JP2006215122A5 - - Google Patents

Download PDF

Info

Publication number
JP2006215122A5
JP2006215122A5 JP2005025753A JP2005025753A JP2006215122A5 JP 2006215122 A5 JP2006215122 A5 JP 2006215122A5 JP 2005025753 A JP2005025753 A JP 2005025753A JP 2005025753 A JP2005025753 A JP 2005025753A JP 2006215122 A5 JP2006215122 A5 JP 2006215122A5
Authority
JP
Japan
Prior art keywords
correction lens
lens
optical axis
lens barrel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005025753A
Other languages
Japanese (ja)
Other versions
JP2006215122A (en
JP4602780B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005025753A priority Critical patent/JP4602780B2/en
Priority claimed from JP2005025753A external-priority patent/JP4602780B2/en
Publication of JP2006215122A publication Critical patent/JP2006215122A/en
Publication of JP2006215122A5 publication Critical patent/JP2006215122A5/ja
Application granted granted Critical
Publication of JP4602780B2 publication Critical patent/JP4602780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

画像振れ防止装置Image blur prevention device

本発明は、光学的防振装置に関し、特に画像振動を補正するためにレンズ鏡筒に設置する画像振れ防止装置の構造に関する。   The present invention relates to an optical image stabilization device, and more particularly to a structure of an image stabilization device installed in a lens barrel in order to correct image vibration.

撮影レンズを構成する一部の補正レンズを光軸と垂直な方向に移動する機構は、例えばカメラにおいて像振れの原因であるカメラ振れの加速度を検知することによって像振れを予測し、この予測信号に基づいてレンズを直角方向に移動することによって、像振れを抑制する防振装置が提案されている。   The mechanism that moves some of the correction lenses that make up the photographic lens in the direction perpendicular to the optical axis predicts image blur, for example, by detecting the camera shake acceleration that causes image blur in the camera. Based on the above, there has been proposed an anti-vibration device that suppresses image blur by moving a lens in a right angle direction.

これら防振装置については種々の方法が提案されているが、如何なる振動方向でも補正レンズを光軸に対して直角方向に補正移動可能な機構でなくてはならなく、一例として特開平10−26784号公報では、補正レンズ鏡枠側面の3箇所から放射状に案内軸を設け、防振装置本体側面に設けられている3箇所の案内溝にそれぞれ挿入し、補正レンズ鏡枠が全方向に補正移動可能とし、更に該補正レンズ鏡枠が光軸中心に保持出来るよう本体側面3箇所から付勢されたコイルばねで宙づりにする構造が開示されていて、XとY方向移動のための二つのムービングコイルに働く合成力と前記ばねの弾性抗力の差で決まる量だけ、光軸に直角な移動を決定するシステムを提案している。   Various methods have been proposed for these anti-vibration devices, but the mechanism must be capable of correcting and moving the correction lens in a direction perpendicular to the optical axis in any vibration direction. As an example, Japanese Patent Laid-Open No. 10-26784. In the Gazette, guide shafts are provided radially from three locations on the side surface of the correction lens frame and inserted into the three guide grooves provided on the side surface of the vibration isolator main body so that the correction lens frame is corrected and moved in all directions. Further, a structure is disclosed in which the correction lens frame is suspended by coil springs urged from three side surfaces of the main body so that the correction lens frame can be held at the center of the optical axis. A system has been proposed in which the movement perpendicular to the optical axis is determined by an amount determined by the difference between the combined force acting on the coil and the elastic drag force of the spring.

また、移動時の摩擦抵抗を減らすため、補正レンズ鏡枠の案内軸と溝の嵌合精度を緩め、遊動させたいがこのために生じる移動時の振動が補正精度に影響を与えることから好ましくない。このため一方に寄せて補正レンズ枠の光軸に対する垂直平面の精度を保つように、補正レンズ枠を光軸に保つ付勢ばねの分力によって保持面に当てる方法も提案されているが結果的には保持面に圧力を掛けることから摩擦抵抗を減らす効果は得られていない。   In addition, in order to reduce the frictional resistance at the time of movement, the fitting accuracy between the guide shaft and the groove of the correction lens barrel is loosened and it is desired to move freely, but this is not preferable because the vibration at the time of movement affects the correction accuracy. . For this reason, there has been proposed a method in which the holding surface is applied by the component force of the biasing spring that keeps the correction lens frame on the optical axis so as to keep the accuracy of the plane perpendicular to the optical axis of the correction lens frame toward one side. Has no effect of reducing frictional resistance because pressure is applied to the holding surface.

この改善策として、特開2002−196383号公報では固定部材と可動部材及びシフト部材の間にボールを狭持せしめて、このボールの転動によって駆動性能を改善する方法が提案され、従来より補正レンズの移動時における摩擦抵抗が格段に減少する効果は認められる。
特開平10−26784号公報 特開2002−196383号公報
As an improvement measure, Japanese Patent Laid-Open No. 2002-196383 proposes a method in which a ball is held between a fixed member, a movable member, and a shift member, and the driving performance is improved by rolling the ball. The effect of significantly reducing the frictional resistance during the movement of the lens is recognized.
JP-A-10-26784 JP 2002-196383 A

しかしながら、上記特開平10−26784号公報では前記補正レンズ鏡枠を光軸に対して直角に保持するために前記案内軸と固定部の案内溝の嵌合精度を高める必要があり、そのために軸と溝の間に生ずる摩擦抵抗が増え、迅速な垂直移動の妨げになっている。   However, in the above Japanese Patent Laid-Open No. 10-26784, in order to hold the correction lens frame at a right angle to the optical axis, it is necessary to increase the fitting accuracy between the guide shaft and the guide groove of the fixed portion. The frictional resistance generated between the groove and the groove is increased, which prevents quick vertical movement.

また、特開2002−196383号公報では可動部材およびシフト部材における各光軸直交面と固定部材における光軸直交面との間に転動可能に配置されたボールと、可動部材とシフト部材との間に設けられ、各光軸直交面により各ボールを狭持させるための付勢力を発生する付勢部材を設けるようにするなど構成が複雑となり、部品点数と組み立て上の問題が別に発生していた。   In JP 2002-196383 A, a ball disposed so as to be able to roll between each optical axis orthogonal surface of the movable member and the shift member and an optical axis orthogonal surface of the fixed member, and the movable member and the shift member. The structure is complicated, such as providing an urging member that generates an urging force for holding each ball by the plane orthogonal to each optical axis, resulting in separate parts and assembly problems. It was.

解決しようとするものは前記問題点であって、補正レンズは光軸に対して垂直平面を保持しながら如何なる振動方向に対しても補正方向に迅速に応動可能な性能を保証すると共に、手振れ補正モード終了後、速やかに光軸中心位置に復帰出来るよう、如何なる方向の移動位置であっても、復帰習性が与えられているものである上に、部品点数を削減した簡単構造であり、組み立て効率の高い防振装置を提供することにある。   What is to be solved is the above-mentioned problem, and the correction lens guarantees performance capable of quickly responding to any vibration direction while maintaining a plane perpendicular to the optical axis, and also correcting camera shake. After the mode is completed, return habits are given to any moving position in any direction so that it can quickly return to the center position of the optical axis, and it has a simple structure with a reduced number of parts and assembly efficiency. It is to provide a high vibration isolator.

本発明の画像振れ防止装置においてはレンズ鏡筒の固定部と補正移動可能な補正レンズの支持枠に光軸に垂直な平面を構成する少なくとも三つの円盤磁極を有する磁性体をそれぞれに固設させた保持機構を有し、当該磁極が対になるよう対向位置にボールを介在して吸引せしめて保持する保持手段を持ち、補正レンズの全方向移動はボールの磁極円盤表面の転動で得られるもので、摩擦抵抗が激減した移動効率の高い防振機構が得られる。   In the image blur prevention device of the present invention, a magnetic body having at least three disk magnetic poles constituting a plane perpendicular to the optical axis is fixed to a fixed portion of a lens barrel and a support frame of a correction lens that can be corrected and moved. And holding means for attracting and holding the ball in an opposing position so that the magnetic poles are paired, and the omnidirectional movement of the correction lens is obtained by rolling of the magnetic pole disk surface of the ball Therefore, a vibration isolating mechanism having high movement efficiency with a drastic decrease in frictional resistance can be obtained.

また、円盤磁極を有する磁性体を用いた閉ループではなく、軟鉄磁性体からなる第1のヨークと、長手方向にマグネットを有する軟鉄磁性体からなる第2のヨークと、前記第1及び第2のヨークの、前記補正レンズの支持枠と前記レンズ鏡筒の固定部とが対面する側の面上の両端部に突出加工された円盤磁極部と、該円盤磁極部に狭持された鋼球と、で構成される閉ループとすることでも移動効率の高い防振機構が得られる。  The first yoke made of a soft iron magnetic material, the second yoke made of a soft iron magnetic material having a magnet in the longitudinal direction, not the closed loop using a magnetic material having a disk magnetic pole, and the first and second A disc magnetic pole portion projecting from both ends on the surface of the yoke facing the support frame of the correction lens and the fixed portion of the lens barrel; and a steel ball sandwiched by the disc magnetic pole portion; , A vibration isolating mechanism with high movement efficiency can be obtained.

本発明は、レンズ鏡筒の固定部と補正移動可能な補正レンズの支持枠に光軸に垂直な平面を構成する少なくとも三つの円盤磁極を有する磁性体をそれぞれに固設させた保持機構を有し、当該磁極が対になるよう対向位置にボールを介在して吸引せしめて保持する保持手段を持ち、補正レンズの全方向移動はボールの磁極円盤表面の転動で得られるものとしたので、特にボールが磁性体である鋼球である場合、ボールが磁極の中央で吸着し、脱落することが無く、機構の組み立て作業効率が良い。また、対向する円盤磁極が同一形状であり、対向する位置を相互の光軸に合致させる位置にすると、補正レンズを全方向に移動した場合、磁極間の磁力線の距離が変化するため磁気抵抗を減じる方向、すなわち光軸が合致する方向に戻ろうとする復帰習性が生じるため、従来用いている付勢ばねが不要となる効果がある。   The present invention has a holding mechanism in which a magnetic body having at least three disc magnetic poles constituting a plane perpendicular to the optical axis is fixed to a fixed portion of a lens barrel and a support frame of a correction lens that can be corrected and moved. Then, holding means for attracting and holding the ball through the opposing position so that the magnetic poles are paired, and the omnidirectional movement of the correction lens is obtained by rolling on the magnetic pole disk surface of the ball, In particular, when the ball is a steel ball that is a magnetic body, the ball is attracted at the center of the magnetic pole and does not fall off, and the assembly work efficiency of the mechanism is good. Also, if the opposing disk magnetic poles have the same shape and the opposing positions are made to coincide with each other's optical axes, the magnetic resistance is changed because the distance of the magnetic field lines between the magnetic poles changes when the correction lens is moved in all directions. Since there is a return habit of trying to return to the direction of reduction, that is, the direction in which the optical axis matches, there is an effect that the conventionally used biasing spring becomes unnecessary.

以下、図面等を参照して本発明の最も良好な実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の画像振れ防止装置の1実施例の平面図であって、図2は本発明における断面図である。図3は鋼球を狭持する円盤磁石の全方向移動形態の様子を示す図で、図4は本発明の保持機構のマグネットの作用状態を説明した断面図であり、A図は静止時、B図は移動時における磁極間の磁力線と作用引力の様子を説明したものである。図5は本発明の保持機構のマグネットの他の応用例として、長方形磁石を用いた場合の様子を示した斜視図である。   FIG. 1 is a plan view of an image blur prevention apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the present invention. FIG. 3 is a view showing the state of the omnidirectional movement of the disc magnet holding the steel ball, FIG. 4 is a cross-sectional view illustrating the action state of the magnet of the holding mechanism of the present invention, and FIG. FIG. B illustrates the state of magnetic lines of force between magnetic poles and the attractive force during movement. FIG. 5 is a perspective view showing a state in which a rectangular magnet is used as another application example of the magnet of the holding mechanism of the present invention.

画像振れ防止装置は撮影レンズのレンズ群構成の中で光学的に最も効果的なレンズ群の一つ(補正レンズ)を手振れ振動の度合いに合わせて、光軸に対してほぼ垂直に移動させることによって被写体受光画面を静止させる装置であって、このレンズ群構成における補正レンズの位置に当該補正レンズを全方向に移動可能とし、これを画像振れ防止装置ユニットにして設置することが一般的である。本発明はこの改良であって、このユニットを100で表し、図1はその平面図であり、図2では光軸1から上は中心00と01、下は中心00と02の断面図を示している。   The image stabilization device moves one of the most optically effective lens groups (correction lens) in the lens group configuration of the photographic lens according to the degree of camera shake vibration, almost perpendicularly to the optical axis. Is a device that stops the subject light-receiving screen by moving the correction lens to the position of the correction lens in this lens group configuration in all directions and installing this as an image shake prevention device unit. . The present invention is an improvement of this unit, and this unit is represented by 100. FIG. 1 is a plan view of the unit. FIG. 2 shows a cross-sectional view of the centers 00 and 01 above the optical axis 1 and the centers 00 and 02 below. ing.

先ず図1及び図2の画像振れ装置ユニット100の全体構成について説明すると、大きく分けて図示しない鏡筒の補正位置に固定する保持枠5と可動部である補正レンズ2を支持する支持枠3とこれを保持枠5に対して保持する保持機構の三つに分けられ、本発明はこの保持機構に関している。   First, the overall configuration of the image shaker unit 100 of FIGS. 1 and 2 will be described. A holding frame 5 that is roughly fixed to a correction position of a lens barrel (not shown) and a support frame 3 that supports the correction lens 2 that is a movable portion. This is divided into three holding mechanisms for holding the holding frame 5 and the present invention relates to this holding mechanism.

光軸1を中心に中空環状の保持枠5には板状対磁石のY駆動マグネット8、9とX駆動マグネット10,11が直角状に配置固着した下ヨーク6が固定されている一方、ほぼ直交点に当たる位置に後述する保持機構16の円盤マグネット161とこの位置から等間隔の円周位置に保持機構17、18の円盤マグネット171、181が埋設されている。また他方、Y駆動マグネット8,9の対向位置に案内軸受け5aと5bが突出成形されていて、該案内軸受け5a、5b間に案内軸5cが装架され、これを案内板4の案内軸受け4a、4bの穴に貫通させて案内板4がX方向にスライドできるようになっている。   On the hollow annular holding frame 5 with the optical axis 1 as the center, a lower yoke 6 to which Y-drive magnets 8 and 9 and X-drive magnets 10 and 11 of plate-like magnets are arranged and fixed at right angles is fixed. A disk magnet 161 of the holding mechanism 16 to be described later and a disk magnet 171, 181 of the holding mechanism 17, 18 are embedded at circumferential positions equidistant from this position at a position corresponding to the orthogonal point. On the other hand, guide bearings 5a and 5b are projected and formed at positions opposite to the Y drive magnets 8 and 9, and a guide shaft 5c is mounted between the guide bearings 5a and 5b. The guide plate 4 is slidable in the X direction through the holes 4b.

中心に補正レンズ2を支持固定した支持枠3にはお互い直角になるようY駆動コイル12とX駆動コイル13が図のように配設されていて、そのほぼ直交点に当たる位置の裏側に後述する保持機構16の円盤マグネット162とこの位置から等間隔の円周位置に保持機構17、18の円盤マグネット172、182が埋設されている。他方、図1の平面図の左側に示すように案内軸受け3cと3bが突出成形されていて、その穴に案内板4の案内軸受け4cと4dの間に装架してある案内軸4eが貫通されていて、補正レンズ2を含む支持枠3が案内板4に対してY方向にスライドできるようになっている。   A Y driving coil 12 and an X driving coil 13 are arranged at right angles to the support frame 3 that supports and fixes the correction lens 2 at the center as shown in the figure, and will be described later on the back side of the position corresponding to the substantially orthogonal point. The disc magnets 162 and 182 of the holding mechanisms 17 and 18 are embedded in the disc magnet 162 of the holding mechanism 16 and the circumferential positions equidistant from this position. On the other hand, as shown on the left side of the plan view of FIG. 1, guide bearings 3c and 3b are formed so as to protrude, and a guide shaft 4e mounted between the guide bearings 4c and 4d of the guide plate 4 penetrates through the hole. The support frame 3 including the correction lens 2 can slide in the Y direction with respect to the guide plate 4.

固定部である保持枠5に対して保持機構16、17、18によって平面に保持された支持枠3は案内軸4eの案内によってY方向、案内板4と一緒に案内軸5cの案内によってX方向にスライドでき、この二つの直角方向案内に従った動きは光軸に対して垂直関係にあり、補正レンズ2の保持枠3と一体に固着されているY駆動コイル12とX駆動コイル13の合成された駆動力により、回転動作を防止した全方向に定量的な移動が可能となっている。   The support frame 3 held in a plane by the holding mechanisms 16, 17, and 18 with respect to the holding frame 5, which is a fixed portion, is guided in the Y direction by the guide shaft 4 e and in the X direction by the guide shaft 5 c together with the guide plate 4. The movement according to the two right-angled guides is perpendicular to the optical axis, and the Y drive coil 12 and the X drive coil 13 which are fixed integrally with the holding frame 3 of the correction lens 2 are combined. The driving force thus made enables quantitative movement in all directions while preventing rotational movement.

Y駆動コイル12とX駆動コイル13の駆動力発生方法としては前記のように保持枠5に設置された下ヨーク6に固着されているY駆動マグネット8、9とX駆動マグネット10、11の上部に一定間隙を確保するための支持棒にネジ14及び15で固定した上ヨーク7が設置されていて、Y駆動マグネット8、9及びX駆動マグネット10、11によって、間隙に発生する磁力線が閉ループを描くようになっている。この間隙にY駆動マグネット8、9及びX駆動マグネット10、11の表面と上ヨーク7の表面との間に僅少ながら空隙を保てる位置に支持枠3のY駆動コイル12とX駆動コイル13が挿入維持されている。   As a method for generating the driving force of the Y driving coil 12 and the X driving coil 13, the Y driving magnets 8 and 9 and the upper portions of the X driving magnets 10 and 11 fixed to the lower yoke 6 installed on the holding frame 5 as described above. The upper yoke 7 fixed with screws 14 and 15 is installed on a support rod for securing a constant gap, and the magnetic lines generated in the gap are closed by the Y drive magnets 8 and 9 and the X drive magnets 10 and 11. It comes to draw. The Y drive coil 12 and the X drive coil 13 of the support frame 3 are inserted into the gap so that a slight gap is maintained between the surfaces of the Y drive magnets 8 and 9 and the X drive magnets 10 and 11 and the surface of the upper yoke 7. Maintained.

補正レンズ2の光軸と鏡筒の光軸1が一致している状態ではY駆動マグネット8、9の磁極対向位置にY駆動コイル12のそれぞれのコイル辺が、X駆動マグネット10、11の磁極対向位置にはX駆動コイル13のそれぞれのコイル辺が僅少な間隙を保ちながら正確に覆うようになっているため、Y駆動コイル12及びX駆動コイル13に電流を流す大きさと方向で、間隙に発生している磁力線との電磁作用によって光軸1に対して内側或いは外側に移動する駆動力が発生する。Y駆動コイル12とX駆動コイル13はそれぞれ90度開いた位置にあるため、駆動方向はそれぞれ90度異なり、手振れ補正のための任意の方向移動はY駆動コイル12とX駆動コイル13の方向と駆動力の合成ベクトルで得られることになる。   In a state where the optical axis of the correction lens 2 and the optical axis 1 of the lens barrel coincide with each other, the coil sides of the Y drive coil 12 are positioned at the positions opposite to the magnetic poles of the Y drive magnets 8 and 9, and the magnetic poles of the X drive magnets 10 and 11. Since each coil side of the X drive coil 13 is accurately covered with a small gap at the opposed position, the gap is set in the magnitude and direction of current flowing through the Y drive coil 12 and the X drive coil 13. A driving force that moves inward or outward with respect to the optical axis 1 is generated by electromagnetic action with the generated magnetic field lines. Since each of the Y drive coil 12 and the X drive coil 13 is at a position opened 90 degrees, the drive directions are 90 degrees different from each other, and any direction movement for camera shake correction is the same as the direction of the Y drive coil 12 and the X drive coil 13. It is obtained by a combined vector of driving forces.

補正レンズ2を含む支持枠3を手振れ防止に必要な補正量を手振れ動作に同期した迅速な応答が必要となるため、前述の保持機構16、17、18は移動時の摺動摩擦を避け効率の良い移動が保証されなければならないことから、本装置では図3の3Aに示すように固定部の保持枠5に埋設する円盤マグネットの161、171、181と可動部の支持枠3に埋設する円盤マグネット162、172、182の間に鋼球163、173、183を介在させた保持機構であって、図3の3Bに示すように対極で構成する円盤磁極間の鋼球が転動することによる全方向移動を可能にしたもので、保持機構16、17、18はそれぞれ同一形状の同一機構で構成してある。   Since the support frame 3 including the correction lens 2 needs a quick response in which the correction amount necessary for preventing the camera shake is synchronized with the camera shake operation, the above-described holding mechanisms 16, 17, and 18 avoid the sliding friction during the movement and are efficient. Since good movement must be ensured, in this apparatus, as shown in 3A of FIG. 3, the disc magnets 161, 171, 181 embedded in the holding frame 5 of the fixed portion and the disc embedded in the support frame 3 of the movable portion This is a holding mechanism in which steel balls 163, 173, 183 are interposed between magnets 162, 172, 182. As shown in 3B of FIG. 3, the steel balls between the disk magnetic poles constituted by the counter electrodes roll. It is possible to move in all directions, and the holding mechanisms 16, 17, and 18 are configured by the same mechanism having the same shape.

縦方向に着磁された円盤マグネットの磁極表面に磁極の直径に対してあまり小さくない直径の鋼球を接近させると磁極表面の周囲から均等の引力を受けるために、鋼球は中心に寄せられ円形磁極面の中央に吸着する性質を有する。例えば円盤マグネット161のN極を上に向けて鋼球163を置くとN磁極の円形表面中心位置に鋼球が吸着し、更に鋼球163の上に円盤マグネット162のS極を接触面にして吸着させると図3の3A及び図4の4Aに示すような円盤マグネット161と162の中心が鋼球163の中心を通して一直線に並ぶような引力作用で安定状態に保っている。   When a steel ball with a diameter not much smaller than the diameter of the magnetic pole is brought close to the magnetic pole surface of the disk magnet magnetized in the vertical direction, the steel ball is brought to the center to receive an equal attractive force from the periphery of the magnetic pole surface. It has the property of being attracted to the center of the circular magnetic pole surface. For example, when the steel ball 163 is placed with the N pole of the disk magnet 161 facing upward, the steel ball is attracted to the center position of the circular surface of the N magnetic pole, and the S pole of the disk magnet 162 is contacted with the steel ball 163. When attracted, the center of the disc magnets 161 and 162 as shown in 3A of FIG. 3 and 4A of FIG.

このことから固定部の保持枠5に埋設する円盤マグネット161、171、181と可動部の支持枠3に埋設する円盤マグネット162、172、182の間に鋼球163、173、183を介在させて、吸着保持させるとそれぞれの円形磁極の中心が一致する位置で安定保持することになり、この状態で鏡筒の光軸1と補正レンズ2の光軸が一致する構成になっている。図4の4Aではそれぞれの円盤マグネット161と162が鋼球163を挟んで吸引し合っていて、磁極間に均一な磁力線φのループが生じていることを示している。   Therefore, the steel balls 163, 173, 183 are interposed between the disk magnets 161, 171, 181 embedded in the holding frame 5 of the fixed part and the disk magnets 162, 172, 182 embedded in the support frame 3 of the movable part. When attracted and held, the circular magnetic poles are stably held at the positions where the centers of the circular magnetic poles coincide with each other. In this state, the optical axis 1 of the barrel and the optical axis of the correction lens 2 coincide with each other. 4A shows that the disc magnets 161 and 162 are attracted to each other with the steel ball 163 interposed therebetween, and a loop of uniform magnetic lines of force φ is generated between the magnetic poles.

いま、支持枠3のY駆動コイル12及びX駆動コイル13に電流を流し、支持枠3を補正方向に移動させるための駆動力を発生させると、保持枠5に埋設する円盤マグネット161、171、181のそれぞれのN磁極面と支持枠3に埋設する円盤マグネット162、172、182のそれぞれのS磁極面の間に吸着保持している鋼球163、173、183が磁極面を転がりながら移動して行く。必要な移動量は保持枠5に埋設する円盤マグネット161、171、181と支持枠3に埋設する円盤マグネット162、172、182のそれぞれに生じる相対的なずれ量であるから介在する鋼球163、173、183は磁極表面をずれ量の半分の距離だけ転がれば良いことになる。   Now, when current is supplied to the Y drive coil 12 and the X drive coil 13 of the support frame 3 to generate a driving force for moving the support frame 3 in the correction direction, the disk magnets 161, 171 embedded in the holding frame 5 Steel balls 163, 173, and 183 that are attracted and held between each N magnetic pole surface of 181 and each S magnetic pole surface of the disk magnets 162, 172, and 182 embedded in the support frame 3 move while rolling on the magnetic pole surface. Go. Since the necessary movement amount is a relative shift amount generated in each of the disk magnets 161, 171, 181 embedded in the holding frame 5 and the disk magnets 162, 172, 182 embedded in the support frame 3, the intervening steel balls 163, For 173 and 183, it is only necessary to roll the surface of the magnetic pole by a distance that is half the amount of deviation.

図4の4Bは固定部の保持枠5に対して補正レンズ2の支持枠3が補正に必要な量を移動した時の保持機構16、17、18の状態を示していて、それぞれの磁極間の磁力線φが歪んだ状態になることを表している。この図4の4Bの状態は磁路が長くなり磁気抵抗が増えるため磁気抵抗を減らして安定な4Aの状態に戻るべく矢印方向に復元力が働くことを意味し、補正レンズ2が補正方向に移動しても光軸位置に復帰する習性が在ることを意味している。これは従来機構において補正レンズを周囲からバネによって中心位置に戻す習性を与えていることと同じで、非常に簡易な構成で本案において実現できる。   4B in FIG. 4 shows the state of the holding mechanisms 16, 17, and 18 when the support frame 3 of the correction lens 2 has moved an amount necessary for correction with respect to the holding frame 5 of the fixed portion. Represents that the magnetic field lines φ are distorted. The state of 4B in FIG. 4 means that the restoring force acts in the direction of the arrow in order to return to the stable state of 4A by reducing the magnetic resistance because the magnetic path becomes longer and the magnetic resistance increases, and the correction lens 2 moves in the correction direction. It means that there is a habit of returning to the position of the optical axis even if it moves. This is the same as providing the habit of returning the correction lens to the center position from the periphery by a spring in the conventional mechanism, and can be realized in the present plan with a very simple configuration.

図4において移動時の4Bに対して中心位置の4Aの位置に戻る復元力はマグネットの強さや介在せしめる鋼球の大きさ等で決められるものであるが、簡易的には図4に示す円盤マグネット161、171、181及び162、172、182の対極側磁極縁の面取りcの大きさで調整が可能である。   In FIG. 4, the restoring force to return to the position of 4A at the center position with respect to 4B at the time of movement is determined by the strength of the magnet, the size of the intervening steel ball, etc., but for simplicity, the disk shown in FIG. Adjustment is possible by the size of the chamfering c of the magnet 161, 171, 181 and 162, 172, 182 counter electrode side magnetic pole edge.

これまでは保持機構16、17、18に直接円盤マグネットを対向設置し、対極間に鋼球を狭持する例を示したが磁気回路が構成されていて、当回路の中間に円盤磁極を生じさせ、その間に磁性球体が狭持できるような構成にすれば同様な効果が得られる。図5にその一例を示したのでこれを説明すると、固定部の保持枠5に長方形のマグネット20と30を図5に示すように円周上に磁極が揃う方向に設置し、図5の21、22及び31、32のような形状に加工された軟鉄磁性体からなるヨークに円盤磁極を成形すべくそれぞれ21a、22a及び31a、32aを突出加工したヨークを作り、マグネット20のN極端にヨーク21、S極端にヨーク22を、マグネット30のN極端にヨーク31、S極端にヨーク32を接続して保持枠5に固設する。他方可動部の支持枠3には図5に示す23及び33の形状に加工された軟鉄磁性体からなるヨークに対し、ヨーク23の両端に同じく円盤磁極を成形すべくそれぞれ23a、23bを突出加工したヨークとヨーク33の両端に円盤磁極を成形すべくそれぞれ33a、33bを突出加工したヨークを固設し、これを図5に示すように対向位置に4つの鋼球24、25及び34、35を介在させて吸引保持する構成で、長方形のマグネット20はヨーク21、鋼球24、ヨーク23、鋼球25そしてヨーク22、またもう一方の長方形のマグネット30はヨーク31、鋼球34、ヨーク33、鋼球35そしてヨーク32の磁路の閉ループを構成しているため、同様な効果が得られる。   Up to now, an example was shown in which a disk magnet was placed directly opposite the holding mechanism 16, 17, 18 and a steel ball was sandwiched between the counter electrodes. However, a magnetic circuit was constructed, and a disk magnetic pole was created in the middle of this circuit. If the structure is such that the magnetic sphere can be held between them, the same effect can be obtained. FIG. 5 shows an example of this, and this will be explained. In FIG. 5, rectangular magnets 20 and 30 are installed in the holding frame 5 in a direction in which the magnetic poles are aligned on the circumference as shown in FIG. 22a, 22a and 31a, 32a are formed into yokes made of soft iron magnetic material processed into shapes such as 22, 22 and 31, 32, respectively. The yoke 22 is connected to the 21st and S extremes, the yoke 31 is connected to the N extreme of the magnet 30, and the yoke 32 is connected to the S extreme and fixed to the holding frame 5. On the other hand, the support frame 3 of the movable part is formed by projecting 23a and 23b to form disk magnetic poles at both ends of the yoke 23 in contrast to a yoke made of a soft iron magnetic material processed into the shapes 23 and 33 shown in FIG. In order to form disk magnetic poles at both ends of the yoke 33 and the yoke 33, a yoke having 33a and 33b projecting is fixed, and four steel balls 24, 25 and 34, 35 are provided at opposing positions as shown in FIG. The rectangular magnet 20 is yoke 21, steel ball 24, yoke 23, steel ball 25 and yoke 22, and the other rectangular magnet 30 is yoke 31, steel ball 34, yoke 33. Since a closed loop of the magnetic path of the steel ball 35 and the yoke 32 is formed, the same effect can be obtained.

以上保持枠5に対する支持枠3の保持機構に関する本発明は鋼球で支持し、この転がりで全方向に移動可能にした構成は従来に比し飛躍的に移動効率を高めたものであり、特に鋼球受けを要せず、転動面に対して脱落することが無い上に、固定部の保持枠5に対し可動部の支持枠3が吸引保持する構造から、従来のような機械的精度が必要な保持部材を必要としないため組み立てが容易であると同時に低廉な画像ぶれ防止装置が提供できる。   The present invention relating to the holding mechanism of the support frame 3 with respect to the holding frame 5 is supported by a steel ball, and the configuration that is movable in all directions by this rolling greatly improves the movement efficiency as compared with the prior art. Because it does not require a steel ball holder and does not fall off from the rolling surface, and the structure in which the support frame 3 of the movable part sucks and holds the holding frame 5 of the fixed part, the conventional mechanical accuracy Therefore, it is possible to provide an image blur prevention device that is easy to assemble and at the same time inexpensive.

本発明の画像振れ防止装置の1実施例の平面図である。1 is a plan view of one embodiment of an image blur prevention device of the present invention. FIG. 本発明における断面図である。It is sectional drawing in this invention. 鋼球を狭持する円盤磁石の全方向移動形態の様子を示す図である。It is a figure which shows the mode of the omnidirectional movement form of the disk magnet which pinches | interposes a steel ball. 本発明の保持機構のマグネットの作用状態を説明した断面図であり、A図は静止時、B図は移動時における磁極間の磁力線と作用引力の様子を説明したものである。It is sectional drawing explaining the action | operation state of the magnet of the holding | maintenance mechanism of this invention, A figure explains the mode of the magnetic force line between magnetic poles at the time of a movement, and B at the time of a movement, and an action | attraction force. 本発明の保持機構のマグネットの他の応用例として、長方形磁石を用いた場合の様子を示した斜視図である。It is the perspective view which showed the mode at the time of using a rectangular magnet as another application example of the magnet of the holding mechanism of this invention.

符号の説明Explanation of symbols

1 光軸
2 補正レンズ
3 支持枠
4 案内板
5 保持枠
6 下ヨーク
7 上ヨーク
8 Y駆動マグネット
9 Y駆動マグネット
10 X駆動マグネット
11 X駆動マグネット
12 Y駆動コイル
13 X駆動コイル
14 ネジ
15 ネジ
16 保持機構
17 保持機構
18 保持機構
DESCRIPTION OF SYMBOLS 1 Optical axis 2 Correction lens 3 Support frame 4 Guide plate 5 Holding frame 6 Lower yoke 7 Upper yoke 8 Y drive magnet 9 Y drive magnet 10 X drive magnet 11 X drive magnet 12 Y drive coil 13 X drive coil 14 Screw 15 Screw 16 Holding mechanism 17 Holding mechanism 18 Holding mechanism

Claims (4)

レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検知する振動検知手段と、該振動検知手段から得られる信号に基づいて前記補正レンズを駆動し、画像振れを防止する制御手段とを備えた画像振れ防止装置であって、お互い垂直の関係にある第一方向と第二方向の駆動機構によって前記補正レンズを光軸中心に全方向に移動可能な補正レンズ可動機構を有した画像振れ防止装置において、前記レンズ鏡筒の固定部に対する前記補正レンズの保持手段は、前記補正レンズの支持枠と前記レンズ鏡筒の固定部とに固設した少なくとも三つの円盤磁極を有する磁性体の間にそれぞれ鋼球を介在させた対面引力による保持手段であって、前記固定部と前記支持枠の磁極間引力で保持しながら、前記鋼球の転がりによって前記補正レンズの光軸に対するほぼ垂直な全方向移動を可能にしたことを特徴とする画像振れ防止装置。 A correction lens installed in the lens barrel and decentering the optical axis; vibration detection means for detecting vibration applied to the lens barrel; and driving the correction lens based on a signal obtained from the vibration detection means ; An image blur prevention apparatus having a control means for preventing image blur, wherein the correction lens can be moved in all directions around the optical axis by drive mechanisms in a first direction and a second direction which are perpendicular to each other. in the image shake prevention apparatus having the correction lens moving mechanism, retaining means of the correction lens with respect to the fixed portion of the lens barrel, at least fixedly provided on the fixed portion of the support frame and the lens barrel of the correcting lens three One of a holding means according facing attraction respectively by interposing a steel ball between the magnetic body having a disc-pole, while maintaining at the inter-pole attraction of the supporting frame and the fixed part, rotation of the steel ball Image blur prevention apparatus is characterized in that to allow substantially vertical omnidirectional with respect to the optical axis of the correcting lens by. 前記レンズ鏡筒の固定部に対する前記補正レンズの保持手段は前記補正レンズの支持枠と前記レンズ鏡筒の固定部にそれぞれ固設する円盤磁極が互いに対極であって、同一直径を有する磁極の対で構成するものであり、前記固定部の磁極と前記支持枠の磁極との対面位置は前記レンズ鏡筒の光軸と前記補正レンズの光軸が一致する位置であり、前記補正レンズの全方向移動に対して前記レンズ鏡筒の光軸位置に磁力で復帰する習性を与えたことを特徴とする請求項1に記載の画像振れ防止装置。   The correction lens holding means with respect to the fixed portion of the lens barrel is a pair of magnetic poles having disk poles fixed to the support frame of the correction lens and the fixed portion of the lens barrel, respectively, and having the same diameter. The facing position between the magnetic pole of the fixed portion and the magnetic pole of the support frame is a position where the optical axis of the lens barrel coincides with the optical axis of the correction lens, and the correction lens is omnidirectional. 2. The image blur prevention device according to claim 1, wherein a habit of returning to the optical axis position of the lens barrel by a magnetic force is given to the movement. 前記補正レンズの全方向移動に対して生じる磁力による光軸位置への復帰習性は前記レンズ鏡筒の固定部と前記補正レンズの支持枠に固設する円盤磁極において、縁の面取りの調整で得られた磁力によるものであることを特徴とする請求項1又は2に記載の画像振れ防止装置。 The habit of returning to the optical axis position due to the magnetic force generated with respect to the omnidirectional movement of the correction lens is obtained by adjusting the chamfering of the edge at the disk magnetic pole fixed to the fixed portion of the lens barrel and the support frame of the correction lens. image shake prevention apparatus according to claim 1 or 2, wherein the obtained is due to the magnetic force. レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検知する振動検知手段と、該振動検知手段から得られる信号に基づいて前記補正レンズを駆動し、画像振れを防止する制御手段とを備えた画像振れ防止装置であって、お互い垂直の関係にある第一方向と第二方向の駆動機構によって前記補正レンズを光軸中心に全方向に移動可能な補正レンズ可動機構を有した画像振れ防止装置において、前記レンズ鏡筒の固定部に対する前記補正レンズの保持手段は、前記補正レンズの支持枠と前記レンズ鏡筒の固定部のいずれか一方に固設した軟鉄磁性体からなる第1のヨークと、いずれか他方に固設した長手方向に磁極が来るように配置されたマグネットを有する軟鉄磁性体からなる第2のヨークと、前記第1及び第2のヨークの、前記補正レンズの支持枠と前記レンズ鏡筒の固定部とが対面する側の面上の両端部に突出加工された円盤磁極部と、該円盤磁極部に狭持された鋼球と、で構成される閉ループを少なくとも二つ有することを特徴とする画像振れ防止装置。  A correction lens installed in the lens barrel and decentering the optical axis; vibration detection means for detecting vibration applied to the lens barrel; and driving the correction lens based on a signal obtained from the vibration detection means; An image blur prevention apparatus including a control unit for preventing image blur, wherein the correction lens can be moved in all directions around the optical axis by drive mechanisms in a first direction and a second direction which are perpendicular to each other. In the image shake prevention apparatus having the correction lens moving mechanism, the correction lens holding unit with respect to the fixed portion of the lens barrel is fixed to either the support frame of the correction lens or the fixed portion of the lens barrel. A first yoke made of a soft iron magnetic material, a second yoke made of a soft iron magnetic material having a magnet arranged so as to have a magnetic pole in the longitudinal direction fixed to either one of the first yoke, and the first yoke A disc magnetic pole portion projecting at both ends on the surface of the second yoke facing the support frame of the correction lens and the fixed portion of the lens barrel, and sandwiched between the disc magnetic pole portions. An image blur prevention device comprising at least two closed loops formed of steel balls.
JP2005025753A 2005-02-02 2005-02-02 Image blur prevention device Active JP4602780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025753A JP4602780B2 (en) 2005-02-02 2005-02-02 Image blur prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025753A JP4602780B2 (en) 2005-02-02 2005-02-02 Image blur prevention device

Publications (3)

Publication Number Publication Date
JP2006215122A JP2006215122A (en) 2006-08-17
JP2006215122A5 true JP2006215122A5 (en) 2008-02-28
JP4602780B2 JP4602780B2 (en) 2010-12-22

Family

ID=36978432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025753A Active JP4602780B2 (en) 2005-02-02 2005-02-02 Image blur prevention device

Country Status (1)

Country Link
JP (1) JP4602780B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038664B2 (en) * 2006-08-23 2012-10-03 株式会社リコー Image shake correction apparatus and imaging apparatus
US8792166B2 (en) 2009-01-14 2014-07-29 Nidec Copal Corporation Image blur correction apparatus and image pickup unit having image blur correction apparatus
JP5021022B2 (en) * 2009-12-25 2012-09-05 日本電産コパル株式会社 Image stabilization apparatus and imaging unit
JP5254052B2 (en) * 2009-01-14 2013-08-07 日本電産コパル株式会社 Image stabilization device, imaging lens unit, and camera unit
JP5502456B2 (en) * 2009-12-25 2014-05-28 日本電産コパル株式会社 Image stabilization apparatus and imaging unit
WO2011142153A1 (en) * 2010-05-14 2011-11-17 株式会社トキナー Camera shake correction unit
JP5614577B2 (en) * 2010-07-15 2014-10-29 株式会社リコー Image blur correction device, lens barrel, imaging device, and portable information terminal
JP6708471B2 (en) * 2016-04-21 2020-06-10 キヤノン株式会社 Vibration wave motor and optical device equipped with the vibration wave motor
JP6983550B2 (en) * 2017-06-29 2021-12-17 日本電産サンキョー株式会社 Manufacturing method of optical unit with runout correction function and optical unit with runout correction function
JP7016694B2 (en) * 2017-12-19 2022-02-07 新思考電機有限公司 Support mechanism, optical member drive device, camera device and electronic device
WO2020243867A1 (en) 2019-06-01 2020-12-10 瑞声光学解决方案私人有限公司 Camera module and periscope camera

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294216A (en) * 1985-06-21 1986-12-25 Hitachi Ltd Bearing for high speed rotor
JPH05118326A (en) * 1991-10-24 1993-05-14 Yaskawa Electric Corp Flat surface rolling guide mechanism
JPH05267116A (en) * 1992-03-18 1993-10-15 Fujitsu Ltd Wafer-chuck attaching structure
JP4006178B2 (en) * 2000-12-25 2007-11-14 キヤノン株式会社 Lens barrel, photographing device and observation device
JP4095913B2 (en) * 2003-02-26 2008-06-04 株式会社日立ハイテクノロジーズ High precision micro movement device
JP3952205B2 (en) * 2004-11-19 2007-08-01 株式会社タムロン Actuator and lens unit and camera provided with the same

Similar Documents

Publication Publication Date Title
JP4602780B2 (en) Image blur prevention device
JP2006215122A5 (en)
JP5140572B2 (en) Optical unit with shake correction function
JP4991497B2 (en) Image blur correction device
JP4804564B2 (en) Optical apparatus having shake correction device
US7652712B2 (en) Lens shifting structure for image capturing apparatus
JP6271974B2 (en) Image blur correction device, lens barrel, and imaging device
US20150010296A1 (en) Image shake correcting device, lens barrel, optical apparatus, and image pickup apparatus
JP3952205B2 (en) Actuator and lens unit and camera provided with the same
US9703114B2 (en) Image stabilizer, lens barrel, image pickup apparatus, and optical apparatus
CN113433763B (en) Optical unit with shake correction function
CN113433766A (en) Optical unit with shake correction function
JP5383743B2 (en) Optical apparatus having shake correction device
US9500877B2 (en) Lens driving unit, and lens apparatus and image pickup apparatus including the same
US10120201B2 (en) Lens barrel and optical device
JP4503008B2 (en) Actuator, lens unit and camera equipped with the same
JP2008152034A (en) Actuator, lens unit equipped therewith, and camera
JP2012108399A (en) Anti-vibration actuator, and lens unit and camera with the same
JPH1164916A (en) Optical element holding device and optical equipment
JP2015191123A (en) Image tremor correction device, lens barrel and optical device
JP2008076646A (en) Shake correcting device and equipment equipped therewith
KR20100054707A (en) Image stabilization apparatus
JP6660829B2 (en) Actuator, lens unit and camera having the same
JP4080230B2 (en) Image blur prevention device
JP2021135428A5 (en)