion 38 a and the left pinion 38 ba of the pinion 38 are fixed to both ends of the guide shaft 37. The pinion 38 is engaged with the rack 34 of the guide receiver 32, the right pinion 38a is engaged with the right rack 34a, and the left pinion 38b is engaged with the left rack 34b. When the pinion 38 rolls on the top, it can move vertically without being twisted.
[0028]
The X drive coil 14 and the Y drive coil 12 on the support frame 31 supported by the hinge shaft 20 and the guide receiver 32 are magnetized by the magnet pairs 13 and 15 of the yoke 16 fixed to the holding frame 30 and the upper yoke 17. Since it is configured to be at an intermediate position in the gap of the road, when current is passed through the X drive coil 14 and the Y drive coil 12, a driving force is generated by electromagnetic action. It can be moved. 5 is moved by the driving force when the guide shaft 37 penetrating the guide bearing 35 of the support frame 31 rolls on the rack 34 by the rotation of the pinion 38, and the guide bearing 35 moves up and down. When sliding up and down, the support frame 31 moves in all directions without rotation components by combining the rotation of the pinion 38 and the sliding motion of the guide bearing 35 on the guide shaft 37. You can move to.
[0029]
In the example of FIG. 5 as well as the mechanism of FIG. 1, the single-support hinge shaft 20 tilts with respect to the omnidirectional movement of the support frame 31, and as shown in FIG. A slight rotation occurs with the guide shaft 37 as an axis, but it is negligible in terms of performance, and a mechanism with a high degree of superiority from the viewpoint of operational efficiency such as simplicity of the configuration of the image shake prevention device and reduction of moving friction. realizable.
[0030]
【The invention's effect】
The surface holding structure in the guide groove is modified so that the correction lens can be moved in a plane perpendicular to the optical axis, and the correction lens is supported by a single hinge shaft installed parallel to the optical axis, and the axis is tilted in all directions. Due to the possible structure, an image blur prevention device that can move the correction lens more easily and with high accuracy in any direction was obtained. The correction lens movement variation is caused by the correction lens holding structure, but the structure that reduces the frictional resistance enables the movement of the correction lens with less frictional resistance, delaying the moving speed, and image blur prevention device. Can demonstrate the exact function of
[Brief description of the drawings]
FIG. 1 is a perspective view of a correction lens moving mechanism in a vibration isolator to which the present invention is applied.
FIG. 2 is a structural cross-sectional view of an omnidirectional hinge.
FIG. 3 is an explanatory view showing a state in which a hinge shaft is tilted in all directions.
FIG. 4 is an explanatory diagram showing a state of the tilting operation of the hinge shaft and the movement of the correction lens.
FIG. 5 is an exploded perspective view of a practical product.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical axis 2 Correction lens 3 Holding frame 4 Support frame 5 Support arm 6 Movable frame 7 Support part 8 Y guide shaft 9 Support part 10 X guide shaft 11 Head 12 Y drive coil 13 Magnet 14 X drive coil 15 Magnet 16 Yoke 17 Yoke 18 A Hinge bearing 19 B Hinge bearing 20 Hinge shaft 30 Holding frame 31 Support frame 32 Guide receiver 33 Support part 34 Rack 35 Guide bearing 36 Hinge bearing tray 37 Guide shaft 38 Pinion 39 Parts pressing plate

Claims (3)

レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検出する振動検知手段と、該振動検知から得られる信号に基づいて前記補正レンズを駆動し、画像振れを防止する制御手段とを備えた画像振れ防止装置において、前記補正レンズを光軸に対して第一方向の偏心移動を専任とし、本体固定側に設置する第一移動機構と前記第一方向に対して垂直であり、光軸に対して第二方向の偏心移動を専任とし、前記第一移動機構側に設置する第二移動機構を備え、第二移動機構側に前記補正レンズと第一、第二の方向に移動可能な駆動要素を持つ支持枠を備えた補正機構であり、当該補正機構は固定側に対して、当該支持枠を全方向に傾倒可能な一本の軸と前記第一移動機構に連設する第二移動機構で支持してなることを特徴とする画像振れ防止装置。A correction lens installed in the lens barrel and decentering the optical axis; vibration detection means for detecting vibration applied to the lens barrel; and driving the correction lens based on a signal obtained from the vibration detection, In the image shake prevention apparatus including the control means for preventing shake, the first movement mechanism and the first direction in which the correction lens is dedicated to the eccentric movement in the first direction with respect to the optical axis and installed on the main body fixing side. And a second movement mechanism installed on the first movement mechanism side, the second movement mechanism side including the correction lens and the first lens. A correction mechanism including a support frame having a drive element movable in a second direction, the correction mechanism having a single shaft capable of tilting the support frame in all directions with respect to the fixed side, and the first Supported by a second moving mechanism connected to one moving mechanism. Image blur prevention apparatus, characterized in that. 前記補正機構の第一移動機構と第二移動機構は共に第一及び第二方向に対して滑動可能な軸を有し、該軸は前記補正レンズの支持枠を枢支する前記一本の軸の全方向傾倒動作時において生じる、微小回転の回転軸を兼用とした第一、第二移動機構であることを特徴とする請求項1記載の画像振れ防止装置。 The first moving mechanism and a second moving mechanism for correcting mechanism both have a slidable shaft relative to the first and second directions, said one axis shaft is pivotally supporting the support frame of the correction lens 2. The image blur prevention apparatus according to claim 1, wherein the first and second movement mechanisms are combined with a rotation axis of minute rotation that occurs during the omnidirectional tilting operation. 前記補正機構の支持枠を枢支する一本の全方向傾倒軸の両端末受けは球又は球形を受ける球面又はテーパー面形状に加工されたもので、前記軸の全方傾倒動作において、前記軸の両端末受けは互いに約平行状態を保つよう構成されていることを特徴とする請求1記載の画像振れ防止装置。The receiving both ends of a single omnidirectional tilt axis pivotally supporting the support frame of the correction mechanism has been processed into a spherical or tapered surface shaped to receive a ball or spherical, in all who direction tilting operation of the shaft, the 2. The image blur prevention device according to claim 1, wherein both end receivers of the shaft are configured to be kept approximately parallel to each other.
JP2002112756A 2002-04-16 2002-04-16 Image blur prevention device Expired - Fee Related JP4080230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112756A JP4080230B2 (en) 2002-04-16 2002-04-16 Image blur prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112756A JP4080230B2 (en) 2002-04-16 2002-04-16 Image blur prevention device

Publications (2)

Publication Number Publication Date
JP2003307761A JP2003307761A (en) 2003-10-31
JP4080230B2 true JP4080230B2 (en) 2008-04-23

Family

ID=29395133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112756A Expired - Fee Related JP4080230B2 (en) 2002-04-16 2002-04-16 Image blur prevention device

Country Status (1)

Country Link
JP (1) JP4080230B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156893A (en) * 2003-11-26 2005-06-16 Sigma Corp Image blur prevention device
JP4653424B2 (en) * 2004-06-24 2011-03-16 株式会社シグマ Image blur prevention device
JP4740726B2 (en) * 2005-12-05 2011-08-03 株式会社タムロン Translation device and actuator, lens unit and camera equipped with the translation device
JP5066930B2 (en) * 2007-02-15 2012-11-07 カシオ計算機株式会社 Camera shake correction device and linear actuator
JP2022165639A (en) * 2021-04-20 2022-11-01 日本電産サンキョー株式会社 optical unit

Also Published As

Publication number Publication date
JP2003307761A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4804564B2 (en) Optical apparatus having shake correction device
US9279997B2 (en) Vibration correcting device, lens barrel, and optical device
KR101525816B1 (en) Image shake correction device
US8643732B2 (en) Image blur compensation device and imaging apparatus
US7689109B2 (en) Optical image stabilizer and optical apparatus
US7747149B2 (en) Optical apparatus having image-blur correction/reduction system
US20010028516A1 (en) Lens barrel having image shake correcting function and optical device having same
US20150153584A1 (en) Image stabilizing apparatus, lens barrel, and image pickup apparatus
JPH11305277A (en) Image blurring correcting device, optical equipment, lens barrel and photographing device
US9436017B2 (en) Image stabilizing apparatus that corrects image blur caused by hand shake, lens barrel, and optical apparatus
JP4602780B2 (en) Image blur prevention device
JP5383743B2 (en) Optical apparatus having shake correction device
US7742692B2 (en) Vibration reduction mechanism and optical device
US9400397B2 (en) Optical apparatus with movable member for shake correction
JP2006215122A5 (en)
JP4080230B2 (en) Image blur prevention device
JP3713818B2 (en) Image blur correction device
JPH06281889A (en) Optical camera-shake correcting device
JP4886382B2 (en) Image blur prevention device
JP2010169844A (en) Optical device
US10416411B2 (en) Optical apparatus
JP4253177B2 (en) Image shake prevention device
JP2005156893A (en) Image blur prevention device
KR20160029592A (en) OPTICAL IMAGE STABILIZING APPARATUS and photographing apparatus having the same
JP2019095627A (en) Tremor-proof lens barrel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4080230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees