JP4075285B2 - Inverter circuit device for driving vehicle motor - Google Patents

Inverter circuit device for driving vehicle motor Download PDF

Info

Publication number
JP4075285B2
JP4075285B2 JP2000124504A JP2000124504A JP4075285B2 JP 4075285 B2 JP4075285 B2 JP 4075285B2 JP 2000124504 A JP2000124504 A JP 2000124504A JP 2000124504 A JP2000124504 A JP 2000124504A JP 4075285 B2 JP4075285 B2 JP 4075285B2
Authority
JP
Japan
Prior art keywords
inverter circuit
air
evaporator
cooling
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000124504A
Other languages
Japanese (ja)
Other versions
JP2001309506A (en
Inventor
誠司 井上
孝史 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000124504A priority Critical patent/JP4075285B2/en
Publication of JP2001309506A publication Critical patent/JP2001309506A/en
Application granted granted Critical
Publication of JP4075285B2 publication Critical patent/JP4075285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両走行トルクに関連するエネルギ−を発生する車両走行モ−タ駆動用インバータ回路装置に関する。
【0002】
【従来の技術】
内燃機関と回転電機とを用いて走行動力を得るハイブリッド自動車や、燃料電池又は二次電池の電力により駆動される回転電機を用いて走行動力を得る燃料電池車や電気自動車(電池自動車と総称する)では、直流電力を交流電力に変換して回転電機に給電する三相インバータ回路装置に用いる半導体素子の冷却が重要となる。
【0003】
この種の三相インバータ回路装置には、IGBT、BPT、MOSTなどの電力用半導体スイッチング素子がたとえば6個用いられ、場合によってはフライホイルダイオ−ドが同数用いられるが、これらの電力用半導体スイッチング素子の温度限界は極めてシビアであるために、電力用半導体スイッチング素子を冷凍サイクル装置の冷媒で冷却することが好適と考えられる。
【0004】
特に、この種の車両用途では車両が車両空調用冷凍サイクル装置を搭載するために、この車両空調用冷凍サイクル装置の冷媒を車両走行モ−タ駆動用インバータ回路装置の冷却に使うことにより、冷凍サイクル装置の増設を回避できるため、好都合である。
【0005】
【発明が解決しようとする課題】
しかしながら、この車両空調用冷凍サイクル装置の冷媒により車両走行モ−タ駆動用インバータ回路装置を冷却する方式(以下、車両空調冷媒冷却式インバ−タ回路装置という)では、車両空調のために冷凍サイクル装置の運転が不要な場合でも車両走行のために車両空調用冷凍サイクル装置を運転せざるを得ず、その結果、この車両空調用冷凍サイクル装置のエバポレ−タが車両空調用気流を冷却してしまうため、空調フィ−リングが低下する欠点、もしくは、この空調フィ−リングを快適に保つために車両走行モ−タ駆動用インバータ回路装置の発熱を制限するといった不具合があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、空調フィ−リングの低下や車両走行モ−タ駆動用インバータ回路の出力制限を必要としない車両走行モ−タ駆動用インバータ回路装置を提供することをその目的としている。
【0008】
【課題を解決するための手段】
請求項記載の車両走行モ−タ駆動用インバータ回路装置は、車両空調用冷凍サイクル装置の冷媒が貫流する冷却部材を有し、車両走行モ−タを駆動制御するインバ−タ回路部と、前記インバ−タ回路部を駆動するにもかかわらず前記車両空調用冷凍サイクル装置のエバポレ−タによる車室吹き出し空気流の冷却が要求されない場合に、前記車両空調用冷凍サイクル装置を運転しかつ前記エバポレ−タによる前記車室吹き出し空気流の冷却を抑止する車室吹き出し空気流冷却抑止手段とを備え、前記インバ−タ回路部の前記冷却部材は、前記車両空調用冷凍サイクル装置の膨張弁と前記エバポレ−タとの間に介設され、前記空調空気流冷却抑止手段は、前記冷却部材の出口温度及び前記エバポレ−タの出口温度を検出する一対の感温筒と、前記両感温筒により制御される前記冷凍装置の膨張弁と、冷却部材温度検出側の前記感温筒に装備されて前記空調空気流の冷却時に通電されるヒ−タとを有することを特徴とする。
【0009】
請求項1記載の本構成によれば、車両走行モ−タ駆動用インバータ回路装置(以下、単にインバ−タ装置ともいう)を車両空調用冷凍サイクル装置(以下、単に冷凍装置ともいう)の冷媒で冷却することができるので、大出力のインバ−タ装置を小型軽量化することができる。
【0010】
また、冷凍装置は元来、車両空調のために車両に装備されたものを兼用するので、冷却装置構成が複雑化し、コストが増大することを抑止することができる。
【0011】
更に、空調空気流の冷却を必要としない車両走行時には、冷凍装置の空調空気流冷却用エバポレ−タによる空調空気流の冷却を阻止乃至抑止するので、空調フィ−リングが悪化したり、エバポレ−タで低温となった空調空気流を必要温度までヒ−タで再加熱する必要がなく、エネルギ−ロスの増大を抑止しつつ空調フィ−リングの悪化を防止することができる。
【0012】
なおここでいう感温筒は、たとえば被検出冷媒の温度により作動するヒ−トパイプの温度検出部分とされ、膨張弁はこのヒートパイプの内部ガス圧により作動するダイヤフラムにより開度制御される弁とされることができる。
本構成によれば、インバ−タ回路部専用冷却の場合は、エバポレ−タの上流に設けた冷却部材の出口温度が上昇する(所定の冷媒乾き温度となる)場合にはそれにより膨張弁を絞ることができる。したがって、エバポレ−タには所定の乾き度(通常、乾いた冷媒すなわち気化した冷媒)が流入することになり、エバポレ−タ内で冷媒は気化潜熱を吸収することがない。
また、エバポレ−タで空調空気流を冷却する場合には、冷却部材側の感温筒をヒ−タで加熱するので、冷却部材出口における冷媒の乾き度が湿っていても、この冷却部材側の感温筒は膨張弁開き方向の圧力変化を膨張弁に送り、エバポレ−タは通常通り冷媒供給を受けることができる。
更に、エバポレ−タ出口の冷媒乾き度が上昇すると、エバポレ−タ側の感温筒がそれに応じた圧力変化を膨張弁に伝達し、膨張弁を開いて冷媒流量を増大し、逆に、エバポレ−タ出口の冷媒乾き度が低下すると、エバポレ−タ側の感温筒がそれに応じた圧力変化を膨張弁に伝達し、膨張弁を閉じて冷媒流量を減少する通常の空調空気流冷却制御を行う。
請求項記載の構成によれば請求項記載の車両走行モ−タ駆動用インバータ回路装置において更に、前記インバ−タ回路部の前記冷却部材と前記エバポレ−タとは、前記冷凍装置の低圧回路部にて並列接続され、前記空調空気流冷却抑止手段は、前記冷却部材と前記エバポレ−タとに供給する低圧冷媒流量をそれぞれ独立に制御する弁機構を有することを特徴としている。
【0013】
本構成によれば、エバポレ−タとインバ−タ回路部との冷却をそれぞれ必要な冷媒量で冷却することができ、その上、インバ−タ回路部を送電電力損失が最小となる位置など、冷凍装置の車両空調用の低圧回路部の位置に制限されることなく配置することができ、車両空調用の低圧回路部の引き回しをインバ−タ回路部側に寄せて配置する必要もなく、配管、配線が簡素化する。
【0014】
請求項記載の構成によれば請求項記載の車両走行モ−タ駆動用インバータ回路装置において更に、前記弁機構は、前記冷却部材の出口温度と前記エバポレ−タの出口温度とによりそれぞれ個別に制御される一対の膨張弁からなることを特徴としている。
【0015】
本構成によれば、膨張弁とその感温制御機構を増設するだけでよく、装置構成が簡素かつコンパクトとなる。
【0016】
請求項記載の構成によれば請求項記載の車両走行モ−タ駆動用インバータ回路装置において更に、前記インバ−タ回路部の前記冷却部材は、前記冷凍装置の低圧部にて前記エバポレ−タと直列に接続され、前記空調空気流冷却抑止手段は、前記エバポレ−タと並列に接続されたバイパス管と、前記空調空気流の冷却不要時に前記バイパス管を開く弁とを有することを特徴としている。
【0017】
本構成によれば、冷媒がエバポレ−タを迂回するバイパス管を設け、このバイパス管にそれを開閉する弁を設けるだけでよいので、簡素な構成で請求項2記載の効果を達成することができる。バイパス管はインバ−タ回路部の冷却部材冷却専用モ−ドにおける冷媒流量を流せる口径をもてばよい。
【0018】
一般に、エバポレ−タの冷媒入口管部と、冷媒出口管部とは近接配置されることが多いので、バイパス管は、これら冷媒入口管部と冷媒出口管部とを短絡すればよく、バイパス管の延長距離及び引き回しに必要なスペ−スは小さくてよい。弁は電磁弁をもちいることが制御上、簡単である。
【0019】
請求項記載の構成によれば請求項記載の車両走行モ−タ駆動用インバータ回路装置において更に、前記車両空調用冷凍サイクル装置の膨張弁は、前記バイパス管の下流側で検出された温度により制御されることを特徴としている。
【0020】
本構成によれば、膨張弁は、冷却部材専用冷却時又はエバポレ−タ冷却時のどちらでも膨張弁の冷媒流量を良好に冷却することができる。
【0027】
請求項記載の構成によれば請求項記載の車両走行モ−タ駆動用インバータ回路装置において更に、前記インバ−タ回路部の前記冷却部材は、前記車両空調用冷凍サイクル装置の低圧部にて前記エバポレ−タと直列に接続され、前記空調空気流冷却抑止手段は、前記エバポレ−タをバイパスして前記空調空気流を車室に供給するバイパス通風路と、前記空調空気流の冷却が不要な場合に前記バイパス通風路を開くダンパとを有することを特徴としている。
【0028】
本構成によれば、インバ−タ回路部専用冷却の場合に冷却部材を冷却した冷媒はエバポレ−タを冷却してしまうが、ダンパを開くことにより空調空気流はバイパス通風路を通じてエバポレ−タを短絡するので、空調空気流が冷却されることはない。
【0029】
また、空調空気流を冷却する場合には、ダンパによりバイパス通風路を閉じれば問題なく空調空気流の冷却を行うことができる。
【0030】
なお、ダンパとしては、バイパス通風路を開閉してもよく、又はバイパス通風路とエバポレ−タへの通風路のどちらかへ空調空気流の流れを切り替える切り替えダンパとしてもよい。
【0031】
【発明の実施の形態】
本発明の車両走行モ−タ駆動用インバータ回路装置の好適な実施態様を図面を参照して以下説明する。
【0032】
【実施例1】
本発明の車両走行モ−タ駆動用インバータ回路装置の一実施例を図1を参照して以下に説明する。
【0033】
5は車両走行モ−タを駆動制御する三相インバータ回路が形成されたインバ−タ回路部、6はこのインバ−タ回路部5に密着された冷却部材である。インバ−タ回路部5の三相インバータ回路は直流電源から給電される電力を三相交流電力に変換して図示しない三相交流モ−タからなる車両走行モ−タに給電する。
【0034】
7a、7bはいわゆるヒ−トパ−プである感温筒であり、感温筒7a、7bは膨張弁3a、3bまで延設される配管部7c、7dを有する。
【0035】
実際には、エバポレ−タ4の入口側冷媒配管及び出口側冷媒配管は同一側に所定距離を隔てて隣接かつ平行に配置されており、インバ−タ回路部5及びその冷却部材6はエバポレ−タ4に比較して格段に小型にあるため、エバポレ−タ4の上記入口側冷媒配管及び出口側冷媒配管をそれらと直角に接続するバイパス冷媒配管11内に介設されている。
(動作)
コンプレッサ1はエバポレ−タ4又はインバ−タ回路部5の運転時に運転される。
【0036】
エバポレ−タ4への冷媒流量はエバポレ−タ4の出口側に配設された感温筒7aによる膨張弁3aの開度により制御され、冷却部材6への冷媒流量は冷却部材64の出口側に配設された感温筒7bによる膨張弁3bの開度により制御される。
【0037】
図2に、冷却部材6への冷媒流量制御を更に詳しく説明する。
【0038】
冷却部材6の発熱量が増大すれば、冷却部材6から出たバイパス冷媒配管11に接する感温筒7b内の冷媒が蒸発し、膨張弁3bのダイアフラム弁がスプリング304に抗して弁体303を弁孔305を開く方向に押し下げ、膨張弁3bを通過する冷媒流量が増大する。冷却部材6の発熱量が減少すれば、逆の動作により膨張弁3bを通過する冷媒流量が減少する。感温筒7aによる膨張弁3aの制御も同じである。
【0039】
【実施例2】
本発明の車両走行モ−タ駆動用インバータ回路装置の他の実施例を図3を参照して以下に説明する。
【0040】
この実施例の装置は、図1に示す実施例1の装置において、バイパス冷媒配管11、膨張弁3b、感温筒7bを省略し、その代わりに、膨張弁3aとエバポレ−タ4との間の冷媒配管10(低圧回路部)にインバ−タ回路部5の冷却部材6を介設し、更にエバポレ−タ4の入口側冷媒配管及び出口側冷媒配管をバイパス冷媒配管12で短絡し、このバイパス冷媒配管12に電磁弁13を設けたものである。
(動作)
コンプレッサ1はエバポレ−タ4又はインバ−タ回路部5の運転時に運転される。エバポレ−タ4への冷媒流量はエバポレ−タ4の出口側に配設された感温筒7aによる膨張弁3aの開度により制御される。インバ−タ回路部5のみを冷却し、エバポレ−タ4での空調空気流の冷却を行わない場合には、バイパス冷媒配管11の電磁弁13を開く。これにより、冷却部材6から出た冷媒はバイパス冷媒配管12を通じて流れ、エバポレ−タ4はほとんど空調空気流を冷却することはない。エバポレ−タ4により空調空気流を冷却する場合には電磁弁13を閉じればよい。
【0041】
膨張弁3aを制御する感温筒7aは、バイパス冷媒配管12とエバポレ−タ4との合流点又はその下流に配置されるので、冷却部材6のみを冷却し、エバポレ−タ4を冷却しない場合も、エバポレ−タ4を冷却する場合も同様に膨張弁3aを制御することができる。
【0042】
【実施例3】
本発明の車両走行モ−タ駆動用インバータ回路装置の他の実施例を図4を参照して以下に説明する。
【0043】
この実施例の装置は、図1に示す実施例1の装置において、バイパス冷媒配管11を省略し、その代わりに、膨張弁3aとエバポレ−タ4との間の冷媒配管10(低圧回路部)にインバ−タ回路部5の冷却部材6を介設し、更に冷却部材6とエバポレ−タ4との間の冷媒配管10にヒ−タ8を通じて感温筒7bを設けたものである。
【0044】
感温筒7bから延設される配管部7dは、感温筒7aから膨張弁まで延設される配管部7cに連結されている。
【0045】
(動作)
コンプレッサ1はエバポレ−タ4又はインバ−タ回路部5の運転時に運転される。
【0046】
エバポレ−タ4を運転モ−ドでは、ヒ−タ8に通電して感温筒7bを冷媒乾き検出状態とする。これにより、感温筒7bが膨張弁3aを閉鎖することがない。この状態で、エバポレ−タ4の冷却が不足すると感温筒7a内の冷媒が蒸発し、これにより膨張弁3aが開いて冷媒流量を増大させる。逆に、エバポレ−タ4の冷却が過剰となれば感温筒7a内で冷媒が液化し、感温筒3aが閉じて冷媒流量を減少させる。
【0047】
【実施例4】
本発明の車両走行モ−タ駆動用インバータ回路装置の他の実施例を図5を参照して以下に説明する。
【0048】
この実施例の装置は、図3に示す実施例2の装置において、バイパス冷媒配管12及び電磁弁13を省略し、その代わりに、エバポレ−タ4を流れる空調空気流の主通風路9をバイパスするバイパス通風路90を設け、このバイパス通風路90を流れる空調空気流を切り替えダンパ91で開閉制御するものである。
【0049】
空調空気流の流れを以下に説明する。なお、図5における冷凍サイクル装置自体の構成は図3と同じであるので説明は省略する。
【0050】
92は内外気切り替えダンパ、93はブロワ、94はブロワモ−タ、95はヒ−タコア、96はヒ−タコアダンパ、97は空調空気流の吹き出し口、98はダクトである。
【0051】
切り替えダンパ91は、ブロワ93が形成した空調空気流を主通風路9とバイパス通風路90のどちらかへ流す。エバポレ−タ4は主通風路9内に配置されており、その結果切り替えダンパ91により主通風路9を閉じ、バイパス通風路90を開ける動作は、実施例2において電磁弁13を開いてバイパス冷媒配管12を開く動作に機能的に同じとなる。したがって、インバ−タ回路部5の冷却部材6のみを冷却したい場合には切り替えダンパ91により主通風路9を閉じ、バイパス通風路90を開ければよく、エバポレ−タ4により空調空気流を冷却したい場合には切り替えダンパ91により主通風路9を開き、バイパス通風路90を閉じればよい。
【図面の簡単な説明】
【図1】実施例1の車両走行モ−タ駆動用インバータ回路装置のブロック図である。
【図2】図1における膨張弁制御動作を示す部分ブロック図である。
【図3】実施例2の車両走行モ−タ駆動用インバータ回路装置のブロック図である。
【図4】実施例3の車両走行モ−タ駆動用インバータ回路装置のブロック図である。
【図5】実施例4の車両走行モ−タ駆動用インバータ回路装置のブロック図である。
【符号の説明】
1:コンプレッサ
2:コンデンサ
3a、3b:膨張弁
4:エバポレ−タ
5:インバ−タ回路部
6:インバ−タ回路部の冷却部材
7a、7b:感温
[0001]
BACKGROUND OF THE INVENTION
The present invention, the energy associated with the vehicle running torque - about the motor driving inverter circuit equipment - vehicle traveling mode for generating.
[0002]
[Prior art]
A hybrid vehicle that obtains running power using an internal combustion engine and a rotating electric machine, a fuel cell vehicle that obtains running power using a rotating electric machine driven by the power of a fuel cell or a secondary battery, and an electric vehicle (collectively referred to as a battery car) ), It is important to cool a semiconductor element used in a three-phase inverter circuit device that converts DC power into AC power and supplies power to the rotating electrical machine.
[0003]
This type of three-phase inverter circuit device uses, for example, six power semiconductor switching elements such as IGBT, BPT, and MOST, and in some cases, the same number of flywheel diodes are used. Since the temperature limit of the element is extremely severe, it is considered preferable to cool the power semiconductor switching element with the refrigerant of the refrigeration cycle apparatus.
[0004]
In particular, in this type of vehicle application, since the vehicle is equipped with a refrigeration cycle device for vehicle air conditioning, the refrigerant of the refrigeration cycle device for vehicle air conditioning is used for cooling the inverter circuit device for driving the vehicle running motor, thereby This is advantageous because an additional cycle device can be avoided.
[0005]
[Problems to be solved by the invention]
However, in the system in which the inverter circuit device for driving the vehicle running motor is cooled by the refrigerant of the refrigeration cycle device for vehicle air conditioning (hereinafter referred to as vehicle air conditioning refrigerant cooling inverter circuit device), the refrigeration cycle is used for vehicle air conditioning. Even if the operation of the apparatus is unnecessary, the vehicle air-conditioning refrigeration cycle apparatus must be operated to travel the vehicle. As a result, the evaporator of the vehicle air-conditioning refrigeration cycle apparatus cools the air-conditioning airflow. Therefore, there is a drawback that the air-conditioning feeling is lowered, or there is a problem that heat generation of the inverter circuit device for driving the vehicle running motor is limited in order to keep the air-conditioning feeling comfortable.
[0006]
The present invention has been made in view of the above problems, and provides an inverter circuit device for driving a vehicle running motor that does not require a reduction in air conditioning feeling and output limitation of the inverter circuit for driving the vehicle running motor. That is the purpose.
[0008]
[Means for Solving the Problems]
An inverter circuit device for driving a vehicle running motor according to claim 1 includes an inverter circuit unit having a cooling member through which a refrigerant of a refrigeration cycle device for vehicle air conditioning flows, and driving and controlling the vehicle running motor; In the case where cooling of the passenger compartment air flow by the evaporator of the vehicle air-conditioning refrigeration cycle apparatus is not required in spite of driving the inverter circuit unit, the vehicle air-conditioning refrigeration cycle apparatus is operated and evaporator - Bei example a cabin blowoff airflow cooling inhibition means for inhibiting the cooling of the cabin air blown flow by motor, the inverter - the cooling member of capacitor circuit unit, the vehicle expansion valve of the air conditioning refrigeration cycle apparatus The air-conditioning air flow cooling suppression means is interposed between the pair of temperature sensing cylinders for detecting the outlet temperature of the cooling member and the outlet temperature of the evaporator, And characterized in that it has a motor - an expansion valve of the refrigeration system is controlled by both temperature sensing tube, is equipped with the temperature sensing tube for cooling member temperature detection side heat when energized when the cooling of the conditioned air flow To do.
[0009]
According to the configuration of claim 1 Symbol placement, vehicle running motor - motor driving inverter circuit device (hereinafter, simply inverter - motor apparatus also referred to) a refrigeration cycle for a vehicle air conditioner (hereinafter, simply referred to as refrigeration apparatus) of Since it can cool with a refrigerant | coolant, a large output inverter apparatus can be reduced in size and weight.
[0010]
In addition, since the refrigeration apparatus is originally used for the air conditioning of the vehicle, it is possible to prevent the cooling apparatus from becoming complicated and increasing the cost.
[0011]
Further, when the vehicle does not require cooling of the air-conditioning air flow, the cooling of the air-conditioning air flow by the air-conditioning air flow cooling evaporator of the refrigeration apparatus is prevented or suppressed, so that the air-conditioning feeling deteriorates or the evaporator Therefore, it is not necessary to reheat the air-conditioning air flow which has become low temperature with a heater to the required temperature, and deterioration of the air-conditioning feeling can be prevented while suppressing an increase in energy loss.
[0012]
The temperature sensing cylinder here is, for example, a temperature detection portion of a heat pipe that operates according to the temperature of the refrigerant to be detected, and the expansion valve is a valve whose opening degree is controlled by a diaphragm that is operated by the internal gas pressure of the heat pipe. Can be done.
According to this configuration, in the case of exclusive cooling for the inverter circuit section, when the outlet temperature of the cooling member provided upstream of the evaporator rises (becomes a predetermined refrigerant drying temperature), the expansion valve is thereby Can be squeezed. Therefore, a predetermined dryness (usually dry refrigerant, that is, vaporized refrigerant) flows into the evaporator, and the refrigerant does not absorb the latent heat of vaporization in the evaporator.
In addition, when cooling the air-conditioned air flow with an evaporator, the temperature sensing cylinder on the cooling member side is heated with a heater, so even if the dryness of the refrigerant at the outlet of the cooling member is wet, this cooling member side The temperature sensing cylinder sends a pressure change in the expansion valve opening direction to the expansion valve, and the evaporator can receive the refrigerant as usual.
Further, when the dryness of the refrigerant at the evaporator outlet increases, the temperature sensing cylinder on the evaporator side transmits a corresponding pressure change to the expansion valve, opens the expansion valve to increase the refrigerant flow rate, and conversely the evaporator. -When the refrigerant dryness at the outlet of the heater decreases, the temperature-sensitive cylinder on the evaporator side transmits the corresponding pressure change to the expansion valve, and closes the expansion valve to reduce the refrigerant flow rate. Do.
According to a second aspect of the present invention , in the inverter circuit device for driving a vehicle running motor according to the first aspect, the cooling member and the evaporator of the inverter circuit unit are configured so that a low pressure of the refrigeration apparatus is provided. The air-conditioning air flow cooling suppression means, which are connected in parallel in the circuit unit, has a valve mechanism for independently controlling the flow rates of the low-pressure refrigerant supplied to the cooling member and the evaporator.
[0013]
According to this configuration, it is possible to cool the evaporator and the inverter circuit unit with a necessary amount of refrigerant, respectively, and further, the position where the transmission power loss is minimized, etc. It can be arranged without being limited to the position of the low-pressure circuit part for vehicle air conditioning of the refrigeration apparatus, and it is not necessary to arrange the routing of the low-pressure circuit part for vehicle air conditioning close to the inverter circuit part side. , Wiring is simplified.
[0014]
According to a third aspect of the present invention , in the inverter circuit device for driving a vehicle running motor according to the second aspect of the present invention, the valve mechanism is individually controlled by an outlet temperature of the cooling member and an outlet temperature of the evaporator. It is characterized by comprising a pair of expansion valves controlled by the above.
[0015]
According to this configuration, it is only necessary to add an expansion valve and its temperature-sensitive control mechanism, and the apparatus configuration is simple and compact.
[0016]
According to a fourth aspect of the present invention , in the inverter circuit device for driving a vehicle running motor according to the first aspect, the cooling member of the inverter circuit portion is the evaporator at a low pressure portion of the refrigeration apparatus. The air-conditioning air flow cooling suppression means includes a bypass pipe connected in parallel with the evaporator, and a valve that opens the bypass pipe when the air-conditioning air flow is not required to be cooled. It is said.
[0017]
According to this configuration, it is only necessary to provide a bypass pipe for the refrigerant to bypass the evaporator, and to provide a valve for opening and closing the bypass pipe. Therefore, the effect of claim 2 can be achieved with a simple configuration. it can. The bypass pipe may have a diameter that allows the flow rate of the refrigerant in the cooling member cooling mode of the inverter circuit section to flow.
[0018]
In general, since the refrigerant inlet pipe portion and the refrigerant outlet pipe portion of the evaporator are often arranged close to each other, the bypass pipe only needs to short-circuit the refrigerant inlet pipe portion and the refrigerant outlet pipe portion. The extension distance and the space required for routing can be small. In terms of control, it is easy to use a solenoid valve.
[0019]
According to the fifth aspect of the present invention , in the inverter circuit device for driving a vehicle running motor according to the fourth aspect , the expansion valve of the refrigeration cycle device for air conditioning of the vehicle is a temperature detected downstream of the bypass pipe. It is characterized by being controlled by.
[0020]
According to this configuration, the expansion valve can satisfactorily cool the refrigerant flow rate of the expansion valve both when cooling the cooling member only and when cooling the evaporator.
[0027]
According to the sixth aspect of the present invention , in the inverter circuit device for driving a vehicle motor according to the first aspect, the cooling member of the inverter circuit unit is connected to the low pressure portion of the refrigeration cycle device for vehicle air conditioning. The air-conditioning air flow cooling suppression means bypasses the evaporator and supplies the air-conditioning air flow to the vehicle compartment, and the cooling of the air-conditioning air flow is connected to the evaporator in series. And a damper that opens the bypass ventilation passage when unnecessary.
[0028]
According to this configuration, in the case of cooling exclusively for the inverter circuit section, the refrigerant that has cooled the cooling member cools the evaporator. However, by opening the damper, the air-conditioned air flow passes through the bypass ventilation path. Since it is short-circuited, the conditioned air flow is not cooled.
[0029]
Moreover, when cooling an air-conditioning airflow, if a bypass ventilation path is closed with a damper, an air-conditioning airflow can be cooled without a problem.
[0030]
In addition, as a damper, you may open and close a bypass ventilation path, or it is good also as a switching damper which switches the flow of an air-conditioning air flow to either a bypass ventilation path or the ventilation path to an evaporator.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of an inverter circuit device for driving a vehicle running motor of the present invention will be described below with reference to the drawings.
[0032]
[Example 1]
An embodiment of an inverter circuit device for driving a vehicle running motor according to the present invention will be described below with reference to FIG.
[0033]
Reference numeral 5 denotes an inverter circuit portion in which a three-phase inverter circuit for driving and controlling the vehicle running motor is formed, and reference numeral 6 denotes a cooling member in close contact with the inverter circuit portion 5. The three-phase inverter circuit of the inverter circuit unit 5 converts the power supplied from the DC power source into three-phase AC power and supplies it to a vehicle running motor comprising a three-phase AC motor (not shown).
[0034]
Reference numerals 7a and 7b are so-called heat sensitive temperature tubes. The temperature sensitive tubes 7a and 7b have pipe portions 7c and 7d extending to the expansion valves 3a and 3b.
[0035]
Actually, the inlet side refrigerant pipe and the outlet side refrigerant pipe of the evaporator 4 are arranged adjacent to and in parallel at a predetermined distance on the same side, and the inverter circuit section 5 and its cooling member 6 are the evaporator. Therefore, the inlet side refrigerant pipe and the outlet side refrigerant pipe of the evaporator 4 are interposed in a bypass refrigerant pipe 11 that is connected at right angles to them.
(Operation)
The compressor 1 is operated when the evaporator 4 or the inverter circuit unit 5 is operated.
[0036]
The refrigerant flow rate to the evaporator 4 is controlled by the opening degree of the expansion valve 3a by the temperature sensing cylinder 7a disposed on the outlet side of the evaporator 4, and the refrigerant flow rate to the cooling member 6 is the outlet side of the cooling member 64. It is controlled by the opening degree of the expansion valve 3b by the temperature sensitive cylinder 7b disposed in the cylinder.
[0037]
FIG. 2 illustrates the refrigerant flow control to the cooling member 6 in more detail.
[0038]
If the heat generation amount of the cooling member 6 increases, the refrigerant in the temperature sensing cylinder 7b coming into contact with the bypass refrigerant pipe 11 coming out of the cooling member 6 evaporates, and the diaphragm valve of the expansion valve 3b opposes the spring 304 to the valve body 303. Is pushed down in the direction of opening the valve hole 305, and the flow rate of the refrigerant passing through the expansion valve 3b increases. If the heat generation amount of the cooling member 6 decreases, the flow rate of the refrigerant passing through the expansion valve 3b decreases due to the reverse operation. The control of the expansion valve 3a by the temperature sensitive cylinder 7a is the same.
[0039]
[Example 2]
Another embodiment of the inverter circuit device for driving a vehicle motor according to the present invention will be described below with reference to FIG.
[0040]
In the apparatus of this embodiment, the bypass refrigerant pipe 11, the expansion valve 3b, and the temperature sensing cylinder 7b are omitted from the apparatus of the first embodiment shown in FIG. 1, and instead, between the expansion valve 3a and the evaporator 4. The refrigerant pipe 10 (low pressure circuit section) is provided with the cooling member 6 of the inverter circuit section 5, and the inlet side refrigerant pipe and the outlet side refrigerant pipe of the evaporator 4 are short-circuited by the bypass refrigerant pipe 12. An electromagnetic valve 13 is provided in the bypass refrigerant pipe 12.
(Operation)
The compressor 1 is operated when the evaporator 4 or the inverter circuit unit 5 is operated. The refrigerant flow rate to the evaporator 4 is controlled by the opening degree of the expansion valve 3a by the temperature sensing cylinder 7a disposed on the outlet side of the evaporator 4. When only the inverter circuit section 5 is cooled and the air-conditioning air flow is not cooled by the evaporator 4, the electromagnetic valve 13 of the bypass refrigerant pipe 11 is opened. Thereby, the refrigerant | coolant which came out of the cooling member 6 flows through the bypass refrigerant | coolant piping 12, and the evaporator 4 hardly cools an air-conditioning airflow. When the conditioned air flow is cooled by the evaporator 4, the electromagnetic valve 13 may be closed.
[0041]
Since the temperature sensing cylinder 7a for controlling the expansion valve 3a is arranged at the junction of the bypass refrigerant pipe 12 and the evaporator 4 or downstream thereof, only the cooling member 6 is cooled and the evaporator 4 is not cooled. In the case where the evaporator 4 is cooled, the expansion valve 3a can be similarly controlled.
[0042]
[Example 3]
Another embodiment of the inverter circuit device for driving a vehicle motor according to the present invention will be described below with reference to FIG.
[0043]
In the apparatus of this embodiment, the bypass refrigerant pipe 11 is omitted in the apparatus of the first embodiment shown in FIG. 1, and instead, the refrigerant pipe 10 (low pressure circuit section) between the expansion valve 3a and the evaporator 4 is used. In addition, a cooling member 6 of the inverter circuit section 5 is interposed, and a temperature sensing cylinder 7 b is provided through a heater 8 in a refrigerant pipe 10 between the cooling member 6 and the evaporator 4.
[0044]
A piping portion 7d extending from the temperature sensing cylinder 7b is connected to a piping portion 7c extending from the temperature sensing cylinder 7a to the expansion valve.
[0045]
(Operation)
The compressor 1 is operated when the evaporator 4 or the inverter circuit unit 5 is operated.
[0046]
In the operation mode of the evaporator 4, the heater 8 is energized to bring the temperature sensing cylinder 7b into the refrigerant dry detection state. Thereby, the temperature sensing cylinder 7b does not close the expansion valve 3a. In this state, if the evaporator 4 is insufficiently cooled, the refrigerant in the temperature sensing cylinder 7a evaporates, thereby opening the expansion valve 3a and increasing the refrigerant flow rate. On the contrary, if the cooling of the evaporator 4 becomes excessive, the refrigerant is liquefied in the temperature sensing cylinder 7a, and the temperature sensing cylinder 3a is closed to reduce the refrigerant flow rate.
[0047]
[Example 4]
Another embodiment of the inverter circuit device for driving a vehicle motor according to the present invention will be described below with reference to FIG.
[0048]
In the apparatus of this embodiment, the bypass refrigerant pipe 12 and the electromagnetic valve 13 are omitted in the apparatus of the embodiment 2 shown in FIG. 3, and instead, the main ventilation path 9 of the conditioned air flow that flows through the evaporator 4 is bypassed. A bypass ventilation path 90 is provided, and the air conditioning airflow flowing through the bypass ventilation path 90 is controlled to be opened and closed by a switching damper 91.
[0049]
The flow of the conditioned air flow will be described below. In addition, since the structure of the refrigeration cycle apparatus itself in FIG. 5 is the same as FIG. 3, description is abbreviate | omitted.
[0050]
Reference numeral 92 is an inside / outside air switching damper, 93 is a blower, 94 is a blower motor, 95 is a heater core, 96 is a heater core damper, 97 is an air-conditioning air flow outlet, and 98 is a duct.
[0051]
The switching damper 91 allows the conditioned air flow formed by the blower 93 to flow to either the main ventilation path 9 or the bypass ventilation path 90. The evaporator 4 is disposed in the main ventilation path 9, and as a result, the operation of closing the main ventilation path 9 and opening the bypass ventilation path 90 by the switching damper 91 is performed by opening the electromagnetic valve 13 and bypass refrigerant in the second embodiment. This is functionally the same as the operation of opening the pipe 12. Therefore, when only the cooling member 6 of the inverter circuit section 5 is desired to be cooled, the main ventilation path 9 may be closed by the switching damper 91 and the bypass ventilation path 90 may be opened, and the air-conditioning air flow should be cooled by the evaporator 4. In this case, the main ventilation path 9 may be opened by the switching damper 91 and the bypass ventilation path 90 may be closed.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inverter circuit device for driving a vehicle running motor according to a first embodiment.
FIG. 2 is a partial block diagram showing an expansion valve control operation in FIG.
FIG. 3 is a block diagram of an inverter circuit device for driving a vehicle running motor according to a second embodiment.
FIG. 4 is a block diagram of an inverter circuit device for driving a vehicle running motor according to a third embodiment.
FIG. 5 is a block diagram of an inverter circuit device for driving a vehicle running motor according to a fourth embodiment.
[Explanation of symbols]
1: Compressor 2: Condensers 3a, 3b: Expansion valve 4: Evaporator 5: Inverter circuit section 6: Cooling member of inverter circuit section 7a, 7b: Temperature sensing

Claims (6)

車両空調用冷凍サイクル装置の冷媒が貫流する冷却部材を有し、車両走行モ−タを駆動制御するインバ−タ回路部と、
前記インバ−タ回路部を駆動するにもかかわらず前記車両空調用冷凍サイクル装置のエバポレ−タによる空調空気流の冷却が要求されない場合に、前記車両空調用冷凍サイクル装置を運転しかつ前記エバポレ−タによる前記空調空気流の冷却を抑止する空調空気流冷却抑止手段と、
を備える車両走行モ−タ駆動用インバータ回路装置であって、
前記インバ−タ回路部の前記冷却部材は、前記車両空調用冷凍サイクル装置の膨張弁と前記エバポレ−タとの間に介設され、
前記空調空気流冷却抑止手段は、前記冷却部材の出口温度及び前記エバポレ−タの出口温度を検出する一対の感温筒と、
前記両感温筒により制御される前記冷凍装置の膨張弁と、
冷却部材温度検出側の前記感温筒に装備されて前記空調空気流の冷却時に通電されるヒ−タと、
を有することを特徴とする車両走行モ−タ駆動用インバータ回路装置
An inverter circuit unit that has a cooling member through which a refrigerant of a refrigeration cycle device for vehicle air conditioning flows, and that drives and controls the vehicle running motor;
When cooling of the air-conditioned air flow by the evaporator of the vehicle air conditioning refrigeration cycle apparatus is not required despite driving the inverter circuit unit, the vehicle air conditioning refrigeration cycle apparatus is operated and the evaporator is operated. Air-conditioning air flow cooling suppression means for suppressing cooling of the air-conditioning air flow by the
Ru with a car both traveling mode - a motor driving inverter circuit device,
The cooling member of the inverter circuit unit is interposed between the expansion valve of the refrigeration cycle device for vehicle air conditioning and the evaporator,
The air-conditioning air flow cooling suppression means includes a pair of temperature sensing cylinders that detect the outlet temperature of the cooling member and the outlet temperature of the evaporator,
An expansion valve of the refrigeration apparatus controlled by the temperature sensing cylinders;
A heater mounted on the temperature sensing cylinder on the cooling member temperature detection side and energized when cooling the air-conditioned air flow;
An inverter circuit device for driving a vehicle running motor .
請求項記載の車両走行モ−タ駆動用インバータ回路装置において、
前記インバ−タ回路部の前記冷却部材と前記エバポレ−タとは、前記冷凍装置の低圧回路部にて並列接続され、
前記空調空気流冷却抑止手段は、前記冷却部材と前記エバポレ−タとに供給する低圧冷媒流量をそれぞれ独立に制御する弁機構を有することを特徴とする車両走行モ−タ駆動用インバータ回路装置
The inverter circuit device for driving a vehicle running motor according to claim 1 ,
The cooling member of the inverter circuit unit and the evaporator are connected in parallel at the low-pressure circuit unit of the refrigeration apparatus,
The vehicle traveling motor driving inverter circuit device, wherein the air-conditioning air flow cooling inhibiting means has a valve mechanism for independently controlling a flow rate of a low-pressure refrigerant supplied to the cooling member and the evaporator.
請求項記載の車両走行モ−タ駆動用インバータ回路装置において、
前記弁機構は、前記冷却部材の出口温度と前記エバポレ−タの出口温度とによりそれぞれ個別に制御される一対の膨張弁からなることを特徴とする車両走行モ−タ駆動用インバータ回路装置
The inverter circuit device for driving a vehicle motor according to claim 2 ,
The valve mechanism, wherein the outlet temperature of the cooling member and the evaporator - other vehicles traveling respectively, characterized in that a pair of expansion valves which are individually controlled by the outlet temperature motor - motor driving inverter circuit device.
請求項記載の車両走行モ−タ駆動用インバータ回路装置において、
前記インバ−タ回路部の前記冷却部材は、前記冷凍装置の低圧部にて前記エバポレ−タと直列に接続され、
前記空調空気流冷却抑止手段は、前記エバポレ−タと並列に接続されたバイパス管と、前記空調空気流の冷却不要時に前記バイパス管を開く弁とを有することを特徴とする車両走行モ−タ駆動用インバータ回路装置
The inverter circuit device for driving a vehicle running motor according to claim 1 ,
The cooling member of the inverter circuit section is connected in series with the evaporator at a low pressure section of the refrigeration apparatus,
The air-conditioning air flow cooling suppression means includes a bypass pipe connected in parallel with the evaporator, and a valve that opens the bypass pipe when the air-conditioning air flow is not required to be cooled . Drive inverter circuit device .
請求項記載の車両走行モ−タ駆動用インバータ回路装置において、
前記車両空調用冷凍サイクル装置の膨張弁は、前記バイパス管の下流側で検出された温度により制御されることを特徴とする車両走行モ−タ駆動用インバータ回路装置。
The inverter circuit device for driving a vehicle running motor according to claim 4 ,
An inverter circuit device for driving a vehicle running motor , wherein the expansion valve of the refrigeration cycle device for vehicle air conditioning is controlled by a temperature detected downstream of the bypass pipe .
請求項記載の車両走行モ−タ駆動用インバータ回路装置において、
前記インバ−タ回路部の前記冷却部材は、前記車両空調用冷凍サイクル装置の低圧部にて前記エバポレ−タと直列に接続され、
前記空調空気流冷却抑止手段は、前記エバポレ−タをバイパスして前記空調空気流を車室に供給するバイパス通風路と、
前記空調空気流の冷却が不要な場合に前記バイパス通風路を開くダンパとを有することを特徴とする車両走行モ−タ駆動用インバータ回路装置
The inverter circuit device for driving a vehicle running motor according to claim 1 ,
The cooling member of the inverter circuit section is connected in series with the evaporator at a low pressure section of the refrigeration cycle apparatus for vehicle air conditioning,
The air-conditioning air flow cooling suppression means bypasses the evaporator and supplies the air-conditioned air flow to the passenger compartment;
An inverter circuit device for driving a vehicle running motor, comprising: a damper that opens the bypass ventilation passage when cooling of the air-conditioned air flow is unnecessary.
JP2000124504A 2000-04-25 2000-04-25 Inverter circuit device for driving vehicle motor Expired - Fee Related JP4075285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124504A JP4075285B2 (en) 2000-04-25 2000-04-25 Inverter circuit device for driving vehicle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124504A JP4075285B2 (en) 2000-04-25 2000-04-25 Inverter circuit device for driving vehicle motor

Publications (2)

Publication Number Publication Date
JP2001309506A JP2001309506A (en) 2001-11-02
JP4075285B2 true JP4075285B2 (en) 2008-04-16

Family

ID=18634627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124504A Expired - Fee Related JP4075285B2 (en) 2000-04-25 2000-04-25 Inverter circuit device for driving vehicle motor

Country Status (1)

Country Link
JP (1) JP4075285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380014A (en) * 2011-02-22 2013-10-30 丰田自动车株式会社 Vehicle cooling system
US9541322B2 (en) 2011-12-27 2017-01-10 Mitsubishi Electric Corporation Vehicle air-conditioning apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258079B2 (en) * 2007-03-30 2013-08-07 トヨタ自動車株式会社 Cooling system and vehicle equipped with the same
WO2012056555A1 (en) * 2010-10-29 2012-05-03 トヨタ自動車株式会社 Cooling apparatus and vehicle
JP5522275B2 (en) 2011-02-04 2014-06-18 トヨタ自動車株式会社 Cooling system
JP5373841B2 (en) 2011-04-01 2013-12-18 株式会社日本自動車部品総合研究所 Cooling system
JP5815284B2 (en) 2011-05-20 2015-11-17 株式会社日本自動車部品総合研究所 Cooling system
JP2012245856A (en) 2011-05-26 2012-12-13 Toyota Motor Corp Cooling system
JP2012245857A (en) 2011-05-26 2012-12-13 Nippon Soken Inc Cooling apparatus, and method and device for controlling the same
JP2013023186A (en) * 2011-07-26 2013-02-04 Toyota Motor Corp Cooling apparatus
CN103842741B (en) 2011-10-05 2015-09-16 丰田自动车株式会社 The control method of cooling device
US20140250929A1 (en) 2011-10-21 2014-09-11 Toyota Jidosha Kabushiki Kaisha Cooling device and method of controlling cooling device
CN103998874B (en) * 2011-12-19 2016-07-06 丰田自动车株式会社 Chiller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380014A (en) * 2011-02-22 2013-10-30 丰田自动车株式会社 Vehicle cooling system
CN103380014B (en) * 2011-02-22 2015-11-25 丰田自动车株式会社 Cooling system of vehicle
US9541322B2 (en) 2011-12-27 2017-01-10 Mitsubishi Electric Corporation Vehicle air-conditioning apparatus

Also Published As

Publication number Publication date
JP2001309506A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
US11097596B2 (en) Vehicle equipped with electric motor
EP1059182B1 (en) Vehicular air conditiioner
JP5342520B2 (en) Compact temperature control system for automobiles
JP6138427B2 (en) Heat pump air conditioning system for vehicles
JP3484871B2 (en) Vehicle air conditioner
JP4075285B2 (en) Inverter circuit device for driving vehicle motor
WO2014087645A1 (en) Vehicle heat pump device, and vehicle air-conditioning device
JP2012506820A (en) Thermodynamic air conditioning loops built into heating, ventilation, and / or air conditioning equipment on electric propulsion vehicles
US10486495B2 (en) Method and system to manage vehicle thermal conditions
WO2015129433A1 (en) Air conditioning device for automobile
US11780293B2 (en) In-vehicle temperature control system
JP4427859B2 (en) Air conditioner for vehicles
JP2014108770A (en) Air conditioner for electric vehicle and operation method of the same
JP2013203190A (en) Battery temperature adjusting device
JP6103186B2 (en) VEHICLE HEAT PUMP DEVICE AND VEHICLE AIR CONDITIONER
JPH0624235A (en) Heat pump type air conditioning system
JP6232592B2 (en) VEHICLE HEAT PUMP DEVICE AND VEHICLE AIR CONDITIONER
JP7287203B2 (en) heat exchange module
JPH04189626A (en) Cooling device of water cooled internal combustion engine for vehicle
JP4195523B2 (en) Air conditioner refrigerant circuit
JP2000280733A (en) Automobile air conditioner
JP6031676B2 (en) VEHICLE HEAT PUMP DEVICE AND VEHICLE AIR CONDITIONER
JP6634106B2 (en) Vehicle air conditioner
JP3275321B2 (en) Automotive air conditioners
EP4279739A1 (en) Output device of a compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees