WO2020026328A1 - Information processing device, control method, and program - Google Patents

Information processing device, control method, and program Download PDF

Info

Publication number
WO2020026328A1
WO2020026328A1 PCT/JP2018/028566 JP2018028566W WO2020026328A1 WO 2020026328 A1 WO2020026328 A1 WO 2020026328A1 JP 2018028566 W JP2018028566 W JP 2018028566W WO 2020026328 A1 WO2020026328 A1 WO 2020026328A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
gas
information
target gas
odor
Prior art date
Application number
PCT/JP2018/028566
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 亮太
江藤 力
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020533926A priority Critical patent/JPWO2020026328A1/en
Priority to PCT/JP2018/028566 priority patent/WO2020026328A1/en
Publication of WO2020026328A1 publication Critical patent/WO2020026328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to the analysis of gas characteristics.
  • Patent Literature 1 discloses a technique for determining the type of a sample gas using a signal (time-series data of a detection value) obtained by measuring the sample gas with a nanomechanical sensor. Specifically, the diffusion time constant of the sample gas with respect to the receptor of the sensor is determined by the combination of the type of the receptor and the type of the sample gas, and therefore, based on the diffusion time constant obtained from the signal and the type of the receptor. It is disclosed that the type of the sample gas can be determined.
  • Patent Document 1 assumes that the sample gas contains only one type of molecule, and does not assume that a sample gas in which a plurality of types of molecules are mixed is handled.
  • the present invention has been made in view of the above problems, and has as its object to provide a technique for specifying the type or component of a gas in which a plurality of types of molecules are mixed.
  • a first information processing apparatus includes: 1) a feature amount acquiring unit for acquiring a feature amount of a target gas; and 2) a odor information in which a label of an odor is associated with a feature amount of a gas generating the odor. And a label specifying unit that specifies odor information similar to the characteristic amount of the target gas and specifies the odor label indicated by the specified odor information as the odor label of the target gas.
  • the characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas.
  • the detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas.
  • the characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
  • a second information processing apparatus includes: 1) a feature amount acquisition unit for acquiring a feature amount of a target gas; and 2) a unit in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component.
  • a component specifying unit that specifies one or more unit components contained in the target gas using the component information and the characteristic amount of the target gas.
  • the characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas.
  • the detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas.
  • the characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
  • the first control method of the present invention is executed by a computer.
  • the control method includes: 1) a characteristic amount obtaining step of obtaining a characteristic amount of the target gas; and 2) a characteristic of the target gas from the odor information in which the label of the odor is associated with the characteristic amount of the gas generating the odor.
  • the characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas.
  • the detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas.
  • the characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
  • the second control method of the present invention is executed by a computer.
  • the control method includes: 1) a feature amount obtaining step of obtaining a feature amount of a target gas; 2) unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component; A component specifying step of specifying one or more unit components contained in the target gas using the characteristic amount of the target gas.
  • the characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas.
  • the detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas.
  • the characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
  • the program of the present invention causes a computer to execute each step of the control method of the present invention.
  • FIG. 2 is a diagram illustrating an outline of the information processing apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a sensor for obtaining a characteristic amount of gas handled by the information processing apparatus.
  • FIG. 2 is a diagram illustrating a functional configuration of the information processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a computer for realizing an information processing device.
  • 6 is a flowchart illustrating a flow of a process executed by the information processing apparatus according to the first embodiment. It is a figure which illustrates odor information in a table format. It is a figure which represents conversion of a feature-value notionally.
  • FIG. 9 is a diagram illustrating an outline of an information processing apparatus according to a second embodiment.
  • FIG. 9 is a diagram illustrating a functional configuration of an information processing apparatus according to a second embodiment.
  • 13 is a flowchart illustrating a flow of a process executed by the information processing apparatus according to the second embodiment. It is a figure which illustrates unit component information about a single kind of molecule in a table form. It is a figure showing the component of target gas with a graph.
  • each block diagram represents a configuration of a functional unit, not a configuration of a hardware unit.
  • FIG. 1 is a diagram illustrating an outline of an information processing apparatus 2000 according to the first embodiment.
  • the information processing apparatus 2000 according to the first embodiment specifies a label (hereinafter, an odor label) indicating the odor of the target gas based on the feature amount of the target gas.
  • the odor label indicates the name of the substance that generates the odor.
  • the smell label “apple” is specified.
  • the substance generating the smell is not limited to foods such as apples, but may be any substance such as a machine, a building material, a medicine, mold, burnt food, or garbage.
  • the smell label may represent an abstract concept such as a place or a situation where the smell is smelled.
  • odor labels such as "Cafe Smell”, “Pool Smell”, “Blue Smell Smell”, “Smell like Closet”, “Sweet Smell”, “Smell Smell”, or “Smell on a Rainy Day” Conceivable.
  • odor information In order to realize the identification of such an odor label, information that associates the odor label with the characteristic amount of the gas corresponding to the odor label is prepared in advance. This information is called odor information.
  • the information processing apparatus 2000 specifies a feature amount similar to the feature amount of the target gas from the feature amounts indicated in the odor information, and sets the odor label associated with the specified feature amount to the odor label of the target gas. To be specified.
  • the information processing device 2000 handles a feature newly found by the present inventor as a gas feature.
  • the characteristic amount of the gas handled by the information processing apparatus 2000 will be described.
  • FIG. 2 is a diagram exemplifying the sensor 10 for obtaining the characteristic amount of gas handled by the information processing apparatus 2000.
  • the sensor 10 has a receptor to which a molecule is attached, and a detection value changes according to attachment and detachment of the molecule at the receptor.
  • the time series data of the detection values output from the sensor 10 is referred to as time series data 14.
  • the time-series data 14 is also denoted as ⁇ Y ⁇
  • the detected value at the time ⁇ t ⁇ is denoted as ⁇ y (t) ⁇ , as necessary.
  • Y is a vector in which y (t) is enumerated.
  • the senor 10 is a membrane-type surface stress (MSS) sensor.
  • the MSS sensor has, as a receptor, a functional film to which a molecule adheres, and the stress generated in a support member of the functional film changes due to the attachment and detachment of the molecule to and from the functional film.
  • the MSS sensor outputs a detection value based on the change in the stress.
  • the sensor 10 is not limited to the MSS ⁇ sensor, and the physical quantity related to the viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) of the members of the sensor 10 that occur in response to the attachment and detachment of the molecule to and from the receptor. Any sensor that outputs a detection value based on the change may be used, and various types of sensors such as a cantilever type, a film type, an optical type, a piezo, and a vibration response can be employed.
  • the sensing by the sensor 10 is modeled as follows. (1) The sensor 10 is exposed to a gas containing K kinds of molecules. (2) The concentration of each molecule k contained in the gas is constant ⁇ k. (3) The sensor 10 can adsorb a total of N molecules. (4) The number of molecules k attached to the sensor 10 at time t is nk (t).
  • the time change of the number nk (t) of the molecules k attached to the sensor 10 can be formulated as follows.
  • the first and second terms on the right-hand side of the equation (1) are the increasing amount of the molecule ⁇ k ⁇ per unit time (the number of molecules ⁇ k ⁇ newly attached to the sensor 10) and the decreasing amount (the molecule ⁇ k ⁇ detached from the sensor 10). Number).
  • ⁇ k and ⁇ k are a rate constant representing the rate at which the molecule ⁇ k ⁇ adheres to the sensor 10 and a rate constant representing the rate at which the molecule ⁇ k ⁇ separates from the sensor 10, respectively.
  • the concentration ⁇ k is constant
  • the number nk (t) of the numerator k at time t can be formulated from the above equation (1) as follows.
  • nk (t) is expressed as follows.
  • the detection value of the sensor 10 is determined by the stress applied to the sensor 10 by the molecules contained in the gas. Then, it is considered that the stress acting on the sensor 10 by a plurality of molecules can be represented by a linear sum of the stress acting on each molecule. However, it is considered that the stress generated by the molecule differs depending on the type of the molecule. That is, it can be said that the contribution of the molecule to the detection value of the sensor 10 differs depending on the type of the molecule.
  • the detection value y (t) of the sensor 10 can be formulated as follows.
  • both ⁇ k and ⁇ k represent the contribution of the numerator k to the detection value of the sensor 10.
  • the purge gas is a gas used when removing the gas to be measured from the sensor 10.
  • the time-series data 14 obtained from the sensor 10 that sensed the gas can be decomposed as in the above equation (4), the types of molecules contained in the gas and the ratio of each type of molecule contained in the gas Can be grasped. That is, by the decomposition shown in Expression (4), data representing the characteristics of the gas (that is, the characteristic amount of the gas) is obtained.
  • the information processing apparatus 2000 handles a feature amount obtained by decomposing the time-series data 14 as shown in the following equation (5).
  • ⁇ i ⁇ is a constant called a feature constant.
  • ⁇ I ⁇ is a contribution value representing the contribution of the characteristic constant ⁇ i ⁇ to the detection value of the sensor 10.
  • equation (5) can be expressed as follows.
  • the association between the set of feature constants ⁇ ⁇ and the set of contribution values ⁇ is represented, for example, by m feature matrix ⁇ F ⁇ having two rows and two columns (m is the number of each of the feature constant and the contribution value).
  • F ( ⁇ T, ⁇ T) ⁇ .
  • the vector representing the set of characteristic constants may be omitted in the characteristic amount of the gas.
  • the characteristic amount of the gas is represented by a set of contribution values.
  • the information processing device 2000 acquires a feature amount (a set of feature constants may be omitted) that associates a set of feature constants with a set of contribution values for the target gas.
  • the feature quantity indicated by the odor information is obtained by associating a set of feature constants with a set of contribution values for time-series data obtained by sensing the gas specified by the odor label indicated by the odor information with the sensor 10.
  • Information The information processing apparatus 2000 compares such characteristic amounts with each other to specify odor information indicating a characteristic amount similar to the characteristic amount of the target gas. Then, the information processing device 2000 specifies the odor label indicated by the specified odor information as the odor label of the target gas.
  • the information processing apparatus 2000 specifies the odor label of the target gas using the feature amount in which the feature constant vector and the contribution vector obtained for the time-series data of the detected gas value are associated with each other. As described above, since this characteristic amount changes depending on the molecules contained in the gas and the mixing ratio thereof, the gas can be distinguished with high accuracy. Therefore, by using such a characteristic amount, according to the information processing apparatus 2000 of the present embodiment, the odor label of the target gas can be accurately specified.
  • FIG. 1 The above description with reference to FIG. 1 is an example for facilitating understanding of the information processing device 2000, and does not limit the functions of the information processing device 2000.
  • the information processing apparatus 2000 of the present embodiment will be described in more detail.
  • FIG. 3 is a diagram illustrating a functional configuration of the information processing apparatus 2000 according to the first embodiment.
  • the information processing apparatus 2000 according to the first embodiment includes a feature amount acquiring unit 2020 and a label specifying unit 2040.
  • the feature amount acquisition unit 2020 acquires the feature amount of the target gas.
  • the label specifying unit 2040 extracts, from the plurality of pieces of odor information, odor information indicating a characteristic amount similar to the characteristic amount of the target gas. Further, the label specifying unit 2040 specifies the odor label indicated in the extracted odor information as the odor label of the target gas.
  • Each functional component of the information processing apparatus 2000 may be implemented by hardware (eg, a hard-wired electronic circuit or the like) that implements each functional component, or a combination of hardware and software (eg: Electronic circuit and a program for controlling the same).
  • hardware eg, a hard-wired electronic circuit or the like
  • software eg: Electronic circuit and a program for controlling the same.
  • FIG. 4 is a diagram illustrating a computer 1000 for realizing the information processing device 2000.
  • the computer 1000 is an arbitrary computer.
  • the computer 1000 is a stationary computer such as a personal computer (PC) or a server machine.
  • the computer 1000 is a portable computer such as a smartphone or a tablet terminal.
  • the computer 1000 may be a dedicated computer designed to realize the information processing device 2000, or may be a general-purpose computer.
  • the computer 1000 has a bus 1020, a processor 1040, a memory 1060, a storage device 1080, an input / output interface 1100, and a network interface 1120.
  • the bus 1020 is a data transmission path through which the processor 1040, the memory 1060, the storage device 1080, the input / output interface 1100, and the network interface 1120 mutually transmit and receive data.
  • a method for connecting the processors 1040 and the like to each other is not limited to a bus connection.
  • the processor 1040 is various processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array).
  • the memory 1060 is a main storage device realized using a RAM (Random Access Memory) or the like.
  • the storage device 1080 is an auxiliary storage device realized using a hard disk, an SSD (Solid State Drive), a memory card, or a ROM (Read Only Memory).
  • the input / output interface 1100 is an interface for connecting the computer 1000 and an input / output device.
  • an input device such as a keyboard and an output device such as a display device are connected to the input / output interface 1100.
  • the network interface 1120 is an interface for connecting the computer 1000 to a communication network.
  • the communication network is, for example, a LAN (Local Area Network) or a WAN (Wide Area Network).
  • the method by which the network interface 1120 connects to the communication network may be a wireless connection or a wired connection.
  • the storage device 1080 stores a program module that implements each functional component of the information processing apparatus 2000.
  • the processor 1040 realizes a function corresponding to each program module by reading out each of these program modules into the memory 1060 and executing them.
  • FIG. 5 is a flowchart illustrating a flow of a process executed by the information processing apparatus 2000 according to the first embodiment.
  • the characteristic amount acquisition unit 2020 acquires the characteristic amount of the target gas (S102).
  • the label specifying unit 2040 extracts odor information indicating a characteristic amount similar to the characteristic amount of the target gas from the plurality of odor information (S104).
  • the label specifying unit 2040 specifies the odor label indicated by the extracted odor information as the odor label of the target gas (S106).
  • the feature amount acquisition unit 2020 acquires the feature amount of the target gas.
  • the characteristic amount acquiring unit 2020 acquires the characteristic amount of the target gas by accessing a storage device in which the characteristic amount of the target gas is stored. This storage device may be provided inside the information processing device 2000 or may be provided outside the information processing device 2000.
  • the information processing apparatus 2000 may acquire the characteristic amount of the target gas by receiving the characteristic amount of the target gas transmitted from another device.
  • the “other device” is, for example, a device that calculates the feature amount of the target gas using the time-series data 14 obtained from the sensor 10 for the target gas.
  • FIG. 6 is a diagram illustrating the odor information in a table format.
  • the table in FIG. 6 is called a table 200.
  • the table 200 has two columns of an odor label 202 and a feature 204.
  • the odor label indicated by the odor label 202 is associated with the characteristic amount (in this example, the characteristic matrix F) indicated by the characteristic amount 204.
  • the characteristic amount in this example, the characteristic matrix F
  • the odor information is stored in advance in a storage device provided inside or outside the information processing device 2000.
  • the label specifying unit 2040 extracts odor information indicating a characteristic amount similar to the characteristic amount of the target gas from the plurality of odor information (S104). For example, the label specifying unit 2040 extracts odor information indicating a feature amount most similar to the feature amount of the target gas. In this case, the odor label of the target gas is uniquely specified.
  • the odor information extracted by the label specifying unit 2040 may be plural.
  • the label specifying unit 2040 extracts one or more pieces of odor information indicating a characteristic amount whose similarity to the characteristic amount of the target gas is equal to or greater than a threshold.
  • one or more odor labels having a high probability of being a label indicating the odor of the target gas are specified. That is, one or more candidates for the odor label of the target gas are specified.
  • the label specifying unit 2040 outputs that there is no odor label candidate of the target gas when there is no odor information indicating the characteristic amount whose similarity with the characteristic amount of the target gas is equal to or more than the threshold value in the table 200. You may. In this case, the target gas can be interpreted as a new smell not registered in the table 200.
  • the label specifying unit 2040 calculates the similarity of the target gas by comparing the characteristic amount of the target gas with the characteristic amount indicated by the odor information.
  • a method of calculating the similarity will be exemplified.
  • the label specifying unit 2040 extracts the odor information indicating the feature amount having the shortest distance from the feature amount of the target gas.
  • a threshold value is set for the distance from the feature amount of the target gas.
  • the label specifying unit 2040 extracts each odor information indicating a feature amount whose distance from the feature amount of the target gas is equal to or less than a threshold value.
  • the label specifying unit 2040 converts one or both of the characteristic amount of the target gas and the characteristic amount of the odor information such that a set of these characteristic constants is common. Such conversion enables similarity determination using the distance between the feature amounts described above. Therefore, the label specifying unit 2040 performs similarity determination using the distance between the feature amounts using the converted feature amount, thereby extracting odor information indicating a feature amount similar to the feature amount of the target gas.
  • FIG. 7 is a diagram conceptually showing the conversion of the feature amount.
  • ⁇ ai ⁇ associated with the feature constant ⁇ ai in the feature quantity before conversion is associated with ⁇ bj that satisfies ⁇ bj ⁇ ⁇ ai ⁇ _ (bj + 1) ⁇ in the feature quantity after conversion.
  • the conversion of the characteristic amount may be performed for one of the characteristic amount of the target gas and the characteristic amount of the odor information, or may be performed for both of them.
  • the label specifying unit 2040 may convert the characteristic amount of the target gas to match the set of characteristic constants of the characteristic amount of the odor information, or may convert the characteristic amount of the target gas into a set of characteristic constants of the target gas.
  • the feature amount of the odor information may be converted so as to match.
  • the set of characteristic constants is not common to a plurality of pieces of odor information, it is preferable to convert the characteristic amount of the odor information to match the set of characteristic constants of the characteristic amount of the target gas. This is because the similarity determination is performed after setting the set of feature constants common to all feature amounts.
  • When converting both the characteristic amount of the target gas and the characteristic amount of the odor information, a common set ⁇ c ⁇ of characteristic constants is prepared in advance. Then, the label specifying unit 2040 converts both the characteristic amount of the target gas and the characteristic amount of the odor information so that the set of characteristic constants becomes ⁇ c ⁇ .
  • the method of similarity determination when the set of feature constants is not common is not limited to the method of performing similarity determination after converting feature values as described above.
  • the label specifying unit 2040 treats the two feature values to be compared as a probability distribution, and determines the similarity of these feature values as KL (Kullback- Leibler) Calculate divergence.
  • KL divergence is an index value indicating the degree of similarity between probability distributions, and becomes smaller as the difference between two probability distributions to be compared is smaller. Therefore, the label specifying unit 2040 treats the smaller the ⁇ KL ⁇ divergence calculated between the characteristic amount of the target gas and the characteristic amount indicated by the odor information, the more similar these are.
  • a kernel method can be used.
  • the label specifying unit 2040 calculates KL divergence by treating the feature value F as a probability distribution represented by the following equation.
  • g is a kernel function
  • C is a normalization constant of the probability distribution.
  • the label specifying unit 2040 may use, for example, Wasserstein metric as the similarity between the two feature amounts to be compared.
  • the Wasserstein metric is a metric that represents the minimum cost of moving one distribution to the other, and the smaller the difference between the two distributions to be compared, the smaller the value. Therefore, the label identifying unit 2040 treats the smaller the Wasserstein metric calculated between the characteristic amount of the target gas and the characteristic amount indicated by the odor information, as the similarity thereof. Note that the Wasserstein metric is applicable even when the contribution value ⁇ includes a negative value.
  • the information processing device 2000 outputs information indicating the odor label of the target gas (hereinafter, output information).
  • the output information is text data representing an odor label of the target gas.
  • the output information may include odor information indicating the specified odor label.
  • the output information may indicate the characteristic amount of the target gas and the characteristic amount indicated by the odor information by graphical information such as a graph or a table.
  • FIG. 8 is a view showing the characteristic amount of the target gas and the characteristic amount indicated by the odor information in a graph.
  • the solid line indicates the characteristic amount of the target gas.
  • the dotted line indicates the feature amount indicated by the odor information having the label “smell A”.
  • the information processing apparatus 2000 when a plurality of odor labels are specified, it is preferable that the information processing apparatus 2000 output these odor labels in order.
  • the information processing apparatus 2000 outputs the odor label in the order of the degree of similarity to the feature amount of the target gas (in order of decreasing distance).
  • the information processing device 2000 stores the output information in an arbitrary storage device.
  • the information processing apparatus 2000 causes the display device to display the output information.
  • the information processing device 2000 may transmit the output information to a device other than the information processing device 2000.
  • FIG. 9 is a diagram illustrating an outline of an information processing apparatus 2000 according to the second embodiment.
  • the information processing apparatus 2000 according to the second embodiment specifies the component of the target gas based on the feature amount of the target gas.
  • the specification of the component of the target gas includes at least specifying one or more unit components contained in the target gas.
  • the specification of the component of the target gas may include specifying the concentration of each unit component contained in the target gas and specifying the mixing ratio (relative concentration) of each unit component.
  • the unit component is, for example, a single type of molecule.
  • the information processing apparatus 2000 estimates one or more types of molecules contained in the target gas and estimates the concentration ratio of a plurality of molecules based on the feature amount of the target gas. Unit components other than a single type of molecule will be described later.
  • the unit component is a combination of molecules that generate a specific odor.
  • the specific odor is the odor specified by the odor label described in the first embodiment.
  • a combination of molecules that produce an apple odor that is, a combination of molecules contained in gas produced from an apple
  • the unit component information is information in which an identifier of the unit component is associated with a feature amount of the unit component.
  • the feature amount of a unit component is a feature amount calculated for time-series data obtained by sensing a gas containing only the unit component with the sensor 10.
  • the characteristic amount of the target gas and the characteristic amount of each unit component are represented by a vector expression
  • the characteristic amount of the target gas can be represented by a linear sum of the characteristic amounts of the unit components included in the target gas.
  • the characteristic amount of the target gas can be expressed as follows.
  • ⁇ i is the feature vector of the unit component i
  • ai is the concentration of the unit component i in the target gas.
  • the information processing apparatus 2000 uses the unit component information to decompose the feature vector ⁇ g of the target gas into a linear sum of the feature vectors ⁇ i of one or more unit components. By doing so, the information processing apparatus 2000 specifies one or more unit components contained in the target gas.
  • various existing methods can be used as a method of decomposing a certain vector into a linear sum of known vectors (here, each feature amount vector indicated in unit component information). .
  • a least-squares method with a non-negative constraint represented by the following objective function can be used.
  • the mixing ratio of the unit components can be represented by the ratio of these concentrations.
  • the concentration of the unit component is a value represented by (concentration of gas in air) ⁇ (concentration ratio of unit component in gas). That is, it means the relative concentration of the unit component with respect to the concentration of the gas in the air.
  • the concentration of the unit component as used herein can be regarded as a ratio of the partial pressure of the unit component to the air pressure.
  • each feature amount vector may be normalized in advance.
  • the characteristic amount ⁇ g of the target gas is decomposed as follows.
  • the set of feature constants is not the same between the feature amount of the target gas and the feature amount of the unit component, the set of feature constants is made to match by the above-described method, and then the feature amount of the target gas is changed to the unit component. Decompose into linear sum of features.
  • the information processing apparatus 2000 specifies one or more unit components included in the target gas using a feature amount determined based on the contribution of each feature constant to the time-series data of the detected gas value.
  • this characteristic amount is a characteristic amount that changes depending on the molecules contained in the gas and the mixing ratio thereof, the characteristic amount is compared with the characteristic amount of each unit component to obtain the unit component contained in the target gas. And its mixing ratio can be specified with high accuracy.
  • FIG. 10 is a diagram illustrating a functional configuration of the information processing apparatus 2000 according to the second embodiment.
  • the information processing apparatus 2000 according to the second embodiment includes a feature amount acquisition unit 2020 and a component identification unit 2060.
  • the feature amount acquisition unit 2020 is as described in the first embodiment.
  • the component specifying unit 2060 specifies one or more unit components included in the target gas by using the unit component information and the characteristic amount of the target gas.
  • the hardware configuration of a computer that implements the information processing apparatus 2000 according to the second embodiment is represented by, for example, FIG. 4 as in the first embodiment.
  • the storage device 1080 of the computer 1000 that implements the information processing apparatus 2000 of the present embodiment stores a program module that implements the functions of the information processing apparatus 2000 of the present embodiment.
  • FIG. 11 is a flowchart illustrating a flow of a process executed by the information processing apparatus 2000 according to the second embodiment.
  • the feature amount acquisition unit 2020 acquires the feature amount vector ⁇ g of the target gas (S402).
  • the component specifying unit 2060 specifies one or more unit components contained in the target gas using the acquired feature amount vector ⁇ g and the unit component information (S404).
  • the unit component information is information in which the identifier of the unit component is associated with the feature amount of the unit component.
  • the unit component is a single type of molecule.
  • the unit component information associates an identifier of a molecule with a feature amount of the molecule.
  • the identifier of a molecule is the name or chemical formula of the molecule.
  • the feature amount of a molecule is a feature amount (for example, feature matrix F) obtained by decomposing time-series data obtained by sensing a gas containing only the molecule with the sensor 10. It is assumed that the unit component information is stored in a storage device provided inside or outside the information processing device 2000 in advance.
  • FIG. 12 is a diagram exemplifying unit component information on a single type of molecule in a table format.
  • the table in FIG. 12 is called a table 300.
  • the table 300 has two columns of a molecule identifier 302 and a feature amount 304.
  • the feature amount indicated by the feature amount 304 is associated with the molecule identifier (unit component identifier) indicated by the molecule identifier 302.
  • the unit component is a combination of molecules that generate a specific odor.
  • “Specific odor” corresponds to the odor represented by the odor label described in the first embodiment.
  • the combination of molecules that generate a specific odor corresponds to the combination of molecules contained in the gas specified by the odor label.
  • “combination of molecules” not only which molecules are contained, but also the mixing ratio of those molecules is specified.
  • the identifier of the unit component indicated by the unit component information is an odor label.
  • the characteristic amount of the unit component is a characteristic amount of the gas specified by the odor label. That is, the unit component information corresponds to the odor information in the first embodiment (see FIG. 6).
  • the information processing device 2000 outputs information indicating a component of the target gas (hereinafter, second output information).
  • the second output information is text data indicating the identifier of each unit component contained in the target gas and their concentration and mixing ratio.
  • the second output information may be graphical information in which the identifiers of the unit components contained in the target gas and their concentrations and mixing ratios are expressed in a table or a graph.
  • FIG. 13 is a graph showing the components of the target gas in a graph.
  • the horizontal axis indicates the name of each molecule contained in the target gas
  • the vertical axis indicates the concentration of each molecule. Specifically, it indicates that the target gas contains molecules B, C, E, and G, and the concentrations thereof.
  • the unit components are sorted in descending order of density.
  • a feature amount obtaining unit that obtains a feature amount of the target gas; From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified.
  • a label specifying unit for specifying as a label of the odor of the target gas The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas, The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
  • the information processing apparatus wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  • the label identification unit calculates the similarity between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information, and uses the calculated similarity.
  • the gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed,
  • the label specifying unit calculates the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information, and displays the label indicated by the odor information having the calculated distance that is the minimum, the label of the target gas. 1. Identify as odor label An information processing apparatus according to claim 1. 4.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • the label identification unit Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted, After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. 1.
  • the label indicated by the minimum odor information is specified as the odor label of the target gas.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • the label identification unit A Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. 1. Specify the label indicated by the odor information having the minimum KL divergence or Wasserstein weighing as the odor label of the target gas.
  • KL Kullback-Leibler
  • a feature amount obtaining unit that obtains a feature amount of the target gas; Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas And a component specifying part,
  • the feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas, The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
  • the information processing apparatus wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  • the component specifying unit decomposes the characteristic amount of the target gas into one or more characteristic amounts indicated in the unit component information, and converts a unit component corresponding to each of the characteristic amounts obtained by the decomposition into the target component. 5. specified as the unit component contained in the gas; An information processing apparatus according to claim 1. 8.
  • the characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
  • the component identification unit decomposes the feature vector of the target gas into a linear sum of the feature vectors indicated by each of the one or more unit component information, and generates a unit component corresponding to the feature vector forming the linear sum, 6. Identify as the unit component contained in the target gas; An information processing apparatus according to claim 1. 9.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • the component identification unit Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one, After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, 6.
  • the component specifying unit specifies a mixture ratio of each of the unit components in the target gas based on a coefficient of a feature vector of each of the unit components in the linear sum.
  • the unit component is a single type of molecule or a combination of molecules constituting a gas that generates a specific odor.
  • a control method executed by a computer A feature value obtaining step of obtaining a feature value of the target gas; From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified.
  • a label specifying step of specifying as a label of the odor of the target gas The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas, The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
  • the control method wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor. 13.
  • the control method described in 1. 14 The gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed, In the label specifying step, the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information is calculated, and the label indicated by the odor information with the calculated distance being the minimum is set to the label of the target gas. 12. Identify as odor label; The control method described in 1. 15.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted, After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. 12. Identify the label indicated by the minimum odor information as the odor label of the target gas; The control method described in 1. 16.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • a Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. 12. Identify the label indicated by the odor information having the minimum KL divergence or Wasserstein weighing as the odor label of the target gas; The control method described in 1.
  • a control method executed by a computer A feature value obtaining step of obtaining a feature value of the target gas; Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas Component identification step,
  • the feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
  • the detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas
  • the control method wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  • the characteristic amount of the target gas is decomposed into one or more characteristic amounts indicated in the unit component information, and a unit component corresponding to each of the characteristic amounts obtained by the decomposition is converted into the target component. 17. Specified as the unit component contained in the gas; The control method described in 1. 19.
  • the characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
  • the feature vector of the target gas is decomposed into a linear sum of feature vectors indicated by each of the one or more unit component information, and a unit component corresponding to the feature vector forming the linear sum is defined as 17. specified as the unit component contained in the target gas; The control method described in 1. 20.
  • the gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant
  • the component identification step Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one, After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, 17. specifying a unit component corresponding to the feature vector forming the linear sum as the unit component included in the target gas; The control method described in 1.
  • a mixing ratio of each unit component in the target gas is specified based on a coefficient of a feature vector of each unit component in the linear sum.
  • the unit component is a single type of molecule or a combination of molecules constituting a gas that generates a specific odor. To 21. The control method according to any one of the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

This information processing device (2000) acquires feature values for a subject gas that associate a set of characteristic constants and a set of contribution values. The information processing device (2000) specifies smell information indicating feature values similar to the feature values of the subject gas and specifies, as a smell label for the subject gas, a smell label indicated by the specified smell information. The smell information associates smell labels with the feature values of gasses producing the smells corresponding to the smell labels. The gas feature values for a given gas indicate the amount by which each of a plurality of feature constants contributes to time-series data of detection values obtained from a sensor that has sensed that gas. The sensor detection values vary according to the adhesion and detachment of molecules included in the gas. The feature constants are time constants or speed constants relating to the amount of variation over time in the amount of molecules adhered to the sensor.

Description

情報処理装置、制御方法、及びプログラムInformation processing apparatus, control method, and program
 本発明はガスの特徴の解析に関する。 The present invention relates to the analysis of gas characteristics.
 ガスをセンサで測定することにより、ガスに関する情報を得る技術が開発されている。特許文献1は、ナノメカニカルセンサで試料ガスを測定することで得られるシグナル(検出値の時系列データ)を利用して、試料ガスの種類を判別する技術を開示している。具体的には、センサの受容体に対する試料ガスの拡散時定数が、受容体の種類と試料ガスの種類の組み合わせによって決まるため、シグナルから得られる拡散時定数と、受容体の種類とに基づいて、試料ガスの種類を判別できることが開示されている。 技術 Technology has been developed to obtain information about gas by measuring gas with a sensor. Patent Literature 1 discloses a technique for determining the type of a sample gas using a signal (time-series data of a detection value) obtained by measuring the sample gas with a nanomechanical sensor. Specifically, the diffusion time constant of the sample gas with respect to the receptor of the sensor is determined by the combination of the type of the receptor and the type of the sample gas, and therefore, based on the diffusion time constant obtained from the signal and the type of the receptor. It is disclosed that the type of the sample gas can be determined.
特開2017-156254号公報JP 2017-156254 A
 特許文献1では、試料ガスに含まれている分子が1種類であることが前提となっており、複数種類の分子が混合している試料ガスを扱うことが想定されていない。本願発明は上記の課題に鑑みてなされたものであり、複数種類の分子が混合しているガスの種類又は成分を特定する技術を提供することである。 Patent Document 1 assumes that the sample gas contains only one type of molecule, and does not assume that a sample gas in which a plurality of types of molecules are mixed is handled. The present invention has been made in view of the above problems, and has as its object to provide a technique for specifying the type or component of a gas in which a plurality of types of molecules are mixed.
 本発明の第1の情報処理装置は、1)対象ガスの特徴量を取得する特徴量取得部と、2)においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、対象ガスの特徴量に類似するにおい情報を特定し、特定したにおい情報に示されるにおいのラベルを、対象ガスのにおいのラベルとして特定するラベル特定部と、を有する。
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表す。センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化する。特徴定数は、センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である。
A first information processing apparatus according to the present invention includes: 1) a feature amount acquiring unit for acquiring a feature amount of a target gas; and 2) a odor information in which a label of an odor is associated with a feature amount of a gas generating the odor. And a label specifying unit that specifies odor information similar to the characteristic amount of the target gas and specifies the odor label indicated by the specified odor information as the odor label of the target gas.
The characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas. The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas. The characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
 本発明の第2の情報処理装置は、1)対象ガスの特徴量を取得する特徴量取得部と、2)単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、対象ガスの特徴量とを用いて、対象ガスに含まれる1つ以上の単位成分を特定する成分特定部と、を有する。
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表す。センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化する。特徴定数は、センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である。
A second information processing apparatus according to the present invention includes: 1) a feature amount acquisition unit for acquiring a feature amount of a target gas; and 2) a unit in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component. A component specifying unit that specifies one or more unit components contained in the target gas using the component information and the characteristic amount of the target gas.
The characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas. The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas. The characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
 本発明の第1の制御方法は、コンピュータによって実行される。当該制御方法は、1)対象ガスの特徴量を取得する特徴量取得ステップと、2)においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、対象ガスの特徴量に類似するにおい情報を特定し、特定したにおい情報に示されるにおいのラベルを、対象ガスのにおいのラベルとして特定するラベル特定ステップと、を有する。
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表す。センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化する。特徴定数は、センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である。
The first control method of the present invention is executed by a computer. The control method includes: 1) a characteristic amount obtaining step of obtaining a characteristic amount of the target gas; and 2) a characteristic of the target gas from the odor information in which the label of the odor is associated with the characteristic amount of the gas generating the odor. A label specifying step of specifying odor information similar to the amount and specifying a odor label indicated by the specified odor information as a odor label of the target gas.
The characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas. The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas. The characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
 本発明の第2の制御方法は、コンピュータによって実行される。当該制御方法は、1)対象ガスの特徴量を取得する特徴量取得ステップと、2)単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、対象ガスの特徴量とを用いて、対象ガスに含まれる1つ以上の単位成分を特定する成分特定ステップと、を有する。
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表す。センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化する。特徴定数は、センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である。
The second control method of the present invention is executed by a computer. The control method includes: 1) a feature amount obtaining step of obtaining a feature amount of a target gas; 2) unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component; A component specifying step of specifying one or more unit components contained in the target gas using the characteristic amount of the target gas.
The characteristic amount of the gas indicates the magnitude of each of the plurality of characteristic constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas. The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas. The characteristic constant is a time constant or a rate constant relating to the magnitude of a temporal change in the amount of molecules attached to the sensor.
 本発明のプログラムは、コンピュータに、本発明の制御方法が有する各ステップを実行させる。 プ ロ グ ラ ム The program of the present invention causes a computer to execute each step of the control method of the present invention.
 本発明によれば、複数種類の分子が混合しているガスの種類又は成分を特定する技術が提供される。 According to the present invention, there is provided a technique for specifying the type or component of a gas in which a plurality of types of molecules are mixed.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態1の情報処理装置の概要を例示する図である。 情報処理装置が扱うガスの特徴量を得るためのセンサを例示する図である。 実施形態1の情報処理装置の機能構成を例示する図である。 情報処理装置を実現するための計算機を例示する図である。 実施形態1の情報処理装置によって実行される処理の流れを例示するフローチャートである。 におい情報をテーブル形式で例示する図である。 特徴量の変換を概念的に表す図である。 対象ガスの特徴量とにおい情報が示す特徴量を、グラフで表示する図である。 実施形態2の情報処理装置の概要を例示する図である。 実施形態2の情報処理装置の機能構成を例示する図である。 実施形態2の情報処理装置によって実行される処理の流れを例示するフローチャートである。 単一の種類の分子についての単位成分情報をテーブル形式で例示する図である。 対象ガスの成分をグラフで表す図である。
The above and other objects, features and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
FIG. 2 is a diagram illustrating an outline of the information processing apparatus according to the first embodiment. FIG. 3 is a diagram illustrating a sensor for obtaining a characteristic amount of gas handled by the information processing apparatus. FIG. 2 is a diagram illustrating a functional configuration of the information processing apparatus according to the first embodiment. FIG. 2 is a diagram illustrating a computer for realizing an information processing device. 6 is a flowchart illustrating a flow of a process executed by the information processing apparatus according to the first embodiment. It is a figure which illustrates odor information in a table format. It is a figure which represents conversion of a feature-value notionally. It is a figure which displays the characteristic amount of the target gas and the characteristic amount which odor information shows by a graph. FIG. 9 is a diagram illustrating an outline of an information processing apparatus according to a second embodiment. FIG. 9 is a diagram illustrating a functional configuration of an information processing apparatus according to a second embodiment. 13 is a flowchart illustrating a flow of a process executed by the information processing apparatus according to the second embodiment. It is a figure which illustrates unit component information about a single kind of molecule in a table form. It is a figure showing the component of target gas with a graph.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、特に説明する場合を除き、各ブロック図において、各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will not be repeated. In addition, unless otherwise specified, in each block diagram, each block represents a configuration of a functional unit, not a configuration of a hardware unit.
[実施形態1]
<発明の概要と理論的背景>
 図1は、実施形態1の情報処理装置2000の概要を例示する図である。実施形態1の情報処理装置2000は、対象ガスの特徴量に基づいて、その対象ガスのにおいを表すラベル(以下、においラベル)を特定する。例えばにおいラベルは、そのにおいを発生させる物質の名称を示す。具体的には、対象ガスを発生させる物質がリンゴである場合(すなわち、対象ガスがリンゴのにおいを表すガスである場合)、「リンゴ」というにおいラベルが特定される。においを発生させる物質は、リンゴの様な食品には限定されず、機械、建材、薬品、カビ、焦げ、又は生ゴミなどといった任意の物とすることができる。
[Embodiment 1]
<Summary of the Invention and Theoretical Background>
FIG. 1 is a diagram illustrating an outline of an information processing apparatus 2000 according to the first embodiment. The information processing apparatus 2000 according to the first embodiment specifies a label (hereinafter, an odor label) indicating the odor of the target gas based on the feature amount of the target gas. For example, the odor label indicates the name of the substance that generates the odor. Specifically, when the substance that generates the target gas is apple (that is, when the target gas is a gas indicating the smell of apple), the smell label “apple” is specified. The substance generating the smell is not limited to foods such as apples, but may be any substance such as a machine, a building material, a medicine, mold, burnt food, or garbage.
 その他にも例えば、においラベルは、そのにおいがする場所や状況などといった抽象的な概念を表すものであってもよい。例えば、「カフェのにおい」、「プールのにおい」、「青臭いにおい」、「押し入れのようなにおい」、「甘いにおい」、「生臭いにおい」、又は「雨の日のにおい」などといったにおいラベルが考えられる。 In addition, for example, the smell label may represent an abstract concept such as a place or a situation where the smell is smelled. For example, odor labels such as "Cafe Smell", "Pool Smell", "Blue Smell Smell", "Smell like Closet", "Sweet Smell", "Smell Smell", or "Smell on a Rainy Day" Conceivable.
 このようなにおいラベルの特定を実現するために、においラベルと、そのにおいラベルに対応するガスの特徴量を対応づけた情報を、予め用意しておく。この情報をにおい情報と呼ぶ。 た め In order to realize the identification of such an odor label, information that associates the odor label with the characteristic amount of the gas corresponding to the odor label is prepared in advance. This information is called odor information.
 情報処理装置2000は、におい情報に示される特徴量の中から、対象ガスの特徴量に類似する特徴量を特定し、特定した特徴量に対応づけられているにおいラベルを、対象ガスのにおいラベルとして特定する。 The information processing apparatus 2000 specifies a feature amount similar to the feature amount of the target gas from the feature amounts indicated in the odor information, and sets the odor label associated with the specified feature amount to the odor label of the target gas. To be specified.
 情報処理装置2000は、ガスの特徴量として、本発明者が新たに見出した特徴量を扱う。以下、情報処理装置2000が扱うガスの特徴量について説明する。 (4) The information processing device 2000 handles a feature newly found by the present inventor as a gas feature. Hereinafter, the characteristic amount of the gas handled by the information processing apparatus 2000 will be described.
 図2は、情報処理装置2000が扱うガスの特徴量を得るためのセンサ10を例示する図である。センサ10は、分子が付着する受容体を有し、その受容体における分子の付着と離脱に応じて検出値が変化するセンサである。センサ10から出力される検出値の時系列データを、時系列データ14と呼ぶ。ここで、必要に応じ、時系列データ14を Y とも表記し、時刻 t の検出値を y(t) とも表記する。Y は、y(t) が列挙されたベクトルとなる。 FIG. 2 is a diagram exemplifying the sensor 10 for obtaining the characteristic amount of gas handled by the information processing apparatus 2000. The sensor 10 has a receptor to which a molecule is attached, and a detection value changes according to attachment and detachment of the molecule at the receptor. The time series data of the detection values output from the sensor 10 is referred to as time series data 14. Here, the time-series data 14 is also denoted as {Y}, and the detected value at the time {t} is denoted as {y (t)}, as necessary. Y is a vector in which y (t) is enumerated.
 例えばセンサ10は、膜型表面応力(Membrane-type Surface Stress; MSS)センサである。MSS センサは、受容体として、分子が付着する官能膜を有しており、その官能膜に対する分子の付着と離脱によってその官能膜の支持部材に生じる応力が変化する。MSS センサは、この応力の変化に基づく検出値を出力する。なお、センサ10は、MSS センサには限定されず、受容体に対する分子の付着と離脱に応じて生じる、センサ10の部材の粘弾性や動力学特性(質量や慣性モーメントなど)に関連する物理量の変化に基づいて検出値を出力するものであればよく、カンチレバー式、膜型、光学式、ピエゾ、振動応答などの様々なタイプのセンサを採用することができる。 For example, the sensor 10 is a membrane-type surface stress (MSS) sensor. The MSS sensor has, as a receptor, a functional film to which a molecule adheres, and the stress generated in a support member of the functional film changes due to the attachment and detachment of the molecule to and from the functional film. The MSS sensor outputs a detection value based on the change in the stress. In addition, the sensor 10 is not limited to the MSS 、 sensor, and the physical quantity related to the viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) of the members of the sensor 10 that occur in response to the attachment and detachment of the molecule to and from the receptor. Any sensor that outputs a detection value based on the change may be used, and various types of sensors such as a cantilever type, a film type, an optical type, a piezo, and a vibration response can be employed.
 ここで、説明のため、センサ10によるセンシングを以下のようにモデル化する。
(1)センサ10は、K 種類の分子を含むガスに曝されている。
(2)ガスに含まれる各分子 k の濃度は一定のρkである。
(3)センサ10には、合計 N 個の分子が吸着可能である。
(4)時刻t においてセンサ10に付着している分子k の数は nk(t) 個である。
Here, for explanation, the sensing by the sensor 10 is modeled as follows.
(1) The sensor 10 is exposed to a gas containing K kinds of molecules.
(2) The concentration of each molecule k contained in the gas is constant ρk.
(3) The sensor 10 can adsorb a total of N molecules.
(4) The number of molecules k attached to the sensor 10 at time t is nk (t).
 センサ10に付着している分子 k の数 nk(t) の時間変化は、以下のように定式化できる。
Figure JPOXMLDOC01-appb-M000001
The time change of the number nk (t) of the molecules k attached to the sensor 10 can be formulated as follows.
Figure JPOXMLDOC01-appb-M000001
 式(1)の右辺の第1項と第2項はそれぞれ、単位時間当たりの分子 k の増加量(新たにセンサ10に付着する分子 k の数)と減少量(センサ10から離脱する分子 k の数)を表している。また、αk とβk はそれぞれ、分子 k がセンサ10に付着する速度を表す速度定数と、分子 k がセンサ10から離脱する速度を表す速度定数である。 The first and second terms on the right-hand side of the equation (1) are the increasing amount of the molecule {k} per unit time (the number of molecules {k} newly attached to the sensor 10) and the decreasing amount (the molecule {k} detached from the sensor 10). Number). Αk and βk are a rate constant representing the rate at which the molecule {k} adheres to the sensor 10 and a rate constant representing the rate at which the molecule {k} separates from the sensor 10, respectively.
 ここで、濃度ρkが一定であるため、上記式(1)から、時刻t における分子 k の数 nk(t) は、以下のように定式化できる。
Figure JPOXMLDOC01-appb-M000002
Here, since the concentration ρk is constant, the number nk (t) of the numerator k at time t can be formulated from the above equation (1) as follows.
Figure JPOXMLDOC01-appb-M000002
 また、時刻 t0(初期状態)でセンサ10に分子が付着していないと仮定すれば、nk(t) は以下のように表される。
Figure JPOXMLDOC01-appb-M000003
Assuming that no molecules are attached to the sensor 10 at time t0 (initial state), nk (t) is expressed as follows.
Figure JPOXMLDOC01-appb-M000003
 センサ10の検出値は、ガスに含まれる分子によってセンサ10に働く応力によって定まる。そして、複数の分子によってセンサ10に働く応力は、個々の分子に働く応力の線形和で表すことができると考えられる。ただし、分子によって生じる応力は、分子の種類によって異なると考えられる。すなわち、センサ10の検出値に対する分子の寄与は、その分子の種類によって異なると言える。 検 出 The detection value of the sensor 10 is determined by the stress applied to the sensor 10 by the molecules contained in the gas. Then, it is considered that the stress acting on the sensor 10 by a plurality of molecules can be represented by a linear sum of the stress acting on each molecule. However, it is considered that the stress generated by the molecule differs depending on the type of the molecule. That is, it can be said that the contribution of the molecule to the detection value of the sensor 10 differs depending on the type of the molecule.
 そこで、センサ10の検出値 y(t) は、以下のように定式化できる。
Figure JPOXMLDOC01-appb-M000004
 ここで、γk とξk はいずれも、センサ10の検出値に対する分子 k の寄与を表す。なお、パージガスとは、測定対象のガスをセンサ10から取り除く時に利用するガスである。
Then, the detection value y (t) of the sensor 10 can be formulated as follows.
Figure JPOXMLDOC01-appb-M000004
Here, both γk and ξk represent the contribution of the numerator k to the detection value of the sensor 10. The purge gas is a gas used when removing the gas to be measured from the sensor 10.
 ここで、ガスをセンシングしたセンサ10から得た時系列データ14を上述の式(4)のように分解できれば、そのガスに含まれる分子の種類や、各種類の分子がそのガスに含まれる割合を把握することができる。すなわち、式(4)に示す分解によって、ガスの特徴を表すデータ(すなわち、ガスの特徴量)が得られる。 Here, if the time-series data 14 obtained from the sensor 10 that sensed the gas can be decomposed as in the above equation (4), the types of molecules contained in the gas and the ratio of each type of molecule contained in the gas Can be grasped. That is, by the decomposition shown in Expression (4), data representing the characteristics of the gas (that is, the characteristic amount of the gas) is obtained.
 より具体的には、情報処理装置2000は、時系列データ14を以下の式(5)に示すように分解することで得られる特徴量を扱う。
Figure JPOXMLDOC01-appb-M000005
More specifically, the information processing apparatus 2000 handles a feature amount obtained by decomposing the time-series data 14 as shown in the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 ここで、θi は特徴定数と呼ばれる定数である。また、ξi は、センサ10の検出値に対する特徴定数θi の寄与を表す寄与値である。 {Where, θi} is a constant called a feature constant. {I} is a contribution value representing the contribution of the characteristic constant θi} to the detection value of the sensor 10.
 特徴定数θとしては、前述した速度定数βや、速度定数の逆数である時定数τを採用することができる。θとしてβとτを使う場合それぞれについて、式(5)は、以下のように表すことができる。 As the characteristic constant θ, the above-mentioned velocity constant β or a time constant τ which is the reciprocal of the velocity constant can be adopted. For each case where β and τ are used as θ, equation (5) can be expressed as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ガスの特徴量は、このようにして得られる特徴定数の集合Θ={θ1, θ2,..., θm} と、寄与値の集合 Ξ={ξ1, ξ2,..., ξm} を対応づけた情報である。特徴定数の集合Θと寄与値の集合Ξとの対応づけは、例えば、m 行2列の特徴行列 F で表される(m は特徴定数と寄与値それぞれの数)。例えばこの行列 F は、特徴定数の集合を表すベクトルΘ=(θ1,..., θm) を第1列に有し、なおかつ寄与値の集合を表すベクトルΞ=(ξ1,..., ξm) を第2列に有する。すなわち、F=(ΘT, ΞT) である。 The feature quantity of gas corresponds to the set of feature constants Θ = {θ1, 2θ2, ..., mθm} obtained in this way and the set of contribution values Ξ = {{1, ξ2, ..., ξm} This is the attached information. The association between the set of feature constants 寄 与 and the set of contribution values Ξ is represented, for example, by m feature matrix {F} having two rows and two columns (m is the number of each of the feature constant and the contribution value). For example, this matrix {F} has a vector Θ = (θ1,..., Θm) representing a set of feature constants in the first column, and a vector Ξ = (ξ1, ..., ξm) representing a set of contribution values. ) In the second column. That is, F = ({T, {T)}.
 なお、各ガスについて特徴定数の集合が共通である場合、ガスの特徴量において、特徴定数の集合を表すベクトルΘは省略されてもよい。この場合、ガスの特徴量は、寄与値の集合で表される。 In the case where the set of characteristic constants is common to each gas, the vector representing the set of characteristic constants may be omitted in the characteristic amount of the gas. In this case, the characteristic amount of the gas is represented by a set of contribution values.
 情報処理装置2000は、対象ガスについて、特徴定数の集合と寄与値の集合とを対応づけている特徴量(特徴定数の集合は省略されていてもよい)を取得する。また、におい情報が示す特徴量は、そのにおい情報が示すにおいラベルで特定されるガスをセンサ10でセンシングすることで得られる時系列データについて、特徴定数の集合と寄与値の集合とを対応づけている情報である。情報処理装置2000は、このような特徴量同士を比較することにより、対象ガスの特徴量と類似する特徴量を示すにおい情報を特定する。そして、情報処理装置2000は、特定されたにおい情報が示すにおいラベルを、対象ガスのにおいラベルとして特定する。 (4) The information processing device 2000 acquires a feature amount (a set of feature constants may be omitted) that associates a set of feature constants with a set of contribution values for the target gas. The feature quantity indicated by the odor information is obtained by associating a set of feature constants with a set of contribution values for time-series data obtained by sensing the gas specified by the odor label indicated by the odor information with the sensor 10. Information. The information processing apparatus 2000 compares such characteristic amounts with each other to specify odor information indicating a characteristic amount similar to the characteristic amount of the target gas. Then, the information processing device 2000 specifies the odor label indicated by the specified odor information as the odor label of the target gas.
<作用効果>
 本実施形態の情報処理装置2000は、ガスの検出値の時系列データについて得られる特徴定数ベクトルと寄与ベクトルとが対応づけられた特徴量を用いて、対象ガスのにおいラベルを特定する。前述したように、この特徴量はガスに含まれる分子やその混合比率によって変化する特徴量であるため、精度良くガスを区別することができる。よって、このような特徴量を用いることにより、本実施形態の情報処理装置2000によれば、対象ガスのにおいラベルを精度良く特定することができる。
<Effects>
The information processing apparatus 2000 according to the present embodiment specifies the odor label of the target gas using the feature amount in which the feature constant vector and the contribution vector obtained for the time-series data of the detected gas value are associated with each other. As described above, since this characteristic amount changes depending on the molecules contained in the gas and the mixing ratio thereof, the gas can be distinguished with high accuracy. Therefore, by using such a characteristic amount, according to the information processing apparatus 2000 of the present embodiment, the odor label of the target gas can be accurately specified.
 なお、図1を参照した上述の説明は、情報処理装置2000の理解を容易にするための例示であり、情報処理装置2000の機能を限定するものではない。以下、本実施形態の情報処理装置2000についてさらに詳細に説明する。 The above description with reference to FIG. 1 is an example for facilitating understanding of the information processing device 2000, and does not limit the functions of the information processing device 2000. Hereinafter, the information processing apparatus 2000 of the present embodiment will be described in more detail.
<機能構成の例>
 図3は、実施形態1の情報処理装置2000の機能構成を例示する図である。実施形態1の情報処理装置2000は、特徴量取得部2020及びラベル特定部2040を有する。特徴量取得部2020は、対象ガスの特徴量を取得する。ラベル特定部2040は、複数のにおい情報の中から、対象ガスの特徴量に類似する特徴量を示すにおい情報を抽出する。さらにラベル特定部2040は、抽出したにおい情報に示されているにおいラベルを、対象ガスのにおいラベルとして特定する。
<Example of functional configuration>
FIG. 3 is a diagram illustrating a functional configuration of the information processing apparatus 2000 according to the first embodiment. The information processing apparatus 2000 according to the first embodiment includes a feature amount acquiring unit 2020 and a label specifying unit 2040. The feature amount acquisition unit 2020 acquires the feature amount of the target gas. The label specifying unit 2040 extracts, from the plurality of pieces of odor information, odor information indicating a characteristic amount similar to the characteristic amount of the target gas. Further, the label specifying unit 2040 specifies the odor label indicated in the extracted odor information as the odor label of the target gas.
<情報処理装置2000のハードウエア構成>
 情報処理装置2000の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、情報処理装置2000の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
<Hardware configuration of information processing device 2000>
Each functional component of the information processing apparatus 2000 may be implemented by hardware (eg, a hard-wired electronic circuit or the like) that implements each functional component, or a combination of hardware and software (eg: Electronic circuit and a program for controlling the same). Hereinafter, a case where each functional component of the information processing apparatus 2000 is realized by a combination of hardware and software will be further described.
 図4は、情報処理装置2000を実現するための計算機1000を例示する図である。計算機1000は任意の計算機である。例えば計算機1000は、Personal Computer(PC)やサーバマシンなどの据え置き型の計算機である。その他にも例えば、計算機1000は、スマートフォンやタブレット端末などの可搬型の計算機である。計算機1000は、情報処理装置2000を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。 FIG. 4 is a diagram illustrating a computer 1000 for realizing the information processing device 2000. The computer 1000 is an arbitrary computer. For example, the computer 1000 is a stationary computer such as a personal computer (PC) or a server machine. In addition, for example, the computer 1000 is a portable computer such as a smartphone or a tablet terminal. The computer 1000 may be a dedicated computer designed to realize the information processing device 2000, or may be a general-purpose computer.
 計算機1000は、バス1020、プロセッサ1040、メモリ1060、ストレージデバイス1080、入出力インタフェース1100、及びネットワークインタフェース1120を有する。バス1020は、プロセッサ1040、メモリ1060、ストレージデバイス1080、入出力インタフェース1100、及びネットワークインタフェース1120が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1040などを互いに接続する方法は、バス接続に限定されない。 The computer 1000 has a bus 1020, a processor 1040, a memory 1060, a storage device 1080, an input / output interface 1100, and a network interface 1120. The bus 1020 is a data transmission path through which the processor 1040, the memory 1060, the storage device 1080, the input / output interface 1100, and the network interface 1120 mutually transmit and receive data. However, a method for connecting the processors 1040 and the like to each other is not limited to a bus connection.
 プロセッサ1040は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field-Programmable Gate Array)などの種々のプロセッサである。メモリ1060は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス1080は、ハードディスク、SSD(Solid State Drive)、メモリカード、又は ROM(Read Only Memory)などを用いて実現される補助記憶装置である。 The processor 1040 is various processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array). The memory 1060 is a main storage device realized using a RAM (Random Access Memory) or the like. The storage device 1080 is an auxiliary storage device realized using a hard disk, an SSD (Solid State Drive), a memory card, or a ROM (Read Only Memory).
 入出力インタフェース1100は、計算機1000と入出力デバイスとを接続するためのインタフェースである。例えば入出力インタフェース1100には、キーボードなどの入力装置や、ディスプレイ装置などの出力装置が接続される。 The input / output interface 1100 is an interface for connecting the computer 1000 and an input / output device. For example, an input device such as a keyboard and an output device such as a display device are connected to the input / output interface 1100.
 ネットワークインタフェース1120は、計算機1000を通信網に接続するためのインタフェースである。この通信網は、例えば LAN(Local Area Network)や WAN(Wide Area Network)である。ネットワークインタフェース1120が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。 The network interface 1120 is an interface for connecting the computer 1000 to a communication network. The communication network is, for example, a LAN (Local Area Network) or a WAN (Wide Area Network). The method by which the network interface 1120 connects to the communication network may be a wireless connection or a wired connection.
 ストレージデバイス1080は、情報処理装置2000の各機能構成部を実現するプログラムモジュールを記憶している。プロセッサ1040は、これら各プログラムモジュールをメモリ1060に読み出して実行することで、各プログラムモジュールに対応する機能を実現する。 The storage device 1080 stores a program module that implements each functional component of the information processing apparatus 2000. The processor 1040 realizes a function corresponding to each program module by reading out each of these program modules into the memory 1060 and executing them.
<処理の流れ>
 図5は、実施形態1の情報処理装置2000によって実行される処理の流れを例示するフローチャートである。特徴量取得部2020は、対象ガスの特徴量を取得する(S102)。ラベル特定部2040は、複数のにおい情報の中から、対象ガスの特徴量に類似する特徴量を示すにおい情報を抽出する(S104)。ラベル特定部2040は、抽出したにおい情報が示すにおいラベルを、対象ガスのにおいラベルとして特定する(S106)。
<Process flow>
FIG. 5 is a flowchart illustrating a flow of a process executed by the information processing apparatus 2000 according to the first embodiment. The characteristic amount acquisition unit 2020 acquires the characteristic amount of the target gas (S102). The label specifying unit 2040 extracts odor information indicating a characteristic amount similar to the characteristic amount of the target gas from the plurality of odor information (S104). The label specifying unit 2040 specifies the odor label indicated by the extracted odor information as the odor label of the target gas (S106).
<対象ガスの特徴量の取得:S102>
 特徴量取得部2020は、対象ガスの特徴量を取得する。例えば特徴量取得部2020は、対象ガスの特徴量が記憶されている記憶装置にアクセスすることで、対象ガスの特徴量を取得する。この記憶装置は、情報処理装置2000の内部に設けられていてもよいし、情報処理装置2000の外部に設けられていてもよい。その他にも例えば、情報処理装置2000は、他の装置から送信される対象ガスの特徴量を受信することで、対象ガスの特徴量を取得してもよい。この「他の装置」は、例えば、対象ガスについてセンサ10から得られた時系列データ14を利用して、対象ガスの特徴量を算出する装置である。
<Acquisition of characteristic amount of target gas: S102>
The feature amount acquisition unit 2020 acquires the feature amount of the target gas. For example, the characteristic amount acquiring unit 2020 acquires the characteristic amount of the target gas by accessing a storage device in which the characteristic amount of the target gas is stored. This storage device may be provided inside the information processing device 2000 or may be provided outside the information processing device 2000. In addition, for example, the information processing apparatus 2000 may acquire the characteristic amount of the target gas by receiving the characteristic amount of the target gas transmitted from another device. The “other device” is, for example, a device that calculates the feature amount of the target gas using the time-series data 14 obtained from the sensor 10 for the target gas.
<におい情報について>
 図6は、におい情報をテーブル形式で例示する図である。図6のテーブルを、テーブル200と呼ぶ。テーブル200は、においラベル202及び特徴量204という2つの列を有する。テーブル200の各レコードは、においラベル202に示されるにおいラベルに、特徴量204に示される特徴量(この例では、特徴行列 F)を対応づけている。なお、におい情報は、情報処理装置2000の内部又は外部に設けられている記憶装置に予め記憶されているものとする。
<About odor information>
FIG. 6 is a diagram illustrating the odor information in a table format. The table in FIG. 6 is called a table 200. The table 200 has two columns of an odor label 202 and a feature 204. In each record of the table 200, the odor label indicated by the odor label 202 is associated with the characteristic amount (in this example, the characteristic matrix F) indicated by the characteristic amount 204. Note that it is assumed that the odor information is stored in advance in a storage device provided inside or outside the information processing device 2000.
<におい情報の抽出:S104>
 ラベル特定部2040は、複数のにおい情報の中から、対象ガスの特徴量に類似する特徴量を示すにおい情報を抽出する(S104)。例えばラベル特定部2040は、対象ガスの特徴量と最も類似している特徴量を示すにおい情報を抽出する。この場合、対象ガスのにおいラベルが一意に特定される。
<Extraction of odor information: S104>
The label specifying unit 2040 extracts odor information indicating a characteristic amount similar to the characteristic amount of the target gas from the plurality of odor information (S104). For example, the label specifying unit 2040 extracts odor information indicating a feature amount most similar to the feature amount of the target gas. In this case, the odor label of the target gas is uniquely specified.
 ラベル特定部2040によって抽出されるにおい情報は複数であってもよい。例えばラベル特定部2040は、対象ガスの特徴量との類似度合いが閾値以上である特徴量を示すにおい情報を、1つ以上抽出する。この場合、対象ガスのにおいを表すラベルである蓋然性が高い1つ以上のにおいラベルが特定されることになる。すなわち、対象ガスのにおいラベルの候補が1つ以上特定される。 The odor information extracted by the label specifying unit 2040 may be plural. For example, the label specifying unit 2040 extracts one or more pieces of odor information indicating a characteristic amount whose similarity to the characteristic amount of the target gas is equal to or greater than a threshold. In this case, one or more odor labels having a high probability of being a label indicating the odor of the target gas are specified. That is, one or more candidates for the odor label of the target gas are specified.
 なお、ラベル特定部2040は、対象ガスの特徴量との類似度合いが閾値以上である特徴量を示すにおい情報がテーブル200に存在しない場合、対象ガスのにおいラベルの候補が存在しないことを出力してもよい。この場合、対象ガスは、テーブル200に未登録の新しいにおいであると解釈することができる。 Note that the label specifying unit 2040 outputs that there is no odor label candidate of the target gas when there is no odor information indicating the characteristic amount whose similarity with the characteristic amount of the target gas is equal to or more than the threshold value in the table 200. You may. In this case, the target gas can be interpreted as a new smell not registered in the table 200.
<<特徴量の類似度合いを判定する方法>>
 ラベル特定部2040は、対象ガスの特徴量とにおい情報が示す特徴量とを比較することで、これらの類似度を算出する。以下、この類似度の算出方法を例示する。
<< Method of Determining Similarity of Feature Amount >>
The label specifying unit 2040 calculates the similarity of the target gas by comparing the characteristic amount of the target gas with the characteristic amount indicated by the odor information. Hereinafter, a method of calculating the similarity will be exemplified.
<<<特徴定数の集合が共通である場合>>>
 対象ガスの特徴量とにおい情報が示す特徴量で、特徴定数の集合が共通であるとする。この場合、いずれの特徴量も、寄与値の集合のベクトル表現であるΞ=(Ξ1, Ξ2,..., Ξm) で表すことができる。そこでラベル特定部2040は、対象ガスの特徴量とにおい情報の特徴量について、ベクトル間の距離を算出し、算出した距離を特徴量間の類似度の指標として利用する。具体的には、特徴量間の距離が短いほど、それらの特徴量が類似しているものと扱う。
<<<< When the set of feature constants is common >>>>
A set of characteristic constants is assumed to be common between the characteristic amount of the target gas and the characteristic amount indicated by the odor information. In this case, each feature can be represented by 表 す = (Ξ1, Ξ2,..., Ξm), which is a vector representation of a set of contribution values. Therefore, the label specifying unit 2040 calculates the distance between the vectors for the characteristic amount of the target gas and the characteristic amount of the odor information, and uses the calculated distance as an index of the similarity between the characteristic amounts. Specifically, the shorter the distance between the feature values, the more similar those feature values are handled.
 例えば、対象ガスの特徴量に最も類似している特徴量を示すにおい情報を抽出するとする。この場合、ラベル特定部2040は、対象ガスの特徴量との距離が最も短い特徴量を示すにおい情報を抽出する。 For example, suppose that odor information indicating a feature amount most similar to the feature amount of the target gas is extracted. In this case, the label specifying unit 2040 extracts the odor information indicating the feature amount having the shortest distance from the feature amount of the target gas.
 その他にも例えば、対象ガスの特徴量との類似度合いが閾値以上である特徴量を示すにおい情報を、1つ以上抽出するとする。この場合、対象ガスの特徴量との距離について閾値を定めておく。ラベル特定部2040は、対象ガスの特徴量との距離が閾値以下である特徴量を示す各におい情報を抽出する。 In addition, for example, it is assumed that one or more pieces of odor information indicating a characteristic amount whose similarity with the characteristic amount of the target gas is equal to or larger than a threshold value are extracted. In this case, a threshold value is set for the distance from the feature amount of the target gas. The label specifying unit 2040 extracts each odor information indicating a feature amount whose distance from the feature amount of the target gas is equal to or less than a threshold value.
<<<特徴定数の集合が共通でない場合>>>
 対象ガスの特徴量とにおい情報が示す特徴量とで、特徴定数の集合が共通でないとする。この場合、例えばラベル特定部2040は、対象ガスの特徴量とにおい情報の特徴量のいずれか一方又は双方を、これらの特徴定数の集合が共通になるように変換する。このような変換により、前述した特徴量間の距離を利用した類似判定が可能となる。そこでラベル特定部2040は、変換後の特徴量を用いて、特徴量間の距離を利用した類似判定を行うことにより、対象ガスの特徴量と類似する特徴量を示すにおい情報を抽出する。
<<<< When the set of feature constants is not common >>>>
It is assumed that a set of characteristic constants is not common between the characteristic amount of the target gas and the characteristic amount indicated by the odor information. In this case, for example, the label specifying unit 2040 converts one or both of the characteristic amount of the target gas and the characteristic amount of the odor information such that a set of these characteristic constants is common. Such conversion enables similarity determination using the distance between the feature amounts described above. Therefore, the label specifying unit 2040 performs similarity determination using the distance between the feature amounts using the converted feature amount, thereby extracting odor information indicating a feature amount similar to the feature amount of the target gas.
 特徴量の変換方法について説明する。図7は、特徴量の変換を概念的に表す図である。図7において、変換前の特徴量は、特徴定数の集合Θa={θa1, θa2, θa3, θa4, θa5} に対して、寄与値の集合Ξa={ξa1, ξa2, ξa3, ξa4, ξa5} を対応づけたものである。ラベル特定部2040は、この特徴量を、特徴定数の集合Θb={θb1, θb2,..., θb9} に対して、寄与値の集合Ξb={ξb1, ξb2,.., ξb9} を対応づけた特徴量に変換する。この際、変換前の特徴量において特徴定数θai に対応づけられているξai は、変換後の特徴量において θbj≦θai<θ_(bj+1) を満たすθbj に対応づけられる。例えば図7では、θb2≦θa1<θb3 を満たすため、変換前の特徴量においてθa1 に対応づけられていた寄与値ξa1 が、変換後の特徴量において θb2 に対応づけられる。すなわち、ξb2=ξa1 となる。 (4) A method of converting feature values will be described. FIG. 7 is a diagram conceptually showing the conversion of the feature amount. In FIG. 7, the feature quantity before conversion is a set of contribution values Ξa = {{a1, ξa2, ξa3, ξa4, ξa5}} with respect to a set of feature constants Θa = {θa1, θa2, θa3, θa4, θa5}}. It is a correspondence. The label identifying unit 2040 associates this feature amount with a set of contribution values {b = {{b1, {b2, .., {b9}} for a set of feature constants {b = {θb1, {θb2, ..., {θb9}}. It is converted to the attached feature value. At this time, {ai} associated with the feature constant θai in the feature quantity before conversion is associated with θbj that satisfies {θbj ≦ θai <θ_ (bj + 1)} in the feature quantity after conversion. For example, in FIG. 7, to satisfy θb2 ≦ θa1 <θb3b, the contribution value {a1} associated with θa1a in the feature amount before conversion is associated with {θb2} in the feature amount after conversion. That is, {b2 = {a1}.
 なお、θbj≦θai<θ_(bj+1) を満たすθai が複数存在するとする。この場合、これら複数のθai に対応づけられている寄与値ξai の和を、変換後の特徴定数θbj に対応づける。例えば図7において、θa3 とθa4 はいずれも、θb7≦θi<θb8 を満たしている。そのため、変換後の特徴量では、θb7 に対応する寄与値 ξb7 の値を(ξa3+ξa4)とする。 It is assumed that there are a plurality of θais that satisfy θbj ≦ θai <θ_ (bj + 1). In this case, the sum of the contribution values {ai} associated with the plurality of θai is associated with the converted feature constant θbj. For example, in FIG. 7, both θa3 ° and θa4 ° satisfy θb7 ≦ θi <θb8 °. Therefore, in the feature amount after the conversion, the value of the contribution value {b7} corresponding to θb7} is set to ({a3 + ξa4) ”.
 前述したように、特徴量の変換は、対象ガスの特徴量とにおい情報の特徴量のいずれか一方について行われてもよいし、双方について行われてもよい。前者の場合、ラベル特定部2040は、におい情報の特徴量が持つ特徴定数の集合に合わせるように対象ガスの特徴量を変換してもよいし、対象ガスの特徴量が持つ特徴定数の集合に合わせるようににおい情報の特徴量を変換してもよい。ただし、複数のにおい情報において特徴定数の集合が共通でない場合には、におい情報の特徴量を変換して、対象ガスの特徴量が持つ特徴定数の集合に合わせることが好適である。こうすることで、全ての特徴量において特徴定数の集合を共通にした上で、類似判定が行われるためである。 As described above, the conversion of the characteristic amount may be performed for one of the characteristic amount of the target gas and the characteristic amount of the odor information, or may be performed for both of them. In the former case, the label specifying unit 2040 may convert the characteristic amount of the target gas to match the set of characteristic constants of the characteristic amount of the odor information, or may convert the characteristic amount of the target gas into a set of characteristic constants of the target gas. The feature amount of the odor information may be converted so as to match. However, when the set of characteristic constants is not common to a plurality of pieces of odor information, it is preferable to convert the characteristic amount of the odor information to match the set of characteristic constants of the characteristic amount of the target gas. This is because the similarity determination is performed after setting the set of feature constants common to all feature amounts.
 対象ガスの特徴量とにおい情報の特徴量の双方を変換する場合、共通の特徴定数の集合Θc を予め用意しておく。そしてラベル特定部2040は、対象ガスの特徴量とにおい情報の特徴量の双方を、特徴定数の集合がΘc となるように変換する。 {When converting both the characteristic amount of the target gas and the characteristic amount of the odor information, a common set {c} of characteristic constants is prepared in advance. Then, the label specifying unit 2040 converts both the characteristic amount of the target gas and the characteristic amount of the odor information so that the set of characteristic constants becomes {c}.
 特徴定数の集合が共通でない場合の類似判定の方法は、上述のように特徴量に変換を施してから類似判定を行う方法に限定されない。例えば、対比する2つの特徴量の寄与値Ξがすべて正である場合、ラベル特定部2040は、対比する2つの特徴量を確率分布として扱い、これらの特徴量の類似度として、KL(Kullback-Leibler)ダイバージェンスを算出する。KL ダイバージェンスは、確率分布同士の類似度を表す指標値であり、対比する2つの確率分布の差異が小さいほど、小さい値となる。そこでラベル特定部2040は、対象ガスの特徴量とにおい情報が示す特徴量との間で算出される KL ダイバージェンスが小さいほど、これらが類似しているものとして扱う。 The method of similarity determination when the set of feature constants is not common is not limited to the method of performing similarity determination after converting feature values as described above. For example, when the contribution values の of the two feature values to be compared are all positive, the label specifying unit 2040 treats the two feature values to be compared as a probability distribution, and determines the similarity of these feature values as KL (Kullback- Leibler) Calculate divergence. KL divergence is an index value indicating the degree of similarity between probability distributions, and becomes smaller as the difference between two probability distributions to be compared is smaller. Therefore, the label specifying unit 2040 treats the smaller the {KL} divergence calculated between the characteristic amount of the target gas and the characteristic amount indicated by the odor information, the more similar these are.
 上述の特徴量を確率分布として扱う方法として、例えば、カーネル法を用いることができる。具体的には、ラベル特定部2040は、特徴量 F を次式で表される確率分布として扱うことで、KL ダイバージェンスを計算する。
Figure JPOXMLDOC01-appb-M000007
 ここで、g はカーネル関数であり、C は確率分布の規格化定数である。
As a method of treating the above-described feature amount as a probability distribution, for example, a kernel method can be used. Specifically, the label specifying unit 2040 calculates KL divergence by treating the feature value F as a probability distribution represented by the following equation.
Figure JPOXMLDOC01-appb-M000007
Here, g is a kernel function, and C is a normalization constant of the probability distribution.
 また、ラベル特定部2040は、上記対比する2つの特徴量の類似度として、たとえば、ワッサースタイン計量(Wasserstein metric)を用いても良い。ワッサースタイン計量は、一方の分布をもう一方の分布に移動する際に掛かるコストの最小値を表す計量であり、対比する2つの分布の差異が小さいほど、小さい値となる。そこでラベル特定部2040は、対象ガスの特徴量とにおい情報が示す特徴量との間で算出されるワッサースタイン計量が小さいほど、これらが類似しているものとして扱う。なお、ワッサースタイン計量は、寄与値Ξが負の値を含む場合であっても適用可能である。 The label specifying unit 2040 may use, for example, Wasserstein metric as the similarity between the two feature amounts to be compared. The Wasserstein metric is a metric that represents the minimum cost of moving one distribution to the other, and the smaller the difference between the two distributions to be compared, the smaller the value. Therefore, the label identifying unit 2040 treats the smaller the Wasserstein metric calculated between the characteristic amount of the target gas and the characteristic amount indicated by the odor information, as the similarity thereof. Note that the Wasserstein metric is applicable even when the contribution value を includes a negative value.
<特定結果の出力について>
 情報処理装置2000は、対象ガスのにおいラベルを表す情報(以下、出力情報)を出力する。例えば出力情報は、対象ガスのにおいラベルを表すテキストデータである。その他にも例えば、出力情報は、特定されたにおいラベルを示すにおい情報を含んでもよい。この場合、例えば出力情報は、対象ガスの特徴量とにおい情報が示す特徴量を、グラフや表などのグラフィカルな情報で示してもよい。
<Output of specific result>
The information processing device 2000 outputs information indicating the odor label of the target gas (hereinafter, output information). For example, the output information is text data representing an odor label of the target gas. In addition, for example, the output information may include odor information indicating the specified odor label. In this case, for example, the output information may indicate the characteristic amount of the target gas and the characteristic amount indicated by the odor information by graphical information such as a graph or a table.
 図8は、対象ガスの特徴量とにおい情報が示す特徴量を、グラフで表示する図である。図8において、実線は対象ガスの特徴量を示している。一方、点線は、「においA」というラベルを持つにおい情報が示す特徴量を示している。このグラフを見ることで、情報処理装置2000のユーザは、対象ガスのにおいラベルを把握しつつ、対象ガスの特徴量とにおい情報が示す特徴量とがどの程度類似しているかについて、視覚的に容易に確認することができる。 FIG. 8 is a view showing the characteristic amount of the target gas and the characteristic amount indicated by the odor information in a graph. In FIG. 8, the solid line indicates the characteristic amount of the target gas. On the other hand, the dotted line indicates the feature amount indicated by the odor information having the label “smell A”. By looking at this graph, the user of the information processing apparatus 2000 visually grasps the odor label of the target gas and visually determines how similar the characteristic amount of the target gas is to the characteristic amount indicated by the odor information. It can be easily confirmed.
 なお、前述した様ににおいラベルが複数特定された場合、情報処理装置2000は、これらのにおいラベルを順序づけて出力することが好適である。例えば情報処理装置2000は、対象ガスの特徴量との類似度合いが高い順(距離が小さい順)に、においラベルを出力する。 Note that, as described above, when a plurality of odor labels are specified, it is preferable that the information processing apparatus 2000 output these odor labels in order. For example, the information processing apparatus 2000 outputs the odor label in the order of the degree of similarity to the feature amount of the target gas (in order of decreasing distance).
 出力情報を出力する具体的な方法は様々である。例えば情報処理装置2000は、出力情報を任意の記憶装置に記憶させる。その他にも例えば、情報処理装置2000は、出力情報をディスプレイ装置に表示させる。その他に例えば、情報処理装置2000は、情報処理装置2000以外の装置に出力情報を送信してもよい。 具体 There are various specific methods for outputting the output information. For example, the information processing device 2000 stores the output information in an arbitrary storage device. In addition, for example, the information processing apparatus 2000 causes the display device to display the output information. Alternatively, for example, the information processing device 2000 may transmit the output information to a device other than the information processing device 2000.
[実施形態2]
 図9は、実施形態2の情報処理装置2000の概要を例示する図である。実施形態2の情報処理装置2000は、対象ガスの特徴量に基づいて、対象ガスの成分を特定する。ここで、対象ガスの成分の特定には、少なくとも、対象ガスに含まれる単位成分を1つ以上特定することが含まれる。また、対象ガスの成分の特定には、対象ガスに含まれる各単位成分の濃度の特定や、各単位成分の混合比率(相対濃度)の特定が含まれてもよい。
[Embodiment 2]
FIG. 9 is a diagram illustrating an outline of an information processing apparatus 2000 according to the second embodiment. The information processing apparatus 2000 according to the second embodiment specifies the component of the target gas based on the feature amount of the target gas. Here, the specification of the component of the target gas includes at least specifying one or more unit components contained in the target gas. Further, the specification of the component of the target gas may include specifying the concentration of each unit component contained in the target gas and specifying the mixing ratio (relative concentration) of each unit component.
 単位成分は、例えば単一の種類の分子である。この場合、情報処理装置2000は、対象ガスの特徴量に基づいて、対象ガスに含まれる1種類以上の分子の推定や、複数の分子の濃度比の推定を行う。単一の種類の分子以外の単位成分については後述する。 The unit component is, for example, a single type of molecule. In this case, the information processing apparatus 2000 estimates one or more types of molecules contained in the target gas and estimates the concentration ratio of a plurality of molecules based on the feature amount of the target gas. Unit components other than a single type of molecule will be described later.
 その他にも例えば、単位成分は、特定のにおいを生じる分子の組み合わせである。特定のにおいとは、実施形態1で説明したにおいラベルで特定されるにおいである。例えば、リンゴのにおいを生じさせる単位成分として、リンゴのにおいを生じる分子の組み合わせ(すなわち、リンゴから生じるガスに含まれる分子の組み合わせ)を定めることができる。 In addition, for example, the unit component is a combination of molecules that generate a specific odor. The specific odor is the odor specified by the odor label described in the first embodiment. For example, as a unit component that produces an apple odor, a combination of molecules that produce an apple odor (that is, a combination of molecules contained in gas produced from an apple) can be defined.
 対象ガスの成分の推定を実現するため、単位成分それぞれについての特徴量を表す情報を予め用意しておく。この情報を、単位成分情報と呼ぶ。単位成分情報は、単位成分の識別子と、その単位成分の特徴量とを対応づけた情報である。単位成分の特徴量は、その単位成分のみを含むガスをセンサ10でセンシングすることで得られる時系列データについて算出される特徴量である。 情報 In order to realize the estimation of the component of the target gas, information indicating the feature amount of each unit component is prepared in advance. This information is called unit component information. The unit component information is information in which an identifier of the unit component is associated with a feature amount of the unit component. The feature amount of a unit component is a feature amount calculated for time-series data obtained by sensing a gas containing only the unit component with the sensor 10.
 ここで、対象ガスの特徴量と各単位成分の特徴量とにおいて、特徴定数の集合が共通であるとする。この場合、対象ガスの特徴量と各単位成分の特徴量をベクトル表現で表せば、対象ガスの特徴量は、対象ガスに含まれる単位成分の特徴量の線形和で表すことができると考えられる。例えば対象ガスに単位成分1からkが含まれている場合、対象ガスの特徴量は、以下のように表すことができると考えられる。
Figure JPOXMLDOC01-appb-M000008
 ここで、Ξiは単位成分 i の特徴量ベクトルであり、ai は対象ガスにおける単位成分 i の濃度である。また、対象ガスが1種類の単位成分のみで構成される場合は、k=1 であるため、Ξg=Ξ1 となる。
Here, it is assumed that a set of characteristic constants is common to the characteristic amount of the target gas and the characteristic amount of each unit component. In this case, if the characteristic amount of the target gas and the characteristic amount of each unit component are represented by a vector expression, it is considered that the characteristic amount of the target gas can be represented by a linear sum of the characteristic amounts of the unit components included in the target gas. . For example, when the target gas includes the unit components 1 to k, it is considered that the characteristic amount of the target gas can be expressed as follows.
Figure JPOXMLDOC01-appb-M000008
Here, Ξi is the feature vector of the unit component i, and ai is the concentration of the unit component i in the target gas. When the target gas is composed of only one type of unit component, k = 1 and therefore, Ξg = Ξ1.
 そこで情報処理装置2000は、単位成分情報を利用して、対象ガスの特徴量ベクトルΞgを、1つ以上の単位成分の特徴量ベクトルΞi の線形和に分解する。こうすることで、情報処理装置2000は、対象ガスに含まれる1つ以上の単位成分を特定する。ここで、或る1つのベクトルを既知のベクトル(ここでは、単位成分情報に示されている各特徴量ベクトル)の線形和に分解する方法には、種々の既存の手法を利用することができる。例えば、以下の目的関数で表される非負制約付きの最小二乗法を利用することができる。
Figure JPOXMLDOC01-appb-M000009
Thus, the information processing apparatus 2000 uses the unit component information to decompose the feature vector Ξg of the target gas into a linear sum of the feature vectors Ξi of one or more unit components. By doing so, the information processing apparatus 2000 specifies one or more unit components contained in the target gas. Here, various existing methods can be used as a method of decomposing a certain vector into a linear sum of known vectors (here, each feature amount vector indicated in unit component information). . For example, a least-squares method with a non-negative constraint represented by the following objective function can be used.
Figure JPOXMLDOC01-appb-M000009
 また、単位成分の濃度を特定する場合、上述した線形和への分解によって得られるベクトル A=(a1, a2,..., ak) を、各単位成分の濃度を表す情報として得ることができる。単位成分の混合比率は、これらの濃度の比で表すことができる。なお、ここでいう単位成分の濃度とは、(空気中のガスの濃度)×(ガス中の単位成分の濃度比)で表される値である。すなわち、空気中のガスの濃度に対する単位成分の相対的な濃度を意味する。また、ここでいう単位成分の濃度は、空気圧に占める単位成分の分圧の割合ととらえることもできる。 When specifying the concentration of the unit component, a vector {A = (a1, {a2, ..., ak)} obtained by the decomposition into the linear sum described above can be obtained as information representing the concentration of each unit component. . The mixing ratio of the unit components can be represented by the ratio of these concentrations. Here, the concentration of the unit component is a value represented by (concentration of gas in air) × (concentration ratio of unit component in gas). That is, it means the relative concentration of the unit component with respect to the concentration of the gas in the air. In addition, the concentration of the unit component as used herein can be regarded as a ratio of the partial pressure of the unit component to the air pressure.
 ここで、単位成分の濃度を特定する必要が無く、混合比率を特定できればよい場合、各特徴量ベクトルを予め正規化しておいてもよい。この場合、対象ガスの特徴量Ξg は以下のように分解される。
Figure JPOXMLDOC01-appb-M000010
Here, when it is not necessary to specify the concentration of the unit component and it is sufficient to specify the mixture ratio, each feature amount vector may be normalized in advance. In this case, the characteristic amount Ξg of the target gas is decomposed as follows.
Figure JPOXMLDOC01-appb-M000010
 なお、対象ガスの特徴量と単位成分の特徴量において特徴定数の集合が共通でない場合、前述した方法で、これらの特徴定数の集合を一致させてから、対象ガスの特徴量を、単位成分の特徴量の線形和に分解する。 If the set of feature constants is not the same between the feature amount of the target gas and the feature amount of the unit component, the set of feature constants is made to match by the above-described method, and then the feature amount of the target gas is changed to the unit component. Decompose into linear sum of features.
<作用効果>
 本実施形態の情報処理装置2000は、ガスの検出値の時系列データに対する各特徴定数の寄与に基づいて定まる特徴量を用いて、対象ガスに含まれる1つ以上の単位成分を特定する。前述したように、この特徴量はガスに含まれる分子やその混合比率によって変化する特徴量であるため、この特徴量を各単位成分の特徴量と比較することにより、対象ガスに含まれる単位成分やその混合比率を精度良く特定することができる。
<Effects>
The information processing apparatus 2000 according to the present embodiment specifies one or more unit components included in the target gas using a feature amount determined based on the contribution of each feature constant to the time-series data of the detected gas value. As described above, since this characteristic amount is a characteristic amount that changes depending on the molecules contained in the gas and the mixing ratio thereof, the characteristic amount is compared with the characteristic amount of each unit component to obtain the unit component contained in the target gas. And its mixing ratio can be specified with high accuracy.
<機能構成の例>
 図10は、実施形態2の情報処理装置2000の機能構成を例示する図である。実施形態2の情報処理装置2000は、特徴量取得部2020及び成分特定部2060を有する。特徴量取得部2020については、実施形態1で説明した通りである。成分特定部2060は、単位成分情報と対象ガスの特徴量とを用いて、対象ガスに含まれる1つ以上の単位成分を特定する。
<Example of functional configuration>
FIG. 10 is a diagram illustrating a functional configuration of the information processing apparatus 2000 according to the second embodiment. The information processing apparatus 2000 according to the second embodiment includes a feature amount acquisition unit 2020 and a component identification unit 2060. The feature amount acquisition unit 2020 is as described in the first embodiment. The component specifying unit 2060 specifies one or more unit components included in the target gas by using the unit component information and the characteristic amount of the target gas.
<ハードウエア構成の例>
 実施形態2の情報処理装置2000を実現する計算機のハードウエア構成は、実施形態1と同様に、例えば図4によって表される。ただし、本実施形態の情報処理装置2000を実現する計算機1000のストレージデバイス1080には、本実施形態の情報処理装置2000の機能を実現するプログラムモジュールが記憶される。
<Example of hardware configuration>
The hardware configuration of a computer that implements the information processing apparatus 2000 according to the second embodiment is represented by, for example, FIG. 4 as in the first embodiment. However, the storage device 1080 of the computer 1000 that implements the information processing apparatus 2000 of the present embodiment stores a program module that implements the functions of the information processing apparatus 2000 of the present embodiment.
<処理の流れ>
 図11は、実施形態2の情報処理装置2000によって実行される処理の流れを例示するフローチャートである。特徴量取得部2020は、対象ガスの特徴量ベクトルΞg を取得する(S402)。成分特定部2060は、取得した特徴量ベクトルΞg と単位成分情報を用いて、対象ガスに含まれる単位成分を1つ以上特定する(S404)。
<Process flow>
FIG. 11 is a flowchart illustrating a flow of a process executed by the information processing apparatus 2000 according to the second embodiment. The feature amount acquisition unit 2020 acquires the feature amount vector Ξg of the target gas (S402). The component specifying unit 2060 specifies one or more unit components contained in the target gas using the acquired feature amount vector Ξg and the unit component information (S404).
<単位成分情報について>
 前述したように、単位成分情報は、単位成分の識別子と、その単位成分の特徴量とを対応づけた情報である。単位成分が単一の種類の分子であるとする。この場合、単位成分情報は、分子の識別子と、その分子の特徴量とを対応づけている。分子の識別子は、その分子の名称や化学式などである。分子の特徴量は、その分子のみを含むガスをセンサ10でセンシングすることで得られる時系列データを分解することで得られる特徴量(例えば特徴行列 F)である。なお、単位成分情報は、情報処理装置2000の内部又は外部に設けられている記憶装置に予め記憶されているものとする。
<About unit component information>
As described above, the unit component information is information in which the identifier of the unit component is associated with the feature amount of the unit component. Assume that the unit component is a single type of molecule. In this case, the unit component information associates an identifier of a molecule with a feature amount of the molecule. The identifier of a molecule is the name or chemical formula of the molecule. The feature amount of a molecule is a feature amount (for example, feature matrix F) obtained by decomposing time-series data obtained by sensing a gas containing only the molecule with the sensor 10. It is assumed that the unit component information is stored in a storage device provided inside or outside the information processing device 2000 in advance.
 図12は、単一の種類の分子についての単位成分情報をテーブル形式で例示する図である。図12のテーブルを、テーブル300と呼ぶ。テーブル300は、分子識別子302及び特徴量304という2つの列を有する。テーブル300の各レコードは、分子識別子302に示される分子の識別子(単位成分の識別子)に、特徴量304に示される特徴量を対応づけている。 FIG. 12 is a diagram exemplifying unit component information on a single type of molecule in a table format. The table in FIG. 12 is called a table 300. The table 300 has two columns of a molecule identifier 302 and a feature amount 304. In each record of the table 300, the feature amount indicated by the feature amount 304 is associated with the molecule identifier (unit component identifier) indicated by the molecule identifier 302.
 単位成分が、特定のにおいを生じる分子の組み合わせであるとする。「特定のにおい」とは、実施形態1で説明したにおいラベルで表されるにおいに相当する。そして、特定のにおいを生じる分子の組み合わせとは、においラベルで特定されるガスに含まれる分子の組み合わせに相当する。なお、ここでいう「分子の組み合わせ」では、どの分子が含まれているかだけでなく、それらの分子の混合比率も特定される。 と す る Assume that the unit component is a combination of molecules that generate a specific odor. “Specific odor” corresponds to the odor represented by the odor label described in the first embodiment. The combination of molecules that generate a specific odor corresponds to the combination of molecules contained in the gas specified by the odor label. In the “combination of molecules” here, not only which molecules are contained, but also the mixing ratio of those molecules is specified.
 単位成分が、特定のにおいを生じる分子の組み合わせである場合、単位成分情報が示す単位成分の識別子は、においラベルである。また、単位成分の特徴量は、そのにおいラベルで特定されるガスの特徴量である。すなわち、この単位成分情報は、実施形態1におけるにおい情報に相当する(図6参照)。 If the unit component is a combination of molecules that generate a specific odor, the identifier of the unit component indicated by the unit component information is an odor label. The characteristic amount of the unit component is a characteristic amount of the gas specified by the odor label. That is, the unit component information corresponds to the odor information in the first embodiment (see FIG. 6).
<特定結果の出力について>
 情報処理装置2000は、対象ガスの成分を表す情報(以下、第2出力情報)を出力する。例えば第2出力情報は、対象ガスに含まれる各単位成分の識別子及びそれらの濃度や混合比率を示すテキストデータである。その他にも例えば、第2出力情報は、対象ガスに含まれる各単位成分の識別子及びそれらの濃度や混合比率を、表やグラフで表現したグラフィカルな情報であってもよい。
<Output of specific result>
The information processing device 2000 outputs information indicating a component of the target gas (hereinafter, second output information). For example, the second output information is text data indicating the identifier of each unit component contained in the target gas and their concentration and mixing ratio. In addition, for example, the second output information may be graphical information in which the identifiers of the unit components contained in the target gas and their concentrations and mixing ratios are expressed in a table or a graph.
 図13は、対象ガスの成分をグラフで表す図である。このグラフは、横軸に対象ガスに含まれる各分子の名称を示し、縦軸に各分子の濃度を示している。具体的には、対象ガスに分子B、C、E、及びGが含まれていること、及びそれらの濃度を表している。なお、このグラフにおいて、単位成分は、濃度の降順にソートされている。このように対象ガスの成分をグラフィカルな情報で出力することにより、情報処理装置2000のユーザが、対象ガスの成分を直感的に容易に理解できるようになる。 FIG. 13 is a graph showing the components of the target gas in a graph. In this graph, the horizontal axis indicates the name of each molecule contained in the target gas, and the vertical axis indicates the concentration of each molecule. Specifically, it indicates that the target gas contains molecules B, C, E, and G, and the concentrations thereof. In this graph, the unit components are sorted in descending order of density. By outputting the components of the target gas as graphical information in this manner, the user of the information processing apparatus 2000 can easily and intuitively understand the components of the target gas.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記各実施形態を組み合わせた構成や、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are merely examples of the present invention, and a configuration obtained by combining the above embodiments or various configurations other than the above can be adopted.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
1. 対象ガスの特徴量を取得する特徴量取得部と、
 においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、前記対象ガスの特徴量に類似するにおい情報を特定し、前記特定したにおい情報に示される前記においのラベルを、前記対象ガスのにおいのラベルとして特定するラベル特定部と、を有し、
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
 前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
 前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、情報処理装置。
2. 前記ラベル特定部は、前記対象ガスの特徴量が表す寄与値の分布と、各前記におい情報が示す特徴量が表す寄与値の分布との類似度を算出し、前記算出した類似度を用いて、前記対象ガスの特徴量に類似するにおい情報を特定する、1.に記載の情報処理装置。
3. ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルであり、
 前記ラベル特定部は、前記対象ガスの特徴ベクトルと、各前記におい情報が示す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、2.に記載の情報処理装置。
4. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記ラベル特定部は、
  前記対象ガスの特徴量が示す特徴定数の集合と、前記におい情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記におい情報が示す特徴量の双方又は一方を変換し、
  前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルと、各前記におい情報が示す寄与値の集合を表す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、2.に記載の情報処理装置。
5. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記ラベル特定部は、
  前記対象ガスの特徴量が表す寄与値の分布と各前記におい情報が示す特徴量が表す寄与値の分布との間で、Kullback-Leibler(KL)ダイバージェンス又はワッサースタイン計量を算出し、前記算出された KL ダイバージェンス又はワッサースタイン計量が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、2.に記載の情報処理装置。
Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited thereto.
1. A feature amount obtaining unit that obtains a feature amount of the target gas;
From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified. A label specifying unit for specifying as a label of the odor of the target gas,
The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
The information processing apparatus, wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
2. The label identification unit calculates the similarity between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information, and uses the calculated similarity. , Specifying odor information similar to the characteristic amount of the target gas; An information processing apparatus according to claim 1.
3. The gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed,
The label specifying unit calculates the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information, and displays the label indicated by the odor information having the calculated distance that is the minimum, the label of the target gas. 1. Identify as odor label An information processing apparatus according to claim 1.
4. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
The label identification unit,
Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted,
After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. 1. The label indicated by the minimum odor information is specified as the odor label of the target gas. An information processing apparatus according to claim 1.
5. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
The label identification unit,
A Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. 1. Specify the label indicated by the odor information having the minimum KL divergence or Wasserstein weighing as the odor label of the target gas. An information processing apparatus according to claim 1.
6. 対象ガスの特徴量を取得する特徴量取得部と、
 単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、前記対象ガスの特徴量とを用いて、前記対象ガスに含まれる1つ以上の単位成分を特定する成分特定部と、を有し、
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
 前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
 前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、情報処理装置。
7. 前記成分特定部は、前記対象ガスの特徴量を、前記単位成分情報に示される1つ以上の特徴量に分解し、前記分解によって得られた各前記特徴量に対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、6.に記載の情報処理装置。
8. ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルを示し、
 前記成分特定部は、前記対象ガスの特徴ベクトルを、1つ以上の前記単位成分情報それぞれが示す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、7.に記載の情報処理装置。
9. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記成分特定部は、
  前記対象ガスの特徴量が示す特徴定数の集合と、前記単位成分情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記単位成分情報が示す特徴量の双方又は一方を変換し、
  前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルを、1つ以上の単位成分それぞれの特徴量が示す寄与値の集合を表す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、7.に記載の情報処理装置。
10. 前記成分特定部は、前記線形和における各前記単位成分の特徴ベクトルの係数に基づいて、前記対象ガスにおける各前記単位成分の混合比を特定する、9.に記載の情報処理装置。
11. 前記単位成分は、単一の種類の分子であるか、又は特定のにおいを生じるガスを構成する分子の組み合わせである、6.乃至10.いずれか一つに記載の情報処理装置。
6. A feature amount obtaining unit that obtains a feature amount of the target gas;
Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas And a component specifying part,
The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
The information processing apparatus, wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
7. The component specifying unit decomposes the characteristic amount of the target gas into one or more characteristic amounts indicated in the unit component information, and converts a unit component corresponding to each of the characteristic amounts obtained by the decomposition into the target component. 5. specified as the unit component contained in the gas; An information processing apparatus according to claim 1.
8. The characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
The component identification unit decomposes the feature vector of the target gas into a linear sum of the feature vectors indicated by each of the one or more unit component information, and generates a unit component corresponding to the feature vector forming the linear sum, 6. Identify as the unit component contained in the target gas; An information processing apparatus according to claim 1.
9. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
The component identification unit,
Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one,
After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, 6. Specify a unit component corresponding to the feature vector forming the linear sum as the unit component included in the target gas; An information processing apparatus according to claim 1.
10. 8. The component specifying unit specifies a mixture ratio of each of the unit components in the target gas based on a coefficient of a feature vector of each of the unit components in the linear sum. An information processing apparatus according to claim 1.
11. 5. The unit component is a single type of molecule or a combination of molecules constituting a gas that generates a specific odor. To 10. An information processing device according to any one of the above.
12. コンピュータによって実行される制御方法であって、
 対象ガスの特徴量を取得する特徴量取得ステップと、
 においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、前記対象ガスの特徴量に類似するにおい情報を特定し、前記特定したにおい情報に示される前記においのラベルを、前記対象ガスのにおいのラベルとして特定するラベル特定ステップと、を有し、
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
 前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
 前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、制御方法。
13. 前記ラベル特定ステップにおいて、前記対象ガスの特徴量が表す寄与値の分布と、各前記におい情報が示す特徴量が表す寄与値の分布との類似度を算出し、前記算出した類似度を用いて、前記対象ガスの特徴量に類似するにおい情報を特定する、12.に記載の制御方法。
14. ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルであり、
 前記ラベル特定ステップにおいて、前記対象ガスの特徴ベクトルと、各前記におい情報が示す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、13.に記載の制御方法。
15. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記ラベル特定ステップにおいて、
  前記対象ガスの特徴量が示す特徴定数の集合と、前記におい情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記におい情報が示す特徴量の双方又は一方を変換し、
  前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルと、各前記におい情報が示す寄与値の集合を表す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、13.に記載の制御方法。
16. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記ラベル特定ステップにおいて、
  前記対象ガスの特徴量が表す寄与値の分布と各前記におい情報が示す特徴量が表す寄与値の分布との間で、Kullback-Leibler(KL)ダイバージェンス又はワッサースタイン計量を算出し、前記算出された KL ダイバージェンス又はワッサースタイン計量が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、13.に記載の制御方法。
12. A control method executed by a computer,
A feature value obtaining step of obtaining a feature value of the target gas;
From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified. A label specifying step of specifying as a label of the odor of the target gas,
The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
The control method, wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
13. In the label specifying step, calculate the similarity between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information, and use the calculated similarity. 11. specifying odor information similar to the characteristic amount of the target gas; The control method described in 1.
14. The gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed,
In the label specifying step, the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information is calculated, and the label indicated by the odor information with the calculated distance being the minimum is set to the label of the target gas. 12. Identify as odor label; The control method described in 1.
15. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
In the label specifying step,
Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted,
After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. 12. Identify the label indicated by the minimum odor information as the odor label of the target gas; The control method described in 1.
16. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
In the label specifying step,
A Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. 12. Identify the label indicated by the odor information having the minimum KL divergence or Wasserstein weighing as the odor label of the target gas; The control method described in 1.
17. コンピュータによって実行される制御方法であって、
 対象ガスの特徴量を取得する特徴量取得ステップと、
 単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、前記対象ガスの特徴量とを用いて、前記対象ガスに含まれる1つ以上の単位成分を特定する成分特定ステップと、を有し、
 ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
 前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
 前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、制御方法。
18. 前記成分特定ステップにおいて、前記対象ガスの特徴量を、前記単位成分情報に示される1つ以上の特徴量に分解し、前記分解によって得られた各前記特徴量に対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、17.に記載の制御方法。
19. ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルを示し、
 前記成分特定ステップにおいて、前記対象ガスの特徴ベクトルを、1つ以上の前記単位成分情報それぞれが示す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、18.に記載の制御方法。
20. ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
 前記成分特定ステップにおいて、
  前記対象ガスの特徴量が示す特徴定数の集合と、前記単位成分情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記単位成分情報が示す特徴量の双方又は一方を変換し、
  前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルを、1つ以上の単位成分それぞれの特徴量が示す寄与値の集合を表す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、18.に記載の制御方法。
21. 前記成分特定ステップにおいて、前記線形和における各前記単位成分の特徴ベクトルの係数に基づいて、前記対象ガスにおける各前記単位成分の混合比を特定する、20.に記載の制御方法。
22. 前記単位成分は、単一の種類の分子であるか、又は特定のにおいを生じるガスを構成する分子の組み合わせである、17.乃至21.いずれか一つに記載の制御方法。
17. A control method executed by a computer,
A feature value obtaining step of obtaining a feature value of the target gas;
Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas Component identification step,
The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
The control method, wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
18. In the component specifying step, the characteristic amount of the target gas is decomposed into one or more characteristic amounts indicated in the unit component information, and a unit component corresponding to each of the characteristic amounts obtained by the decomposition is converted into the target component. 17. Specified as the unit component contained in the gas; The control method described in 1.
19. The characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
In the component identification step, the feature vector of the target gas is decomposed into a linear sum of feature vectors indicated by each of the one or more unit component information, and a unit component corresponding to the feature vector forming the linear sum is defined as 17. specified as the unit component contained in the target gas; The control method described in 1.
20. The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
In the component identification step,
Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one,
After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, 17. specifying a unit component corresponding to the feature vector forming the linear sum as the unit component included in the target gas; The control method described in 1.
21. 19. In the component specifying step, a mixing ratio of each unit component in the target gas is specified based on a coefficient of a feature vector of each unit component in the linear sum. The control method described in 1.
22. 16. The unit component is a single type of molecule or a combination of molecules constituting a gas that generates a specific odor. To 21. The control method according to any one of the above.
23. 12.乃至22.いずれか一つに記載の制御方法の各ステップを実行するプログラム。 23. {12. To 22. A program for executing each step of the control method according to any one of the above.

Claims (23)

  1.  対象ガスの特徴量を取得する特徴量取得部と、
     においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、前記対象ガスの特徴量に類似するにおい情報を特定し、前記特定したにおい情報に示される前記においのラベルを、前記対象ガスのにおいのラベルとして特定するラベル特定部と、を有し、
     ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
     前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
     前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、情報処理装置。
    A feature amount obtaining unit that obtains a feature amount of the target gas;
    From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified. A label specifying unit for specifying as a label of the odor of the target gas,
    The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
    The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
    The information processing apparatus, wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  2.  前記ラベル特定部は、前記対象ガスの特徴量が表す寄与値の分布と、各前記におい情報が示す特徴量が表す寄与値の分布との類似度を算出し、前記算出した類似度を用いて、前記対象ガスの特徴量に類似するにおい情報を特定する、請求項1に記載の情報処理装置。 The label identification unit calculates the similarity between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information, and uses the calculated similarity. The information processing apparatus according to claim 1, wherein odor information similar to a characteristic amount of the target gas is specified.
  3.  ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルであり、
     前記ラベル特定部は、前記対象ガスの特徴ベクトルと、各前記におい情報が示す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項2に記載の情報処理装置。
    The gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed,
    The label specifying unit calculates the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information, and displays the label indicated by the odor information having the calculated distance that is the minimum, the label of the target gas. The information processing device according to claim 2, wherein the information processing device specifies the odor label.
  4.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記ラベル特定部は、
      前記対象ガスの特徴量が示す特徴定数の集合と、前記におい情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記におい情報が示す特徴量の双方又は一方を変換し、
      前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルと、各前記におい情報が示す寄与値の集合を表す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項2に記載の情報処理装置。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    The label identification unit,
    Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted,
    After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. The information processing apparatus according to claim 2, wherein a label indicated by the minimum odor information is specified as the odor label of the target gas.
  5.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記ラベル特定部は、
      前記対象ガスの特徴量が表す寄与値の分布と各前記におい情報が示す特徴量が表す寄与値の分布との間で、Kullback-Leibler(KL)ダイバージェンス又はワッサースタイン計量を算出し、前記算出された KL ダイバージェンス又はワッサースタイン計量が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項2に記載の情報処理装置。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    The label identification unit,
    A Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. The information processing apparatus according to claim 2, wherein a label indicated by the odor information having the minimum KL divergence or Wasserstein weighing is specified as the odor label of the target gas.
  6.  対象ガスの特徴量を取得する特徴量取得部と、
     単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、前記対象ガスの特徴量とを用いて、前記対象ガスに含まれる1つ以上の単位成分を特定する成分特定部と、を有し、
     ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
     前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
     前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、情報処理装置。
    A feature amount obtaining unit that obtains a feature amount of the target gas;
    Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas And a component specifying part,
    The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
    The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
    The information processing apparatus, wherein the feature constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  7.  前記成分特定部は、前記対象ガスの特徴量を、前記単位成分情報に示される1つ以上の特徴量に分解し、前記分解によって得られた各前記特徴量に対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項6に記載の情報処理装置。 The component specifying unit decomposes the characteristic amount of the target gas into one or more characteristic amounts indicated in the unit component information, and converts a unit component corresponding to each of the characteristic amounts obtained by the decomposition into the target component. The information processing apparatus according to claim 6, wherein the information processing apparatus specifies the unit component contained in the gas.
  8.  ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルを示し、
     前記成分特定部は、前記対象ガスの特徴ベクトルを、1つ以上の前記単位成分情報それぞれが示す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項7に記載の情報処理装置。
    The characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
    The component identification unit decomposes the feature vector of the target gas into a linear sum of the feature vectors indicated by each of the one or more unit component information, and generates a unit component corresponding to the feature vector forming the linear sum, The information processing apparatus according to claim 7, wherein the information processing apparatus specifies the unit component contained in the target gas.
  9.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記成分特定部は、
      前記対象ガスの特徴量が示す特徴定数の集合と、前記単位成分情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記単位成分情報が示す特徴量の双方又は一方を変換し、
      前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルを、1つ以上の単位成分それぞれの特徴量が示す寄与値の集合を表す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項7に記載の情報処理装置。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    The component identification unit,
    Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one,
    After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, The information processing apparatus according to claim 7, wherein a unit component corresponding to a feature vector forming the linear sum is specified as the unit component included in the target gas.
  10.  前記成分特定部は、前記線形和における各前記単位成分の特徴ベクトルの係数に基づいて、前記対象ガスにおける各前記単位成分の混合比を特定する、請求項9に記載の情報処理装置。 10. The information processing apparatus according to claim 9, wherein the component specifying unit specifies a mixture ratio of each unit component in the target gas based on a coefficient of a feature vector of each unit component in the linear sum.
  11.  前記単位成分は、単一の種類の分子であるか、又は特定のにおいを生じるガスを構成する分子の組み合わせである、請求項6乃至10いずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 6 to 10, wherein the unit component is a single type of molecule or a combination of molecules constituting a gas generating a specific odor.
  12.  コンピュータによって実行される制御方法であって、
     対象ガスの特徴量を取得する特徴量取得ステップと、
     においのラベルとそのにおいを生じるガスの特徴量とを対応づけたにおい情報の中から、前記対象ガスの特徴量に類似するにおい情報を特定し、前記特定したにおい情報に示される前記においのラベルを、前記対象ガスのにおいのラベルとして特定するラベル特定ステップと、を有し、
     ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
     前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
     前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、制御方法。
    A control method executed by a computer,
    A feature value obtaining step of obtaining a feature value of the target gas;
    From the odor information in which the odor label and the characteristic amount of the gas generating the odor are associated, the odor information similar to the characteristic amount of the target gas is specified, and the odor label indicated in the specified odor information is specified. A label specifying step of specifying as a label of the odor of the target gas,
    The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
    The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
    The control method, wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  13.  前記ラベル特定ステップにおいて、前記対象ガスの特徴量が表す寄与値の分布と、各前記におい情報が示す特徴量が表す寄与値の分布との類似度を算出し、前記算出した類似度を用いて、前記対象ガスの特徴量に類似するにおい情報を特定する、請求項12に記載の制御方法。 In the label specifying step, calculate the similarity between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information, and use the calculated similarity. 13. The control method according to claim 12, wherein odor information similar to the characteristic amount of the target gas is specified.
  14.  ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルであり、
     前記ラベル特定ステップにおいて、前記対象ガスの特徴ベクトルと、各前記におい情報が示す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項13に記載の制御方法。
    The gas feature amount is a feature vector in which contribution values indicating the magnitude of contribution of each feature constant are listed,
    In the label specifying step, the distance between the feature vector of the target gas and the feature vector indicated by each of the odor information is calculated, and the label indicated by the odor information with the calculated distance being the minimum is set to the label of the target gas. 14. The control method according to claim 13, wherein the control method is specified as an odor label.
  15.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記ラベル特定ステップにおいて、
      前記対象ガスの特徴量が示す特徴定数の集合と、前記におい情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記におい情報が示す特徴量の双方又は一方を変換し、
      前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルと、各前記におい情報が示す寄与値の集合を表す特徴ベクトルとの距離を算出し、前記算出された距離が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項13に記載の制御方法。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    In the label specifying step,
    Both or one of the feature quantity of the target gas and the feature quantity indicated by the odor information is set so that the set of feature constants indicated by the feature quantity of the target gas and the set of feature constants indicated by the odor information become the same. Converted,
    After the conversion, a distance between a feature vector indicating a set of contribution values indicated by the feature amount of the target gas and a feature vector indicating a set of contribution values indicated by each of the odor information is calculated, and the calculated distance is calculated. 14. The control method according to claim 13, wherein a label indicated by the minimum odor information is specified as the odor label of the target gas.
  16.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記ラベル特定ステップにおいて、
      前記対象ガスの特徴量が表す寄与値の分布と各前記におい情報が示す特徴量が表す寄与値の分布との間で、Kullback-Leibler(KL)ダイバージェンス又はワッサースタイン計量を算出し、前記算出された KL ダイバージェンス又はワッサースタイン計量が最小である前記におい情報が示すラベルを、前記対象ガスのにおいラベルとして特定する、請求項13に記載の制御方法。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    In the label specifying step,
    A Kullback-Leibler (KL) divergence or Wasserstein metric is calculated between the distribution of the contribution value represented by the characteristic amount of the target gas and the distribution of the contribution value represented by the characteristic amount indicated by each of the odor information. The control method according to claim 13, wherein a label indicated by the odor information having the minimum KL divergence or Wasserstein weighing is specified as the odor label of the target gas.
  17.  コンピュータによって実行される制御方法であって、
     対象ガスの特徴量を取得する特徴量取得ステップと、
     単位成分の識別子とその単位成分のみを含むガスの特徴量とを対応づけた単位成分情報と、前記対象ガスの特徴量とを用いて、前記対象ガスに含まれる1つ以上の単位成分を特定する成分特定ステップと、を有し、
     ガスの特徴量は、そのガスをセンシングしたセンサから得られる検出値の時系列データに対する、複数の特徴定数それぞれの寄与の大きさを表し、
     前記センサの検出値は、ガスに含まれる分子の付着と離脱に応じて変化し、
     前記特徴定数は、前記センサに付着している分子の量の時間変化の大きさに関する時定数又は速度定数である、制御方法。
    A control method executed by a computer,
    A feature value obtaining step of obtaining a feature value of the target gas;
    Identifying one or more unit components contained in the target gas using unit component information in which an identifier of a unit component is associated with a feature amount of a gas including only the unit component and the feature amount of the target gas Component identification step,
    The feature value of the gas represents the magnitude of each of a plurality of feature constants with respect to the time-series data of the detection value obtained from the sensor that sensed the gas,
    The detection value of the sensor changes according to the attachment and detachment of molecules contained in the gas,
    The control method, wherein the characteristic constant is a time constant or a rate constant relating to a magnitude of a temporal change in an amount of a molecule attached to the sensor.
  18.  前記成分特定ステップにおいて、前記対象ガスの特徴量を、前記単位成分情報に示される1つ以上の特徴量に分解し、前記分解によって得られた各前記特徴量に対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項17に記載の制御方法。 In the component specifying step, the characteristic amount of the target gas is decomposed into one or more characteristic amounts indicated in the unit component information, and a unit component corresponding to each of the characteristic amounts obtained by the decomposition is converted into the target component. The control method according to claim 17, wherein the control unit specifies the unit component contained in the gas.
  19.  ガスの特徴量は、各特徴定数それぞれの寄与の大きさを表す寄与値が列挙された特徴ベクトルを示し、
     前記成分特定ステップにおいて、前記対象ガスの特徴ベクトルを、1つ以上の前記単位成分情報それぞれが示す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項18に記載の制御方法。
    The characteristic amount of the gas indicates a characteristic vector in which contribution values indicating the magnitude of contribution of each characteristic constant are listed,
    In the component identification step, the feature vector of the target gas is decomposed into a linear sum of feature vectors indicated by each of the one or more unit component information, and a unit component corresponding to the feature vector forming the linear sum is defined as The control method according to claim 18, wherein the control unit specifies the unit component contained in the target gas.
  20.  ガスの特徴量は、特徴定数の集合と、各特徴定数の寄与値の集合とを対応づけた情報であり、
     前記成分特定ステップにおいて、
      前記対象ガスの特徴量が示す特徴定数の集合と、前記単位成分情報が示す特徴定数の集合とが同一になるように、前記対象ガスの特徴量と前記単位成分情報が示す特徴量の双方又は一方を変換し、
      前記変換の後、前記対象ガスの特徴量が示す寄与値の集合を表す特徴ベクトルを、1つ以上の単位成分それぞれの特徴量が示す寄与値の集合を表す特徴ベクトルの線形和に分解し、前記線形和を構成する特徴ベクトルに対応する単位成分を、前記対象ガスに含まれる前記単位成分として特定する、請求項18に記載の制御方法。
    The gas feature quantity is information that associates a set of feature constants with a set of contribution values of each feature constant,
    In the component identification step,
    Both the characteristic amount of the target gas and the characteristic amount indicated by the unit component information or the characteristic amount indicated by the unit component information so that the set of characteristic constants indicated by the characteristic amount of the target gas and the set of characteristic constants indicated by the unit component information become the same. Convert one,
    After the conversion, a feature vector representing a set of contribution values indicated by the feature values of the target gas is decomposed into a linear sum of feature vectors representing a set of contribution values indicated by the feature values of each of one or more unit components, 19. The control method according to claim 18, wherein a unit component corresponding to the feature vector forming the linear sum is specified as the unit component included in the target gas.
  21.  前記成分特定ステップにおいて、前記線形和における各前記単位成分の特徴ベクトルの係数に基づいて、前記対象ガスにおける各前記単位成分の混合比を特定する、請求項20に記載の制御方法。 21. The control method according to claim 20, wherein in the component specifying step, a mixture ratio of each of the unit components in the target gas is specified based on a coefficient of a feature vector of each of the unit components in the linear sum.
  22.  前記単位成分は、単一の種類の分子であるか、又は特定のにおいを生じるガスを構成する分子の組み合わせである、請求項17乃至21いずれか一項に記載の制御方法。 The control method according to any one of claims 17 to 21, wherein the unit component is a single kind of molecule or a combination of molecules constituting a gas generating a specific odor.
  23.  請求項12乃至22いずれか一項に記載の制御方法の各ステップを実行するプログラム。 A program for executing each step of the control method according to any one of claims 12 to 22.
PCT/JP2018/028566 2018-07-31 2018-07-31 Information processing device, control method, and program WO2020026328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020533926A JPWO2020026328A1 (en) 2018-07-31 2018-07-31 Information processing equipment, control methods, and programs
PCT/JP2018/028566 WO2020026328A1 (en) 2018-07-31 2018-07-31 Information processing device, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028566 WO2020026328A1 (en) 2018-07-31 2018-07-31 Information processing device, control method, and program

Publications (1)

Publication Number Publication Date
WO2020026328A1 true WO2020026328A1 (en) 2020-02-06

Family

ID=69232433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028566 WO2020026328A1 (en) 2018-07-31 2018-07-31 Information processing device, control method, and program

Country Status (2)

Country Link
JP (1) JPWO2020026328A1 (en)
WO (1) WO2020026328A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186532A1 (en) * 2020-03-17 2021-09-23 日本電気株式会社 Noise removal device, noise removal method, and recording medium
US11974803B2 (en) 2020-10-12 2024-05-07 Biosense Webster (Israel) Ltd. Basket catheter with balloon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308008A (en) * 1993-04-26 1994-11-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for identifying mixed gas component
JPH11264809A (en) * 1998-03-17 1999-09-28 Shimadzu Corp Gas identifying device
JP2001305034A (en) * 2000-04-26 2001-10-31 Mitsubishi Electric Corp Gas identifying method, gas quantity determining method, and gas identifying/quantity-determining device
JP2011203006A (en) * 2010-03-24 2011-10-13 Olympus Corp Detection sensor
US20160084808A1 (en) * 2014-09-20 2016-03-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for determining a composition of a gas sample processed by means of gas chromatography
US20160161433A1 (en) * 2014-05-16 2016-06-09 Massachusetts Institute Of Technology Electrospun Polymer Fibers for Gas Sensing
JP2017117438A (en) * 2015-11-13 2017-06-29 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited Multi-sensor visual analytics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308008A (en) * 1993-04-26 1994-11-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for identifying mixed gas component
JPH11264809A (en) * 1998-03-17 1999-09-28 Shimadzu Corp Gas identifying device
JP2001305034A (en) * 2000-04-26 2001-10-31 Mitsubishi Electric Corp Gas identifying method, gas quantity determining method, and gas identifying/quantity-determining device
JP2011203006A (en) * 2010-03-24 2011-10-13 Olympus Corp Detection sensor
US20160161433A1 (en) * 2014-05-16 2016-06-09 Massachusetts Institute Of Technology Electrospun Polymer Fibers for Gas Sensing
US20160084808A1 (en) * 2014-09-20 2016-03-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for determining a composition of a gas sample processed by means of gas chromatography
JP2017117438A (en) * 2015-11-13 2017-06-29 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited Multi-sensor visual analytics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SETO, SHUICHI ET AL.: "Chemical Analysis for transient response of semiconductor sensor by autoregressive model", IEEJ TRANSACTIONS ON SENSORS AND MICROMACHINES, vol. 125, no. 3, 1 June 2005 (2005-06-01), pages 129 - 134, XP055684041, DOI: 10.1541/ieejsmas.125.129 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186532A1 (en) * 2020-03-17 2021-09-23 日本電気株式会社 Noise removal device, noise removal method, and recording medium
JPWO2021186532A1 (en) * 2020-03-17 2021-09-23
US20230110600A1 (en) * 2020-03-17 2023-04-13 Nec Corporation Noise removing apparatus, noise removing method, and recording medium
JP7327649B2 (en) 2020-03-17 2023-08-16 日本電気株式会社 NOISE ELIMINATION DEVICE, NOISE ELIMINATION METHOD, AND PROGRAM
US11846620B2 (en) 2020-03-17 2023-12-19 Nec Corporation Noise removing apparatus, noise removing method, and recording medium
US11974803B2 (en) 2020-10-12 2024-05-07 Biosense Webster (Israel) Ltd. Basket catheter with balloon

Also Published As

Publication number Publication date
JPWO2020026328A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
Dilthey et al. Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
Karosiene et al. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions
Bengtsson‐Palme et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data
Quinn et al. Understanding sequencing data as compositions: an outlook and review
Jørgensen et al. Net MHC stab–predicting stability of peptide–MHC‐I complexes; impacts for cytotoxic T lymphocyte epitope discovery
Ibrahim et al. JAMM: a peak finder for joint analysis of NGS replicates
JP2017224184A (en) Machine learning device
JP7063389B2 (en) Processing equipment, processing methods, and programs
JP6029192B2 (en) Input support system, input support method, and input support program
WO2020026328A1 (en) Information processing device, control method, and program
WO2020100285A1 (en) Information processing device, control method, and program
MacNamara et al. T-cell epitope prediction: rescaling can mask biological variation between MHC molecules
JP7140191B2 (en) Information processing device, control method, and program
JP7099623B2 (en) Information processing equipment, information processing methods, and programs
Rubin et al. Using ConSurf to detect functionally important regions in RNA
Jandrlić SVM and SVR-based MHC-binding prediction using a mathematical presentation of peptide sequences
JP7056747B2 (en) Information processing equipment, processing equipment, information processing method, processing method, determination method, and program
JP7074194B2 (en) Information processing equipment, control methods, and programs
Singh et al. Spot-contact-single: Improving single-sequence-based prediction of protein contact map using a transformer language model
JP2015082190A (en) Outlier detector, method, and program
CN111695743A (en) Industrial food safety production monitoring method, device, equipment and storage medium
JP3985826B2 (en) Image search method and apparatus
Raj et al. Significance of Sequence Features in Classification of Protein–Protein Interactions Using Machine Learning
JP5215343B2 (en) Predicted value calculation device
WO2022264370A1 (en) Image processing device, image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928154

Country of ref document: EP

Kind code of ref document: A1