JP4886382B2 - Image blur prevention device - Google Patents

Image blur prevention device Download PDF

Info

Publication number
JP4886382B2
JP4886382B2 JP2006173571A JP2006173571A JP4886382B2 JP 4886382 B2 JP4886382 B2 JP 4886382B2 JP 2006173571 A JP2006173571 A JP 2006173571A JP 2006173571 A JP2006173571 A JP 2006173571A JP 4886382 B2 JP4886382 B2 JP 4886382B2
Authority
JP
Japan
Prior art keywords
optical axis
correction lens
image blur
support frame
spherical sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006173571A
Other languages
Japanese (ja)
Other versions
JP2008003361A (en
JP2008003361A5 (en
Inventor
浩二 星
亮 北村
久真 田内
康久 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2006173571A priority Critical patent/JP4886382B2/en
Publication of JP2008003361A publication Critical patent/JP2008003361A/en
Publication of JP2008003361A5 publication Critical patent/JP2008003361A5/ja
Application granted granted Critical
Publication of JP4886382B2 publication Critical patent/JP4886382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カメラ、光学機器において手ぶれにより発生する像ぶれを防止する像ぶれ防止装置に関するもので、特に画像振動を補正するためにレンズ鏡筒に設置する画像ぶれ防止装置の構造に関する。   The present invention relates to an image blur prevention device for preventing image blur caused by camera shake in a camera or an optical apparatus, and more particularly to a structure of an image blur prevention device installed in a lens barrel in order to correct image vibration.

撮影レンズを構成する一部の補正レンズを光軸と垂直な方向に移動する機構は、例えばカメラにおいて像ぶれの原因であるカメラぶれの加速度を検知することによって像ぶれを予測し、この予測信号に基づいてレンズを光軸と直角の方向に移動することによって、像ぶれを抑制する防振装置が提案され、商品化されている。   The mechanism that moves some of the correction lenses that make up the photographic lens in the direction perpendicular to the optical axis predicts image blur by, for example, detecting the camera shake acceleration that causes image blur in the camera. Based on the above, a vibration isolator that suppresses image blur by moving the lens in a direction perpendicular to the optical axis has been proposed and commercialized.

これら防振装置については種々の方法が提案されているが、前記述のように撮影者の撮影姿勢によっては、如何なる方向に対しても補正レンズを光軸に直角方向に移動可能な機構が望ましく、例えば特開平10−26783号公報に示しているように画像ぶれを補正するために補正レンズ鏡枠側面の3箇所から放射状に案内軸12aを設け、防振装置本体側面に設けられている3箇所の案内溝13aにそれぞれを挿入し、XとY方向移動のためのムービングコイル16y及び16pの合成力によって、光軸に直角な移動量と方向を決定するシステムを提案しているが、案内軸12aにローラを設置して移動時の接触抵抗を軽減せしめることも提案しているが、精度を高めるために案内溝13aにおけるローラを含めた案内軸12aの許容誤差をできるだけ僅少に押さえると移動負荷が増え、方向によってはローラの回転方向に対して直角な合成力が働いた場合、ローラの表面と案内溝表面が大きい摩擦抵抗を示し、移動負荷が大きくなり、補正レンズの光軸移動方向によっては移動速度が遅れ、画像ぶれ防止装置の正確な機能を発揮することができない問題があり、本出願人は特開2003−307761号公報に示すように、補正レンズを光軸に対して垂直面で移動可能なように案内溝における面保持構造を改め、補正レンズを光軸に平行に設置する一個のヒンジ軸で支持し、該軸を全方向に傾倒可能な構造によって、補正レンズの移動を可能にする画像ぶれ防止装置を提案した。
特開平10−26783 特開2003−307761
Various methods have been proposed for these anti-vibration devices, but a mechanism that can move the correction lens in a direction perpendicular to the optical axis in any direction is desirable depending on the shooting posture of the photographer as described above. For example, as shown in Japanese Patent Application Laid-Open No. 10-26783, guide shafts 12a are provided radially from three locations on the side surface of the correction lens frame to correct image blur, and 3 provided on the side surface of the vibration isolator main body. A system has been proposed in which each is inserted into each guide groove 13a and the amount of movement and direction perpendicular to the optical axis is determined by the combined force of the moving coils 16y and 16p for movement in the X and Y directions. Although it has also been proposed to reduce the contact resistance during movement by installing a roller on the shaft 12a, an allowable error of the guide shaft 12a including the roller in the guide groove 13a in order to improve accuracy. When the pressure is kept as small as possible, the moving load increases. Depending on the direction, if a combined force perpendicular to the roller rotation direction is applied, the roller surface and the guide groove surface exhibit a large frictional resistance, and the moving load increases and is corrected. Depending on the movement direction of the optical axis of the lens, there is a problem that the moving speed is delayed, and the accurate function of the image blur prevention device cannot be exhibited. As shown in Japanese Patent Application Laid-Open No. 2003-307761, the present applicant uses a correction lens. The surface holding structure in the guide groove is changed so that it can move in a plane perpendicular to the optical axis, the correction lens is supported by a single hinge shaft installed in parallel to the optical axis, and the shaft can be tilted in all directions. Proposed an image blur prevention device that enables movement of the correction lens.
JP-A-10-26783 JP2003-307761

補正レンズの移動を如何なる方向であってもより軽快且つ高精度で移動できる機構が望まれており、補正レンズの移動ばらつきの原因は補正レンズの保持構造において、摩擦抵抗と機構の複雑さの要因が大きくかかわっているため、摩擦抵抗をさらに軽減する簡単な構造にする必要がある。   There is a need for a mechanism that can move the correction lens in a lighter and more precise manner in any direction, and the cause of variations in the movement of the correction lens is the friction resistance and the complexity of the mechanism in the holding structure of the correction lens. Therefore, it is necessary to have a simple structure that further reduces frictional resistance.

上記課題を解決する画像ぶれ防止装置は、レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検出する振動検知手段と、該振動検知手段から得られる信号に基づいて前記補正レンズを駆動し、画像ぶれを防止する制御手段とを備えた画像ぶれ防止装置において、前記補正レンズを前記レンズ鏡筒の光軸に対して偏心移動が可能な支持枠と該支持枠を保持する保持枠を有しており、該支持枠と該保持枠はそれぞれ、複数の独立した球面状摺動面を前記補正レンズの周囲に有し、該支持枠は前記球面状摺動面の摺動により前記レンズ鏡筒の光軸上に支点を持った円弧の動作をしながら偏心移動を行い、前記支持枠の独立した前記球面状摺動面の球軸と前記補正レンズの光軸との距離は0よりも大きく、前記保持枠の独立した前記球面状摺動面の球軸と前記レンズ鏡筒の光軸との距離よりも大きい又は小さいことを特徴とする構成とした。また、前記保持枠の独立した前記球面状摺動面は、前記保持枠に配置された球体の表面であり、前記球体は前記支持枠に設けられた複数の独立した前記球面状摺動面と対向する位置に配置されている構成とした。さらに、前記球体は、前記保持枠に設けられた球体受けに保持されていることを特徴とする構成とした。 An image blur prevention apparatus that solves the above-described problems is obtained from a correction lens that is installed in a lens barrel and decenters an optical axis, vibration detection means that detects vibration applied to the lens barrel, and the vibration detection means. An image blur prevention apparatus including a control unit configured to drive the correction lens based on a signal and prevent image blur; and a support frame capable of decentering the correction lens with respect to an optical axis of the lens barrel ; A holding frame for holding the supporting frame, and each of the supporting frame and the holding frame has a plurality of independent spherical sliding surfaces around the correction lens , and the supporting frame has the spherical shape. The spherical surface of the spherical sliding surface independent of the support frame and the correction lens are moved by performing an eccentric movement while moving the circular arc having a fulcrum on the optical axis of the lens barrel by sliding of the sliding surface. The distance from the optical axis is greater than 0, It was configured characterized spheres axis independent the spherical sliding surface of the lifting frame with larger or smaller than the distance between the optical axis of the lens barrel. The independent spherical sliding surface of the holding frame is a surface of a sphere disposed on the holding frame, and the spherical body includes a plurality of independent spherical sliding surfaces provided on the support frame. It was set as the structure arrange | positioned in the position which opposes. Further, the sphere is held by a sphere receiver provided on the holding frame.

補正レンズを光軸に対して垂直面で移動可能なように案内溝における面保持構造や、補正レンズを光軸に平行に設置する一個のヒンジ軸を必要とせず、簡易な構造にすることができ、補正レンズを光軸に対して偏心移動が可能な支持枠と該支持枠を保持する保持枠を設けて支持枠と保持枠をそれぞれ独立した複数の球面状摺動面の摺動により偏心移動を行うようにしたので、平面同士で摺動する場合より常に点接触とすることにより摩擦抵抗の少ない補正レンズの移動を可能にし、移動速度の遅れ、画像ぶれ防止装置の正確な機能を発揮することができる。さらに、それぞれ対となるボールの軸と球面状摺動面の軸をずらすことで補正レンズを円弧動作が可能で、軸のずらす方向で像面側、物体側のどちら側にも支点をもたせた円弧の動作をさせることができ、軸のずらし量を変えることで円弧の半径を変えることもでき、簡易な構造で、且つ摩擦抵抗の少ない補正レンズの移動を可能にする。   A simple structure without the need for a surface holding structure in the guide groove so that the correction lens can be moved in a plane perpendicular to the optical axis and a single hinge shaft for setting the correction lens parallel to the optical axis. The correction lens is provided with a support frame that can be moved eccentrically with respect to the optical axis, and a holding frame that holds the support frame. Since it is moved, it is possible to move the correction lens with less frictional resistance by always making point contact than when sliding between planes, and the movement function is delayed, and the accurate function of the image blur prevention device is demonstrated. can do. Furthermore, the correction lens can be operated in an arc by shifting the axis of the paired ball and the axis of the spherical sliding surface, and a fulcrum is provided on either the image plane side or the object side in the axis shifting direction. The arc can be moved, and the radius of the arc can be changed by changing the shift amount of the shaft, so that the correction lens can be moved with a simple structure and low frictional resistance.

以下、図面等を参照して本発明の最も良好な実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.

図1は本発明を適応した防振装置における補正レンズ移動機構の実施例を示し、図2は支持枠の球面状摺動面側を示す斜視図である。図3と図4は防振装置の補正レンズ移動の様子を示す図1のA−C及びB−C断面図である。   FIG. 1 shows an embodiment of a correction lens moving mechanism in a vibration isolator to which the present invention is applied, and FIG. 2 is a perspective view showing a spherical sliding surface side of a support frame. 3 and 4 are cross-sectional views taken along the lines AC and BC in FIG. 1, showing how the correction lens moves in the image stabilizer.

図1に示す画像ぶれ防止装置における補正レンズ2の移動機構はレンズ鏡筒の固定側の保持枠A3の内側において、光軸に対してほぼ垂直に、且つ全方向に移動可能なように、補正レンズ2を有する支持枠5が保持枠A3と不図示の保持枠Bとの間に設置されていて、支持枠5には保持枠A3に圧着させるバネを掛けるバネ掛け部5a、5b、5cがあり、対応するバネ掛けリング6のバネ掛け部6a、6b、6cにバネ7a、7b、7cが引っ掛けられ固定される。これにより保持枠A3に対して、補正レンズ2が光軸に対してほぼ垂直方向にスライド可能である。   The moving mechanism of the correction lens 2 in the image blur prevention apparatus shown in FIG. 1 is corrected so that it can be moved almost perpendicularly to the optical axis and in all directions inside the holding frame A3 on the fixed side of the lens barrel. A support frame 5 having a lens 2 is installed between a holding frame A3 and a holding frame B (not shown). Spring support portions 5a, 5b, and 5c are provided on the support frame 5 to apply springs that are pressure-bonded to the holding frame A3. Yes, the springs 7a, 7b, 7c are hooked and fixed to the spring hooks 6a, 6b, 6c of the corresponding spring hook ring 6. As a result, the correction lens 2 can slide in a direction substantially perpendicular to the optical axis with respect to the holding frame A3.

支持枠5に設置されているバネ掛け部5a、5b、5cの近傍に独立した不図示の球面状摺動面が3箇所ある。そして、保持枠3Aは穴3a、3b、3c(不図示)に嵌合するボール受け8a、8b、8c(不図示)とボール9a、9b、9c(不図示)を介し、前述のバネ7a、7b、7cにより支持枠5の3箇所の球面状摺動面に圧着させられる。   There are three independent spherical sliding surfaces (not shown) in the vicinity of the spring hooks 5 a, 5 b, 5 c installed on the support frame 5. The holding frame 3A is connected to the above-described springs 7a, 9b, 9c (not shown) and ball receivers 8a, 8b, 8c (not shown) fitted in the holes 3a, 3b, 3c (not shown). 7b and 7c are pressure-bonded to the three spherical sliding surfaces of the support frame 5.

次に補正レンズ2を支持している支持枠5には図に示すようにコイル保持枠5d、5eがあり、補正レンズ2を中心にしてそれぞれ90°異なる方向に向いたY駆動コイル12とX駆動コイル14が固定されていて、保持枠A3に設置固定されるヨーク16aに固着したマグネット13をY駆動コイル12に、ヨーク16bに固着したマグネット15はX駆動コイル14に対向させ、各コイルを挟んで不図示の保持枠B4に設置固定されるヨーク17a、17bにより磁路が形成され、X駆動コイル14に通電すればX方向に、Y駆動コイルに通電すればY方向に移動可能となり、X駆動コイル14とY駆動コイル12に電流方向と電流量の合成によって全方向に移動が可能となる。   Next, the support frame 5 supporting the correction lens 2 has coil holding frames 5d and 5e as shown in the figure. The drive coil 14 is fixed, the magnet 13 fixed to the yoke 16a installed and fixed to the holding frame A3 is opposed to the Y drive coil 12, and the magnet 15 fixed to the yoke 16b is opposed to the X drive coil 14, and each coil is fixed. A magnetic path is formed by yokes 17a and 17b which are installed and fixed to a holding frame B4 (not shown), and can be moved in the X direction when the X drive coil 14 is energized, and can be moved in the Y direction when the Y drive coil is energized. The X drive coil 14 and the Y drive coil 12 can be moved in all directions by combining the current direction and the current amount.

次に本発明の特徴である独立した球面状摺動面を有する支持枠について説明する。図2の支持枠5の球面状摺動面側を示す斜視図において、支持枠5はY駆動コイル12を保持するコイル保持枠5dとX駆動コイル14を保持するコイル保持枠5eとガイド軸受け18にガイド軸20を介するための長穴11a、11bを有する支持部11を有している。補正レンズ2の移動側である支持枠5の球面状摺動面10a、10b、10cは保持枠A3の3箇所の穴3a、3b、3c(不図示)及びボール受け8a、8b、8c(不図示)によって支持されるボール9a、9b、9c(不図示)と対向する位置に設けられ、バネ掛け部5a、5b、5cに引っ掛けられるバネ7a、7b、7cによって押しつけられる構成になっている。   Next, a support frame having an independent spherical sliding surface, which is a feature of the present invention, will be described. In the perspective view showing the spherical sliding surface side of the support frame 5 in FIG. 2, the support frame 5 includes a coil holding frame 5 d that holds the Y drive coil 12, a coil holding frame 5 e that holds the X drive coil 14, and a guide bearing 18. The support portion 11 has elongated holes 11a and 11b for passing the guide shaft 20 therebetween. The spherical sliding surfaces 10a, 10b, 10c of the support frame 5 on the moving side of the correction lens 2 are three holes 3a, 3b, 3c (not shown) of the holding frame A3 and ball receivers 8a, 8b, 8c (not shown). It is provided at a position opposite to the balls 9a, 9b, 9c (not shown) supported by (illustrated) and is configured to be pressed by springs 7a, 7b, 7c hooked on the spring hanging portions 5a, 5b, 5c.

図3は防振装置の補正レンズ移動の様子を示す図1のA−C断面図で、図3(I)は補正レンズの移動が行われていない状態を示し、図3(II)は補正レンズが上方に移動した状態を示し、図3(III)は補正レンズが下方に移動した状態を示している。   FIG. 3 is a cross-sectional view taken along the line AC of FIG. 1 showing the movement of the correction lens of the image stabilizer. FIG. 3 (I) shows the state where the correction lens is not moved, and FIG. 3 (II) shows the correction. FIG. 3 (III) shows a state in which the lens has moved downward, and FIG. 3 (III) shows a state in which the correction lens has moved downward.

図3(I)の状態ではボール9a、9bの軸と球面状摺動面10a、10bの軸は光軸1と平行の状態を保っているが、球面状摺動面10a、10bの軸はボール9a、9bの軸の外側になっている。図3(II)の状態では支持枠5が図4(II)に示すようにX駆動コイル14に電流が流れるとマグネット15とヨーク16b、17bから形成される磁力線の作用によってX駆動コイル14に推力が発生し、上方に移動したためボール9bの軸と球面状摺動面10bの軸が一致する方向に摺動し、ボール9aの軸と球面状摺動面10aの軸は離れる方向に摺動する。ボール9a、9bは球面状摺動面10a、10b上を摺動することによって、光軸1に対して補正レンズは光軸1上の像面側に支点をもった円弧の動作をする。図3(III)の状態では支持枠5が図4(III)に示すようにX駆動コイル14に電流が流れるとマグネット15とヨーク16b、17bから形成される磁力線の作用によってX駆動コイル14に推力が発生し、下方に移動したためボール9aの軸と球面状摺動面10aの軸が一致する方向に摺動し、ボール9bの軸と球面状摺動面10bの軸は離れる方向に摺動する。ボール9a、9bは球面状摺動面10a、10b上を摺動することによって、同様に光軸1に対して補正レンズは光軸1上の物体側に支点をもった円弧の動作をする。   In the state of FIG. 3I, the axes of the balls 9a and 9b and the spherical sliding surfaces 10a and 10b remain parallel to the optical axis 1, but the spherical sliding surfaces 10a and 10b have It is outside the axis of the balls 9a, 9b. In the state of FIG. 3 (II), when current flows through the X drive coil 14 as shown in FIG. 4 (II), the support frame 5 moves to the X drive coil 14 by the action of magnetic lines formed by the magnet 15 and the yokes 16b and 17b. Since the thrust is generated and moved upward, the ball 9b slides in a direction in which the axis of the spherical sliding surface 10b coincides, and the axis of the ball 9a and the axis of the spherical sliding surface 10a slide in a direction away from each other. To do. The balls 9 a and 9 b slide on the spherical sliding surfaces 10 a and 10 b, so that the correction lens moves in an arc shape with a fulcrum on the image plane side on the optical axis 1 with respect to the optical axis 1. In the state of FIG. 3 (III), when current flows through the X drive coil 14 as shown in FIG. 4 (III), the support frame 5 moves to the X drive coil 14 by the action of magnetic lines formed by the magnet 15 and the yokes 16b and 17b. Since the thrust is generated and moved downward, the ball 9a and the spherical sliding surface 10a slide in a direction in which they coincide, and the ball 9b and the spherical sliding surface 10b slide in a direction away from each other. To do. As the balls 9a and 9b slide on the spherical sliding surfaces 10a and 10b, the correction lens similarly operates in an arc having a fulcrum on the object side on the optical axis 1 with respect to the optical axis 1.

球面状摺動面10a、10bの軸がボール9a、9bの軸の外側になっている状態を説明したが、球面状摺動面10a、10bの軸がボール9a、9bの軸の内側になっている状態では光軸1に対して補正レンズは光軸1上の物体側に支点をもった円弧の動作をする。   The state in which the axis of the spherical sliding surfaces 10a, 10b is outside the axis of the balls 9a, 9b has been described, but the axis of the spherical sliding surfaces 10a, 10b is inside the axis of the balls 9a, 9b. In this state, the correction lens moves in a circular arc with a fulcrum on the object side on the optical axis 1 with respect to the optical axis 1.

次に実際の動作について説明すると画像ぶれ防止モードに設定された場合、レンズ鏡筒に図示してない振動検知手段により、振動検知手段から得られる信号に基づいて、振動方向と大きさが算出され、X駆動コイル14及びY駆動コイル12に駆動電流として出力される。今X駆動コイル14にある方向の電流が流れるとマグネット15とヨーク16b、17bから形成される磁力線の作用によって該X駆動コイル14に第一方向の推力が発生するが、これが光軸1に対して外側であればプラス方向で、逆電流であれば内側のマイナス方向に推力が発生し、補正レンズ2を伴って、支持枠5は球状摺動面及びピニオン21,22とガイド軸20に従って滑動することになる。 Next, the actual operation will be described. When the image blur prevention mode is set, the vibration direction and magnitude are calculated based on the signal obtained from the vibration detection means by the vibration detection means not shown in the lens barrel. The drive current is output to the X drive coil 14 and the Y drive coil 12. When a current in a certain direction flows in the X drive coil 14 now, a thrust in the first direction is generated in the X drive coil 14 by the action of the magnetic force lines formed by the magnet 15 and the yokes 16b and 17b. If it is outside, a thrust is generated in the plus direction, and if it is a reverse current, a thrust is generated in the minus direction on the inside. With the correction lens 2, the support frame 5 slides according to the spherical sliding surfaces and the pinions 21, 22 and the guide shaft 20. Will do.

次にY駆動コイル12に電流が出力された場合、同じくマグネット13とヨーク16a、17aから形成される磁力線の作用によって、該Y駆動コイル12に第一方向に対して直角の第二方向の推力が発生するが、これが光軸1に対して外側であればプラス方向で、逆電流であれば内側のマイナス方向に推力が発生し、補正レンズ2を伴って、支持枠5は球状摺動面及びピニオン21,22とガイド軸20に従って滑動することになる。   Next, when a current is output to the Y drive coil 12, the thrust in the second direction perpendicular to the first direction is applied to the Y drive coil 12 by the action of the lines of magnetic force formed from the magnet 13 and the yokes 16a and 17a. If this is outside the optical axis 1, thrust is generated in the plus direction, and if it is reverse current, thrust is generated in the minus direction on the inside, and with the correction lens 2, the support frame 5 has a spherical sliding surface. And it slides according to the pinions 21 and 22 and the guide shaft 20.

他の方向に対しては第一と第二の方向の合成ベクトルで求められるため、図示していない第一方向と第二方向の移動方向と移動量の検知手段によって、X駆動コイル14とY駆動コイル12に出力する電流制御で得られる。   Since the other direction is obtained by the combined vector of the first and second directions, the X driving coil 14 and the Y direction are detected by the moving direction and moving amount detecting means (not shown). This is obtained by controlling the current output to the drive coil 12.

今単純化するために図4にX駆動コイル14に流した電流によって生じた第一方向の動作について図示しているが図4(I)は動作外の通常状態で、補正レンズ2の光軸が鏡筒の光軸1と一致した状態にある。補正レンズ2と支持枠5は固定側の保持枠A3に対してガイド軸20に圧嵌された右ピニオン21、左ピニオン22とガイド軸20によって支持されている。   For the sake of simplicity, FIG. 4 shows the operation in the first direction caused by the current passed through the X drive coil 14, but FIG. 4 (I) shows the optical axis of the correction lens 2 in the normal state outside the operation. Is aligned with the optical axis 1 of the lens barrel. The correction lens 2 and the support frame 5 are supported by a right pinion 21, a left pinion 22 and a guide shaft 20 that are press-fitted to the guide shaft 20 with respect to the holding frame A3 on the fixed side.

今、X駆動コイル14に電流が流れ、光軸1に向かった方向、すなわち図4(II)のような上方向に推力が働くと、球面状摺動面10はボール9上を滑り、頂点方向に摺動することにより補正レンズ2を有する保持枠5を変移させる。 Now, the current flows in the X drive coils 14, the direction toward the optical axis 1, that is, thrust in the upward direction as in FIG. 4 (II) acts, spherical sliding surface 10 b slides over the ball 9 b The holding frame 5 having the correction lens 2 is displaced by sliding in the apex direction.

また、X駆動コイル14に流れる電流によって、図4(III)のような下方向の推力が働く、球面状摺動面10はボール9と点接触のまま、内周方向に摺動することにより補正レンズ2を有する保持枠5を変移させる。 Further, the current flowing through the X driving coil 14, acts under the direction of thrust as shown in FIG. 4 (III), spherical sliding surface 10 b remains the ball 9 b and point contact slides on the inner circumferential direction As a result, the holding frame 5 having the correction lens 2 is shifted.

以上のように図4はX駆動コイル14に働く第一方向についての動作について考察したがY駆動コイル12に働く第二方向の動作についても同様で光軸移動に際して、光軸1を支点に補正レンズ2と支持枠5が微少量移動することになり、第一と第二方向が合成された全方向移動に際しても、補正レンズ2と支持枠5を移動する。   As described above, FIG. 4 considered the operation in the first direction acting on the X drive coil 14, but the same applies to the operation in the second direction acting on the Y drive coil 12. When the optical axis moves, the optical axis 1 is corrected as a fulcrum. The lens 2 and the support frame 5 are moved by a small amount, and the correction lens 2 and the support frame 5 are also moved during the omnidirectional movement in which the first and second directions are combined.

支持枠5のガイド軸20を保持するガイド軸受け18は保持枠3Aに固定される。ガイド軸20によって支持部11の長穴11aから、ガイド軸受け18の不図示のガイド穴を通し支持部11の他方の長穴11bに貫通していて、このガイド軸20の両端に右ピニオン21と左ピニオン22が固定されている。これらピニオン21、22はガイド受け18のラック18c、18d(不図示)と噛み合っていて、右ピニオン21は右ラック18cと、左ピニオン22は不図示の左ラック18dと噛み合っているため、支持枠5はガイド受け18に対して、左右のラック上をピニオン21、22が転がることによって、捩れることなく移動できる。   A guide bearing 18 that holds the guide shaft 20 of the support frame 5 is fixed to the holding frame 3A. The guide shaft 20 passes through a guide hole (not shown) of the guide bearing 18 from the elongated hole 11a of the support portion 11 to the other elongated hole 11b of the support portion 11, and a right pinion 21 and The left pinion 22 is fixed. The pinions 21 and 22 mesh with the racks 18c and 18d (not shown) of the guide receiver 18, the right pinion 21 meshes with the right rack 18c, and the left pinion 22 meshes with the left rack 18d (not shown). 5 can move relative to the guide receiver 18 without being twisted by the pinions 21 and 22 rolling on the left and right racks.

ガイド軸20とガイド軸受け18で支えられた支持枠5上のX駆動コイル14とY駆動コイル12は保持枠A3に固定されているヨーク16a、16bのマグネット13、15と上部のヨーク17a、17bで作る磁路の空隙の中間位置に来るよう構成されているため、X駆動コイル14とY駆動コイル12に電流を流した時、電磁作用によって、駆動力が発生し、この合成ベクトルによって、支持枠5の移動が可能となる。この駆動力による移動形態は支持枠5の支持部11の長穴11a、11bに貫通しているガイド軸20がピニオン21、22の回転によって右ラック18cと不図示の左ラック18d上を転がる場合、上下に移動し、ガイド軸受け18がガイド軸20上を左右に滑動する場合は左右に移動することになるため、ピニオン21、22の回転とガイド軸20上のガイド軸受け18の滑動動作の合成によって、支持枠5は回転成分が伴わないで、全方向に移動できることが判る。   The X drive coil 14 and the Y drive coil 12 on the support frame 5 supported by the guide shaft 20 and the guide bearing 18 are magnets 13 and 15 of yokes 16a and 16b and upper yokes 17a and 17b fixed to the holding frame A3. Therefore, when an electric current is passed through the X drive coil 14 and the Y drive coil 12, a driving force is generated by electromagnetic action, and is supported by this composite vector. The frame 5 can be moved. The moving form by this driving force is when the guide shaft 20 penetrating the elongated holes 11a and 11b of the support portion 11 of the support frame 5 rolls on the right rack 18c and the left rack 18d (not shown) by the rotation of the pinions 21 and 22. When the guide bearing 18 moves up and down and slides left and right on the guide shaft 20, the guide bearing 18 moves left and right. Therefore, the rotation of the pinions 21 and 22 and the sliding operation of the guide bearing 18 on the guide shaft 20 are combined. Thus, it can be seen that the support frame 5 can move in all directions without any rotational component.

発明を適応した防振装置における補正レンズ移動機構の実施例を示す分解斜視図である。It is a disassembled perspective view which shows the Example of the correction | amendment lens moving mechanism in the vibration isolator which applied invention. 支持枠の球面状摺動面側を示す斜視図である。It is a perspective view which shows the spherical sliding surface side of a support frame. 防振装置の補正レンズ移動の様子を示す図1の−C断面図である。Is A -C sectional view of FIG. 1 showing how the correction lens moving anti-vibration device. 防振装置の補正レンズ移動の様子を示す図1の−C断面図である。FIG. 5 is a cross-sectional view taken along the line B- C in FIG.

符号の説明Explanation of symbols

1 光軸
2 補正レンズ
3 保持枠A
4 保持枠B
5 支持枠
6 バネ掛けリング
7a バネ
7b バネ
7c バネ
8a ボール受け
8b ボール受け
9a ボール
9b ボール
10a 球面状摺動面
10b 球面状摺動面
10c 球面状摺動面
11 支持部
12 Y駆動コイル
13 マグネット
14 X駆動コイル
15 マグネット
16a ヨーク
16b ヨーク
17a ヨーク
17b ヨーク
1 Optical axis 2 Correction lens 3 Holding frame A
4 Holding frame B
DESCRIPTION OF SYMBOLS 5 Support frame 6 Spring hook ring 7a Spring 7b Spring 7c Spring 8a Ball receiver 8b Ball receiver 9a Ball 9b Ball 10a Spherical slide surface 10b Spherical slide surface 10c Spherical slide surface 11 Support part 12 Y drive coil 13 Magnet 14 X drive coil 15 Magnet 16a Yoke 16b Yoke 17a Yoke 17b Yoke

Claims (3)

レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検出する振動検知手段と、該振動検知手段から得られる信号に基づいて前記補正レンズを駆動し、画像ぶれを防止する制御手段とを備えた画像ぶれ防止装置において、前記補正レンズを前記レンズ鏡筒の光軸に対して偏心移動が可能な支持枠と該支持枠を保持する保持枠を有しており、該支持枠と該保持枠はそれぞれ、複数の独立した球面状摺動面を前記補正レンズの周囲に有し、該支持枠は前記球面状摺動面の摺動により前記レンズ鏡筒の光軸上に支点を持った円弧の動作をしながら偏心移動を行い、
前記支持枠の独立した前記球面状摺動面の球軸と前記補正レンズの光軸との距離は0よりも大きく、前記保持枠の独立した前記球面状摺動面の球軸と前記レンズ鏡筒の光軸との距離よりも大きい又は小さいことを特徴とする画像ぶれ防止装置。
A correction lens installed in the lens barrel and decentering the optical axis; vibration detection means for detecting vibration applied to the lens barrel; and driving the correction lens based on a signal obtained from the vibration detection means ; An image blur prevention device comprising a control means for preventing image blur, comprising: a support frame capable of eccentrically moving the correction lens with respect to an optical axis of the lens barrel; and a holding frame for holding the support frame and are respectively the support frame and the holding frame has a plurality of independent spherical sliding surface on the periphery of the correction lens, the supporting frame the lens barrel by the sliding of the spherical sliding surface Eccentric movement while moving in a circular arc with a fulcrum on the optical axis ,
The distance between the spherical axis of the independent spherical sliding surface of the support frame and the optical axis of the correction lens is greater than 0, and the spherical axis of the independent spherical sliding surface of the holding frame and the lens mirror An image blur prevention device characterized in that it is larger or smaller than the distance from the optical axis of the tube .
前記保持枠の独立した前記球面状摺動面は、前記保持枠に配置された球体の表面であり、前記球体は前記支持枠に設けられた複数の独立した前記球面状摺動面と対向する位置に配置されていることを特徴とする請求項1に記載の画像ぶれ防止装置。 The independent spherical sliding surface of the holding frame is a surface of a sphere disposed on the holding frame, and the sphere faces a plurality of independent spherical sliding surfaces provided on the support frame. The image blur prevention device according to claim 1, wherein the image blur prevention device is disposed at a position . 前記球体は、前記保持枠に設けられた球体受けに保持されていることを特徴とする請求項2に記載の画像ぶれ防止装置。
The image blur prevention device according to claim 2 , wherein the sphere is held by a sphere receiver provided in the holding frame .
JP2006173571A 2006-06-23 2006-06-23 Image blur prevention device Active JP4886382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173571A JP4886382B2 (en) 2006-06-23 2006-06-23 Image blur prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173571A JP4886382B2 (en) 2006-06-23 2006-06-23 Image blur prevention device

Publications (3)

Publication Number Publication Date
JP2008003361A JP2008003361A (en) 2008-01-10
JP2008003361A5 JP2008003361A5 (en) 2009-07-30
JP4886382B2 true JP4886382B2 (en) 2012-02-29

Family

ID=39007787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173571A Active JP4886382B2 (en) 2006-06-23 2006-06-23 Image blur prevention device

Country Status (1)

Country Link
JP (1) JP4886382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137879B2 (en) * 2013-03-07 2017-05-31 キヤノン株式会社 Image blur correction device, lens barrel, optical device, and imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041326A (en) * 2005-08-03 2007-02-15 Samsung Electronics Co Ltd Image stabilizer and imaging apparatus
JP2007334051A (en) * 2006-06-15 2007-12-27 Sony Corp Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP2008003361A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4804564B2 (en) Optical apparatus having shake correction device
EP3115841B1 (en) Camera lens module
US20110122495A1 (en) Imaging lens unit and imaging apparatus
EP2214055B1 (en) Vibration-Proof Lens Unit and Image Capturing Apparatus
JP5383734B2 (en) Image blur correction apparatus and imaging apparatus
US20090059372A1 (en) Optical image stabilizer
JP4602780B2 (en) Image blur prevention device
JP4692027B2 (en) Image blur correction device and camera having the same
US20150153584A1 (en) Image stabilizing apparatus, lens barrel, and image pickup apparatus
US9400397B2 (en) Optical apparatus with movable member for shake correction
JP6286667B2 (en) Lens barrel and imaging device
JP2006215122A5 (en)
CN104216198A (en) Shake correcting device and shooting device
JP5055583B2 (en) Blur correction mechanism and lens barrel
JP4886382B2 (en) Image blur prevention device
JP3713818B2 (en) Image blur correction device
JP6602059B2 (en) Image blur correction device
JP2003307761A (en) Image blur preventing device
US10416411B2 (en) Optical apparatus
JP2009134022A (en) Actuator, imaging apparatus and electronic device
EP2210035B1 (en) Suspension arrangement for directional equipment
JP5365088B2 (en) Image shake correction apparatus and optical apparatus using the same
JP2019184979A (en) Shake correction device and lens device and camera system equipped with the same
JP2015075521A (en) Hand tremor correction device
JP4653424B2 (en) Image blur prevention device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250