JP4078472B2 - 電子カメラ - Google Patents

電子カメラ Download PDF

Info

Publication number
JP4078472B2
JP4078472B2 JP28454198A JP28454198A JP4078472B2 JP 4078472 B2 JP4078472 B2 JP 4078472B2 JP 28454198 A JP28454198 A JP 28454198A JP 28454198 A JP28454198 A JP 28454198A JP 4078472 B2 JP4078472 B2 JP 4078472B2
Authority
JP
Japan
Prior art keywords
flash
time
light emission
exposure
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28454198A
Other languages
English (en)
Other versions
JP2000111981A (ja
Inventor
則一 横沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP28454198A priority Critical patent/JP4078472B2/ja
Priority to US09/412,651 priority patent/US6359651B1/en
Publication of JP2000111981A publication Critical patent/JP2000111981A/ja
Application granted granted Critical
Publication of JP4078472B2 publication Critical patent/JP4078472B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Cameras In General (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子カメラに関し、さらに詳しくは閃光撮影によって忠実度の高い色再現性を得ることの可能な電子カメラに関する。
【0002】
【従来の技術】
従来の技術に係る電子カメラの一例として電子スチルカメラ(以下、本明細書中では「電子スチルカメラ」を省略して「DSC」と称する)がある。DSCは、撮影レンズにより形成される像をCCDやCMOSセンサなどの固体撮像素子で撮像、すなわち光電変換して得られる画像データをA/D変換し、必要に応じてJPEG等の画像圧縮アルゴリズムによりデータ圧縮して不揮発性のデータ記録装置に記録するものである。
【0003】
上述した撮像に際して固体撮像素子の露光時間の制御は電子シャッタにより行われる。すなわち、露光時間の制御は銀塩フイルムを用いるカメラのように機械式シャッタを開閉動作させて行うのではなく、固体撮像素子の蓄積時間を制御して行う。このため、1/4000秒、1/8000秒などといった高速秒時も比較的容易に実現可能である。
【0004】
ところで、陽光に輝く海を背景に、木陰に立つ人物を撮影するような場合、すなわちいわゆる逆光条件で撮影を行う場合、背景と主要被写体たる人物との輝度差は大きく、両者の露光量が適正となるように撮影するのは難しい。そこで、シャッタ速度および絞りについては背景の露光量が適正となるように設定した上で、そのとき主要被写体の方で生じる露光量の不足については閃光装置を用いて補う、いわゆるデーライトシンクロ撮影と呼ばれる撮影方法がある。
【0005】
【発明が解決しようとする課題】
ところが、DSCで上述したデーライトシンクロ撮影を行おうとしたときに、背景の輝度や主要被写体までの撮影距離等の条件によっては、設定されるシャッター速度すなわち露光時間が1/1000秒を下回るような短秒時となる一方で閃光装置の閃光時間が1msec.程度になってしまう場合がある。このような場合、閃光装置の発光が完了する前に露光が完了してしまい、主要被写体の露光量が不足して画質が低下してしまうばかりか、固体撮像素子が露光を終えた後も閃光装置が発光し続けるのは発光エネルギの無駄である。
【0006】
また、固体撮像素子が露光を終え、固体撮像素子の各画素に蓄積された電荷の転送開始した後も閃光装置が発光し続けていると、被写体中の鏡面等で強く反射した光が固体撮像素子の電荷垂直転送部に入射してスミアを発生し、画像を見苦しいものとする場合があった。
【0007】
本発明は、閃光装置の発光エネルギの無駄を省くとともにスミアの発生に起因する画質の低下を抑制しようとするものである。
【0008】
【課題を解決するための手段】
(1)請求項1に記載の発明の電子カメラは、撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、撮像素子の露光時間を決定する露光時間決定手段と、閃光装置を用いて撮影を行う際に、閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、予備発光に基づく被写体輝度から閃光装置の閃光時間を決定する閃光時間決定手段と、露光時間決定手段で決定された露光時間より閃光時間決定手段で決定された閃光時間の方が長い場合には、決定された閃光時間を短縮して露光時間内に閃光装置による閃光を停止させる露光量制御手段とを有することを特徴とする。
(2)請求項2に記載の発明の電子カメラは、撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、撮像素子の露光時間を決定する露光時間決定手段と、閃光装置を用いて撮影を行う際に、閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、予備発光に基づく被写体輝度から閃光装置の閃光時間を決定する閃光時間決定手段と、露光時間決定手段で決定された露光時間より閃光時間決定手段で決定された閃光時間の方が長い場合には、決定された露光時間を延長して閃光時間と略等しくする露光量制御手段とを有することを特徴とする。
(3)請求項1に記載の電子カメラはさらに、露光量制御手段が閃光時間を短縮することにより生じる露光不足量に応じた増幅率で、撮像素子より出力される画像信号を増幅する信号処理部を有してもよい。
(4)請求項1または2に記載の電子カメラはさらに、露光量制御手段が閃光時間を短縮することにより生じる露光不足量、または露光時間を延長することにより生じる露光過剰量に応じて、撮像素子より出力される画像信号に画像処理を行う信号処理部を有してもよい。
(5)請求項5に記載の発明の電子カメラは、撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、撮像素子の露光時間を決定する露光時間決定手段と、閃光装置を用いて撮影を行う際に、閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、予備発光に基づく被写体輝度から閃光装置の閃光時間を決定する閃光時間決定手段と、露光時間決定手段で決定された露光時間より閃光時間決定手段で決定された閃光時間の方が長い場合には、撮影動作を禁止する撮影動作禁止手段とを有することを特徴とする。
(6)請求項6に記載の発明の電子カメラは、撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、撮像素子の露光時間を決定する露光時間決定手段と、閃光装置を用いて撮影を行う際に、閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、予備発光に基づく被写体輝度から閃光装置の閃光時間を決定する閃光時間決定手段と、露光時間決定手段で決定された露光時間より閃光時間決定手段で決定された閃光時間の方が長い場合に警告を行う警告手段とを有することを特徴とする。
(7)請求項1、請求項2、請求項5および請求項6のいずれか一項に記載の電子カメラはさらに、撮影距離情報と絞り値とに基づいて閃光装置の予備発光時の発光量を決定する予備発光量決定手段を有してもよい。
(8)請求項4に記載の電子カメラにおいて、信号処理部は、画像信号を主要被写体部と背景部とに分離し、主要被写体部と背景部とで異なる画像処理を行うこともできる。
【0010】
【発明の実施の形態】
− 第1の実施の形態 −
図1は、閃光装置200を挿脱可能なDSC100に本発明を適用する例を示す図であり、DSC100および閃光装置200の概略的構成を示している。
【0011】
− DSCの内部構成 −
DSC100の内部構成について説明すると、DSC全体の撮影シーケンスを制御するカメラCPU20には電源スイッチ、モード設定スイッチ、再生駒指定スイッチ、レリーズスイッチ等(以上不図示)からなる操作スイッチ22が接続される。撮影者がこの操作スイッチ22を操作するのに応じてカメラCPU20はDSC100の動作を制御する。
【0012】
撮影目的に応じて交換可能にDSC100へ装着される撮影レンズ2は、AF制御回路24に接続される不図示のTTL位相差検出式焦点検出ユニットで検出された撮影レンズ2の焦点位置情報に基づき、AF制御回路24により駆動制御される。なお、AF制御回路24は、いわゆる外光式のアクティブ式ないしパッシブ式測距装置を用いるものであってもよい。あるいは、撮影レンズ2の繰り出し/繰り込みを繰り返しながら後述するCCD4から出力される画像信号に基づいて被写体像のコントラスト変化を検出し、コントラストが値が極大値を示す位置で撮影レンズ2を停止させる、いわゆる山登りコントラスト検出方式のものであってもよい。
【0013】
CCD4の受光面には撮影レンズ2により被写体像が形成され、CCD4はこの被写体像に基づく画像信号をCCD4に接続される制御回路6に出力する。制御回路6は、CCD4から入力した画像信号に基づいて求められる被写体輝度情報をカメラCPU20に出力する。カメラCPU20は、この信号に基づいて後述するようにCCD4の蓄積動作開始から終了までのタイミングを決定して制御回路6に制御信号を出力する。以下、本明細書中ではCCD4の蓄積動作開始を「露光開始」、蓄積動作終了を「露光終了」、蓄積動作開始から蓄積動作終了までの時間を「シャッタ速度」あるいは「露光時間」と称する。制御回路6は、カメラCPU20からの制御信号に基づいてCCD4の露光開始、終了のタイミング制御を行うとともに、CCD4から出力される画像信号を所定の増幅率で増幅してA/D変換し、画像処理回路8へ出力する。
【0014】
画像処理回路8は、制御回路6より出力される画像信号に色補正などの処理を施し、画像処理回路8に接続されるフレームメモリ10に出力する。以上により、CCD4で撮像された画像のデータがフレームメモリ10に一時的に記録され、この画像データに基づく画像が表示装置12に表示される。
【0015】
フレームメモリ10には、画像データをJPEG等の画像データ圧縮アルゴリズムに基づいて圧縮・解凍するための圧縮・解凍処理部14およびコネクタ16を介して記録メディア18が接続され、圧縮・解凍処理部14で圧縮処理された画像データは順次記録メディア18に転送される。この記録メディア18にはCFカード、あるいはスマートメディアなどと称されるフラッシュメモリ等の不揮発性記憶装置が用いられ、コネクタ16を介して抜き差し可能に構成される。
【0016】
以上に説明した、制御回路6、画像処理回路8、フレームメモリ10、圧縮・解凍処理部14、記録メディア18でおこなわれる画像信号や画像データの処理や記録と、これらの構成要素間で行われる画像信号や画像データの転送と、フレームメモリ10に一時的に記録される画像データに基づく画像の表示部12への表示とは、いずれもカメラCPU20により制御される。
【0017】
カメラCPU20には、閃光装置200との間で制御信号やステータス信号の授受を行うためのフラッシュインターフェイス26が接続される。DSC100と閃光装置200とはコネクタ28により電気的に接続される。
【0018】
− 閃光装置の内部構成 −
閃光装置200の内部には、キセノン管36で放電するための発光エネルギすなわち電荷を蓄えるメインコンデンサ34の充電やキセノン管36での放電量すなわち発光量を制御するための閃光回路32と、閃光装置200の動作を制御し、DSC100との間で制御信号やステータス信号の授受を行うためのフラッシュCPU30とが内蔵される。
【0019】
フラッシュCPU30は、コネクタ28の端子28cを介して後述するようにカメラCPU20との間で双方向通信を行う。また、端子28aあるいは端子28bを介してカメラCPU20より発せられる本発光あるいは予備発光指令信号に応答して閃光回路32の発光制御を行う。
【0020】
ここで閃光装置の一般的な発光波形を示す図2を参照して閃光装置の発光量制御方法について説明する。図2(a)、図2(b)は、ともに横軸に時間を、縦軸に閃光装置の発光強度をとり、閃光装置が発光を開始してから発光を終えるまでの間の発光強度の変化を図示したものである。
【0021】
図2(a)、図2(b)に示されるように、閃光装置の発光強度は、発光を開始してから短時間のうちにピーク値iに達し、その後比較的緩やかに下がる。図2(a)、図2(b)において、発光強度の曲線とX軸(時間軸)とで囲まれる部分が総発光量、すなわち積算発光量となる。図2(a)に示されるように、閃光装置が発光を開始し、その強度がピーク値iを越してピーク値の半分の発光強度i/2にまで落ちた時点で総発光量はフル発光時の総発光量にほぼ等しくなる。これをフル発光時の閃光時間と称し、カメラのアクセサリシューに装着して用いられるようなクリップオンタイプの小型閃光装置において、フル発光時の閃光時間は1ミリ秒程度である。
【0022】
閃光装置の発光量、すなわち発光を開始してから終了するまでの間の積算発光量は、図2(b)に示されるように閃光時間によって制御することができる。これについて本実施の形態に係るDSC100(図1)を例にとって説明すると、閃光装置の発光量がフル発光時の発光量の1/2、1/4、1/8、1/16、…となるときの閃光時間T(1/2)、T(1/4)、T(1/8)、T(1/16)、…を予め実験的に求めておき、これをデータベース化してカメラCPU20内のメモリに記録すればよい。カメラCPU20は、後述する手順により閃光装置200の発光量を決定するが、このときの閃光時間は上述のデータベースより求めることができる。
【0023】
ところで、閃光装置の発光量、いわゆるガイドナンバは、閃光装置の機種ごとに異なる。これを図2(a)に示す発光波形で説明すると、閃光装置の機種の違いにより発光強度のピーク値iやフル発光時の閃光時間が異なる。ただし、その発光波形は機種の違いによらず相似形状を呈する。そのため、フル発光時の閃光時間さえわかっていれば、たとえばフル発光時の1/2、1/4、…の発光量を得るときの閃光時間は容易に算出することができる。
【0024】
これについて具体的に説明すると、本実施の形態に係るDSC100のカメラCPU20は、フラッシュCPU30と交信したときに、装着された閃光装置200のフル発光時の閃光時間を入力する。そして、後で説明するように発光量に関連する情報すなわちフル発光時の何分の一の発光量で発光するのかに関連する情報をフラッシュCPU30に伝達して閃光装置200の発光量を制御する。このときカメラCPU20は、上述のデータベースより得られる発光時間に比例演算を施すことにより閃光装置200の閃光時間を予め求めておくことができる。
【0025】
なお、上述したカメラCPU20による閃光装置200の発光量制御に関し、カメラCPU20が閃光時間に関連する情報をフラッシュCPU30に伝達することによって発光量を制御するものであってもよい。また、カメラCPU20が閃光装置200の発光開始/発光停止を直接制御するものであってもよい。
【0026】
− カメラCPUの動作 −
以上に説明したように、本発明の実施の形態に係るDSC100は、いわゆるTTL調光を行うための受光素子や、この受光素子に被写体光の一部を導くための導光光学系を有していない。そのため、閃光撮影に際しては撮影動作を2回行い、1回目の撮影すなわち予備撮影結果に基づいて閃光装置の発光量を決定し、2回目の撮影すなわち本撮影を行う。このとき、1回目の閃光撮影は後述するようにごく短時間のうちに行われるので撮影者は違和感なく閃光撮影を行うことができる。以下、カメラCPU20により実行されるDSC100の動作制御プログラムのフローを示す図3および図4を図1とともに参照してDSC100の動作を説明する。なお、以下本明細書中では1回目の撮影を「予備撮影」、2回目の撮影を「本撮影」と称して説明を行う。
【0027】
図3および図4のフローチャートに示すプログラムは、DSC100の電源投入にともない、カメラCPU20により実行開始される。ステップS101においてカメラCPU20は操作スイッチ22の状態を検知してDSC100が「再生モード」で作動するか、「撮影モード」で作動するかを判定する。カメラCPU20は、「再生モード」で作動すると判定した場合にはステップS102に分岐する一方、「撮影モード」で作動すると判定した場合にはステップS111に進んで撮影動作を開始する。
【0028】
− 再生モード −
ステップS102においてカメラCPU20は、撮影者が操作スイッチ22中の再生駒指定スイッチ(不図示)を操作して再生駒番号を設定したかどうかを判定し、「非設定」と判定するとステップS101に戻る一方、「設定」と判定するとステップS103に進む。ステップS103においてカメラCPU20は圧縮・解凍処理部14にデータ読み込み指令を発する。圧縮・解凍処理部14は、設定された駒番号のファイルを記録メディア18から読み込んで解凍し、フレームメモリ10に転送する。フレームメモリに転送されたデータに基づく画像は表示装置12に表示される。カメラCPU20は以上の処理を終え、ステップS101に戻る。
【0029】
− 撮影モード −
ステップS111においてカメラCPU20は、以下に説明するようにAE(自動露出)/AF(自動焦点調節)動作を行う。すなわち、カメラCPU20は制御回路6に指令を発し、被写体輝度情報を制御回路6より入力してシャッタ速度、すなわちCCD4の露光開始から露光終了にいたるまでの露光時間を求め、AE動作を終える。AF動作は、カメラCPU20からAF制御回路24に制御信号を発することによりAF制御回路24で自動的に行われ、撮影レンズ2のフォーカシング駆動もAF制御回路24により行われる。
【0030】
ステップS112においてカメラCPU20は、操作スイッチ22の操作状態を検知してレリーズ釦(不図示)が操作されているか否か、すなわち撮影者により撮影開始操作が行われたか否かを判定する。ステップS112での判定が否定されるとカメラCPU20はステップS101に分岐して上述の動作を繰り返す一方、ステップS112での判定が肯定されるとステップS113に進む。
【0031】
ステップS113においてカメラCPU20は、閃光撮影を行うか否かの判定を行う。この判定は、操作スイッチ22の操作状態を検知し、撮影者が閃光撮影の設定をしているか否かを判定するものであってもよいし、あるいはステップS111でのAE動作に基づき、被写体輝度が所定値を下回っているときに閃光撮影を行うと判定するものであってもよい。ステップS113での判定が否定されるとステップS121に分岐する一方、ステップS113での判定が肯定されるとステップS114に進む。
【0032】
ステップS114においてカメラCPU20は、フラッシュインターフェイス26を介してフラッシュCPU30と通信を行い、情報を入力する。この情報の中からメインコンデンサ34の充電状態に関する情報を読み取り、充電の完了/未完了の判定、すなわち閃光が可能か否かの判定を行う。ステップS114での判定が否定されるとステップS115に分岐してDSC100を撮影禁止状態にしてステップS101に戻る。一方、ステップS114での判定が肯定されるとステップS131に進む。
【0033】
ステップS131においてカメラCPU20は、ステップS111で実行されたAF動作結果に基づきAF制御回路24より撮影距離情報を入力する。なお、AF制御回路24がコントラスト検出方式、あるいはTTL位相差検出方式のもので構成される場合には撮影レンズ2の繰り出し量に基づいて撮影距離を算出すればよい。
【0034】
ステップS132においてカメラCPU20は、ステップS131で入力した撮影距離情報と、撮影レンズ2で設定される絞り値とに基づいて予備発光量すなわちDSC100の予備撮影動作に同期して閃光装置200が発光する際の発光量を設定する。具体的に説明すると、カメラCPU20は絞り値が小絞り側に設定されていることを検知した場合や撮影距離が遠い場合には発光量を増すように予備発光量を設定する。
【0035】
ステップS133においてカメラCPU20は、フラッシュインターフェイス26を介してフラッシュCPU30と通信を行い、フラッシュCPU30に対して情報を出力する。この情報の中に、ステップS132で算出された予備発光量に対応する情報、つまりフル発光時の何分の一の発光量で発光するかの情報が含まれる。
【0036】
ステップS134においてカメラCPU20は制御回路6に制御信号を発し、CCD4から出力される画像信号を増幅する際の増幅率を本撮影に適した増幅率よりも高く設定してCCD4自体の感度と制御回路6の増幅率との積で得られるトータルの感度を高める。以下、本明細書中ではCCD4自体の感度と制御回路6の増幅率との積で得られる感度を「実効感度」と称し、ステップS134で設定される増幅率と通常の増幅率との比を「感度比」と称する。つまり、増幅率を高めて実効感度を2倍にした場合、感度比は2となる。
【0037】
カメラCPU20はステップS135において、予備撮影時のシャッタ速度を決定し、次いでステップS136において制御回路6に露光開始制御信号を発する。このときカメラCPU20は、フラッシュインターフェイス26を介して閃光装置200に対し予備発光指令信号を発する。なお、ステップS135でカメラCPU20により決定される予備撮影時のシャッタ速度は、本撮影時のシャッタ速度よりも高速である(露光時間が短い)が、この理由については後で説明する。
【0038】
カメラCPU20は、ステップS135で決定したシャッタ速度(露光時間)が経過するまでの間、ステップS137で待ち受け状態となり、時間が経過したら制御回路6に露光終了制御信号を発する。カメラCPU20は、ステップS136〜S137における予備撮影結果に基づき、ステップS138で本発光量を計算、すなわち本撮影動作に同期して閃光装置200が発光する際の発光量を算出する。このときの本発光量計算方法は以下の手順による。
【0039】
カメラCPU20は、ステップS136〜ステップS137での予備撮影結果に基づき、ステップS138において予備発光適正比ΔPを求める。予備発光適正比ΔPとは、閃光装置200の予備発光をともなう予備撮影で得られた露光量と適正露光量との比率を示す。換言すれば、予備発光時の発光量を何倍に増して本発光を行えば適正露光が得られるかを表す比率である。ただし、この予備発光適正比ΔPにはステップS134で設定された増幅率アップ分すなわち感度比を加味していない。また、本発光をともなう本撮影に際して制御回路6の増幅率は、後述するようにステップS143で通常の感度(感度比=1)に設定されるので、本発光量は以下に示す式で求められる。
【数1】
本発光量=予備発光量×(感度比÷予備発光適正比) … 式(1)
【0040】
たとえば、ステップS134で感度比=2に設定され、算出された予備発光適正比が0.1であったとすると、本発光量=予備発光量×2÷0.1=予備発光量×20となる。すなわち、本撮影に際しての閃光装置200の発光量を予備撮影時の発光量の20倍に設定すればよい。
【0041】
カメラCPU20は、ステップS138で求められた閃光装置200の発光量に基づき、ステップS139において本発光時の閃光時間を求める。なお、閃光装置の発光量に基づいて閃光時間がどのように求められるかについては先に説明したのでここではその説明を省略する。
【0042】
ステップS140においてカメラCPU20は、ステップS111で求めたシャッタ速度(露光時間)とステップS139で求めた閃光時間とを比較し、閃光時間がシャッタ速度以下であると判定するとステップS142に進む。一方、閃光時間が露光時間よりも長いと判定するとカメラCPU20はステップS141に分岐して露光時間中に閃光装置200が発光可能な最大発光量を再計算し、ステップS142に進む。このとき、閃光時間が短くなるので光量が不足、すなわち露出アンダーとなるが、カメラCPU20はステップS141において露出アンダー量を算出して記憶する。
【0043】
ステップS142においてカメラCPU20は、ステップS138〜S141で求められた発光量に関する情報を、フラッシュインターフェイス26を介して閃光装置200に出力する。
【0044】
ステップS143においてカメラCPU20は制御回路6に制御信号を発し、CCD4から出力される画像信号を増幅する際の増幅率を本撮影に適した増幅率(感度比=1)に設定する。
【0045】
ステップS144においてカメラCPU20は、露光開始の制御信号を制御回路6に発し、次いでステップS145においてフラッシュインターフェイス26を介して閃光装置200に閃光指令を発する。
【0046】
カメラCPU20は、ステップS111で求められたシャッタ速度(露光時間)が経過するまでの間、ステップS146で待ち受け状態となる。時間が経過したら制御回路6に露光終了制御信号を発する。
【0047】
以上では、閃光撮影を行う場合のカメラCPU20による予備撮影および本撮影の制御フローについて説明したが、ステップS113における判定が否定された場合、カメラCPU20は予備撮影を行うことなく本撮影を行う。つまり、カメラCPU20はステップS121において制御回路6に制御信号を発し、CCD4から出力される画像信号を増幅する際の増幅率を本撮影に適した増幅率(感度比=1)に設定し、ステップS122において露光開始の制御信号を制御回路6に発してステップS146に進む。
【0048】
以上のようにしてカメラCPU20はDSC100の再生動作あるいは撮影動作の制御を行い、撮影動作の制御が行われた場合には以下に説明するようにステップS147以降で画像処理、データ圧縮、データ記録等の制御を行う。
【0049】
ステップS147においてカメラCPU20は以下に説明するように画像処理を行う。すなわち、カメラCPU20は制御回路6に画像信号読み出し制御信号を発し、これを受けて制御回路6はCCD4から画像信号を入力する。制御回路6は、ステップS121あるいはステップS143でカメラCPU20により設定された増幅率によってCCD4から入力した画像信号を増幅した後、A/D変換をして画像処理回路8に出力する。カメラCPU20は画像処理回路8に画像処理制御信号を発する。上述の撮影動作でカメラCPU20がステップS141の処理を実行している場合、すなわち露光アンダーを生じている場合には、ステップS141で算出した露光アンダー量の情報をカメラCPU20は画像処理回路8に出力する。画像処理回路8は、階調、彩度、コントラスト等を調節して色補正を行うが、このときにカメラCPU20より入力された露光アンダー量の情報に基づいて色補正を行うことで、より忠実度の高い色再現性を得ることができる。上述のようにして画像処理回路8で処理された画像データは、フレームメモリ10に一時的に記録される。
【0050】
ステップS148においてカメラCPU20が圧縮・解凍処理部14に制御信号を発するのに応じて、圧縮・解凍処理部14はフレームメモリ10内の画像データをJPEG等の画像圧縮アルゴリズムにしたがって圧縮し、ステップS149においてこの画像データを記録メディア18に記録する。
【0051】
以上の処理を終え、カメラCPU20は再度ステップS101に戻り、撮影者による次の操作を待ち受ける。なお、以上の実施の形態の説明では予備撮影で得られる画像データは記録メディア18に記録せず、本撮影で得られる画像データのみを記録メディア18に記録する例について説明したが、予備撮影で得られる画像データも記録メディア18に記録するものであってもよい。
【0052】
− フラッシュCPUの動作 −
フラッシュCPU30により実行される閃光装置200の発光動作制御プログラムのフローを示す図5を図1とともに参照して閃光装置200の発光動作について説明する。
【0053】
図5のフローチャートで示されるプログラムは、閃光装置200の電源投入にともなってフラッシュCPU30により実行開始される。ステップS301においてフラッシュCPU30は、閃光回路32に充電開始信号を発する。これを受けて閃光回路32はメインコンデンサ34への充電動作を開始する。
【0054】
ステップS302においてフラッシュCPU30は、閃光回路32によるメインコンデンサ34の充電状態を確認して充電が完了しているか否かの判定を行う。ステップS302での判定が否定されるとフラッシュCPU30はステップS303に分岐する一方、肯定されるとステップS311に進む。
【0055】
ステップS311においてフラッシュCPU30は、閃光回路32に充電停止信号を発するとともに発光可能を記録、すなわち発光可能フラグをセットする。閃光回路23は、フラッシュCPU30からの充電停止信号を受けてメインコンデンサ34の充電動作を停止する。
【0056】
ステップS312においてフラッシュCPU30は、DSC100からの通信要求の有無を判定し、通信要求なしと判定するとステップS331に分岐する。一方、通信要求ありと判定するとステップS321に進んでDSC100との通信を行う。このときにDSC100と閃光装置200との間で伝達される情報としては、閃光装置200が発光可能な状態にあるか否かの情報、フル発光時の閃光時間に関する情報(以上、閃光装置200からDSC100へ伝達)、予備発光または本発光に際しての発光量に関する情報(以上、DSC100から閃光装置200へ伝達)などがある。
【0057】
ステップS322においてフラッシュCPU30は、ステップS311でDSC100より入力した予備発光または本発光に際しての発光量に関する情報に基づき、閃光回路32に信号を出力して発光量を設定してステップS301に戻る。
【0058】
ステップS302における判定が否定された場合、メインコンデンサ34の充電量は発光可能なレベルに達していないので、フラッシュCPU30はステップS303において発光不可能を記録、すなわち発光可能フラグをリセットする。
【0059】
ステップS304においてフラッシュCPU30は、DSC100からの通信要求の有無を判定し、通信要求なしと判定するとステップS301に戻り、引き続き閃光回路32によるメインコンデンサ34への充電動作を継続させる。一方、通信要求ありと判定するとステップS321に進んでDSC100との通信を行う。このとき、ステップS321では閃光装置200からDSC100に対し、閃光装置200は発光不可である旨の情報が出力される。
【0060】
ステップS312における判定が否定された場合、フラッシュCPU30はDSC100より予備発光の指令が出力されているか否かをステップS331で判定し、肯定されるとステップS332に進んで予備発光指令信号を閃光回路32に出力する。閃光回路32は、ステップS322でフラッシュCPU30により予め設定されている発光量に基づき、予備発光を行う。閃光回路32による予備発光を終えた後、フラッシュCPU30はステップS301に戻る。
【0061】
ステップS331での判定が否定された場合にフラッシュCPU30は、ステップS341に分岐してDSC100より本発光の指令が出力されているか否かを判定する。ステップS341での判定が否定されるとフラッシュCPU30はステップS312に戻ってDSC100からの通信要求あるいは発光指令を待ち受ける一方、ステップS341での判定が肯定されるとステップS342に進んで本発光指令信号を閃光回路32に出力する。閃光回路32は、ステップS322でフラッシュCPU30により予め設定されている発光量に基づき、本発光を行う。閃光回路32による本発光を終えた後、フラッシュCPU30はステップS301に戻る。
【0062】
以上の実施の形態の説明において、カメラCPU20により実行される上述のプログラム(図3および図4)の特徴部分を以下に説明する。
【0063】
▲1▼ 予備発光量の設定
ステップS132においてカメラCPU20は、ステップS131で入力した撮影距離情報と、撮影レンズ2で設定される絞り値とに基づいて予備発光量を設定しているが、これは以下の理由による。すなわち、閃光撮影をした場合、閃光装置200によって照射される被写体の輝度は撮影距離の2乗に反比例する。したがって、撮影距離が遠くなった場合には閃光装置200の予備発光量を増すことで被写体輝度の減少分を補い、閃光装置200により照射された被写体の輝度の検出精度を高めることができる。逆に、撮影距離が近い場合には閃光装置200の予備発光量を減らすことで発光エネルギを無駄にすることがない。また、撮影レンズ2の絞りが絞り込まれている場合にはCCD4に入射する光量が減少するので、閃光装置200の予備発光量を増すことが有効である。逆に、撮影レンズ2の絞りが開けられている場合には、CCD4に入射する光量が増すので閃光装置200の予備発光量を減じて発光エネルギの消費を抑制することができる。
【0064】
▲2▼ 予備撮影時におけるCCDの実効感度増加
ステップS134においてカメラCPU20は、制御回路6に制御信号を発し、CCD4から出力される画像信号を増幅する際の増幅率を高めてCCD4の実効感度を高めている。これにより、予備撮影に際しての閃光装置200の予備発光量を減じることが可能となり、閃光装置200の発光エネルギの消費を抑制することができる。一般的にCCDから出力される画像信号の増幅率を増すとS/N比が低下し、これにともなって画質も低下することがある。しかし、予備撮影で撮影された画像は記録メディア18に記録されることはなく、本撮影時に際しての閃光装置200の発光量を求めるために用いられるものであり、上述したS/N比の低下は問題とならない。
【0065】
▲3▼ 予備撮影時のシャッタ速度の高速化
ステップS135においてカメラCPU20により決定される予備撮影時のシャッタ速度は、本撮影時のシャッタ速度よりも高速である。これは、予備撮影が本撮影に際しての閃光装置の発光量を決定するために行われるからである。これにより、CCD4で閃光装置200の予備発光により照明された被写体の輝度の検出精度が向上する。つまり、CCD4に入射する光の総量について考えたときに、いわゆる定常光成分が相対的に減じられるので閃光光の検出精度を高めることができる。このように、予備撮影時のシャッタ速度を高速にすることにより、特に高輝度下で閃光撮影を行う場合に調光精度が低下するのを抑制できるのに加え、撮影者がレリーズ釦を操作してから本撮影が開始されるまでの時間、すなわちレリーズタイムラグを減じて操作感を向上することができる。
【0066】
▲4▼ 閃光時間が露光時間よりも長い場合の処理
ステップS140においてカメラCPU20は、ステップS111で求めたシャッタ速度(露光時間)とステップS139で求めた閃光時間とを比較し、閃光時間が露光時間よりも長いと判定するとステップS141の閃光時間短縮の処理を行い、閃光を露光時間内に完了させるように制御する。これにより、CCD4が露光動作を終了しているのにもかかわらず、閃光装置が発光し続けることによる発光エネルギの浪費を抑制することができる。また、CCD4の各画素の部分で蓄積された電荷を転送して制御回路6に画像信号を出力する際に、CCD4の受光面に強い光が当たっていると画像にスミアを発生することがある。CCD4が露光動作を終了して画像信号を制御部6に出力している最中にもし閃光装置200が発光を継続していると、被写体中の金属光沢面等で反射した強い光がCCD4に入射してスミアを発生する場合があるが、本発明の実施の形態に係るDSC100によれば露光終了後に閃光装置200は発光していないので、そのような不具合を抑制することができる。
【0067】
▲5▼ 閃光装置の閃光時間を短縮した場合の画像処理
上述のようにステップS140における判定結果に基づき、閃光時間が露光時間よりも長いと判定したときにカメラCPU20はステップS141で閃光時間短縮の処理を行い、これにともなう露光アンダー量を算出する。そして、画像処理回路8は画像処理を行う際に上述した既知の露光アンダー量を加味して色補正処理を行うことにより、忠実度の高い色再現性を得ることができる。これについてさらに詳しく説明すると、ステップS141で閃光時間短縮の処理を行って本撮影を行った場合には、閃光装置200で照射された主要被写体部分の画像が露出アンダーとなり、背景部分の画像は適正露出となる。画像処理回路8は、背景部分の画像と主要被写体部分の画像とを分離した上で背景部分、主要被写体部分それぞれに適した色補正を行い、これにより忠実度の高い色再現性を得ることができる。
【0068】
あるいは、ステップS141で算出された露光アンダー量に基づき、CCD4から出力される画像信号を制御回路6が増幅する際の増幅率を増すことによっても主要被写体の露光量を適正にして忠実度の高い色再現性を得ることができる。この場合、閃光装置200により照明された主要被写体の露光量は適正となり、背景は露光オーバーとなる可能性がある。しかし、これを画像処理回路8で背景部分の画像と主要被写体部分の画像とを分離した上で背景部分、主要被写体部分それぞれに適した色補正をすることで忠実度の高い色再現性を得ることができる。
【0069】
▲6▼ 1回の撮影開始操作に応答して行われる2回の撮影
閃光撮影を行う場合、カメラCPU20は1回の撮影開始操作をステップS112で検出するのにともない、ステップS136で予備撮影すなわち1回目の撮影を、そしてステップS144で本撮影すなわち2回目の撮影を行う。そして予備撮影の結果に基づき、ステップS138において本撮影に際しての閃光装置200の発光量を決定する。このとき、予備撮影で得られた画像データを記録メディア18に記録することはなく、本撮影で得られた画像データのみを記録メディア18に記録する。このようにすることにより、従来の技術に係る電子カメラのようにTTL調光用の受光素子や、この受光素子に被写体光を導くための導光光学系等を用いる必要がないので、安価で小型軽量かつ固体撮像素子の感度を低下させることなく、閃光装置200の発光量を高精度に制御することができる。
【0070】
▲7▼ 閃光撮影を行わない場合におけるカメラCPU20の動作シーケンス
カメラCPU20は、ステップS113において閃光撮影を行わないと判定すると予備撮影は行わずに本撮影を行う(ステップS122)。このため、閃光撮影を行わない場合にはDSC100の無駄な動作を抑制し、撮影者がレリーズ釦を操作してから実際に本撮影が開始されるまでの時間すなわちレリーズタイムラグを短縮してDSC100の操作感を高めることができる。
【0071】
− 第2の実施の形態 −
第2の実施の形態においても第1の実施の形態で説明したのと同じDSC100に本発明が適用される。第1の実施の形態のものとの相違点は、カメラCPU20により実行されるDSC100の動作制御プログラムの内容のみであり、DSC100およびこのDSC100に装着される閃光装置200の内部構成は図1に示すものと同一である。したがって、ここではカメラCPU20により実行されるDSC100の動作制御プログラムのフローを示す図6および図7を図1とともに参照して説明する。なお、図6および図7に示すフローチャートにおいて、図3および図4に示すフローチャートと同じ処理内容のステップには同一のステップ番号を付してその説明を省略する。
【0072】
第1の実施の形態においてカメラCPU20は、閃光時間がシャッタ速度(露光時間)よりも長いと判定した場合に閃光時間を短縮するものであった。第2の実施の形態においてカメラCPU20は、このような場合に閃光時間の短縮は行わず、露光時間を延長する処理を行う。以下、これについて説明する。
【0073】
ステップS140においてカメラCPU20は、ステップS111で求めたシャッタ速度(露光時間)とステップS139で求めた閃光時間とを比較し、閃光時間がシャッタ速度以下であると判定するとステップS142に進む。一方、閃光時間が露光時間よりも長いと判定するとカメラCPU20はステップS501に分岐して露光時間を変更する処理を行う。これにより、閃光装置200の閃光中に露光が終了することのないように新たな露光時間が設定される。このとき、露光時間が延長されるので露光量が超過、すなわち露出オーバーとなるが、カメラCPU20はこのときの露出オーバー量を算出して記憶する。
【0074】
カメラCPU20が上述したステップS501の処理を実行している場合、すなわち露光オーバーを生じている場合には、ステップS147においてカメラCPU20が画像処理回路8に画像処理制御信号を出力する際に、ステップS501で算出した露光オーバー量の情報も画像処理回路8に出力する。画像処理回路8は、階調、彩度、コントラスト等を調節して色補正を行う際にカメラCPU20より入力された露光オーバー量の情報に基づいて色補正を行うことで忠実度の高い色再現性を得ることができる。
【0075】
以上に説明したように、第2の実施の形態のDSC100には、閃光時間が露光時間よりも長いために露光時間を延長した場合であっても露光オーバー量が画像処理前の時点で既知であるため、画像処理による色補正をより的確に行うことができるので画質の低下を最小限に抑制することが可能となる。
【0076】
なお、以上に説明した第2の実施の形態において、画像処理回路8により画像処理を行う際に露光オーバー量を加味しなくてもよい。この場合、閃光装置200により照明された主要被写体の露光量は適正となり、背景は露光オーバーとなる可能性がある。しかし、一般的に主要被写体が適正露光となることのメリットは、背景が露光オーバーとなることのデメリットを上回る。
【0077】
− 第3の実施の形態 −
第3の実施の形態においても第1および第2の実施の形態で説明したのと同じDSC100に本発明が適用される。第1および第2の実施の形態のものとの相違点は、カメラCPU20により実行されるDSC100の動作制御プログラムの内容のみであり、DSC100およびこのDSC100に装着される閃光装置200の内部構成は図1に示すものと同一である。したがって、ここではカメラCPU20により実行されるDSC100の動作制御プログラムのフローを示す図8および図9を図1とともに参照して説明する。なお、図8および図9に示すフローチャートにおいて、図3および図4に示すフローチャートと同じ処理内容のステップには同一のステップ番号を付してその説明を省略する。
【0078】
第1あるいは第2の実施の形態においてカメラCPU20は、閃光時間がシャッタ速度(露光時間)よりも長いと判定した場合に閃光時間を短縮あるいは露光時間を延長するものであった。第3の実施の形態においてカメラCPU20は、このような場合に閃光時間の短縮あるいは露光時間の延長は行わずに閃光時間の不足による露光不足量を算出し、算出された露光不足量に基づいて画像データの階調補正を行うものである。
【0079】
第3の実施の形態においてカメラCPU20は、図8に示すフローチャートのステップS139での処理に続き、閃光時間と露光時間との比較をすることなくステップS142〜ステップS146の一連の撮影処理を行う。ステップS146に続くステップS600においてカメラCPU20は、以下で図9(b)を参照して説明する画像処理の副プログラムをコールする。
【0080】
図9(b)は、カメラCPU20により実行される画像処理の副プログラムの処理を説明するフローチャートである。ステップS601においてカメラCPU20は、ステップS111で求めたシャッタ速度(露光時間)とステップS139で求めた閃光時間との差を求める。ステップS602でカメラCPU20は、上記閃光時間が上記露光時間よりも長いか否かを判定し、肯定されるとステップS603に進む。ステップS603においてカメラCPU20は、閃光時間が露光時間内に収まらなかったことによる露光不足量を算出する。たとえば、予定された閃光時間で得られる露光量と、露光時間中に閃光光により得られた露光量とに基づいて露光不足量を算出する。
【0081】
ステップS604においてカメラCPU20は、算出された露光不足量に基づいて、画像処理して得られる画像信号がより適切になるようなγを算出、あるいはデータテーブルから選択する。これについて詳しく説明すると、データテーブルを有するものである場合、たとえばEV換算で±0段、−0.5段、−1段、−1.5段、−2段、…という露光不足量を有する画像データに対応するγがカメラCPU20に接続されるメモリに記憶されている。このγは、画像の階調が鑑賞あるいは後々の画像データの加工に適したものとなるように各露光不足量に対応してあらかじめ定められている。つまり、露光不足量が増すにつれて画像が暗くなって濃度を増すが、この画像の階調が豊かに表現されるように、露光不足量に合わせて各γは定められている。
【0082】
なお、上述したデータテーブルに記憶される露出不足量に対するγは、特に0.5段刻みで下限を−2段までとする必要はなく、必要に応じてデータテーブルの刻みや下限を設定することができる。
【0083】
以上に説明したデータテーブル方式に対してγを算出する方式のものは、上述した露光不足量とこの露光不足量に対応するγとの関係に基づいて予め高次多項式等を用いて近似式を求めておき、これをプログラムしておくものである。γ算出方式では、離散的なデータをデータテーブルに記憶しておくものに比べて露光不足量にきめ細かく対応してγを求めることができるという利点を有する。
【0084】
以上はステップS602での判定が肯定された場合の処理であったが、ステップS602での判定が否定された場合、カメラCPU20はステップS610に分岐して標準γを設定する。すなわち、カメラCPU20は露出不足量が±0段の場合のγをデータテーブルから選択、あるいは算出する。なお、ステップS602での判定およびステップS610での標準γの設定を省略し、閃光光による露光不足の有無によらずステップS603およびステップS604でγを求めるようにしてもよい。
【0085】
ステップS605においてカメラCPU20は、ステップS604またはステップS610で選択あるいは算出されたγに基づき、階調補正処理を行う。具体的には、カメラCPU20は画像処理回路8に対して、ステップS604またはステップS610で選択あるいは算出したγを出力する。ステップS606においてカメラCPU20は、画像処理回路8に制御信号を発する。これを受けて画像処理回路8は画像データを生成してフレームメモリ10に出力する。
【0086】
以上に説明したように、第3の実施の形態に係るDSC100では、閃光時間が露光時間より長くなり、予定した発光量の閃光光すべてを露光時間内で被写体に照射できなくても、このときに生じる露出不足量は画像処理前の時点で既知であるため、画像処理による輝度補正をより的確に行うことができる。したがって画質の低下を最小限に抑制することが可能となる。
【0087】
なお、ステップS603で算出された露出不足量に基づき、CCD4から出力される画像信号を制御回路6が増幅する際の増幅率を増すことによっても主要被写体の露光量を適正にして忠実度の高い色再現性を得ることができる。この場合、閃光装置200により照明された主要被写体の露光量は適正となり、背景は露光オーバーとなる可能性があるが、これについては第2の実施の形態で説明したのと同じ理由により補正しなくてもよいし、あるいは画像処理回路8で輝度補正して露光オーバーによる背景の画像の画質低下を抑制してもよい。
【0088】
以上の実施の形態においてカメラCPU20は、算出された露出不足量に基づいて階調補正処理に適したγを求めるものであったが、算出された露出不足量を画像処理回路8に出力するものであってもよい。この場合、カメラCPU20から出力された露出不足量に関連するデータに対応してγが画像処理回路8の内部で求められ、このγに基づいて画像処理が行われる。また、以上ではγを補正して階調補正をする例についてのみ説明したが、ハイライト・シャドウの補正によりコントラストを補正することも可能である。
【0089】
− 第4の実施の形態 −
図10は、閃光装置200を挿脱可能なDSCに本発明を適用する例を示す図であり、DSC101および閃光装置200の概略的構成を示している。図10において、第1の実施の形態のDSC100および閃光装置200の概略的構成を示す図1と同じ構成要素には同じ符号を付してその説明を省略する。
【0090】
DSC101は、警告表示装置21をさらに有する点が図1に示すDSC100と相違し、その他の部分は閃光装置200を含めて全て図1に示すものと同じである。この警告表示装置21は、後述するように閃光時間が露光時間よりも長くなる場合に撮影者に警告表示をするためのものであり、LEDや液晶表示装置などが用いられる。なお、撮影して得られた画像を表示するための表示装置12に警告表示を行い、警告表示装置21を省略することも可能であり、またこれらの警告表示に代えてブザー等を用いて警告音を発することも可能であるが、以下では警告表示装置21を有する場合を例にとって説明をする。
【0091】
図10のカメラCPU20により実行されるDSC101の動作制御プログラムのフローを示す図11および図12を図10とともに参照してDSC101の動作を説明する。なお、図11および図12に示すフローチャートにおいて、図3に示すフローチャートと同じ処理内容のステップには同一のステップ番号を付してその説明を省略する。
【0092】
第1〜第3の実施の形態においてカメラCPU20は、閃光時間が露光時間よりも長くなる場合であっても何らかのかたちで撮影を続行し、その後の画像処理に際して色補正を行い、画質の低下を抑制するものであった。これに対し、第4の実施の形態では閃光時間が露光時間よりも長くなる場合には以下で説明するように撮影者に警告を発し、さらには撮影禁止、すなわちレリーズロックする。
【0093】
ステップS140においてカメラCPU20は、ステップS111で求めたシャッタ速度(露光時間)とステップS139で求めた閃光時間とを比較し、閃光時間がシャッタ速度以下であると判定するとステップS142に進む。一方、閃光時間が露光時間よりも長いと判定するとカメラCPU20はステップS701に分岐して撮影禁止処理、すなわちレリーズロックし、ステップS702で警告表示装置21に警告表示を行い、ステップS101に戻る。
【0094】
以上のようにカメラCPU20がDSC101の動作制御を行うことにより、閃光時間が露光時間よりも長い場合には自動的にレリーズロックされて撮影者にその旨警告表示されるので閃光光量不足の映像を撮影してしまうことがなく、閃光装置200の発光エネルギを無駄にすることもない。このとき、撮影者はDSC101と主要被写体との間の距離(撮影距離)を縮める等の措置をとることにより閃光装置200の発光量は減じられ、閃光時間は短くなるので撮影を続行することができる。
【0095】
なお、本実施の形態のDSC101はレリーズロックと警告表示とを共に行うものであったが、ステップS701の撮影禁止の処理ステップは省いてステップS702における警告表示のみを行い、撮影動作を続行するか否かの判定は撮影者に任せるものであってもよい。このようにすることにより、貴重なシャッターチャンスを逃すことがなくなる。
【0096】
以上に説明した第1〜第4の実施の形態において、DSC100、101は撮影レンズ2の交換が可能で、閃光装置200の挿脱も可能なものについて説明したが、これら撮影レンズおよび閃光装置が一体に組み込まれるDSCに本発明を適用することも可能である。
【0097】
また、閃光装置200は閃光時間を変えて発光量を制御し、これにより閃光光による露光量を調節するものについて説明したが、いわゆるフラッシュマチック方式、すなわち閃光時間(発光量)は一定で、露光量は撮影距離に応じて撮影レンズの絞りにより調節するもの、あるいは発光量制御方式とフラッシュマチック方式とを混用するものであっても本発明を適用することができる。なお、閃光装置がフラッシュマチック方式のものである場合には図3〜図4、図6〜9および図11〜12におけるステップS138、S139の処理は不要となり、ステップS140における閃光時間と露光時間との比較に際して閃光時間は一定の時間となる。
【0098】
図1または図10に示すDSC100または101の内部構成において、画像処理回路8および圧縮・解凍処理部14はカメラCPU20からは独立した構成となっているが、これら画像処理回路8、圧縮・解凍処理部14で行われる処理をカメラCPU20で行うものであってもよい。また、記録メディア18はCFカードやスマートメディア等のフラッシュメモリに限られるものではなく、磁気記録装置等を用いるものであってもよい。さらに、固体撮像素子としてCCDを用いる例について説明したがMOSセンサ等、他の固体撮像素子を用いるものであってもよい。
【0099】
以上、本発明をDSCに適用する場合を例にとって説明したが、閃光装置を併用して画像を入力するものであれば他の画像入力機器に本発明を適用することができる。
【0101】
【発明の効果】
本発明による電子カメラでは、閃光装置の発光エネルギの無駄を省くとともに、スミアの発生に起因する画質低下を抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1〜第3の実施の形態に係る電子カメラおよびこれに装着される閃光装置の概略的構成を説明する図である。
【図2】閃光装置の発光波形を説明する図であり、(a)は閃光装置がフル発光した場合の閃光時間を説明する図であり、(b)は閃光時間と発光量との関係を説明する図である。
【図3】第1の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートである。
【図4】第1の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートであり、図3のフローチャートに続くフローチャートである。
【図5】閃光装置に内蔵されるフラッシュCPUにより実行される閃光装置の動作制御プログラムのフローを説明するフローチャートである。
【図6】第2の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートである。
【図7】第2の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートであり、図6のフローチャートに続くフローチャートである。
【図8】第3の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートである。
【図9】第3の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートであり、(a)が図8のフローチャートに続くフローチャートを、(b)が(a)のフローチャートで示されるプログラムによりコールされて実行される副プログラムのフローチャートをそれぞれ示す。
【図10】第4の実施の形態に係る電子カメラおよびこれに装着される閃光装置の概略的構成を説明する図である。
【図11】第4の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートである。
【図12】第4の実施の形態に係る電子カメラに内蔵されるカメラCPUにより実行される電子カメラの動作制御プログラムのフローを説明するフローチャートであり、図11のフローチャートに続くフローチャートである。
【符号の説明】
2 撮影レンズ
4 CCD
6 制御回路
8 画像処理回路
10 フレームメモリ
12 表示装置
14 圧縮・解凍処理部
18 記録メディア
20 カメラCPU
21 警告表示装置
22 操作スイッチ
26 フラッシュインターフェイス
30 フラッシュCPU
32 閃光回路
34 メインコンデンサ
36 キセノン管

Claims (8)

  1. 撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、
    前記撮像素子の露光時間を決定する露光時間決定手段と、
    閃光装置を用いて撮影を行う際に、前記閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、
    予備発光に基づく被写体輝度から前記閃光装置の閃光時間を決定する閃光時間決定手段と、
    前記露光時間決定手段で決定された露光時間より前記閃光時間決定手段で決定された閃光時間の方が長い場合には、前記決定された閃光時間を短縮して前記露光時間内に前記閃光装置による閃光を停止させる露光量制御手段とを有することを特徴とする電子カメラ。
  2. 撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、
    前記撮像素子の露光時間を決定する露光時間決定手段と、
    閃光装置を用いて撮影を行う際に、前記閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、
    予備発光に基づく被写体輝度から前記閃光装置の閃光時間を決定する閃光時間決定手段と、
    前記露光時間決定手段で決定された露光時間より前記閃光時間決定手段で決定された閃光時間の方が長い場合には、前記決定された露光時間を延長して前記閃光時間と略等しくする露光量制御手段とを有することを特徴とする電子カメラ。
  3. 請求項1に記載の電子カメラにおいて、
    前記露光量制御手段が前記閃光時間を短縮することにより生じる露光不足量に応じた増幅率で、前記撮像素子より出力される画像信号を増幅する信号処理部をさらに有することを特徴とする電子カメラ。
  4. 請求項1または2に記載の電子カメラにおいて、
    前記露光量制御手段が前記閃光時間を短縮することにより生じる露光不足量、または前記露光時間を延長することにより生じる露光過剰量に応じて、前記撮像素子より出力される画像信号に画像処理を行う信号処理部をさらに有することを特徴とする電子カメラ。
  5. 撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、
    前記撮像素子の露光時間を決定する露光時間決定手段と、
    閃光装置を用いて撮影を行う際に、前記閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、
    予備発光に基づく被写体輝度から前記閃光装置の閃光時間を決定する閃光時間決定手段と、
    前記露光時間決定手段で決定された露光時間より前記閃光時間決定手段で決定された閃光時間の方が長い場合には、撮影動作を禁止する撮影動作禁止手段とを有することを特徴とする電子カメラ。
  6. 撮影レンズにより形成された像を光電変換して画像信号を出力する撮像素子と、
    前記撮像素子の露光時間を決定する露光時間決定手段と、
    閃光装置を用いて撮影を行う際に、前記閃光装置の閃光時間を調節して発光量を制御する発光量制御手段と、
    予備発光に基づく被写体輝度から前記閃光装置の閃光時間を決定する閃光時間決定手段と、
    前記露光時間決定手段で決定された露光時間より前記閃光時間決定手段で決定された閃光時間の方が長い場合に警告を行う警告手段とを有することを特徴とする電子カメラ。
  7. 請求項1、請求項2、請求項5および請求項6のいずれか一項に記載の電子カメラにおいて、
    撮影距離情報と絞り値とに基づいて前記閃光装置の前記予備発光時の発光量を決定する予備発光量決定手段をさらに有することを特徴とする電子カメラ。
  8. 請求項4に記載の電子カメラにおいて、
    前記信号処理部は、前記画像信号を主要被写体部と背景部とに分離し、主要被写体部と背景部とで異なる画像処理を行うことを特徴とする電子カメラ。
JP28454198A 1998-10-06 1998-10-06 電子カメラ Expired - Lifetime JP4078472B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28454198A JP4078472B2 (ja) 1998-10-06 1998-10-06 電子カメラ
US09/412,651 US6359651B1 (en) 1998-10-06 1999-10-05 Electronic camera using flash for exposure control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28454198A JP4078472B2 (ja) 1998-10-06 1998-10-06 電子カメラ

Publications (2)

Publication Number Publication Date
JP2000111981A JP2000111981A (ja) 2000-04-21
JP4078472B2 true JP4078472B2 (ja) 2008-04-23

Family

ID=17679802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28454198A Expired - Lifetime JP4078472B2 (ja) 1998-10-06 1998-10-06 電子カメラ

Country Status (1)

Country Link
JP (1) JP4078472B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714351B2 (ja) * 2000-09-19 2011-06-29 Hoya株式会社 カメラ及びフラッシュ撮影システム
JP2007282118A (ja) * 2006-04-11 2007-10-25 Nikon Corp 電子カメラおよび画像処理装置
US8306280B2 (en) 2006-04-11 2012-11-06 Nikon Corporation Electronic camera and image processing apparatus
JP5489591B2 (ja) * 2009-08-18 2014-05-14 キヤノン株式会社 撮像装置およびその制御方法
JP5393426B2 (ja) * 2009-12-16 2014-01-22 キヤノン株式会社 撮像装置及びその制御方法

Also Published As

Publication number Publication date
JP2000111981A (ja) 2000-04-21

Similar Documents

Publication Publication Date Title
US6359651B1 (en) Electronic camera using flash for exposure control
US8150252B2 (en) Imaging apparatus and imaging apparatus control method
JP4222213B2 (ja) カメラ装置、撮影感度設定プログラム及び撮影感度設定方法
JP2001177763A (ja) ディジタル・カメラおよびその制御方法
JP2007243616A (ja) 露出制御方法及び撮像装置
JP3610291B2 (ja) 電子カメラ
US8351779B2 (en) Image pickup apparatus using light emitting device and method of controlling the same
JP2000111979A (ja) 電子カメラ
JP2008164731A (ja) 撮影装置及びその制御方法
JP5152260B2 (ja) 撮像装置
JP4078472B2 (ja) 電子カメラ
JP4416272B2 (ja) 撮像装置と該撮像装置の制御方法
JP4000413B2 (ja) 電子カメラ
JP2000111982A (ja) 電子カメラ
JP4078471B2 (ja) 電子カメラ
JP5791254B2 (ja) 撮像装置及びカメラシステム
JP2006065076A (ja) 撮像装置、撮像装置の制御方法、制御プログラム及び記憶媒体
JP4479021B2 (ja) デジタルスチルカメラ
JP2005284166A (ja) デジタルスチルカメラ及びその連続撮影の制御方法
JP5266077B2 (ja) 撮像装置およびその制御方法
JP4081581B2 (ja) オートホワイトバランス制御方法
JP3349164B2 (ja) マルチストロボ発光測光システム
JP2003274279A (ja) 電子プレビュー機能を有するカメラ
JP2004325588A (ja) ストロボ発光制御方法
JP4237456B2 (ja) 赤目軽減機能付カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term