JP4076465B2 - Semiconductor gas detector - Google Patents

Semiconductor gas detector Download PDF

Info

Publication number
JP4076465B2
JP4076465B2 JP2003089799A JP2003089799A JP4076465B2 JP 4076465 B2 JP4076465 B2 JP 4076465B2 JP 2003089799 A JP2003089799 A JP 2003089799A JP 2003089799 A JP2003089799 A JP 2003089799A JP 4076465 B2 JP4076465 B2 JP 4076465B2
Authority
JP
Japan
Prior art keywords
gas
sensitive layer
catalyst
substrate
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089799A
Other languages
Japanese (ja)
Other versions
JP2004294364A (en
Inventor
奎千 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2003089799A priority Critical patent/JP4076465B2/en
Publication of JP2004294364A publication Critical patent/JP2004294364A/en
Application granted granted Critical
Publication of JP4076465B2 publication Critical patent/JP4076465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一対の検出電極を設けてなる絶縁基板上に、金属酸化物半導体を主成分とする感応層を、前記検出電極を覆って設けた基板型半導体式ガス検知素子に関する。
【0002】
【従来の技術】
従来、この種の基板型半導体式ガス検知素子としては、たとえばアルミナ基板上に一対の金電極を蒸着し、その電極上に跨って前記感応層を形成し、前記感応層が種々のガスに対して反応するのに伴って、前記感応層の見かけ抵抗が変化するのを検出することによりガスを検知可能に構成することができるものである。ここで、特定の被検知ガスのみを選択的に検知するために、前記感応層には、種々の触媒が設けられる場合が多い。
【0003】
前記感応層に触媒を設ける場合、その感応層の特に外表面側に、触媒機能を有する成分(触媒成分)を含有させておいたり、前記感応層外表面に前記感応層とは別途、触媒層を設けておく。感応層の製造時に製造工程上の便宜から感応層全体に触媒成分を添加しておくこともあるが、これにより、室内空気、排ガス等の検知対象ガス中に含まれる被検知ガスをより選択的に反応させたり、前記被検知ガスとともに含まれる夾雑ガスを選択的に除去して、前記感応層で被検知ガスの反応がより選択的に検出されるようにすることができると考えられている(特許文献1参照)。
【0004】
前記感応層の外表面側に達した被検知ガスは、まず、前記感応層の外表面部で触媒成分と接触することになり、主に前記感応層の外表面部で触媒反応を生起することになる。そのため、このような場合に感応層の膜厚方向に被検知ガスの濃度勾配が生じ、表面部よりいっそう少ないガスが内部に到達するため、前記感応層内方側に触媒部を設けたとしても、前記被検知ガスの反応に携わらずに無駄になったり、前記被検知ガスの反応生成物に対して副反応を生起する場合がある。従って、通常は上述のような無駄や副反応を抑制するために、前記触媒成分を、前記感応層の外表面側に設けるのである。
【0005】
【特許文献1】
特開2000−55852号公報
【0006】
【発明が解決しようとする課題】
しかし、このようにして前記感応層に触媒層を設けると、逆に前記感応層における前記被検知ガスの反応に基づく前記感応層全体の見かけ抵抗の変化が十分に検出できず、むしろ夾雑ガスの反応に基づく前記感応層の見かけ抵抗の変化が選択的に検出されるようになる場合がある。このとき、逆に被検知ガスを選択的に検知する選択性が低下したり、その見かけ抵抗値の変化率(以下感度と称する)が十分でないことになる。
【0007】
従って、本発明の目的は、上記実情に鑑み、基板型半導体式ガス検知素子の被検知ガスに対する反応性を効果的に向上させて、そのガス選択性や、感度を改善する技術を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記ガス検知素子の表面に達した被検知ガスは、まず、前記感応層外表面部で前記触媒層に含まれる触媒により優先的に反応してしまうことに起因して、前記感応層の見かけ抵抗の変化は、主にその感応層の外表面で起こっていることが上述の問題につながっているのではないかと考え、鋭意研究の結果、本発明に想到した。
つまり、被検知ガスが感応層外表面で主に反応してしまうと、前記感応層の見かけ抵抗の変化は前記感応層外表面で主に生起することになる。一方、前記感応層の電気伝導度は、電極間の領域(以下電極間通電領域と称する)の電気伝導度に大きく影響されるので、前記感応層外表面側だけの反応による抵抗変化は小さくなる傾向を示す。従って、前期被検知ガスの検出に伴う感応層の見かけ抵抗の変化が捉えられずに、前記被検知ガス選択性の低下や、感度の低下につながるものと説明できる。
【0009】
そこで、この目的を達成するために、本発明の半導体式ガス検知素子は、
一対の検出電極を設けてなる絶縁基板上に、酸化タングステンを主成分とする感応層を、前記検出電極を覆って設けた揮発性有機物質(VOC)検知用基板型半導体式ガス検知素子であって、前記感応層中における前記検出電極の間の通電領域に、白金及びパラジウムのうち少なくともいずれかの成分を含み、被検知ガスの反応を触媒する触媒部を設ける構成とした。また、前記感応層の表面部に比べて、より多くの触媒成分を前記電極の間の通電領域に設けて触媒部を形成してある。
前記触媒部が前記絶縁基板上の前記検出電極の間に付設されていることが好ましい。
また、前記絶縁基板上に前記触媒部がCVD、PVD、スパッタリング、スクリーン印刷から選ばれる少なくとも一種の製膜手段により設けられていることが好ましい。
【0010】
〔作用効果〕
つまり、一対の検出電極を設けてなる絶縁基板上に、金属酸化物半導体を主成分とする感応層を、前記検出電極を覆って設けると、被検知ガスとの接触により前記感応層の見かけ抵抗が変化するのを、前記電極から電気信号として取り出すことができる。
ここで、前記感応層中における前記検出電極通電領域に触媒部を設けると、触媒反応を受ける被検知ガスは、拡散により前記感応層を透過して前記触媒部に達し、主に前記検出電極通電領域の前記触媒部で触媒による化学反応を生起することになる。すると、前記感応層の内、特に検出電極間電流の流路となる検出電極通電領域において、前記感応層の見かけ抵抗の変化が大きくなることになるから、前記感応層の見かけ抵抗の変化を確実に捉えることができ、高い感度を実現できる。
前記触媒部が、白金、パラジウムの少なくともいずれかの成分を含むものであれば、特に、被検知ガスを酸化する触媒として働き、検知対象ガス中の種々のガスに対して、反応性の違いを生じさせ、被検知ガスに対する選択性を持たせるのに有効に機能する。
前記感応層が酸化タングステンを主成分とするものであれば、前記感応層は、VOC(揮発性有機物質)に対するガス選択性を有することがわかっている。また、一般にVOCを検知する際に妨害となる夾雑ガスとしては、水素ガスが知られている。感応層におけるVOCの反応は酸化反応であるのに対し、水素ガスも酸化反応を受け、いずれの反応も白金による触媒作用を受ける。
ここで、基盤型半導体式ガス検知素子における前記白金触媒成分が、前記感応層外表面側に存在していると、水素ガス感度が向上するのに対して、VOC感度が逆に低下してしまう。それに対し、前記白金触媒成分を前記検出電極の間の通電領域に設けてあれば、逆に前記水素ガス感度はあまり上昇しないのに対してVOC感度は大きく上昇することになることが、後述の実験により証明され、VOCガス検知素子として有用に用いられることがわかった。
【0011】
また、活性の高い夾雑ガスが前記感応層で反応を受ける場合には、前記感応層外表面側で反応を生起すると考えられることから、前記被検知ガスの検知に悪影響を及ぼしにくい。また、このようにして、前記被検知ガスの化学反応を捉えると、検知対象ガス中の前記被検知ガスのより活性の低いガスは、前記感応層中で前記触媒部に達したとしても触媒反応を受けないから、選択的に被検知ガスのみを検知することになる。そのため、前記基板型半導体式ガス検知素子に高い被検知ガス選択性を発揮させることができるようになった。
【0012】
また、前記絶縁基板上に前記触媒部がCVD、PVD、スパッタリング、スクリーン印刷から選ばれる少なくとも一種の製膜手段により設けられていることが好ましく、このような場合、前記絶縁基板に対して、確実に検出電極を形成することができる。また、検出電極についても同様の製膜手段により形成することができ、薄膜状の電極を形成できるから、電極から流れる電流が、前記触媒部の影響を受ける電極間通電領域を、ごく狭い範囲を流れ、前記感応層において見かけ抵抗の変化を与える部分が効果的に形成できる。
尚、検出電極自体が白金で形成されている場合もあるが、電極自体は通電領域外に存在してしまうため、被検知ガスの反応を触媒する触媒部としては機能するものの、前述のものより効果が小さい。
【0013】
感応層の電気抵抗変化率は絶縁基板上に設けた、検出電極間通電領域の感応層の電気抵抗の変化に支配されるので、前記電極間通電領域は前記感応層における前記絶縁基板にきわめて近い領域に形成されることになる。そのため、前記触媒部を前記絶縁基板上の前記電極間に付設することにより、前記電極間通電領域に確実に触媒部を配置することができる。また、前記絶縁基板上に感応層を形成するに際して、あらかじめ触媒部を配置形成しておくことができるものであるから、ガス検知素子を容易に作製することができる。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
本発明の基板型半導体式ガス検知素子10は、図1に示すように、アルミナ基板1の表面に金製櫛型電極2、3を蒸着して設け、電極2,3間の電極間通電領域Aに白金薄膜からなる触媒部4をスパッタリングして形成し、これらの上に酸化タングステンを主成分とする金属酸化物半導体ペーストを塗布し、600℃で2時間焼成して感応層5を設けてある。また、前記アルミナ基板1の裏面には、白金薄膜ヒーター6が設けられ、ガス検知素子の動作温度を維持するために用いられる。
【0017】
このとき、前記アルミナ基板が平面視1mm×1.5mm、厚さ0.4mmであるのに対し、前記感応層は同じく平面視1mm×1mmであり、厚さ10〜50μmとし、前記触媒部は、厚さ0.2μm、前記電極は、各極とも厚さ0.8μm、とした。
【0018】
ガス検知装置は、図2に示すように、上述のVOC検知素子10を、ガス検知回路20に組み込み、ガス検知出力が得られるようにガス検知装置を構成する。また、前記VOC検知素子10から得られたガス検知出力は、制御部30に入力されて、VOC濃度が警報を要するレベルに達しているかどうかの判断がなされる。ここで、警報を要すると判断された場合、前記制御部30は警報部40に対して警報信号を出力し、前記警報部40において警報ブザー、警報音声等を鳴動させる。
【0019】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
(1)無触媒の基板型半導体式ガス検知素子(無触媒)
上述の基板型半導体式ガス検知素子に代えて触媒部を有さない以外は先の実施の形態と同様に作製した基板型半導体式ガス検知素子を用意した。
この基板型半導体式ガス検知素子のトルエン(VOCの一例)検知特性(0.1〜3ppm)および水素ガス検知特性(50〜300ppm)を調べたところ、図3(1)、図4(1)のようになった。
尚、感度は、前記基板型半導体式ガス検知素子を400℃にて動作させた場合の空気中における抵抗値(Rair)と被検知ガスを含む検知対象ガス中における抵抗値(Rg)の比(Rair/Rg)として求めている。
【0020】
(2)感応層外表面から触媒部を形成(感応層全体)してある基板型半導体式ガス検知素子
前記(1)の基板型半導体式ガス検知素子の前記感応層5に、塩化白金酸の水溶液を含浸した後、550℃で0.5時間焼成し触媒成分としての白金を担持させる。白金の含浸量は、所定濃度の硝酸鉛水溶液を前記感応層にキャピラリーを用いて一定量を滴下して含浸させることにより、酸化タングステンに対して0.005mol%担持させたものを作製した。
この基板型半導体式ガス検知素子のトルエンおよび水素ガスに対する検知特性を調べたところ、図3(2)、図4(2)のようになった。
【0021】
(3)電極間通電領域に触媒部を有する基板型半導体式ガス検知素子(電極間通電領域)
先の実施の形態の基板型半導体式ガス検知素子のトルエンおよび水素ガスに対する検知特性を調べたところ、図3(3)、図4(3)のようになった。
【0022】
図3によると、基板型半導体式ガス検知素子は、白金成分を感応部外表面側に設けることによりトルエン感度が低下し(2)、白金成分を電極間通電領域に設けることによってトルエン感度が大きく上昇している(3)ことがわかる。
一方、図4によると、基板型半導体式ガス検知素子は、白金成分を感応部全体に設けることにより水素感度が大きく上昇し(2)、白金成分を電極間通電領域に設けることによって水素感度の上昇幅が小さく抑えられている(3)ことがわかる。
【0023】
つまり、トルエンに対する反応性に関して、(1)の無触媒の基板型半導体式ガス検知素子では、トルエンが感応層中に拡散しつつ反応したために、トルエンに対する一定の感度を有したが、(2)の感応層外表面から触媒部を形成してある基板型半導体式ガス検知素子では、白金のトルエンに対する触媒活性は極めて高いことから、前記白金成分が触媒として、トルエンが前記感応層外表面部で十分反応することができたので、その反応に基づく抵抗変化はその感応層外表面部でしか起きず、感応層全体としての合成抵抗の変化としてあまり反映されなかったものと考えられる。一方(3)の電極間通電領域に触媒部を有する基板型半導体式ガス検知素子では、前記感応層内部に拡散侵入したトルエンが前記電極間通電領域に至ってから反応することができるため、その反応に基づく抵抗変化は主に電極間通電領域で生起する事になり、感応層全体としての合成抵抗の変化として大きく寄与し、高いトルエン感度を得る事ができるものになったと考えられる。
【0024】
一方、水素ガスに対する反応性に関しては、(1)の無触媒の基板型半導体式ガス検知素子では、前記感応層は水素に対する反応性がほとんど無かった。これに対して、(2)の感応層全体で触媒部を形成してある基板型半導体式ガス検知素子では、前記白金成分の触媒効果によって、水素ガスが反応するが、感応部全体にわたり反応サイトが増え、結果として水素ガス反応による抵抗変化が現れ、感応層全体としての合成抵抗の変化として反映されたものと考えられる。ところが、(3)の電極間通電領域に触媒部を有する基板型半導体式ガス検知素子では、感応層内部の電極間通電領域に触媒部が配置されているために、水素ガスが反応するサイトが少なくなり感度が得られなくなっていると考えられる。
【0025】
従って、被検知ガスの反応に対して触媒する触媒部を電極間通電領域に配置しておくことで、その被検知ガスに対する感度を向上させるとともに、その被検知ガスの妨害ガスとなる夾雑ガスの感度上昇を抑えることができ、その基板型半導体式ガス検知素子の被検知ガス選択性を大きく改善することができたものと考えられる。
【0026】
〔別実施形態〕
先の実施の形態においては、前記触媒部を前記絶縁基板上に成膜して付設して電極間通電領域に設けたが、触媒部が前記電極間通電領域内に形成されるのであればどのように設けてもかまわない。たとえば、前記絶縁基板上の両電極間に金属酸化物の層を設けて、その金属酸化物の層に触媒を含浸担持させて触媒部を形成し、その電極および触媒部を覆って金属酸化物半導体を主成分とする感応層を形成すればよい。
【0027】
また、前記触媒は、白金に限らず他のものであっても良く、検知すべきガス種に応じて選択すればよい。
【0028】
また、たとえば、以下のように触媒部を電極間に覆って設けることもできる。
【0029】
基板上に櫛型金電極を設置し、電極の配置されている基板面全体(電極上も含む)にパラジウムを蒸着してパラジウム微粒子を分散し、触媒部を形成した(パラジウムの蒸着時間をコントロールして電極をショートさせない程度にしてある)。そのあと、その触媒部全体を覆ってWO3膜をコーティングして感応層を設けたガス検知素子を作製した。図5に、上記ガス検知素子のトルエンに対する感度特性を示す。図5より、このガス検知素子は、触媒がないときのWO3感応層より感度が大きく向上していることがわかる。これは被検知ガスが電極と電極間通電領域に分散されているパラジウム微粒子と感応層底面との界面で触媒反応を起こし、電極と電極間基板面近傍における感応層の電気抵抗が大きく変化することによる。
【0030】
また、前記検出電極は、金、白金、白金パラジウム合金等種々のものを採用することができる。尚、電極は触媒として機能しない。
【0031】
また、前記感応層を構成する金属酸化物半導体は、酸化タングステンを主材とするものに限られるものではなく、酸化スズ、酸化亜鉛等種々の金属酸化物を主材とするものを適用することができる。
【図面の簡単な説明】
【図1】本発明の基板型半導体式ガス検知素子の一部破断斜視図
【図2】本発明の基板型半導体式ガス検知素子を用いたガス検知装置の概略図
【図3】基板型半導体式ガス検知素子のトルエン検知特性を示すグラフ
【図4】基板型半導体式ガス検知素子の水素検知特性を示すグラフ
【図5】基板型半導体式ガス検知素子(パラジウム触媒)のトルエン検知特性を示すグラフ
【符号の説明】
1 アルミナ基板
2、3 金製櫛型電極
4 触媒部
5 感応層
6 白金薄膜ヒーター
10 基板型半導体式ガス検知素子
20 ガス検知回路
30 制御部
40 警報部
A 電極間通電領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate type semiconductor gas detection element in which a sensitive layer mainly composed of a metal oxide semiconductor is provided on an insulating substrate provided with a pair of detection electrodes so as to cover the detection electrodes.
[0002]
[Prior art]
Conventionally, as this type of substrate type semiconductor gas detection element, for example, a pair of gold electrodes is vapor-deposited on an alumina substrate, the sensitive layer is formed over the electrodes, and the sensitive layer is used for various gases. The gas can be detected by detecting the change in the apparent resistance of the sensitive layer as it reacts. Here, in order to selectively detect only a specific detected gas, the sensitive layer is often provided with various catalysts.
[0003]
When a catalyst is provided in the sensitive layer, a component having a catalytic function (catalyst component) is included in the sensitive layer, particularly on the outer surface side, or a catalyst layer is provided separately from the sensitive layer on the sensitive layer outer surface. Is provided. When manufacturing the sensitive layer, a catalyst component may be added to the entire sensitive layer for the convenience of the manufacturing process, but this makes it possible to select the detected gas contained in the detection target gas such as indoor air and exhaust gas more selectively. It is thought that the reaction of the detected gas can be detected more selectively in the sensitive layer by selectively removing the contaminated gas contained together with the detected gas. (See Patent Document 1).
[0004]
The gas to be detected that has reached the outer surface side of the sensitive layer first comes into contact with the catalyst component on the outer surface portion of the sensitive layer, and mainly causes a catalytic reaction on the outer surface portion of the sensitive layer. become. Therefore, in such a case, a concentration gradient of the gas to be detected occurs in the film thickness direction of the sensitive layer, and even less gas than the surface part reaches the inside, so even if a catalyst part is provided on the inner side of the sensitive layer In some cases, the detected gas is wasted without being involved in the reaction, or a side reaction is caused to the reaction product of the detected gas. Therefore, the catalyst component is usually provided on the outer surface side of the sensitive layer in order to suppress waste and side reactions as described above.
[0005]
[Patent Document 1]
JP-A-2000-55852 [0006]
[Problems to be solved by the invention]
However, when the catalyst layer is provided in the sensitive layer in this way, on the contrary, the change in the apparent resistance of the entire sensitive layer based on the reaction of the gas to be detected in the sensitive layer cannot be sufficiently detected. In some cases, a change in the apparent resistance of the sensitive layer based on the reaction is selectively detected. At this time, on the contrary, the selectivity for selectively detecting the gas to be detected is lowered, or the apparent resistance value change rate (hereinafter referred to as sensitivity) is not sufficient.
[0007]
Therefore, in view of the above circumstances, an object of the present invention is to provide a technique for improving the gas selectivity and sensitivity by effectively improving the reactivity of a substrate type semiconductor gas sensing element to a gas to be detected. It is in.
[0008]
[Means for Solving the Problems]
The present inventors, due to the fact that the gas to be detected that has reached the surface of the gas sensing element first reacts preferentially with the catalyst contained in the catalyst layer at the outer surface portion of the sensitive layer, The change in the apparent resistance of the sensitive layer was thought to be mainly due to the fact that it occurred on the outer surface of the sensitive layer, leading to the above-mentioned problems, and as a result of intensive studies, the present invention was conceived.
That is, if the gas to be detected reacts mainly on the outer surface of the sensitive layer, the change in the apparent resistance of the sensitive layer mainly occurs on the outer surface of the sensitive layer. On the other hand, the electrical conductivity of the sensitive layer is greatly influenced by the electrical conductivity of the region between the electrodes (hereinafter referred to as the inter-electrode conducting region), so that the resistance change due to the reaction only on the outer surface side of the sensitive layer becomes small. Show the trend. Therefore, it can be explained that the change in the apparent resistance of the sensitive layer accompanying the detection of the gas to be detected in the previous period is not captured, leading to a decrease in the gas to be detected and a decrease in sensitivity.
[0009]
Therefore, in order to achieve this object, the semiconductor gas detection element of the present invention is
A substrate type semiconductor gas detection element for detecting a volatile organic substance (VOC) in which a sensitive layer mainly composed of tungsten oxide is provided on an insulating substrate provided with a pair of detection electrodes so as to cover the detection electrode. Thus, the current-carrying region between the detection electrodes in the sensitive layer is provided with a catalyst part that contains at least one of platinum and palladium and catalyzes the reaction of the gas to be detected. Further, the catalyst portion is formed by providing more catalyst components in the current-carrying region between the electrodes as compared with the surface portion of the sensitive layer.
It is preferable that the catalyst portion is provided between the detection electrodes on the insulating substrate.
Moreover, it is preferable that the said catalyst part is provided on the said insulated substrate by the at least 1 type of film forming means chosen from CVD, PVD, sputtering, and screen printing.
[0010]
[Function and effect]
That is, when a sensitive layer composed mainly of a metal oxide semiconductor is provided on an insulating substrate provided with a pair of sensing electrodes so as to cover the sensing electrode, the apparent resistance of the sensitive layer is brought into contact with the gas to be sensed. Can be taken out as an electrical signal from the electrode.
Here, providing the catalyst unit in the current region between the detecting electrodes in the sensitive layer, the gas to be detected to undergo catalytic reaction, reaches the catalyst portion is transmitted through the sensitive layer by diffusion, primarily It will rise to a chemical reaction by the catalyst in the catalytic section of the energizing area between the detection electrodes. Then, the inside of the sensitive layer, in particular in the energizing area between the detection electrode serving as a flow path of the current between the detection electrodes, the since the change in the apparent resistance of the sensitive layer is the larger, the apparent resistance of the sensitive layer It is possible to capture changes in the area with certainty and achieve high sensitivity.
If the catalyst part contains at least one component of platinum and palladium, it works as a catalyst that oxidizes the gas to be detected, and exhibits a difference in reactivity with various gases in the gas to be detected. It works effectively to produce and have selectivity for the gas to be detected.
It has been found that if the sensitive layer is based on tungsten oxide, the sensitive layer has gas selectivity for VOC (volatile organic substances). In general, hydrogen gas is known as a contaminant gas that interferes when VOC is detected. While the VOC reaction in the sensitive layer is an oxidation reaction, hydrogen gas also undergoes an oxidation reaction, and both reactions are catalyzed by platinum.
Here, when the platinum catalyst component in the base type semiconductor gas sensing element is present on the outer surface side of the sensitive layer, the hydrogen gas sensitivity is improved, whereas the VOC sensitivity is decreased. . On the other hand, if the platinum catalyst component is provided in the energization region between the detection electrodes, the hydrogen gas sensitivity does not increase so much, whereas the VOC sensitivity greatly increases. It was proved by experiments and found to be useful as a VOC gas sensing element.
[0011]
In addition, when a highly active contaminant gas undergoes a reaction in the sensitive layer, it is considered that the reaction occurs on the outer surface side of the sensitive layer, and therefore it is difficult to adversely affect the detection of the detected gas. Further, in this way, when the chemical reaction of the gas to be detected is captured, even if the less active gas of the gas to be detected in the gas to be detected reaches the catalyst portion in the sensitive layer, the catalytic reaction Therefore, only the gas to be detected is selectively detected. As a result, the substrate-type semiconductor gas sensing element can exhibit high gas selectivity.
[0012]
Moreover, it is preferable that the catalyst part is provided on the insulating substrate by at least one film forming means selected from CVD, PVD, sputtering, and screen printing. A detection electrode can be formed. Further, since the detection electrode can be formed by the same film forming means, and a thin film electrode can be formed, the current flowing from the electrode has a very narrow range of the inter-electrode energization region affected by the catalyst portion. A portion that gives a change in the apparent resistance can be effectively formed in the flow-sensitive layer.
Although the detection electrode itself may be made of platinum, the electrode itself exists outside the current-carrying region, so it functions as a catalyst part that catalyzes the reaction of the gas to be detected. Small effect.
[0013]
Since the rate of change in electrical resistance of the sensitive layer is governed by the change in electrical resistance of the sensitive layer in the sensing electrode conducting region provided on the insulating substrate, the interelectrode conducting region is very close to the insulating substrate in the sensitive layer. It will be formed in the region. Therefore, by attaching the catalyst part between the electrodes on the insulating substrate, the catalyst part can be reliably arranged in the inter-electrode energization region. Further, when the sensitive layer is formed on the insulating substrate, the catalyst portion can be arranged and formed in advance, so that the gas detection element can be easily manufactured.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a substrate type semiconductor gas detection element 10 of the present invention is provided by depositing gold comb electrodes 2 and 3 on the surface of an alumina substrate 1, and an interelectrode conduction region between the electrodes 2 and 3. A catalyst portion 4 made of a platinum thin film is formed on A by sputtering, a metal oxide semiconductor paste mainly composed of tungsten oxide is applied thereon, and fired at 600 ° C. for 2 hours to provide a sensitive layer 5. is there. A platinum thin film heater 6 is provided on the back surface of the alumina substrate 1 and is used to maintain the operating temperature of the gas detection element.
[0017]
At this time, the alumina substrate has a plan view of 1 mm × 1.5 mm and a thickness of 0.4 mm, whereas the sensitive layer has the same plan view of 1 mm × 1 mm and has a thickness of 10 to 50 μm. The thickness of each electrode was 0.8 μm.
[0018]
As shown in FIG. 2, the gas detection device configures the gas detection device so that the above-described VOC detection element 10 is incorporated in the gas detection circuit 20 and a gas detection output is obtained. The gas detection output obtained from the VOC detection element 10 is input to the control unit 30 to determine whether or not the VOC concentration has reached a level requiring an alarm. Here, when it is determined that an alarm is required, the control unit 30 outputs an alarm signal to the alarm unit 40, and the alarm unit 40 sounds an alarm buzzer, an alarm sound, and the like.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(1) Non-catalytic substrate type semiconductor gas detector (non-catalytic)
A substrate-type semiconductor gas detection element was prepared in the same manner as in the previous embodiment except that the catalyst portion was not provided in place of the substrate-type semiconductor gas detection element described above.
When the toluene (an example of VOC) detection characteristic (0.1 to 3 ppm) and the hydrogen gas detection characteristic (50 to 300 ppm) of this substrate type semiconductor gas detection element were examined, FIG. 3 (1), FIG. 4 (1) It became like this.
The sensitivity is the ratio of the resistance value (Rair) in air and the resistance value (Rg) in the gas to be detected including the gas to be detected when the substrate type semiconductor gas sensing element is operated at 400 ° C. Rair / Rg).
[0020]
(2) Substrate-type semiconductor gas sensing element having a catalyst portion formed from the outer surface of the sensitive layer (entire sensitive layer) The sensitive layer 5 of the substrate-type semiconductor gas sensing element according to (1) above is coated with chloroplatinic acid. After impregnating the aqueous solution, it is calcined at 550 ° C. for 0.5 hour to carry platinum as a catalyst component. The amount of platinum impregnated was prepared by dropping a predetermined amount of a lead nitrate aqueous solution into the sensitive layer by using a capillary and impregnating the platinum with 0.005 mol% of tungsten oxide.
When the detection characteristics of this substrate type semiconductor gas detection element with respect to toluene and hydrogen gas were examined, they were as shown in FIGS. 3 (2) and 4 (2).
[0021]
(3) Substrate-type semiconductor gas sensing element having a catalyst portion in the interelectrode energization region (interelectrode energization region)
When the detection characteristics with respect to toluene and hydrogen gas of the substrate type semiconductor gas detection element of the previous embodiment were examined, the results were as shown in FIGS. 3 (3) and 4 (3).
[0022]
According to FIG. 3, the substrate-type semiconductor gas detection element has a lower toluene sensitivity by providing the platinum component on the outer surface side of the sensitive part (2), and has a higher toluene sensitivity by providing the platinum component in the inter-electrode conducting region. It can be seen that it is rising (3).
On the other hand, according to FIG. 4, the substrate type semiconductor gas detection element has a hydrogen sensitivity greatly increased by providing the platinum component in the entire sensitive part (2), and the hydrogen sensitivity is improved by providing the platinum component in the inter-electrode conducting region. It can be seen that the increase width is suppressed (3).
[0023]
That is, regarding the reactivity to toluene, the non-catalytic substrate-type semiconductor gas detection element of (1) had a certain sensitivity to toluene because toluene reacted while diffusing in the sensitive layer. In the substrate type semiconductor gas detection element in which the catalyst portion is formed from the outer surface of the sensitive layer, since the catalytic activity of platinum against toluene is extremely high, the platinum component is used as a catalyst, and toluene is the outer surface portion of the sensitive layer. It was considered that the resistance change based on the reaction occurred only on the outer surface portion of the sensitive layer, and was not reflected so much as the change in the synthetic resistance of the entire sensitive layer because the reaction could be sufficiently performed. On the other hand, in the substrate-type semiconductor gas detection element having a catalyst portion in the inter-electrode current-carrying region (3), toluene that diffuses and penetrates into the sensitive layer can react after reaching the inter-electrode current-carrying region. It is considered that the resistance change based on this occurs mainly in the inter-electrode energization region, greatly contributing to the change in the combined resistance of the entire sensitive layer, and a high toluene sensitivity can be obtained.
[0024]
On the other hand, regarding the reactivity to hydrogen gas, in the non-catalytic substrate type semiconductor gas sensing element of (1), the sensitive layer had almost no reactivity to hydrogen. On the other hand, in the substrate type semiconductor gas detection element in which the catalyst part is formed in the entire sensitive layer of (2), hydrogen gas reacts due to the catalytic effect of the platinum component, but the reaction site throughout the sensitive part. As a result, a resistance change due to a hydrogen gas reaction appears, which is considered to be reflected as a change in the combined resistance of the entire sensitive layer. However, in the substrate type semiconductor gas detection element having the catalyst portion in the inter-electrode energization region of (3), since the catalyst portion is arranged in the inter-electrode energization region inside the sensitive layer, there is a site where hydrogen gas reacts. It is thought that the sensitivity is reduced and the sensitivity cannot be obtained.
[0025]
Therefore, by arranging the catalyst portion that catalyzes the reaction of the detected gas in the inter-electrode energization region, the sensitivity to the detected gas is improved and the contamination gas that becomes the interference gas of the detected gas is reduced. It is considered that the increase in sensitivity could be suppressed and the gas selectivity of the substrate type semiconductor gas detection element could be greatly improved.
[0026]
[Another embodiment]
In the previous embodiment, the catalyst portion was formed on the insulating substrate and provided in the inter-electrode energization region. However, as long as the catalyst portion is formed in the inter-electrode energization region, It does not matter if it is provided. For example, a metal oxide layer is provided between the electrodes on the insulating substrate, a catalyst portion is formed by impregnating and supporting the metal oxide layer with a catalyst, and the metal oxide is covered with the electrode and the catalyst portion. A sensitive layer composed mainly of a semiconductor may be formed.
[0027]
Further, the catalyst is not limited to platinum, and may be another catalyst, which may be selected according to the gas type to be detected.
[0028]
Further, for example, the catalyst part can be provided between the electrodes as follows.
[0029]
A comb-shaped gold electrode was placed on the substrate, and palladium was deposited on the entire substrate surface (including the electrode) on which the electrode was placed to disperse the palladium fine particles, thus forming a catalyst part (controlling the deposition time of palladium) Thus, the electrode is not short-circuited). After that, a gas detection element having a sensitive layer provided by coating a WO3 film covering the entire catalyst portion was produced. In FIG. 5, the sensitivity characteristic with respect to toluene of the said gas detection element is shown. FIG. 5 shows that the sensitivity of this gas detection element is greatly improved over the WO3 sensitive layer when there is no catalyst. This is because the gas to be detected causes a catalytic reaction at the interface between the fine palladium particles dispersed in the electrode and the electrode energization region and the bottom surface of the sensitive layer, and the electrical resistance of the sensitive layer in the vicinity of the electrode surface between the electrode and the substrate changes greatly. by.
[0030]
Various detection electrodes such as gold, platinum, platinum-palladium alloy and the like can be used. The electrode does not function as a catalyst.
[0031]
Further, the metal oxide semiconductor constituting the sensitive layer is not limited to the one having tungsten oxide as the main material, and the one having various metal oxides such as tin oxide and zinc oxide as the main material is applied. Can do.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view of a substrate type semiconductor gas detection element of the present invention. FIG. 2 is a schematic diagram of a gas detection apparatus using the substrate type semiconductor gas detection element of the present invention. Fig. 4 is a graph showing the hydrogen detection characteristics of a substrate type semiconductor gas detection element. Fig. 5 is a graph showing the toluene detection characteristics of a substrate type semiconductor gas detection element (palladium catalyst). Graph [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Alumina substrate 2, 3 Gold comb-shaped electrode 4 Catalyst part 5 Sensitive layer 6 Platinum thin film heater 10 Substrate type semiconductor gas detection element 20 Gas detection circuit 30 Control part 40 Alarm part A Inter-electrode energization region

Claims (4)

一対の検出電極を設けてなる絶縁基板上に、酸化タングステンを主成分とする感応層を、前記検出電極を覆って設けた半導体式ガス検知素子であって、前記感応層中における前記検出電極の間の通電領域に、白金及びパラジウムのうち少なくともいずれかの成分を含み、被検知ガスの反応を触媒する触媒部を設けた揮発性有機物質検知用基板型半導体式ガス検知素子。A semiconductor-type gas sensing element comprising a sensing layer comprising tungsten oxide as a main component on an insulating substrate provided with a pair of sensing electrodes so as to cover the sensing electrode, wherein the sensing electrode in the sensitive layer A substrate-type semiconductor gas detection element for detecting a volatile organic substance, in which a catalyst portion including at least one of platinum and palladium and catalyzing a reaction of a gas to be detected is provided in a current-carrying region. 前記感応層の表面部に比べて、より多くの触媒成分を前記電極の間の通電領域に設けて触媒部を形成してある請求項1に記載の揮発性有機物質検知用基板型半導体式ガス検知素子。2. The substrate type semiconductor gas for detecting volatile organic substances according to claim 1, wherein a catalyst portion is formed by providing more catalyst components in a current-carrying region between the electrodes as compared with the surface portion of the sensitive layer. Sensing element. 前記触媒部が前記絶縁基板上の前記検出電極の間に付設されている請求項1または2に記載の揮発性有機物質検知用基板型半導体式ガス検知素子。The substrate type semiconductor gas detection element for detecting volatile organic substances according to claim 1 or 2, wherein the catalyst part is provided between the detection electrodes on the insulating substrate. 前記絶縁基板上に前記触媒部がCVD、PVD、スパッタリング、スクリーン印刷から選ばれる少なくとも一種の成膜手段により設けられている請求項1〜3のいずれか一項に記載の揮発性有機物質検知用基板型半導体式ガス検知素子。The volatile organic substance detection device according to any one of claims 1 to 3, wherein the catalyst portion is provided on the insulating substrate by at least one film forming means selected from CVD, PVD, sputtering, and screen printing . Substrate type semiconductor gas detector.
JP2003089799A 2003-03-28 2003-03-28 Semiconductor gas detector Expired - Fee Related JP4076465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089799A JP4076465B2 (en) 2003-03-28 2003-03-28 Semiconductor gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089799A JP4076465B2 (en) 2003-03-28 2003-03-28 Semiconductor gas detector

Publications (2)

Publication Number Publication Date
JP2004294364A JP2004294364A (en) 2004-10-21
JP4076465B2 true JP4076465B2 (en) 2008-04-16

Family

ID=33403569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089799A Expired - Fee Related JP4076465B2 (en) 2003-03-28 2003-03-28 Semiconductor gas detector

Country Status (1)

Country Link
JP (1) JP4076465B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870938B2 (en) * 2005-03-30 2012-02-08 新コスモス電機株式会社 Manufacturing method of semiconductor gas detection element
JP4931523B2 (en) * 2006-09-13 2012-05-16 学校法人立命館 Gas sensor and manufacturing method thereof
JP2010160015A (en) * 2009-01-07 2010-07-22 National Institute Of Advanced Industrial Science & Technology Preliminary processing method of gas sensor
US8653839B2 (en) 2009-07-17 2014-02-18 Caterpillar Inc. Zinc oxide sulfur sensors and method of using said sensors
US8638111B2 (en) 2010-06-17 2014-01-28 Caterpillar Inc. Zinc oxide sulfur sensor measurement system
JP7153833B2 (en) * 2018-02-26 2022-10-17 パナソニックIpマネジメント株式会社 Air purifier and heat exchange ventilator equipped with the same

Also Published As

Publication number Publication date
JP2004294364A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP3516381B1 (en) Resistive metal oxide gas sensor coated with a fluoropolymer filter
US6550310B1 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
US8418527B2 (en) Field effect transistor gas sensor having a housing and porous catalytic material contained therein
EP3786627B1 (en) Mems type semiconductor gas detection element
JP5255066B2 (en) Gas sensor with improved selectivity
KR20080031033A (en) Sensor and operating method for detecting soot
JP2009540334A (en) Ammonia sensor with heterogeneous electrodes
EP3382380B1 (en) Sensor and sensing method for measuring a target gas concentration in ambient air
JP3815041B2 (en) Gas identification device
JP4076465B2 (en) Semiconductor gas detector
JP5041837B2 (en) Thin film gas sensor and manufacturing method thereof
JPH10502428A (en) Automotive catalyst performance monitoring system
JP4022822B2 (en) Thin film gas sensor
JP4870938B2 (en) Manufacturing method of semiconductor gas detection element
JP5248206B2 (en) Gas sensor deterioration detection device
JP3841513B2 (en) Hydrocarbon sensor
JP2005030907A (en) Gas sensor
JP2007017217A (en) Thin film gas sensor
JPS6137577B2 (en)
JPH10115597A (en) Gas sensor
JPH0875691A (en) Gas sensor
JPH06148112A (en) Hydrogen gas detecting element
JP3845937B2 (en) Gas sensor
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JPH0894576A (en) Gas sensor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees