JP4653424B2 - Image blur prevention device - Google Patents

Image blur prevention device Download PDF

Info

Publication number
JP4653424B2
JP4653424B2 JP2004185752A JP2004185752A JP4653424B2 JP 4653424 B2 JP4653424 B2 JP 4653424B2 JP 2004185752 A JP2004185752 A JP 2004185752A JP 2004185752 A JP2004185752 A JP 2004185752A JP 4653424 B2 JP4653424 B2 JP 4653424B2
Authority
JP
Japan
Prior art keywords
correction lens
shaft
optical axis
fixed
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004185752A
Other languages
Japanese (ja)
Other versions
JP2006010887A (en
Inventor
勝 山本
浩二 星
隆夫 小川
良憲 伴野
康久 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2004185752A priority Critical patent/JP4653424B2/en
Publication of JP2006010887A publication Critical patent/JP2006010887A/en
Application granted granted Critical
Publication of JP4653424B2 publication Critical patent/JP4653424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学的防振装置に関し、特に画像振動を補正するためにレンズ鏡筒に設置する画像振れ防止装置の構造に関する。   The present invention relates to an optical image stabilizer, and more particularly to a structure of an image shake preventer installed in a lens barrel in order to correct image vibration.

撮影レンズを構成する一部の補正レンズを光軸と垂直な方向に移動する機構は、例えばカメラにおいて像振れの原因であるカメラ振れの加速度を検知することによって像振れを予測し、この予測信号に基づいてレンズを直角方向に移動することによって、像振れを抑制する防振装置が提案されている。   The mechanism that moves some of the correction lenses that make up the photographic lens in the direction perpendicular to the optical axis predicts image blur, for example, by detecting the camera shake acceleration that causes image blur in the camera. Based on the above, there has been proposed a vibration isolator that suppresses image blur by moving the lens in a right angle direction.

これら防振装置については種々の方法が提案されているが、如何なる振動方向でも補正レンズを光軸に対して直角方向に補正移動可能な機構でなくてはならなく、一提案として、補正レンズ鏡枠側面の3箇所から放射状に案内軸を設け、防振装置本体側面に設けられている3箇所の案内溝にそれぞれ挿入し、補正レンズ鏡枠が全方向に補正移動可能とし、更に該補正レンズ鏡枠が光軸中心に保持出来るよう本体側面3箇所からから付勢されたコイルばねで宙づりにする構造が開示されていて、XとY方向移動のための二つのムービングコイルに働く合成力と前記ばねの弾性抗力の差で決まる量だけ、光軸に直角な移動を決定するシステムを提案しているが、前記補正レンズ鏡枠を光軸に対して直角に保持するために前記案内軸と固定部の案内溝の嵌合精度を高める必要があり、そのために軸と溝の間に生ずる摩擦抵抗が増え、迅速な垂直移動の妨げになっている。   Various methods have been proposed for these anti-vibration devices, but the mechanism must be capable of correcting and moving the correction lens in the direction perpendicular to the optical axis in any vibration direction. A guide shaft is provided radially from three locations on the side surface of the frame, and is inserted into each of three guide grooves provided on the side surface of the vibration isolator body so that the correction lens barrel can be corrected and moved in all directions. A structure is disclosed in which the lens frame is suspended by coil springs urged from three sides of the main body so that the lens frame can be held at the center of the optical axis, and the combined force acting on the two moving coils for movement in the X and Y directions is disclosed. A system has been proposed for determining the movement perpendicular to the optical axis by an amount determined by the difference in elastic drag of the spring, but in order to hold the correction lens frame perpendicular to the optical axis, Guide of fixed part The need to increase the fitting accuracy, therefore the friction occurring between the shaft and the groove resistance increases to, and hinders rapid vertical movement.

移動時の摩擦抵抗を減らすため、補正レンズ鏡枠の案内軸と溝の嵌合精度を緩め、遊動させたいがこのために生じる移動時の振動が補正精度に影響を与えることから好ましくない。このため一方に寄せて補正レンズ枠の光軸に対する垂直平面の精度を保つように、補正レンズ枠を光軸に保つ付勢ばねの分力によって保持面に当てる方法も提案されているが結果的には保持面に圧力を掛けることから摩擦抵抗を減らす効果は得られていない。   In order to reduce the frictional resistance at the time of movement, the fitting accuracy between the guide shaft and the groove of the correction lens barrel is loosened and it is desired to move freely, but this is not preferable because the vibration at the time of movement affects the correction accuracy. For this reason, there has been proposed a method in which the holding surface is applied by the component force of the biasing spring that keeps the correction lens frame on the optical axis so as to keep the accuracy of the plane perpendicular to the optical axis of the correction lens frame toward one side. Has no effect of reducing frictional resistance because pressure is applied to the holding surface.

この改善策として、同出願者は一本のヒンジ軸で補正レンズ枠を支え、全方向に傾倒可能な構造とし、補正のための移動を全方向に可能な構造を特開2003−307761及び特開2004−177530で提案している。ヒンジ軸の両端末は球、又は球状成形されたもので、図2に示すように両端でこれを受けた構造となっていて、従来の摩擦面を摺動する構造に比し、遙かに移動時の軽量化が実現出来ている。
特開平10−026784号公報 特開平10−003102号公報 特開2003−307761号公報 特開2004−177530号公報
As an improvement measure, the applicant supports a correction lens frame with a single hinge shaft so that it can tilt in all directions, and a structure that can be moved in all directions is disclosed in Japanese Patent Application Laid-Open No. 2003-307761. Proposed in open 2004-177530. Both ends of the hinge shaft are spheres or sphere-shaped, and have a structure that receives them at both ends as shown in FIG. 2, which is far more than the conventional structure that slides on the friction surface. Lightweight when moving.
Japanese Patent Laid-Open No. 10-026784 Japanese Patent Laid-Open No. 10-003102 JP 2003-307761 A JP 2004-177530 A

解決しようとする問題点は、従来例である前記特開2003−307761及び特開2004−177530の一本ヒンジ軸構造において軸端末を全方向傾倒可能なように球状成形したものを用いるようにしているが、製造上、端末の球形加工を含む軸の加工に困難性があり、特に両端の球形の真円精度を高めるに比例し、製造コストがかかる問題を有していた。   The problem to be solved is that a single hinge shaft structure of the above-mentioned Japanese Patent Application Laid-Open Nos. 2003-307761 and 2004-177530, which is a conventional example, uses a spherically shaped shaft end so that it can tilt in all directions. However, in manufacturing, there is a difficulty in processing the shaft including the spherical processing of the terminal, and in particular, there is a problem in that the manufacturing cost is proportional to increasing the roundness accuracy of the spherical shape at both ends.

本発明は、従来の球状端末のヒンジ軸の形状を加工し易い一本の軸と市販の鋼球に分け、前記軸を両端から二つの鋼球によって挟持し、これを、該鋼球を受ける両端の球受け間に軸架することによって前記軸の全方向傾倒動作を可能とし、さらに当該軸を芯としたコイルばねを両球受け間に張架し、当該コイルばねの収縮圧力によって前記軸を両端の鋼球で挟持可能にすることによって解決した。即ち、支持枠の受部と固定部側の受部にそれぞれボールを設置し、該両ボール間に前記軸を挟持する構造とし、前記両受部にそれぞれ両端が固定されたコイルばねの収縮付勢力によって前記ボールと軸を保持し、且つ前記軸の全方向傾倒動作が可能であって、前記補正レンズが全方向移動に対して、光軸位置に復帰する習性を与える構造とした。更に、前記補正レンズの支持枠の受部と固定側の受部は共に円筒状先端が雄ネジに形成されていて、両間に設置するコイルばねは前記雄ネジの谷径とほぼ同一の内径に形成されたものであって、その両端を前記両受部の先端に螺合させて固定するものであり、前記コイルばねの収縮付勢力は前記両受部の回転によって調整可能にした。   In the present invention, the shape of the hinge shaft of a conventional spherical terminal is divided into one shaft that is easy to process and a commercially available steel ball, and the shaft is sandwiched by two steel balls from both ends, and the steel ball is received. It is possible to tilt the shaft in all directions by mounting it between the ball bearings at both ends, and further, a coil spring with the shaft as a core is stretched between the ball bearings, and the shaft is moved by the contraction pressure of the coil spring. The problem was solved by making it possible to hold it between the steel balls at both ends. That is, a ball is installed in the receiving part of the support frame and the receiving part on the fixed part side, and the shaft is sandwiched between the two balls, and the coil spring is contracted with both ends fixed to the receiving part. The ball and the shaft are held by the force, and the shaft can be tilted in all directions, and the correction lens is given a habit of returning to the optical axis position with respect to the movement in all directions. Furthermore, both the receiving portion of the support frame of the correction lens and the receiving portion on the fixed side are formed with a cylindrical tip on the male screw, and the coil spring installed between them has an inner diameter substantially the same as the valley diameter of the male screw. The both ends of the coil springs are fixed to the front ends of the two receiving portions, and the contraction biasing force of the coil spring can be adjusted by the rotation of the two receiving portions.

画像振れ補正のために偏心移動させる補正レンズの支持枠と固定側の保持枠の間を一本のヒンジ軸によって支持し、この全方向傾倒動作で補正を行う画像振れ装置において、本発明によって当該ヒンジ軸の加工と組み立てが容易になる一方、両鋼球の脱落防止のために両球受け間に張架するコイルばねによって収縮圧力が生じていて、全方向傾倒時には撓み抗力によって補正レンズが光軸位置に復帰する習性弾性が得られ迅速な応動が保証される。   In an image shake apparatus that supports a correction lens that is moved eccentrically for image shake correction and a fixed holding frame by a single hinge shaft and performs correction by tilting in all directions. While it is easy to process and assemble the hinge shaft, the contraction pressure is generated by the coil spring stretched between the two ball holders to prevent the steel balls from falling off. Habitual elasticity to return to the shaft position is obtained, and quick response is guaranteed.

以下、図面等を参照して本発明の最も良好な実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to the drawings.

図1は、本発明装置の1実施例の断面図であって、図2a,bは全方向傾倒ヒンジ軸の動作説明図で、図3は本発明の画像振れ防止装置の斜視図を示している。   FIG. 1 is a cross-sectional view of an embodiment of the apparatus of the present invention. FIGS. 2a and 2b are operation explanatory views of an omnidirectional tilting hinge shaft, and FIG. 3 is a perspective view of an image shake preventing apparatus of the present invention. Yes.

画像振れ防止装置とはレンズ鏡筒内の固定部に対して、補正レンズ2を振動に応じて補正すべく必要な方向必要な距離だけ光軸1からシフトさせる機構であり、重要なことは補正レンズ2を固定部の光軸1に対し、可動可能な保持機構と光軸1を中心に回転が伴わないで、約垂直な全方向にスムーズに移動させることが可能な機構が必要となる。このため発明者は先願特許(特願2002−341616)で全体構成を示す図3の実施例を提案し、この画像振れ防止装置に採用したものである。   The image blur prevention device is a mechanism that shifts the correction lens 2 from the optical axis 1 by a necessary distance in a necessary direction to correct the fixed portion in the lens barrel in accordance with vibration. A holding mechanism that can move the lens 2 with respect to the optical axis 1 of the fixed part and a mechanism that can smoothly move the lens 2 in all directions perpendicular to the optical axis 1 without rotation are required. For this reason, the inventor proposed the embodiment of FIG. 3 showing the entire configuration in the prior patent (Japanese Patent Application No. 2002-341616) and adopted it in this image blur prevention apparatus.

図1に合わせて図3に示す画像振れ防止装置の全体構成から説明すると、図3は部品を大きく分けてレンズ鏡筒に固定される固定側の保持枠3と後ろから取り付ける押え板6と補正レンズ2を保持して全方向に可動な支持枠4に分けられている。   The overall configuration of the image shake prevention apparatus shown in FIG. 3 will be described with reference to FIG. 1. FIG. 3 shows a fixed holding frame 3 fixed to the lens barrel and a presser plate 6 attached from the back. It is divided into a support frame 4 that holds the lens 2 and is movable in all directions.

光軸1を中心に中空環状の保持枠3には板状対磁石のY駆動マグネット11とX駆動マグネット12が直角状に配置固着した下ヨーク10が固定されていて、保持枠3には直角に配置したYX駆動マグネット11,12の約交点に当たる位置に大きめの貫通穴3aが開いていて、この穴3aに対して光軸1を挟んだ対向位置にガイド受13が固定されている。このガイド受13は図のように両端が直動歯車で、左ラック13eと右ラック13fとなり、内側で起立し、長穴13bが開いた軸受部13aと長穴13dが開いた軸受部13cが一体で成形されている。   A lower yoke 10 to which a Y-drive magnet 11 and an X-drive magnet 12 that are plate-shaped counter magnets are arranged and fixed at right angles is fixed to a hollow annular holding frame 3 around the optical axis 1. A large through-hole 3a is opened at a position corresponding to an approximately intersection of the YX drive magnets 11 and 12 disposed in the guide, and a guide receiver 13 is fixed at a position facing the hole 3a with the optical axis 1 interposed therebetween. As shown in the figure, the guide receiver 13 has linear motion gears at both ends, which are a left rack 13e and a right rack 13f. It is molded in one piece.

一方、中心に補正レンズ2を支持固定した支持枠4にはお互い直角になるようY駆動コイル15とX駆動コイル16が図のように配設されていて、この直交点に当たる位置に
後に詳述するヒンジ軸7及びボール7aを受ける受部9が在る。この受部9に対して光軸1を通過する垂直線上に在って、且つ水平に設置されたガイド軸受5が在り、スライド穴5a,5bを有していてガイド軸17がガイド軸受5に対し回転とスライドが可能となっている。またガイド軸受5は保持枠3に固定されているガイド受13の軸受部13aと軸受部13cの間に設置し、ガイド軸17が長穴13dを通し、ガイド軸受5のスライド穴5bからスライド穴5aを通し、ガイド受13の軸受部13aの長穴13bを貫通させている。またこのガイド軸17の両端には右ピニオン19と左ピニオン18を固定し、右ピニオン19は右ラック13fと、左ピニオン18は左ラック13eと噛み合わせている。
On the other hand, a Y drive coil 15 and an X drive coil 16 are arranged at right angles to the support frame 4 that supports and fixes the correction lens 2 at the center as shown in the figure, and will be described in detail later at a position corresponding to this orthogonal point. There is a receiving portion 9 for receiving the hinge shaft 7 and the ball 7a. A guide bearing 5 is provided on the vertical line passing through the optical axis 1 with respect to the receiving portion 9 and installed horizontally, and has slide holes 5a and 5b. The guide shaft 17 is provided on the guide bearing 5. In contrast, rotation and sliding are possible. The guide bearing 5 is installed between the bearing portion 13 a and the bearing portion 13 c of the guide receiver 13 fixed to the holding frame 3, the guide shaft 17 passes through the long hole 13 d, and the slide hole 5 b of the guide bearing 5 extends from the slide hole 5 b. The long hole 13b of the bearing portion 13a of the guide receiver 13 is passed through 5a. A right pinion 19 and a left pinion 18 are fixed to both ends of the guide shaft 17, and the right pinion 19 meshes with the right rack 13f and the left pinion 18 meshes with the left rack 13e.

これらの左右ピニオン18,19が左右ラック13e、13fと噛み合いながら転がることにより、ガイド軸17がガイド受13の長穴13b、13d内を片方に振れることなく、平行に移動可能となるため、支持枠4を光軸1に対して垂直方向に正確に移動できると同時に支持枠4のガイド軸受5はガイド軸17に対して、左右にスライドできることから、支持枠4は光軸1に対し左右垂直に移動することができる。この二つのガイドに従った動きは互いに直角の関係にあり、補正レンズ2の保持枠3と一体に固着されているY駆動コイル15とX駆動コイル16の合成された駆動力により、全方向に定量的な移動が可能となっている。   The left and right pinions 18 and 19 roll while meshing with the left and right racks 13e and 13f, so that the guide shaft 17 can move in parallel without swinging in the long holes 13b and 13d of the guide receiver 13, so Since the frame 4 can be accurately moved in the vertical direction with respect to the optical axis 1 and the guide bearing 5 of the support frame 4 can slide to the left and right with respect to the guide shaft 17, the support frame 4 is perpendicular to the optical axis 1. Can be moved to. The movements according to these two guides are perpendicular to each other, and in all directions due to the combined drive force of the Y drive coil 15 and the X drive coil 16 fixed integrally with the holding frame 3 of the correction lens 2. Quantitative movement is possible.

Y駆動コイル15とX駆動コイル16の駆動力発生方法としては前記のように保持枠3に設置され下ヨーク10に固着されているY駆動マグネット11とX駆動マグネット12の上部に一定間隙を保持した上ヨーク14が設置されていて、Y、X駆動マグネット11,12によって、間隙に発生する磁力線が閉ループを描くようになっているがこの間隙にY、X駆動マグネット11,12の表面と上ヨーク14の表面との間に僅少ながら空隙を保てる位置に支持枠4のY駆動コイル15とX駆動コイル16が挿入維持されている。   As a method for generating the driving force of the Y driving coil 15 and the X driving coil 16, a predetermined gap is maintained above the Y driving magnet 11 and the X driving magnet 12 which are installed on the holding frame 3 and fixed to the lower yoke 10 as described above. The upper yoke 14 is installed, and the magnetic lines of force generated in the gap draw a closed loop by the Y and X drive magnets 11 and 12, but the surface of the Y and X drive magnets 11 and 12 are above the gap. The Y drive coil 15 and the X drive coil 16 of the support frame 4 are inserted and maintained at a position where a slight gap can be maintained between the surface of the yoke 14.

補正レンズ2の光軸と鏡筒の光軸1が一致している状態ではY駆動マグネット11の磁極対向位置にY駆動コイル15のそれぞれのコイル辺が、X駆動マグネット12の磁極対向位置にはX駆動コイル16のそれぞれのコイル辺が僅少な間隙を保ちながら正確に覆うようになっているため、Y駆動コイル15及びX駆動コイル16に電流を流す大きさと方向で、間隙に発生している磁力線との電磁作用によって光軸1に対して内側或いは外側に移動する駆動力が発生する。Y駆動コイル15とX駆動コイル16はそれぞれ90度開いた位置にあるため、駆動方向はそれぞれ90度異なり、手振れ補正のための任意の方向移動はY駆動コイル15とX駆動コイル16の方向と駆動力の合成ベクトルで得られることになる。   In a state where the optical axis of the correction lens 2 and the optical axis 1 of the lens barrel coincide with each other, each coil side of the Y drive coil 15 at the magnetic pole opposing position of the Y driving magnet 11 and each of the coil sides of the X driving magnet 12 at the magnetic pole opposing position. Since each coil side of the X drive coil 16 is accurately covered while maintaining a slight gap, the X drive coil 16 is generated in the gap in the magnitude and direction in which a current flows through the Y drive coil 15 and the X drive coil 16. A driving force that moves inward or outward with respect to the optical axis 1 is generated by electromagnetic action with the magnetic field lines. Since each of the Y drive coil 15 and the X drive coil 16 is at a position opened 90 degrees, the drive directions are 90 degrees different from each other, and any direction movement for camera shake correction is the same as the direction of the Y drive coil 15 and the X drive coil 16. It is obtained by a combined vector of driving forces.

補正レンズ2を含む支持枠4は手振れ防止に必要な補正量を手振れ動作に同期した高速度で応答することが必要であるため、支持における摺動摩擦を極力避けなければならない。
このことから本装置では図3に示すように前記のガイド軸17を底辺とした三角形の頂点に当たる位置に全方向に傾倒可能なヒンジ軸7を設置して支持枠4を固定側の保持枠3及び押さえ板6に対して支持する方法を採用し、支持枠4の移動時における固定側との接触を避けている。
Since the support frame 4 including the correction lens 2 needs to respond with a correction amount necessary for preventing camera shake at a high speed synchronized with the camera shake operation, sliding friction in the support must be avoided as much as possible.
Therefore, in this apparatus, as shown in FIG. 3, a hinge shaft 7 that can be tilted in all directions is installed at a position corresponding to the apex of the triangle with the guide shaft 17 as a base, and the support frame 4 is fixed to the holding frame 3 on the fixed side. And the method of supporting with respect to the pressing plate 6 is adopted to avoid contact with the fixed side when the support frame 4 is moved.

このヒンジ軸7を含む光軸1に対する断面図が図1で、ここに明示してあるようにヒンジ軸7は両先端中心がテーパ状に沈んだ凹形を成し、ボール7a及びボール7bが受けられるようになっていて、ボール7aはヒンジ軸7の左端とヒンジ軸7の両端と同じ中心形状の受部9との間に保持し、ボール7bはヒンジ軸7の両端と同じ中心形状の受部8との間に保持し、受部8は固定側の押え板6側に、受部9は可動側の支持枠4側に設置する状態にして、押え板6が保持枠3の穴3aを貫通したヒンジ軸7で支持枠4を支持する形を構成し、保持枠3と支持枠4の間を一定間隔に維持している。またヒンジ軸7はボール7a、7bによって固定側の保持枠3に対して全方向に自在に傾けることができ、且つ極めて軽快な動作が得られる。この原理的動作を示した図が図2のAで補正レンズ2の光軸が固定側鏡筒の光軸1と一致している状態で、非補正の状態が実線で示すヒンジ軸7の直立状態位置であって、これが全方向に傾倒することにより補正レンズ2を補正に必要な移動方向と移動量が得られことを示している。   A sectional view of the optical axis 1 including the hinge shaft 7 is shown in FIG. 1. As clearly shown here, the hinge shaft 7 has a concave shape in which the centers of both ends are tapered, and the balls 7a and 7b are The ball 7 a is held between the left end of the hinge shaft 7 and the receiving portion 9 having the same center shape as both ends of the hinge shaft 7, and the ball 7 b has the same center shape as both ends of the hinge shaft 7. It is held between the receiving part 8, the receiving part 8 is installed on the fixed holding plate 6 side, and the receiving part 9 is installed on the movable supporting frame 4 side. A shape that supports the support frame 4 is constituted by the hinge shaft 7 penetrating 3a, and the space between the holding frame 3 and the support frame 4 is maintained at a constant interval. The hinge shaft 7 can be freely tilted in all directions with respect to the holding frame 3 on the fixed side by the balls 7a and 7b, and an extremely light operation can be obtained. FIG. 2A is a diagram showing this principle operation. In FIG. 2A, the optical axis of the correction lens 2 coincides with the optical axis 1 of the fixed-side lens barrel, and the uncorrected state is upright of the hinge shaft 7 indicated by a solid line. This is a state position, which indicates that the movement direction and the movement amount necessary for correcting the correction lens 2 can be obtained by tilting in all directions.

受部8のボール7bと受部9のボール7aによってヒンジ軸7を挟持させるには単なる部品の積み重ねだけでは状態を維持させることは不可で、姿勢によって各部品が離散してしまう危険がある。これを簡単な構造で解決したのが本案であるのでヒンジ軸7を中心にした構成を以下に詳しく説明すると、図1の断面図に示すように受部8及び受部9の形状は中心がテーパ状に沈んだ凹形でボール7a.7bを受けられるようになっていて、その回りは間隔をおいて円筒部8c、9cを形成し、その外形は同一ピッチの山と谷を有する雄ネジ状に形成され、ほぼ同一形状となっている。この両受部8,9の雄ネジの形状は両受部8,9間に設置するコイルばね20の形状に密接に関係し、雄ネジが右ネジならばコイルばね20は右巻きであり、左ネジならば左巻きに形成されたばねを使用することが必須条件になる。   In order to hold the hinge shaft 7 between the ball 7b of the receiving portion 8 and the ball 7a of the receiving portion 9, it is impossible to maintain the state by simply stacking the components, and there is a risk that each component is dispersed depending on the posture. Since the present invention has solved this with a simple structure, the configuration centered on the hinge shaft 7 will be described in detail below. As shown in the sectional view of FIG. 1, the shapes of the receiving portion 8 and the receiving portion 9 are centered. Recessed ball 7a. 7b can be received, cylindrical portions 8c and 9c are formed at intervals around the outer periphery, and the outer shape thereof is formed in the shape of a male screw having peaks and valleys of the same pitch, and has substantially the same shape. Yes. The shape of the male screw of the receiving portions 8 and 9 is closely related to the shape of the coil spring 20 installed between the receiving portions 8 and 9, and if the male screw is a right-hand screw, the coil spring 20 is right-handed. For left-handed screws, it is essential to use a left-handed spring.

受部8は押え板6の穴6aに嵌入させ、受部8のつば8bによって抜け出ないようになっていて、他方の受部9も支持枠4の穴4aに嵌入させ、つば9bによって抜け出ないようになっている一方、頭部のスリ割り8a、9aによってそれぞれの受部8、9は穴6a及び穴4aを基準に回すことができるようになっている。また受部8、9間に設置するコイルばね20の形状は受部8、9の円筒部8c、9cの谷部直径とコイルばね20の内径とほぼ同一な形状に設計されていて、コイルばね20の両先端に対して受部8、9の円筒部8c、9cのネジ部に螺着することが可能になっている。   The receiving portion 8 is fitted into the hole 6a of the holding plate 6 so that it cannot be pulled out by the collar 8b of the receiving portion 8, and the other receiving portion 9 is also fitted into the hole 4a of the support frame 4 and cannot be pulled out by the collar 9b. On the other hand, the receiving portions 8 and 9 can be turned with reference to the holes 6a and 4a by the slits 8a and 9a of the head. The shape of the coil spring 20 installed between the receiving portions 8 and 9 is designed to be substantially the same as the valley diameter of the cylindrical portions 8 c and 9 c of the receiving portions 8 and 9 and the inner diameter of the coil spring 20. It can be screwed to the threaded portions of the cylindrical portions 8c and 9c of the receiving portions 8 and 9 with respect to both ends of 20.

以上のような形状に加工された部品を順序に従って組み立ててみると、右巻きコイルばね20に対して受部8の円筒部8cが右ネジに加工されているから頭部のスリ割り8aを右に回すことによりコイルばね20の先端が円筒部8cのネジ部に螺合しながら深く螺着させることが出来る。この状態で受部8の中心にボール7bを置きその上からヒンジ軸7をコイルばね20の中心になるよう設置し、更にヒンジ軸7の他端にボール7aを乗せ更にその上から支持枠4に設置されている受部9を中心でボール7aを受けるよう被せ、頭部のスリ割り9aを右回しすると円筒部9cの右ネジ部にコイルばね20の先端が螺合し、回す回数によって深くも浅くも任意に螺着させることができる。   When the parts machined in the above shape are assembled in order, the cylindrical part 8c of the receiving part 8 is machined into a right-hand thread with respect to the right-handed coil spring 20, so that the slot 8a on the head is moved to the right. The tip of the coil spring 20 can be screwed deeply while being screwed into the threaded portion of the cylindrical portion 8c. In this state, the ball 7b is placed at the center of the receiving portion 8 and the hinge shaft 7 is installed so as to be the center of the coil spring 20, and the ball 7a is placed on the other end of the hinge shaft 7 and further the support frame 4 is placed thereon. Covering the receiving portion 9 installed in the center to receive the ball 7a and turning the slot 9a of the head clockwise, the tip of the coil spring 20 is screwed into the right-hand thread portion of the cylindrical portion 9c, and the depth is increased depending on the number of turns. Even if it is shallow, it can be arbitrarily screwed.

図1に示すように組み立てられた結果は中心にヒンジ軸7とその両端にボール7a、7bを置き、更にこの両端から受部8、9で挟み込んだ形を中心に置き、コイルばね20で包み込んだ形となるが、コイルばね20の両端は円筒部8cと9cのネジ部に螺合するため、コイルばね20を伸長する結果になり、ヒンジ軸7を中心にボール7a、7bを通して受部8と受部9から収縮圧力がかかることになる。このことによりヒンジ軸7を中心に両端にボール7a、7bを保持し、これを受部8と受部9で挟持する形を維持し、姿勢による構成部品の離散を防止することができる。受部8と受部9間のコイルばね20による収縮圧力は頭部のスリ割り8a、9aを回転調整することによりコイルばね20の両端が円筒8c、9cに螺合する深さが変化し、強さを調整することができる。   As a result of assembling as shown in FIG. 1, the hinge shaft 7 and balls 7 a and 7 b are placed at both ends at the center, and the shape sandwiched by the receiving portions 8 and 9 from both ends is placed at the center and wrapped with the coil spring 20. Although both ends of the coil spring 20 are screwed into the threaded portions of the cylindrical portions 8c and 9c, the coil spring 20 is extended, and the receiving portion 8 passes through the balls 7a and 7b around the hinge shaft 7. The contraction pressure is applied from the receiving part 9. As a result, the balls 7a and 7b are held at both ends with the hinge shaft 7 as the center, and the shape in which the balls 7a and 7b are held between the receiving portion 8 and the receiving portion 9 can be maintained, and the components can be prevented from being dispersed due to the posture. The contraction pressure by the coil spring 20 between the receiving part 8 and the receiving part 9 changes the depth at which both ends of the coil spring 20 are screwed into the cylinders 8c, 9c by adjusting the slits 8a, 9a of the head. The strength can be adjusted.

図1に示す状態は光軸1と補正レンズ2の光軸が一致した手振れ防止の補正動作前の状態を示していて、ヒンジ軸7が固定側の保持枠3に対して直立姿勢であって、コイルばね20も撓みの無い状態にある。しかし図2のBに示すように補正に必要な支持枠4の移動量γに対してヒンジ軸7はα°傾斜することになり、図のようにコイルバネ20が撓み、ヒンジ軸7の直立復帰への復元力が生じる。図2のBは支持枠4が固定側の保持枠3に対して右へ移動した例を示してあるが実際は全方向について対応可能で、如何なる方向と移動量に対してもコイルばね20に撓みが生じ、これに従って直立姿勢への復元力が加わり、補正レンズ2の光軸が鏡筒の光軸1に合致する位置に復する復帰習性が備わることになる。補正時における補正レンズ2の光軸1への速度特性を伴った復帰習性およびこの復元力はそれぞれのレンズ特性に合致した適正な補正特性に合ったものでなければならないが、この調整が受部8及び受部9の回転調整で簡単に得られる利点と共に、重要な部品が市販の部品か、或いは簡単な加工の部品だけで構成できることの工業的価値は大きい。   The state shown in FIG. 1 shows a state before the camera shake correction operation in which the optical axis 1 and the optical axis of the correction lens 2 coincide with each other, and the hinge shaft 7 is in an upright posture with respect to the holding frame 3 on the fixed side. The coil spring 20 is also free from bending. However, as shown in FIG. 2B, the hinge shaft 7 is inclined by α ° with respect to the movement amount γ of the support frame 4 necessary for correction, and the coil spring 20 is bent as shown in FIG. The resilience to is generated. FIG. 2B shows an example in which the support frame 4 is moved to the right with respect to the holding frame 3 on the fixed side. However, the support frame 4 is actually applicable to all directions and bends to the coil spring 20 in any direction and amount of movement. Accordingly, a restoring force to the upright posture is applied in accordance with this, and a returning behavior is provided in which the optical axis of the correction lens 2 returns to a position that matches the optical axis 1 of the lens barrel. The return habit with the speed characteristic of the correction lens 2 to the optical axis 1 and the restoring force at the time of correction must match the appropriate correction characteristics that match the respective lens characteristics. In addition to the advantages that can be easily obtained by adjusting the rotation of the bearing 8 and the receiving part 9, the industrial value that the important parts can be composed of commercially available parts or simple processed parts is great.

ジョイステックに近似する一本の軸が全方向に傾倒動作可能な構造を有する産業商品において、軸の直立位置への復帰習性を与えたい場合、本発明のように前記軸を芯にし、両方の軸受間にコイルばねを挿入することにより、容易に解決できる。   In an industrial product having a structure in which a single shaft approximating to a joystick can be tilted in all directions, when it is desired to give a return habit to the upright position of the shaft, the shaft is used as a core as in the present invention. This can be easily solved by inserting a coil spring between the bearings.

本発明の画像振れ防止装置の断面図である。It is sectional drawing of the image blurring prevention apparatus of this invention. ヒンジ軸の動作説明図である。It is operation | movement explanatory drawing of a hinge shaft. 画像振れ防止装置の斜視図である。It is a perspective view of an image shake prevention apparatus.

符号の説明Explanation of symbols

1 光軸
2 補正レンズ
3 保持枠
4 支持枠
5 ガイド軸受
6 押え板
7 ヒンジ軸
8 受部
9 受部
10 下ヨーク
11 Y駆動マグネット
12 X駆動マグネット
13 ガイド受
14 上ヨーク
15 Y駆動コイル
16 X駆動コイル
17 ガイド軸
18 左ピニオン
19 右ピニオン
20 コイルばね
DESCRIPTION OF SYMBOLS 1 Optical axis 2 Correction lens 3 Holding frame 4 Support frame 5 Guide bearing 6 Holding plate 7 Hinge shaft 8 Receiving part 9 Receiving part 10 Lower yoke 11 Y drive magnet 12 X drive magnet 13 Guide receiver 14 Upper yoke 15 Y drive coil 16 X Drive coil 17 Guide shaft 18 Left pinion 19 Right pinion 20 Coil spring

Claims (2)

レンズ鏡筒内に設置され、光軸を偏心させる補正レンズと、前記レンズ鏡筒に加わる振動を検知する振動検知手段と、該振動検知手段から得られる信号に基づいて前記補正レンズを駆動し、画像振れを防止する制御手段とを備えた画像振れ防止装置であって、お互い垂直の関係にある第一方向と第二方向の駆動機構によって前記補正レンズを光軸中心に全方向に移動可能な補正レンズ可動機構の前記補正レンズの支持枠を固定部に対して一本の軸で枢支し、該軸の全方向傾倒動作によって可能となる補正レンズ可動機構において、前記支持枠の受部と固定部側の受部にそれぞれボールを設置し、該両ボール間に前記軸を挟持する構造とし、前記両受部にそれぞれ両端が固定されたコイルばねの収縮付勢力によって前記ボールと軸を保持し、且つ前記軸の全方向傾倒動作が可能であって、前記補正レンズが全方向移動に対して、光軸位置に復帰する習性を与えたことを特徴とする画像振れ防止装置。 A correction lens installed in the lens barrel and decentering the optical axis; vibration detection means for detecting vibration applied to the lens barrel; and driving the correction lens based on a signal obtained from the vibration detection means ; An image blur prevention apparatus including a control unit for preventing image blur, wherein the correction lens can be moved in all directions around the optical axis by drive mechanisms in a first direction and a second direction which are perpendicular to each other. In the correction lens moving mechanism, which is supported by a tilting operation in all directions of the shaft, the support frame of the correction lens of the correction lens moving mechanism is pivotally supported by a single shaft with respect to the fixed portion. Each ball is installed in the receiving part on the fixed part side, and the shaft is sandwiched between the two balls, and the ball and the shaft are held by a contraction biasing force of a coil spring fixed at both ends to the both receiving parts. And A possible omnidirectional tilting operation of the shaft, the correction lens with respect to omnidirectional image blur prevention apparatus is characterized in that given a habit of returning to the optical axis position. 前記補正レンズの支持枠の受部と固定側の受部は共に円筒状先端が雄ネジに形成されていて、両間に設置するコイルばねは前記雄ネジの谷径とほぼ同一の内径に形成されたものであって、その両端を前記両受部の先端に螺合させて固定するものであり、前記コイルばねの収縮付勢力は前記両受部の回転によって調整可能にしたことを特徴とする請求項1記載の画像振れ防止装置。   Both the receiving part of the support frame of the correction lens and the receiving part on the fixed side are formed with a cylindrical tip at the male screw, and the coil spring installed between them is formed with an inner diameter that is substantially the same as the valley diameter of the male screw. The both ends of the coil springs are fixed by screwing them to the tips of the receiving parts, and the contraction biasing force of the coil spring can be adjusted by the rotation of the receiving parts. The image blur prevention apparatus according to claim 1.
JP2004185752A 2004-06-24 2004-06-24 Image blur prevention device Active JP4653424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185752A JP4653424B2 (en) 2004-06-24 2004-06-24 Image blur prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185752A JP4653424B2 (en) 2004-06-24 2004-06-24 Image blur prevention device

Publications (2)

Publication Number Publication Date
JP2006010887A JP2006010887A (en) 2006-01-12
JP4653424B2 true JP4653424B2 (en) 2011-03-16

Family

ID=35778249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185752A Active JP4653424B2 (en) 2004-06-24 2004-06-24 Image blur prevention device

Country Status (1)

Country Link
JP (1) JP4653424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691472B2 (en) * 2006-05-22 2011-06-01 Hoya株式会社 Mobile unit support device
JP4874727B2 (en) * 2006-07-04 2012-02-15 Hoya株式会社 Mobile unit support device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320345A (en) * 1988-06-22 1989-12-26 Hitachi Ltd Quake-isolating device
JP2001116074A (en) * 1999-09-11 2001-04-27 Andreas Stihl:Fa Vibration control device
JP2002350916A (en) * 2001-05-22 2002-12-04 Canon Inc Shake compensating optical device
JP2003307761A (en) * 2002-04-16 2003-10-31 Sigma Corp Image blur preventing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320345A (en) * 1988-06-22 1989-12-26 Hitachi Ltd Quake-isolating device
JP2001116074A (en) * 1999-09-11 2001-04-27 Andreas Stihl:Fa Vibration control device
JP2002350916A (en) * 2001-05-22 2002-12-04 Canon Inc Shake compensating optical device
JP2003307761A (en) * 2002-04-16 2003-10-31 Sigma Corp Image blur preventing device

Also Published As

Publication number Publication date
JP2006010887A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
CN108073011B (en) Optical unit with shake correction function
JP5090410B2 (en) Image blur correction device, lens barrel, imaging device, and portable information terminal
JP6271974B2 (en) Image blur correction device, lens barrel, and imaging device
CN108693655A (en) Optical unit with shake correcting function
US9625735B2 (en) Image stabilizer, lens apparatus, and image pickup apparatus
JP2018077395A (en) Optical unit with camera shake correction function
TWI744402B (en) Optical unit with vibration correction function
US9703114B2 (en) Image stabilizer, lens barrel, image pickup apparatus, and optical apparatus
JP2018077391A (en) Optical unit
JP2006215122A5 (en)
JP2006215122A (en) Image blur preventing device
CN108873563A (en) Optical unit with shake correcting function
JP4709647B2 (en) Vibration correction device and lens device
JP4653424B2 (en) Image blur prevention device
TWI759347B (en) Optical unit with vibration correction
US9798160B2 (en) Image stabilization apparatus that reduces blurring of subject image and optical device
US6157405A (en) Apex-angle variable prism and video camera
WO2022024953A1 (en) Lens barrel
JP6180554B2 (en) Lens drive device
JP2009150922A (en) Actuator, imaging device, and portable electronic apparatus
JP2005156893A (en) Image blur prevention device
JP4080230B2 (en) Image blur prevention device
JP6137879B2 (en) Image blur correction device, lens barrel, optical device, and imaging device
JP2016161899A (en) Image tremor correction device and imaging device
JP5614577B2 (en) Image blur correction device, lens barrel, imaging device, and portable information terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250