JP3815041B2 - Gas identification device - Google Patents

Gas identification device Download PDF

Info

Publication number
JP3815041B2
JP3815041B2 JP08923398A JP8923398A JP3815041B2 JP 3815041 B2 JP3815041 B2 JP 3815041B2 JP 08923398 A JP08923398 A JP 08923398A JP 8923398 A JP8923398 A JP 8923398A JP 3815041 B2 JP3815041 B2 JP 3815041B2
Authority
JP
Japan
Prior art keywords
gas
sample
gas sensor
exposed
sensitive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08923398A
Other languages
Japanese (ja)
Other versions
JPH11264809A (en
Inventor
純一 喜多
久光 赤丸
光良 吉井
浩樹 九山
佳弘 青山
研一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP08923398A priority Critical patent/JP3815041B2/en
Publication of JPH11264809A publication Critical patent/JPH11264809A/en
Application granted granted Critical
Publication of JP3815041B2 publication Critical patent/JP3815041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスセンサを備えたガス識別装置に関する。本発明に係るガスセンサは、例えばにおい成分を測定するにおい測定装置に利用することができ、食品や香料の品質検査、悪臭公害の定量検知、焦げ臭検知による火災警報機、食品や香料の品質検査、更には、人物の追跡、識別、認証や薬物検査等の犯罪捜査等の、幅広い分野に用いることができる。
【0002】
【従来の技術】
従来、電極間に金属酸化物半導体から成る感応膜を形成し、該感応膜に試料成分が吸着したときに生じる電極間の抵抗値変化を測定することによりガスを検出するガスセンサが実用化されている。また、このガスセンサを複数用いた「電子鼻」と呼ばれるガス識別装置が、仏国プライムテック社にて商品化されている。この種のガスセンサでは、感応膜を高温(350℃以上)に加熱し、該感応膜表面に付着した試料成分との間で酸化還元反応を生じさせる。この過程で電子の移動が起こり、感応膜中の電子密度や空乏層の厚さが変化して電気抵抗が変化する。
【0003】
従って、金属酸化物半導体膜を利用したガスセンサでは、酸化還元反応を生じる物質のみしか検出することができず、また、上記温度で熱分解する物質は検出できない等、対象物質が極めて限定されていた。また、分析時にガスセンサが上記動作温度まで上昇して安定するのを待たなければならず、特に、繰り返し測定時に長い測定時間を要していた。更には、感応膜表面の状態が比較的不安定であるため、経時変化が大きく信頼性に乏しいという問題もあった。
【0004】
これに対し、例えば特開昭61−147145号公報には、導電性高分子を感応膜に利用したガスセンサが提案されている。また、感応膜にポリピロールを主体とした導電性高分子を用い、その抵抗値変化を利用するにおいセンサが英国アロマスキャン社及びネオトロニクス社にて商品化されている。このようなガスセンサでは、感応膜を常温に維持したまま分析を行なうことができる。
【0005】
【発明が解決しようとする課題】
一般に、上記ガスセンサは特定の単一成分に対してのみ応答するのではなく、複数の成分に対して応答する。従って、単一のガスセンサを未知の試料ガスに暴露し、感応膜の抵抗値の変化が観測されたとしても、それだけで試料成分の種類を判別することは不可能である。そこで、従来のガス識別装置では、応答特性の相違する複数のガスセンサを設置し、各ガスセンサにより取得された検出信号を基に多変量解析処理等を行なって総合的に試料成分の判別を実行している。このため、識別能力を高めるには数多くのガスセンサを用意しなければならず、形状が大きくなるとともに、コストも高いものとなる。
【0006】
本発明は上記課題を解決するために成されたものであり、その目的とするところは、単一又は少数のガスセンサによって高い識別能力を得ることができるガス識別装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係るガス識別装置は、
a)複数の電極間に導電性高分子から成る感応膜を有し、該感応膜に試料成分が付着したときの電極間の電気的変化を検出するガスセンサと、
b)試料成分を含む試料ガスと該試料成分を含まない参照ガスとを切り替えて前記ガスセンサに導入する流路切替手段と、
c)前記ガスセンサが参照ガスに暴露されている状態から試料ガスに暴露される状態に切り替わったとき、及び/又は、試料ガスに暴露されている状態から参照ガスに暴露される状態に切り替わったときに生じるガスセンサの検出信号の変動の過渡特性の相違に基づいて試料成分を識別する信号処理手段と、
を備えることを特徴としている。
【0008】
【発明の実施の形態】
流路切替手段がガスセンサに導入するガスを参照ガスから試料ガスに切り替えると、試料成分がガスセンサの感応膜に付着し、これによりガスセンサの電気的特性、例えば抵抗やインピーダンスが変化する。また、ガスセンサに導入されるガスが再び参照ガスに切り替えられると、ガスセンサの感応膜から試料成分が離脱し、ガスセンサの電気的特性は元に戻る。このような過渡的な特性の変化は、感応膜への試料成分の吸着の容易性、感応膜中への試料成分の浸透・拡散の速度、等に依存しており、これらは試料成分によって異なる。そこで、信号処理手段は、過渡的な検出信号の変動をデータとして取得し、それを解析することにより試料成分を識別する。これにより、ガスセンサが試料ガス中に暴露された定常状態では、同じように抵抗値が変化して識別が困難又は不可能であるような試料成分であっても、識別することが可能になる。
【0009】
【実施例】
以下、本発明に係るガス識別装置の一実施例を図を参照して説明する。図1は、本実施例のガス識別装置の構成図、図2は図1中のガスセンサ1の構成を示す平面図である。
【0010】
図1に示すように、ガスセンサ1は温度調整機能を有するフローセル2中に配置されており、フローセル2の入口側流路には三ポートバルブ3が、出口側流路にはポンプ4が接続されている。バルブ3は、参照ガス取入口6より吸引される参照ガスと、試料ガス取入口7より吸引される試料成分を含む試料ガスとを択一的に切り替える。また、参照ガス取入口6とバルブ3との間の参照ガス流路上には、不所望の成分を除去するための活性炭等から成るフィルタ5が設けられている。制御部8は、フローセル2の温度調整、バルブ3の切替、及び、ポンプ吸引による流速、を制御している。一方、信号処理部9はガスセンサ1の検出信号を受け取り、後述のようなガス識別のための信号処理を実行する。
【0011】
ガスセンサ1は、図2に示すように、絶縁基板10上に互いに対向する2個の櫛形状の電極11が形成されており、該電極11に被覆して感応膜12が形成されている。感応膜12としては、例えばポリピロール、ポリチオフェン等の導電性高分子から成る膜を用いることができる。導電性高分子膜では、膜中に導入するドーパントの量を制御することにより、導電率が調整される。このようなガスセンサ1が試料ガスに暴露されると、試料成分が感応膜12に吸着され、該成分分子の直接的又は間接的な関与により導電性高分子の導電率が変化する。これにより、電極11間の抵抗値が変化する。
【0012】
本実施例のガス識別装置で試料ガスの測定を行なう際には、制御部8はフローセル2を所定温度(例えば40℃)に温度調整し、所定の流速を設定してポンプ4を駆動するとともに、バルブ3を所定時間(t秒)経過毎に切り替える。而して、フローセル2にはt秒毎に試料ガスと参照ガスとが交互に流れ込む。信号処理部9は、ガスセンサ1の電極11間の抵抗値を所定のサンプリング時間間隔で読み込み、内蔵するA/D変換器でデジタル値に変換してメモリ等に格納する。そして、所定のデータが収集された時点で後述のような信号処理を開始する。
【0013】
上記ガスセンサ1では、参照ガスに暴露されている状態から試料ガスに暴露される状態に切り替わったとき、またその逆に試料ガスに暴露されている状態から参照ガスに暴露される状態に切り替わったとき、電極11間の抵抗値にいわゆる過渡特性が生じる。すなわち、例えば参照ガスに暴露されている状態から試料ガスに暴露される状態に切り替わるとき、まず試料成分が感応膜12表面に吸着され、その後に感応膜12中に拡散、浸透してゆく。導電性高分子が膨潤し易い性質を有するものである場合には、この過程で膨潤も生じる。従って、たとえ最終的には導電率の変化を生じさせるような試料成分であっても、感応膜12表面への吸着の容易性、感応膜12内部への浸透・拡散の容易性、膨潤の速度等によって過渡特性は相違する。
【0014】
このことを、試料成分としてトルエン、ブタノール、ベンゼン及び酢酸ブチルの単成分をそれぞれ含む試料ガスを測定した結果に基づいて、以下に具体的に説明する。ここでは、ポンプ4の流速を300mL/分、バルブ3の切替時間tを3秒としている。なお、これらの数値はこれに限定されるものではなく、ガスセンサ1の種類や対象とする試料成分の種類等に応じて適宜の値を選ぶとよい。但し、切替時間tは、試料ガスと参照ガスとの切替時に生じるガスセンサ1の抵抗値の過渡応答が収束する時間よりも長く設定しておくことが好ましい。
【0015】
上記条件の下で上記4種類の試料ガスを測定した結果を図3に示す。図3(a)、(b)、(c)及び(d)は、それぞれトルエン、酢酸ブチル、ベンゼン及びブタノールに対応する測定波形である。
【0016】
このようにして得られた波形に対し、次のように解析処理を行なう。まず、得られた波形中から、ガスセンサ1が試料ガスに暴露されて抵抗値が上昇し始める時点から次の同時点までの6秒間(1周期分)の波形を切り出す。例えば、図3(c)に示したベンゼンの場合、1周期分の波形は図4に示すようになる。この波形の中で、抵抗値の上昇度合が急峻である領域I、抵抗値の上昇度合が緩慢である領域II、抵抗値の下降が急峻である領域III、及び、抵抗値が低い状態に維持されている領域IVを、図4中に示すようにそれぞれ設定する。ここで、領域I及び領域IIはガスセンサ1が試料ガスに暴露されている期間、領域III及び領域IVはガスセンサ1が参照ガスに暴露されている期間である。
【0017】
次に、ガスセンサ1が試料ガスに暴露されている期間において、図4中で抵抗値の上昇曲線の漸近線の抵抗値をRmaxとし、各時間tに対する抵抗値R(t)との差分r(t)を(1)式で定義する。
r(t)=Rmax−R(t) …(1)
このr(t)を
r(t)=a1・exp(−A1・t)+a2・exp(−A2・t) …(2)
で近似すると、上記(2)式の第一項は領域Iの性質を、第二項は領域IIの性質を示すことになる。
【0018】
同様に、ガスセンサ1が参照ガスに暴露されている期間において、抵抗値の下降曲線の漸近線の抵抗値をRminとし、各時間tに対する抵抗値R(t)との差分r(t)を(3)式で定義する。
r(t)=R(t)−Rmin …(3)
また、近似式は、
r(t)=b1・exp(−B1・t)+b2・exp(−B2・t) …(4)
となり、上記(4)式の第一項は領域IIIの性質を、第二項は領域IVの性質を示すことになる。
【0019】
図5は、上記(1)式及び(3)式のr(t)を対数として示したグラフである。図5において、領域I〜IVの曲線の接線より、上記(2)式及び(4)式の定数A1、A2、B1、B2、a1、a2、b1、b2を求めることができる。図5の例について、これらの定数を求めると次のようになる。
A1=0.694 log(a1)=18
A2=0.096 log(a2)=15
B1=4.233 log(b1)=48
B2=0.166 log(b2)=14
【0020】
ベンゼン以外の他の3種の試料ガスについても同様の解析処理を行ない、定数A1、A2、B1、B2を求めて規格化した結果を図6に示す。図6は、各試料ガスにおいてB1を1としたときの定数A1、A2、B1、B2の規格値を示している。図6に明らかなように、芳香族化合物(トルエン、ベンゼン)、アルコール類(ブタノール)、エステル類(酢酸ブチル)は明確に特性が相違している。一方、同じ芳香族化合物に属するトルエンとベンゼンとは非常に類似した特性を示している。このように、上記解析処理により取得した定数A1、A2、B1、B2により、試料ガスの成分を識別できることがわかる。なお、定数a1、a2、b1、b2は試料ガスの成分濃度に依存しているが、ここではそのことは詳しく述べない。
【0021】
上述のような解析処理を予め行なって、既知の成分に対する定数A1、A2、B1、B2の規格値を例えばメモリに格納しておく。そして、未知の試料ガスの測定の際には、上記と同様の解析処理により算出した定数A1、A2、B1、B2の規格値をメモリ内の数値と比較して、最も近いパターンの成分を探す。これにより、試料ガスに含まれる成分の種類を識別することができる。
【0022】
また、上記例ではベンゼンとトルエンとを識別することは困難であるが、他の種類のガスセンサ、例えばメチル基(CH3)を識別可能な特性を有するガスセンサを追加してフローセル2内に設け、該ガスセンサの検出信号を試料成分の識別に利用すれば、ベンゼンとトルエンとを識別することができる。
【0023】
更に、特性の異なる複数のガスセンサを組み合わせて用いることにより、識別可能な成分の種類を一層増し、識別の正確性も向上する。
【0024】
【発明の効果】
以上の説明のように、本発明に係るガス識別装置では、ガスセンサを試料ガスと参照ガスとに交互に暴露することにより、変動するガスセンサの検出信号を得て、その過渡特性に基づいて試料成分を推定している。このため、試料ガス中に連続的に暴露された状態であるときには同じように抵抗変化を生じる複数の試料成分であっても、異なる過渡特性を検出してそれぞれの試料成分を識別することができる。これにより、従来は異なる特性のガスセンサを多数組み合わせる必要があったものが、単一又は少数のガスセンサでもって高い識別性をもたせることが可能となる。その結果、装置の小型化やコストの削減が達成できる。
【図面の簡単な説明】
【図1】 本発明の一実施例によるガス識別装置の構成図。
【図2】 図1中のガスセンサの構成を示す平面図。
【図3】 本実施例における、トルエン、酢酸ブチル、ベンゼン及びブタノールの単成分を含んだ試料ガスに対するガスセンサの応答特性の波形図。
【図4】 図3中のベンゼンに対する応答特性の1周期分を切り出して示した波形図。
【図5】 図4の波形図を解析処理して得たグラフ。
【図6】 4種の成分に対して算出したA1、A2、B1、B2の規格値を示すグラフ。
【符号の説明】
1…ガスセンサ
11…電極
12…感応膜
2…フローセル
3…三ポートバルブ
4…ポンプ
6…参照ガス取入口
7…試料ガス取入口
8…制御部
9…信号処理部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas identification device including a gas sensor. The gas sensor according to the present invention can be used, for example, in an odor measuring device for measuring odor components, quality inspection of food and fragrance, quantitative detection of bad odor pollution, fire alarm by burnt odor detection, quality inspection of food and fragrance Furthermore, it can be used in a wide range of fields, such as criminal investigations such as person tracking, identification, authentication, and drug inspection.
[0002]
[Prior art]
Conventionally, a gas sensor that detects gas by forming a sensitive film made of a metal oxide semiconductor between electrodes and measuring a change in resistance value between electrodes when a sample component is adsorbed to the sensitive film has been put into practical use. Yes. A gas identification device called “electronic nose” using a plurality of gas sensors is commercialized by Prime Tech, France. In this type of gas sensor, the sensitive film is heated to a high temperature (350 ° C. or higher) to cause an oxidation-reduction reaction with the sample components adhering to the surface of the sensitive film. In this process, movement of electrons occurs, and the electric density changes as the electron density in the sensitive film and the thickness of the depletion layer change.
[0003]
Therefore, in a gas sensor using a metal oxide semiconductor film, only target substances that cause a redox reaction can be detected, and substances that thermally decompose at the above temperature cannot be detected, so that target substances are extremely limited. . Further, it is necessary to wait for the gas sensor to rise to the operating temperature and stabilize at the time of analysis, and in particular, a long measurement time is required for repeated measurement. Furthermore, since the surface state of the sensitive film is relatively unstable, there is a problem that the change with time is large and the reliability is poor.
[0004]
On the other hand, for example, Japanese Patent Application Laid-Open No. 61-147145 proposes a gas sensor using a conductive polymer as a sensitive film. Further, an odor sensor using a conductive polymer mainly composed of polypyrrole as a sensitive film and utilizing a change in the resistance value thereof is commercialized by Aromascan and Neotronics, UK. In such a gas sensor, analysis can be performed while the sensitive film is maintained at room temperature.
[0005]
[Problems to be solved by the invention]
In general, the gas sensor does not respond only to a specific single component, but to multiple components. Therefore, even if a single gas sensor is exposed to an unknown sample gas and a change in the resistance value of the sensitive film is observed, it is impossible to determine the type of the sample component by itself. Therefore, in the conventional gas identification device, a plurality of gas sensors with different response characteristics are installed, and multivariate analysis processing is performed based on the detection signals acquired by each gas sensor to comprehensively determine the sample components. ing. For this reason, many gas sensors must be prepared in order to increase the discrimination capability, which increases the shape and the cost.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas identification device capable of obtaining a high identification capability with a single or a small number of gas sensors.
[0007]
[Means for Solving the Problems]
The gas identification device according to the present invention, which has been made to solve the above problems,
a) a gas sensor having a sensitive film made of a conductive polymer between a plurality of electrodes, and detecting an electrical change between the electrodes when a sample component adheres to the sensitive film;
b) a channel switching means for switching between a sample gas containing a sample component and a reference gas not containing the sample component and introducing the gas into the gas sensor;
c) When the gas sensor is switched from being exposed to the reference gas to being exposed to the sample gas, and / or when being switched from being exposed to the sample gas to being exposed to the reference gas Signal processing means for identifying a sample component based on a difference in transient characteristics of fluctuations in the detection signal of a gas sensor generated in
It is characterized by having.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
When the flow path switching means switches the gas introduced into the gas sensor from the reference gas to the sample gas, the sample component adheres to the sensitive film of the gas sensor, thereby changing the electrical characteristics of the gas sensor, such as resistance and impedance. When the gas introduced into the gas sensor is switched to the reference gas again, the sample component is detached from the sensitive film of the gas sensor, and the electrical characteristics of the gas sensor are restored. Such transient changes in characteristics depend on the ease of adsorption of sample components to the sensitive membrane, the rate of penetration / diffusion of sample components into the sensitive membrane, etc., and these vary depending on the sample components. . Therefore, the signal processing means acquires the fluctuation of the transient detection signal as data, and identifies the sample component by analyzing it. Accordingly, even in the steady state where the gas sensor is exposed to the sample gas, it is possible to identify even a sample component whose resistance value changes in the same manner and is difficult or impossible to identify.
[0009]
【Example】
An embodiment of a gas identification device according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a gas identification device of the present embodiment, and FIG. 2 is a plan view showing a configuration of a gas sensor 1 in FIG.
[0010]
As shown in FIG. 1, the gas sensor 1 is arranged in a flow cell 2 having a temperature adjusting function, and a three-port valve 3 is connected to the inlet side flow path of the flow cell 2 and a pump 4 is connected to the outlet side flow path. ing. The valve 3 selectively switches between the reference gas sucked from the reference gas inlet 6 and the sample gas containing the sample component sucked from the sample gas inlet 7. A filter 5 made of activated carbon or the like for removing undesired components is provided on the reference gas flow path between the reference gas intake 6 and the valve 3. The control unit 8 controls the temperature adjustment of the flow cell 2, the switching of the valve 3, and the flow rate by pump suction. On the other hand, the signal processing unit 9 receives the detection signal of the gas sensor 1 and executes signal processing for gas identification as described later.
[0011]
As shown in FIG. 2, the gas sensor 1 includes two comb-shaped electrodes 11 that are opposed to each other on an insulating substrate 10, and a sensitive film 12 is formed by covering the electrodes 11. As the sensitive film 12, for example, a film made of a conductive polymer such as polypyrrole or polythiophene can be used. In the conductive polymer film, the conductivity is adjusted by controlling the amount of dopant introduced into the film. When such a gas sensor 1 is exposed to the sample gas, the sample components are adsorbed on the sensitive film 12, and the conductivity of the conductive polymer changes due to the direct or indirect involvement of the component molecules. Thereby, the resistance value between the electrodes 11 changes.
[0012]
When measuring the sample gas with the gas identification device of the present embodiment, the control unit 8 adjusts the temperature of the flow cell 2 to a predetermined temperature (for example, 40 ° C.), sets a predetermined flow rate, and drives the pump 4. The valve 3 is switched every predetermined time (t seconds). Thus, the sample gas and the reference gas alternately flow into the flow cell 2 every t seconds. The signal processing unit 9 reads a resistance value between the electrodes 11 of the gas sensor 1 at a predetermined sampling time interval, converts the resistance value into a digital value by a built-in A / D converter, and stores the digital value in a memory or the like. Then, when predetermined data is collected, signal processing as described later is started.
[0013]
When the gas sensor 1 is switched from the state exposed to the reference gas to the state exposed to the sample gas, and conversely, the state exposed to the sample gas is switched to the state exposed to the reference gas. A so-called transient characteristic occurs in the resistance value between the electrodes 11. That is, for example, when switching from the state exposed to the reference gas to the state exposed to the sample gas, the sample component is first adsorbed on the surface of the sensitive film 12 and then diffuses and penetrates into the sensitive film 12. When the conductive polymer has a property of easily swelling, swelling also occurs in this process. Therefore, even if it is a sample component that ultimately causes a change in conductivity, it is easy to adsorb on the surface of the sensitive film 12, easy to penetrate and diffuse into the sensitive film 12, and the speed of swelling. The transient characteristics differ depending on the factors.
[0014]
This will be specifically described below on the basis of the measurement results of sample gases each containing a single component of toluene, butanol, benzene, and butyl acetate as sample components. Here, the flow rate of the pump 4 is 300 mL / min, and the switching time t of the valve 3 is 3 seconds. In addition, these numerical values are not limited to this, It is good to choose an appropriate value according to the kind of gas sensor 1, the kind of sample component made into object, etc. However, the switching time t is preferably set to be longer than the time for which the transient response of the resistance value of the gas sensor 1 generated when switching between the sample gas and the reference gas converges.
[0015]
The results of measuring the above four types of sample gases under the above conditions are shown in FIG. 3A, 3B, 3C and 3D are measurement waveforms corresponding to toluene, butyl acetate, benzene and butanol, respectively.
[0016]
Analysis processing is performed on the waveform thus obtained as follows. First, a waveform for 6 seconds (one period) from the time when the gas sensor 1 is exposed to the sample gas and the resistance value starts to rise to the next simultaneous point is cut out from the obtained waveform. For example, in the case of benzene shown in FIG. 3C, the waveform for one cycle is as shown in FIG. In this waveform, the region I where the resistance increase is steep, the region II where the resistance increase is slow, the region III where the resistance decrease is steep, and the resistance value is kept low. Each of the areas IV is set as shown in FIG. Here, the region I and the region II are periods in which the gas sensor 1 is exposed to the sample gas, and the region III and the region IV are periods in which the gas sensor 1 is exposed to the reference gas.
[0017]
Next, in the period in which the gas sensor 1 is exposed to the sample gas, the resistance value of the asymptote of the rising curve of the resistance value in FIG. 4 is Rmax, and the difference r () between the resistance value R (t) with respect to each time t ( t) is defined by equation (1).
r (t) = Rmax−R (t) (1)
This r (t) is expressed as r (t) = a1 · exp (−A1 · t) + a2 · exp (−A2 · t) (2)
, The first term of the above equation (2) indicates the property of region I, and the second term indicates the property of region II.
[0018]
Similarly, during the period in which the gas sensor 1 is exposed to the reference gas, the resistance value of the asymptote of the descending curve of the resistance value is Rmin, and the difference r (t) from the resistance value R (t) for each time t is ( 3) Define with equation.
r (t) = R (t) -Rmin (3)
The approximate expression is
r (t) = b1 · exp (−B1 · t) + b2 · exp (−B2 · t) (4)
Thus, the first term of the above equation (4) indicates the property of region III, and the second term indicates the property of region IV.
[0019]
FIG. 5 is a graph showing r (t) in the above equations (1) and (3) as a logarithm. In FIG. 5, the constants A1, A2, B1, B2, a1, a2, b1, b2 of the above equations (2) and (4) can be obtained from the tangents of the curves in the regions I to IV. Regarding the example of FIG. 5, these constants are obtained as follows.
A1 = 0.694 log (a1) = 18
A2 = 0.096 log (a2) = 15
B1 = 4.233 log (b1) = 48
B2 = 0.166 log (b2) = 14
[0020]
FIG. 6 shows the result of normalization by performing the same analysis process for three types of sample gases other than benzene and obtaining constants A1, A2, B1, and B2. FIG. 6 shows the standard values of the constants A1, A2, B1, and B2 when B1 is 1 in each sample gas. As is clear from FIG. 6, the aromatic compounds (toluene, benzene), alcohols (butanol), and esters (butyl acetate) clearly have different characteristics. On the other hand, toluene and benzene belonging to the same aromatic compound show very similar characteristics. Thus, it can be seen that the components of the sample gas can be identified by the constants A1, A2, B1, and B2 obtained by the analysis process. The constants a1, a2, b1, and b2 depend on the component concentration of the sample gas, but this is not described in detail here.
[0021]
The analysis process as described above is performed in advance, and standard values of constants A1, A2, B1, and B2 for known components are stored in, for example, a memory. When measuring an unknown sample gas, the standard values of constants A1, A2, B1, and B2 calculated by the same analysis process as described above are compared with the values in the memory to find the component of the closest pattern. . Thereby, the kind of component contained in sample gas can be identified.
[0022]
In the above example, it is difficult to distinguish between benzene and toluene, but another type of gas sensor, for example, a gas sensor having a characteristic capable of identifying a methyl group (CH 3 ) is additionally provided in the flow cell 2, If the detection signal of the gas sensor is used for identification of sample components, benzene and toluene can be identified.
[0023]
Furthermore, by using a combination of a plurality of gas sensors having different characteristics, the types of components that can be identified are further increased, and the accuracy of identification is improved.
[0024]
【The invention's effect】
As described above, in the gas identification device according to the present invention, by alternately exposing the gas sensor to the sample gas and the reference gas, the detection signal of the fluctuating gas sensor is obtained, and the sample component is based on the transient characteristics. Is estimated. For this reason, even in the case of a plurality of sample components that similarly cause a resistance change when being continuously exposed to the sample gas, different transient characteristics can be detected and each sample component can be identified. . This makes it possible to provide high discrimination with a single gas sensor or a small number of gas sensors, which conventionally required many gas sensors having different characteristics to be combined. As a result, downsizing and cost reduction of the apparatus can be achieved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas identification device according to an embodiment of the present invention.
FIG. 2 is a plan view showing the configuration of the gas sensor in FIG.
FIG. 3 is a waveform diagram of response characteristics of a gas sensor to a sample gas containing a single component of toluene, butyl acetate, benzene, and butanol in the present example.
4 is a waveform diagram showing one cycle of response characteristics with respect to benzene in FIG.
5 is a graph obtained by analyzing the waveform diagram of FIG.
FIG. 6 is a graph showing standard values of A1, A2, B1, and B2 calculated for four types of components.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas sensor 11 ... Electrode 12 ... Sensing membrane 2 ... Flow cell 3 ... Three port valve 4 ... Pump 6 ... Reference gas inlet 7 ... Sample gas inlet 8 ... Control part 9 ... Signal processing part

Claims (1)

a)複数の電極間に導電性高分子から成る感応膜を有し、該感応膜に試料成分が付着したときの電極間の電気的変化を検出するガスセンサと、
b)試料成分を含む試料ガスと該試料成分を含まない参照ガスとを切り替えて前記ガスセンサに導入する流路切替手段と、
c)前記ガスセンサが参照ガスに暴露されている状態から試料ガスに暴露される状態に切り替わったとき、及び/又は、試料ガスに暴露されている状態から参照ガスに暴露される状態に切り替わったときに生じるガスセンサの検出信号の変動の過渡特性の相違に基づいて試料成分を識別する信号処理手段と、
を備えることを特徴とするガス識別装置。
a) a gas sensor having a sensitive film made of a conductive polymer between a plurality of electrodes, and detecting an electrical change between the electrodes when a sample component adheres to the sensitive film;
b) a channel switching means for switching between a sample gas containing a sample component and a reference gas not containing the sample component and introducing the gas into the gas sensor;
c) When the gas sensor is switched from being exposed to the reference gas to being exposed to the sample gas, and / or when being switched from being exposed to the sample gas to being exposed to the reference gas Signal processing means for identifying a sample component based on a difference in transient characteristics of fluctuations in the detection signal of a gas sensor generated in
A gas identification device comprising:
JP08923398A 1998-03-17 1998-03-17 Gas identification device Expired - Fee Related JP3815041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08923398A JP3815041B2 (en) 1998-03-17 1998-03-17 Gas identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08923398A JP3815041B2 (en) 1998-03-17 1998-03-17 Gas identification device

Publications (2)

Publication Number Publication Date
JPH11264809A JPH11264809A (en) 1999-09-28
JP3815041B2 true JP3815041B2 (en) 2006-08-30

Family

ID=13965039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08923398A Expired - Fee Related JP3815041B2 (en) 1998-03-17 1998-03-17 Gas identification device

Country Status (1)

Country Link
JP (1) JP3815041B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210262976A1 (en) * 2018-07-23 2021-08-26 Sumitomo Chemical Company Limited Top gate thin film transistor gas sensor
US20210311009A1 (en) * 2018-07-31 2021-10-07 Nec Corporation Information processing apparatus, control method, and non-transitory storage medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249619B2 (en) * 2008-03-31 2013-07-31 理研計器株式会社 Multi-component gas detector
CN102720410B (en) * 2012-06-29 2017-03-15 深圳市赛格导航科技股份有限公司 A kind of encryption apparatus and method for realizing control enabling based on odor detection
CN102809587A (en) * 2012-07-19 2012-12-05 河南科技大学 Gas sensitive signal acquisition device and testing system for directly feeding and discharging liquid sample
CN104008617A (en) * 2013-02-25 2014-08-27 南京物联传感技术有限公司 Safety early-warning system
CN105223316A (en) * 2015-10-15 2016-01-06 上海应用技术学院 A kind of method of quick discriminating donkey-hide gelatin quality
EP3163299B1 (en) * 2015-10-29 2019-05-15 Inficon GmbH Gas detection using gas modulation
CN105675785A (en) * 2016-01-27 2016-06-15 云南中烟工业有限责任公司 Method for fast gas chromatography identification of quality of tobacco flavors for invitation for bids
JP6713164B2 (en) * 2016-03-03 2020-06-24 国立研究開発法人物質・材料研究機構 Signal analysis method and sample gas identification method
CN106289887B (en) * 2016-08-10 2018-11-13 天津大学 A kind of bionical method of sampling respiration of electronic nose
KR102442058B1 (en) 2016-12-09 2022-09-13 삼성전자주식회사 Electronic device and controlling method thereof
WO2018106082A1 (en) * 2016-12-09 2018-06-14 삼성전자 주식회사 Electronic device and control method therefor
WO2020026328A1 (en) * 2018-07-31 2020-02-06 日本電気株式会社 Information processing device, control method, and program
US20210293681A1 (en) * 2018-07-31 2021-09-23 Nec Corporation Information processing apparatus, control method, and non-transitory storage medium
KR102031900B1 (en) * 2018-10-12 2019-10-15 한국화학연구원 Semiconductor sensor for detecting chemical materials, detection method and detection system using the same
JP7127697B2 (en) * 2018-11-16 2022-08-30 日本電気株式会社 Information processing device, control method, and program
WO2023037999A1 (en) * 2021-09-07 2023-03-16 パナソニックIpマネジメント株式会社 Gas analyzing method, and gas analyzing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210262976A1 (en) * 2018-07-23 2021-08-26 Sumitomo Chemical Company Limited Top gate thin film transistor gas sensor
US20210311009A1 (en) * 2018-07-31 2021-10-07 Nec Corporation Information processing apparatus, control method, and non-transitory storage medium

Also Published As

Publication number Publication date
JPH11264809A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3815041B2 (en) Gas identification device
EP0807818B1 (en) Method for measuring nitrogen oxide
Fleischer et al. Fast gas sensors based on metal oxides which are stable at high temperatures
JP5517473B2 (en) Gas sensor
JP3171854B2 (en) Gas sensor
Yin et al. Sensitivity and selectivity of (Au, Pt, Pd)-loaded and (In, Fe)-doped SnO 2 sensors for H 2 and CO detection
JP3234080B2 (en) Sensor for measuring gas components and / or gas concentrations in gas mixtures
Traversa et al. Study of the conduction mechanism of La2CuO4—ZnO heterocontacts at different relative humidities
JPH07506905A (en) Method for detecting gas components and/or gas concentration of gas mixture
Nicoletti et al. Use of different sensing materials and deposition techniques for thin-film sensors to increase sensitivity and selectivity
EP3529601B1 (en) Gas sensing element
RU2132551C1 (en) Gas sensor operating process
JP3094067B2 (en) Electrochemical element processing method
JPH11237366A (en) Gas sensor
JP4076465B2 (en) Semiconductor gas detector
JP2000356615A (en) Gas sensor and gas detector
JP3171745B2 (en) Substrate type semiconductor gas sensor and gas detector
JP2000028573A (en) Hydrocarbon gas sensor
Filippov et al. Room-Temperature Hydrogen Sensitivity of a MIS-Structure Based on the $ hboxPt/LaF_3 $ Interface
Li et al. Low concentration CO gas sensor based on pulsed-heating and wafer-level fabricated MEMS hotplate
JP3539060B2 (en) Gas identification method
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JP2010210519A (en) Volatile organic matter detection sensor
RU2096775C1 (en) Process of manufacture of semiconductor sensitive element
JPH07260727A (en) Board-type semiconductor gas sensor and gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees