JP2012245856A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2012245856A
JP2012245856A JP2011118275A JP2011118275A JP2012245856A JP 2012245856 A JP2012245856 A JP 2012245856A JP 2011118275 A JP2011118275 A JP 2011118275A JP 2011118275 A JP2011118275 A JP 2011118275A JP 2012245856 A JP2012245856 A JP 2012245856A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
heat exchanger
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118275A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kawakami
芳昭 川上
Yuki Shiroshima
悠樹 城島
Eizo Takahashi
栄三 高橋
Kosuke Sato
幸介 佐藤
Kazuhide Uchida
和秀 内田
Yuichi Ono
雄一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2011118275A priority Critical patent/JP2012245856A/en
Priority to PCT/IB2012/000942 priority patent/WO2012160426A1/en
Publication of JP2012245856A publication Critical patent/JP2012245856A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system for a heating source, which can reduce power consumption of a compressor, while securing the cooling and heating abilities and the ability for cooling the heating source.SOLUTION: The cooling system 1 for cooling an HV device 31 includes: a compressor 12; a heat exchanger 14; an expansion valve 16; and a heat exchanger 18. The cooling system 1 also includes a four-way valve 13 which switches a flow of a refrigerant during air-conditioning operation. The cooling system 1 further includes: a first passage and a second passage as paths of the refrigerant, which are connected in parallel between the heat exchanger 14 and the expansion valve 16; a cooling part 30 provided in the second passage to cool the HV device 31; a refrigerant passage 41; and refrigerant passages 43 and 45. The refrigerant passage 41 provides fluid communication between a refrigerant path between the compressor 12 and the heat exchanger 14, and the second passage on a side closer to the heat exchanger 14 than the cooling part 30. The refrigerant passages 43 and 45 provide fluid communication between a refrigerant path between the expansion valve 16 and the heat exchanger 18, and the second passage on a side closer to the expansion valve 16 than the cooling part 30.

Description

本発明は、冷却装置に関し、特に、蒸気圧縮式冷凍サイクルを利用して発熱源を冷却する冷却装置に関する。   The present invention relates to a cooling device, and more particularly to a cooling device that cools a heat generation source using a vapor compression refrigeration cycle.

近年、環境問題対策の一つとして、モータの駆動力により走行するハイブリッド車、燃料電池車、電気自動車などが注目されている。このような車両において、モータ、ジェネレータ、インバータ、コンバータおよびバッテリなどの電気機器は、電力の授受によって発熱する。そのため、これらの電気機器を冷却する必要がある。そこで、車両用空調装置として使用される蒸気圧縮式冷凍サイクルを利用して、発熱体を冷却する技術が提案されている。   In recent years, attention has been focused on hybrid vehicles, fuel cell vehicles, electric vehicles, and the like that travel with the driving force of a motor as one of the environmental countermeasures. In such a vehicle, electric devices such as a motor, a generator, an inverter, a converter, and a battery generate heat when power is transferred. Therefore, it is necessary to cool these electric devices. In view of this, a technique for cooling a heating element using a vapor compression refrigeration cycle used as a vehicle air conditioner has been proposed.

たとえば特開平9−290622号公報(特許文献1)には、車両搭載の発熱部品からの廃熱を回収して、ガスインジェクション用の冷媒に吸熱させることにより、低外気温時における暖房能力を、消費電力の増大を抑制しつつ、効果的に向上する技術が開示されている。特開平11−223406号公報(特許文献2)には、パワートランジスタなどの発熱体の廃熱をヒートポンプサイクルの冷媒に吸収させる構成が開示されている。特開2007−69733号公報(特許文献3)には、膨張弁から圧縮機へ至る冷媒通路に、空調用の空気と熱交換する熱交換器と、発熱体と熱交換する熱交換器と、を並列に配置し、空調装置用の冷媒を利用して発熱体を冷却するシステムが開示されている。   For example, in Japanese Patent Laid-Open No. 9-290622 (Patent Document 1), waste heat from a heat generating component mounted on a vehicle is collected and absorbed into a refrigerant for gas injection, thereby increasing the heating capacity at a low outside temperature. A technique for effectively improving power consumption while suppressing an increase in power consumption is disclosed. Japanese Patent Laid-Open No. 11-223406 (Patent Document 2) discloses a configuration in which waste heat of a heating element such as a power transistor is absorbed by a refrigerant of a heat pump cycle. JP 2007-69733 A (Patent Document 3) includes a heat exchanger that exchanges heat with air for air conditioning, a heat exchanger that exchanges heat with a heating element, in a refrigerant passage from an expansion valve to a compressor, Are arranged in parallel, and a system for cooling a heating element using a refrigerant for an air conditioner is disclosed.

特開2005−90862号公報(特許文献4)には、空調用の冷凍サイクルの減圧器、蒸発器および圧縮機をバイパスするバイパス通路に、発熱体を冷却するための発熱体冷却手段を設けた、冷却システムが開示されている。特開2001−309506号公報(特許文献5)には、車両走行モータを駆動制御するインバータ回路部の冷却部材に車両空調用冷凍サイクル装置の冷媒を還流させ、空調空気流の冷却が不要な場合に車両空調用冷凍サイクル装置のエバポレータによる空調空気流の冷却を抑止する、冷却システムが開示されている。   Japanese Patent Laid-Open No. 2005-90862 (Patent Document 4) is provided with a heating element cooling means for cooling a heating element in a bypass passage that bypasses a decompressor, an evaporator and a compressor of a refrigeration cycle for air conditioning. A cooling system is disclosed. In Japanese Patent Laid-Open No. 2001-309506 (Patent Document 5), the refrigerant of the refrigeration cycle device for vehicle air conditioning is recirculated to the cooling member of the inverter circuit unit that drives and controls the vehicle travel motor, and cooling of the air-conditioning air flow is unnecessary Discloses a cooling system that suppresses cooling of an air-conditioned air flow by an evaporator of a vehicle air-conditioning refrigeration cycle apparatus.

特開平9−290622号公報JP-A-9-290622 特開平11−223406号公報JP-A-11-223406 特開2007−69733号公報JP 2007-69733 A 特開2005−90862号公報JP-A-2005-90862 特開2001−309506号公報JP 2001-309506 A

外気温が極めて低い場合に蒸気圧縮式冷凍サイクルを使用して暖房運転を行なうと、減圧器で減圧された冷媒の圧力が低くなり、圧縮機の圧縮比が増大して圧縮効率が低くなり消費動力が増大する。また圧縮機の吐出ガス温度も高くなり、内部の電線絶縁材や潤滑油が劣化し悪影響を与える問題がある。圧縮機の消費動力を悪化させないためには、暖房能力を犠牲にしなければならない問題がある。   When heating operation is performed using a vapor compression refrigeration cycle when the outside air temperature is extremely low, the pressure of the refrigerant decompressed by the decompressor decreases, the compressor compression ratio increases, and the compression efficiency decreases, resulting in consumption. Power increases. Moreover, the discharge gas temperature of a compressor also becomes high and there exists a problem which an internal wire insulation material and lubricating oil deteriorate and have a bad influence. In order not to deteriorate the power consumption of the compressor, there is a problem that the heating capacity must be sacrificed.

上記特許文献1に記載の技術では、中間圧の冷媒を発熱部品の廃熱で蒸発させ、圧縮機にガスインジェクションすることにより、圧縮機の圧縮動力を抑制している。しかし、ガスインジェクションされる分の冷媒は直接圧縮機に導入されるため、冷房運転時に室内熱交換器に供給される冷媒量が減少し、冷房能力が低下する。冷媒流量を増加させれば冷房能力を確保できるが、その分圧縮機の消費動力が増加してしまう。   In the technique described in Patent Document 1, the compression power of the compressor is suppressed by evaporating the intermediate pressure refrigerant with the waste heat of the heat-generating component and gas-injecting it into the compressor. However, since the refrigerant corresponding to the gas injection is directly introduced into the compressor, the amount of the refrigerant supplied to the indoor heat exchanger during the cooling operation is reduced, and the cooling capacity is lowered. If the refrigerant flow rate is increased, the cooling capacity can be ensured, but the power consumption of the compressor increases accordingly.

本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、冷暖房能力と発熱源の冷却能力とを確保しつつ圧縮機の消費動力を低減できる、発熱源の冷却装置を提供することである。   The present invention has been made in view of the above problems, and a main object thereof is to provide a cooling device for a heat source that can reduce the power consumption of the compressor while ensuring the air conditioning capability and the cooling capability of the heat source. That is.

本発明に係る冷却装置は、発熱源を冷却する冷却装置であって、冷媒を循環させるための圧縮機と、冷媒と外気との間で熱交換する第一熱交換器と、冷媒を減圧する減圧器と、冷媒と空調用空気との間で熱交換する第二熱交換器と、を備える。冷却装置はまた、圧縮機から第一熱交換器へ向かう冷媒の流れと、圧縮機から第二熱交換器へ向かう冷媒の流れと、を切り換える四方弁を備える。冷却装置はまた、第一熱交換器と減圧器との間に並列に接続された冷媒の経路である第一通路および第二通路と、第二通路上に設けられ、冷媒を用いて発熱源を冷却する冷却部と、第一連通路と、第二連通路と、を備える。第一連通路は、圧縮機と第一熱交換器との間の冷媒の経路と、冷却部に対し第一熱交換器に近接する側の第二通路と、を連通する。第二連通路は、減圧器と第二熱交換器との間の冷媒の経路と、冷却部に対し減圧器に近接する側の第二通路と、を連通する。   A cooling device according to the present invention is a cooling device that cools a heat generation source, a compressor for circulating a refrigerant, a first heat exchanger that exchanges heat between the refrigerant and outside air, and a pressure reduction of the refrigerant. A decompressor, and a second heat exchanger that exchanges heat between the refrigerant and the air for air conditioning. The cooling device also includes a four-way valve that switches between a refrigerant flow from the compressor to the first heat exchanger and a refrigerant flow from the compressor to the second heat exchanger. The cooling device is also provided on the first passage and the second passage, which are refrigerant paths connected in parallel between the first heat exchanger and the decompressor, and the second passage, and uses the refrigerant to generate a heat source. A cooling section for cooling the first passage, a first series passage, and a second communication passage. The first series passage communicates the refrigerant path between the compressor and the first heat exchanger and the second passage closer to the first heat exchanger with respect to the cooling unit. The second communication path communicates the refrigerant path between the decompressor and the second heat exchanger and the second path on the side close to the decompressor with respect to the cooling unit.

上記冷却装置において好ましくは、冷却部と減圧器との間を流通する冷媒の経路に設けられ、冷媒と外気との間で熱交換する第三熱交換器を備える。   Preferably, the cooling device includes a third heat exchanger that is provided in a refrigerant path that circulates between the cooling unit and the decompressor and exchanges heat between the refrigerant and the outside air.

上記冷却装置において好ましくは、第一熱交換器と冷却部との間を流通する冷媒の経路に設けられた第二減圧器を備える。   Preferably, the cooling device includes a second pressure reducer provided in a refrigerant path flowing between the first heat exchanger and the cooling unit.

上記冷却装置において好ましくは、冷却部に対し第一熱交換器に近接する側の第二通路に配置された気液分離器を備える。第一連通路の一端は、気液分離器の気相中に配置されていてもよい。   Preferably, the cooling device includes a gas-liquid separator disposed in the second passage on the side close to the first heat exchanger with respect to the cooling unit. One end of the first series passage may be disposed in the gas phase of the gas-liquid separator.

上記冷却装置において好ましくは、冷却部から第一連通路に向けて流通する冷媒の圧力を上昇させる昇圧機を備える。   The cooling device preferably includes a booster that increases the pressure of the refrigerant flowing from the cooling unit toward the first series passage.

上記冷却装置において好ましくは、冷媒が圧縮機から第二熱交換器へ向けて流通するように四方弁を設定したとき、第一熱交換器に冷媒が流通しないように冷媒の経路を切り換える。   Preferably, in the cooling device, when the four-way valve is set so that the refrigerant flows from the compressor toward the second heat exchanger, the refrigerant path is switched so that the refrigerant does not flow through the first heat exchanger.

本発明の冷却装置によると、冷暖房能力と発熱源の冷却能力とを確保しつつ、圧縮機の消費動力を低減することができる。   According to the cooling device of the present invention, the power consumption of the compressor can be reduced while ensuring the cooling / heating capability and the cooling capability of the heat source.

実施の形態1の冷却装置の構成を示す模式図である。2 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 1. FIG. 実施の形態1の蒸気圧縮式冷凍サイクルの冷房運転時の冷媒の状態を示すモリエル線図である。FIG. 3 is a Mollier diagram showing the state of the refrigerant during the cooling operation of the vapor compression refrigeration cycle of the first embodiment. 四方弁を切り換えた状態の冷却装置を示す模式図である。It is a schematic diagram which shows the cooling device of the state which switched the four-way valve. 実施の形態1の蒸気圧縮式冷凍サイクルの暖房運転時の冷媒の状態を示すモリエル線図である。FIG. 3 is a Mollier diagram showing the state of the refrigerant during the heating operation of the vapor compression refrigeration cycle of the first embodiment. 実施の形態2の冷却装置の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 2. FIG. 実施の形態2の蒸気圧縮式冷凍サイクルの冷房運転時の冷媒の状態を示すモリエル線図である。6 is a Mollier diagram showing the state of the refrigerant during cooling operation of the vapor compression refrigeration cycle of Embodiment 2. FIG. 四方弁を切り換えた状態の実施の形態2の冷却装置を示す模式図である。It is a schematic diagram which shows the cooling device of Embodiment 2 in the state which switched the four-way valve. 実施の形態2の蒸気圧縮式冷凍サイクルの暖房運転時の冷媒の状態を示すモリエル線図である。6 is a Mollier diagram showing the state of refrigerant during heating operation of the vapor compression refrigeration cycle of Embodiment 2. FIG. 実施の形態3の冷却装置の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 3. FIG. 実施の形態3の蒸気圧縮式冷凍サイクルの暖房運転時の冷媒の状態を示すモリエル線図である。6 is a Mollier diagram showing the state of refrigerant during heating operation of the vapor compression refrigeration cycle of Embodiment 3. FIG. 実施の形態4の冷却装置の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of a cooling device according to a fourth embodiment. 四方弁を切り換えた状態の実施の形態4の冷却装置を示す模式図である。It is a schematic diagram which shows the cooling device of Embodiment 4 in the state which switched the four-way valve. 実施の形態4の蒸気圧縮式冷凍サイクルの暖房運転時の冷媒の状態を示すモリエル線図である。FIG. 10 is a Mollier diagram showing the state of refrigerant during heating operation of the vapor compression refrigeration cycle of the fourth embodiment.

以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、実施の形態1の冷却装置1の構成を示す模式図である。図1に示すように、冷却装置1は、蒸気圧縮式冷凍サイクル10を備える。蒸気圧縮式冷凍サイクル10は、たとえば、車両の車内の冷暖房を行なうために、車両に搭載される。蒸気圧縮式冷凍サイクル10を用いた冷房は、たとえば、冷房を行なうためのスイッチがオンされた場合、または、自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されており、かつ、車室内の温度が設定温度よりも高い場合に行なわれる。蒸気圧縮式冷凍サイクル10を用いた暖房は、たとえば、暖房を行なうためのスイッチがオンされた場合、または、自動制御モードが選択されており、かつ、車室内の温度が設定温度よりも低い場合に行なわれる。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a configuration of a cooling device 1 according to the first embodiment. As shown in FIG. 1, the cooling device 1 includes a vapor compression refrigeration cycle 10. The vapor compression refrigeration cycle 10 is mounted on a vehicle, for example, for cooling and heating the interior of the vehicle. The cooling using the vapor compression refrigeration cycle 10 is selected, for example, when the switch for performing the cooling is turned on or the automatic control mode for automatically adjusting the temperature of the vehicle interior to the set temperature is selected. This is performed when the temperature in the passenger compartment is higher than the set temperature. Heating using the vapor compression refrigeration cycle 10 is performed, for example, when a switch for heating is turned on, or when the automatic control mode is selected and the temperature in the passenger compartment is lower than the set temperature. To be done.

蒸気圧縮式冷凍サイクル10は、圧縮機12と、第一熱交換器としての熱交換器14と、減圧器の一例としての膨張弁16と、第二熱交換器としての熱交換器18と、を含む。蒸気圧縮式冷凍サイクル10はまた、四方弁13を含む。四方弁13は、圧縮機12から熱交換器14へ向かう冷媒の流れと、圧縮機12から熱交換器18へ向かう冷媒の流れと、を切り換え可能に配置されている。   The vapor compression refrigeration cycle 10 includes a compressor 12, a heat exchanger 14 as a first heat exchanger, an expansion valve 16 as an example of a decompressor, a heat exchanger 18 as a second heat exchanger, including. The vapor compression refrigeration cycle 10 also includes a four-way valve 13. The four-way valve 13 is disposed so as to be able to switch between a refrigerant flow from the compressor 12 toward the heat exchanger 14 and a refrigerant flow from the compressor 12 toward the heat exchanger 18.

圧縮機12は、車両に搭載されたモータまたはエンジンを動力源として作動し、冷媒ガスを断熱的に圧縮して過熱状態冷媒ガスとする。圧縮機12は、蒸気圧縮式冷凍サイクル10の作動時に流通する気相冷媒を吸入圧縮して、高温高圧の気相冷媒を吐出する。圧縮機12は、冷媒を吐出することで、蒸気圧縮式冷凍サイクル10に冷媒を循環させる。   The compressor 12 operates using a motor or engine mounted on the vehicle as a power source, and compresses the refrigerant gas in an adiabatic manner to form an overheated refrigerant gas. The compressor 12 sucks and compresses the gas-phase refrigerant that circulates during the operation of the vapor compression refrigeration cycle 10 and discharges the high-temperature and high-pressure gas-phase refrigerant. The compressor 12 circulates the refrigerant in the vapor compression refrigeration cycle 10 by discharging the refrigerant.

熱交換器14,18は、冷媒を流通するチューブと、チューブ内を流通する冷媒と熱交換器14,18の周囲の空気との間で熱交換するためのフィンと、を含む。熱交換器14,18は、車両の走行によって発生する自然の通風によって供給された空気流れ、またはファンによって供給された空気流れと、冷媒と、の間で熱交換を行なう。   The heat exchangers 14 and 18 include tubes through which the refrigerant flows, and fins for exchanging heat between the refrigerant flowing through the tubes and the air around the heat exchangers 14 and 18. The heat exchangers 14 and 18 perform heat exchange between the refrigerant and the air flow supplied by natural ventilation generated by traveling of the vehicle or the air flow supplied by a fan.

膨張弁16は、高圧の液相冷媒を小さな孔から噴射させることにより膨張させて、低温・低圧の霧状冷媒に変化させる。膨張弁16は、凝縮された冷媒液を減圧して、気液混合状態の湿り蒸気とする。なお、冷媒液を減圧するための減圧器は、絞り膨張する膨張弁16に限られず、毛細管であってもよい。   The expansion valve 16 is expanded by injecting a high-pressure liquid-phase refrigerant from a small hole, and changes into a low-temperature / low-pressure mist refrigerant. The expansion valve 16 depressurizes the condensed refrigerant liquid to obtain wet vapor in a gas-liquid mixed state. Note that the decompressor for decompressing the refrigerant liquid is not limited to the expansion valve 16 that is squeezed and expanded, and may be a capillary tube.

蒸気圧縮式冷凍サイクル10はまた、冷媒通路21〜26を含む。冷媒通路21は、圧縮機12と四方弁13とを連通する。冷媒は、冷媒通路21を経由して、圧縮機12から四方弁13へ向かって流通する。冷媒通路22は、四方弁13と熱交換器14とを連通する。冷媒は、冷媒通路22を経由して、四方弁13と熱交換器14との一方から他方へ向かって流通する。冷媒通路23は、熱交換器14と膨張弁16とを連通する。冷媒は、冷媒通路23を経由して、熱交換器14と膨張弁16との一方から他方へ向かって流通する。   The vapor compression refrigeration cycle 10 also includes refrigerant passages 21 to 26. The refrigerant passage 21 communicates the compressor 12 and the four-way valve 13. The refrigerant flows from the compressor 12 toward the four-way valve 13 via the refrigerant passage 21. The refrigerant passage 22 communicates the four-way valve 13 and the heat exchanger 14. The refrigerant flows from one of the four-way valve 13 and the heat exchanger 14 toward the other via the refrigerant passage 22. The refrigerant passage 23 communicates the heat exchanger 14 and the expansion valve 16. The refrigerant flows from one of the heat exchanger 14 and the expansion valve 16 toward the other via the refrigerant passage 23.

冷媒通路24は、膨張弁16と熱交換器18とを連通する。冷媒は、冷媒通路24を経由して、膨張弁16と熱交換器18との一方から他方へ向かって流通する。冷媒通路25は、熱交換器18と四方弁13とを連通する。冷媒は、冷媒通路25を経由して、熱交換器18と四方弁13との一方から他方へ向かって流通する。冷媒通路26は、四方弁13と圧縮機12とを連通する。冷媒は、冷媒通路26を経由して、四方弁13から圧縮機12へ向かって流通する。   The refrigerant passage 24 communicates the expansion valve 16 and the heat exchanger 18. The refrigerant flows from one of the expansion valve 16 and the heat exchanger 18 toward the other via the refrigerant passage 24. The refrigerant passage 25 communicates the heat exchanger 18 and the four-way valve 13. The refrigerant flows from one of the heat exchanger 18 and the four-way valve 13 toward the other via the refrigerant passage 25. The refrigerant passage 26 communicates the four-way valve 13 and the compressor 12. The refrigerant flows from the four-way valve 13 toward the compressor 12 via the refrigerant passage 26.

蒸気圧縮式冷凍サイクル10は、圧縮機12、熱交換器14、膨張弁16および熱交換器18が、冷媒通路21〜26によって連結されて構成される。なお、蒸気圧縮式冷凍サイクル10の冷媒としては、たとえば二酸化炭素、プロパンやイソブタンなどの炭化水素、アンモニアまたは水などを用いることができる。   The vapor compression refrigeration cycle 10 includes a compressor 12, a heat exchanger 14, an expansion valve 16, and a heat exchanger 18 connected by refrigerant passages 21 to 26. In addition, as a refrigerant of the vapor compression refrigeration cycle 10, for example, carbon dioxide, hydrocarbon such as propane and isobutane, ammonia, water, or the like can be used.

熱交換器14と膨張弁16との間を流通する冷媒の経路には、第一通路としての冷媒通路23aと、第二通路と、が並列に接続されて設けられている。冷媒通路23aは、熱交換器14と膨張弁16との間を流通する冷媒の経路を形成する冷媒通路23の一部を形成する。第二通路上には、冷却部30が設けられている。冷却部30は、熱交換器14と膨張弁16との間を流通する冷媒の経路上に設けられている。冷却部30は、車両に搭載される電気機器であるHV(Hybrid Vehicle)機器31と、冷媒が流通する配管である冷却通路32と、を含む。HV機器31は、発熱源の一例である。熱交換器14と膨張弁16との間の冷媒の経路が分岐して、冷媒の一部が冷却部30へ流通する。   A refrigerant passage 23 a serving as a first passage and a second passage are connected in parallel to the refrigerant passage that flows between the heat exchanger 14 and the expansion valve 16. The refrigerant passage 23 a forms a part of the refrigerant passage 23 that forms a path of the refrigerant that flows between the heat exchanger 14 and the expansion valve 16. A cooling unit 30 is provided on the second passage. The cooling unit 30 is provided on a refrigerant path that circulates between the heat exchanger 14 and the expansion valve 16. The cooling unit 30 includes an HV (Hybrid Vehicle) device 31 that is an electric device mounted on the vehicle, and a cooling passage 32 that is a pipe through which a refrigerant flows. The HV device 31 is an example of a heat source. The refrigerant path between the heat exchanger 14 and the expansion valve 16 branches, and a part of the refrigerant flows to the cooling unit 30.

冷却通路32へ冷媒を流通するための経路として、冷媒通路33,34,35および36が設けられている。冷却通路32の一方の端部は、冷媒通路34に接続される。冷却通路32の他方の端部は、冷媒通路35に接続される。冷媒通路33と冷媒通路34とは、三方弁42を介して連通されている。冷媒通路35と冷媒通路36とは、三方弁46を介して連通されている。冷媒通路33,34と冷媒通路35,36との一方を経由して、冷媒通路23から冷却通路32へ冷媒が流通する。冷却通路32を流通してHV機器31と熱交換した後の冷媒は、冷媒通路33,34と冷媒通路35,36との他方を経由して、冷媒通路23へ戻る。   Refrigerant passages 33, 34, 35, and 36 are provided as routes for circulating the refrigerant to the cooling passage 32. One end of the cooling passage 32 is connected to the refrigerant passage 34. The other end of the cooling passage 32 is connected to the refrigerant passage 35. The refrigerant passage 33 and the refrigerant passage 34 communicate with each other via a three-way valve 42. The refrigerant passage 35 and the refrigerant passage 36 communicate with each other via a three-way valve 46. The refrigerant flows from the refrigerant passage 23 to the cooling passage 32 via one of the refrigerant passages 33 and 34 and the refrigerant passages 35 and 36. The refrigerant after passing through the cooling passage 32 and exchanging heat with the HV device 31 returns to the refrigerant passage 23 via the other of the refrigerant passages 33 and 34 and the refrigerant passages 35 and 36.

冷媒通路23aと並列に接続される第二通路は、冷却部30よりも熱交換器14に近接する側の冷媒通路33,34と、冷却部30に含まれる冷却通路32と、冷却部30よりも膨張弁16に近接する側の冷媒通路35,36と、を含む。冷媒は、冷媒通路33,34を経由して、冷媒通路23と冷却部30との間を流通する。冷媒は、冷媒通路35,36を経由して、冷却部30と冷媒通路23との間を流通する。   The second passage connected in parallel with the refrigerant passage 23 a includes refrigerant passages 33 and 34 closer to the heat exchanger 14 than the cooling portion 30, a cooling passage 32 included in the cooling portion 30, and the cooling portion 30. Includes refrigerant passages 35 and 36 on the side close to the expansion valve 16. The refrigerant flows between the refrigerant passage 23 and the cooling unit 30 via the refrigerant passages 33 and 34. The refrigerant flows between the cooling unit 30 and the refrigerant passage 23 via the refrigerant passages 35 and 36.

熱交換器14と膨張弁16との間を流通する冷媒は、冷却通路32を経由して流れる。冷媒は、冷却通路32内を流通するとき、HV機器31から熱を奪って、HV機器31を冷却させる。冷却部30は、冷却通路32によってHV機器31と冷媒との間で熱交換が可能な構造を有するように設けられる。本実施の形態においては、冷却部30は、たとえば、HV機器31の筐体に冷却通路32の外周面が直接接触するように形成された冷却通路32を有する。冷却通路32は、HV機器31の筐体と隣接する部分を有する。当該部分において、冷却通路32を流通する冷媒と、HV機器31との間で、熱交換が可能となる。   The refrigerant flowing between the heat exchanger 14 and the expansion valve 16 flows through the cooling passage 32. When the refrigerant flows through the cooling passage 32, it takes heat from the HV equipment 31 and cools the HV equipment 31. The cooling unit 30 is provided so as to have a structure capable of exchanging heat between the HV device 31 and the refrigerant through the cooling passage 32. In the present embodiment, the cooling unit 30 includes, for example, a cooling passage 32 formed so that the outer peripheral surface of the cooling passage 32 directly contacts the housing of the HV device 31. The cooling passage 32 has a portion adjacent to the housing of the HV device 31. In this part, heat exchange can be performed between the refrigerant flowing through the cooling passage 32 and the HV equipment 31.

HV機器31は、蒸気圧縮式冷凍サイクル10の熱交換器14と膨張弁16との間を流通する冷媒の経路の一部を形成する冷却通路32の外周面に直接接続されて、冷却される。冷却通路32の外部にHV機器31が配置されるので、冷却通路32の内部を流通する冷媒の流れにHV機器31が干渉することはない。そのため、蒸気圧縮式冷凍サイクル10の圧力損失は増大しないので、圧縮機12の動力を増大させることなく、HV機器31を冷却することができる。   The HV equipment 31 is directly connected to the outer peripheral surface of the cooling passage 32 that forms part of the refrigerant path that flows between the heat exchanger 14 and the expansion valve 16 of the vapor compression refrigeration cycle 10 and is cooled. . Since the HV device 31 is disposed outside the cooling passage 32, the HV device 31 does not interfere with the flow of the refrigerant flowing through the cooling passage 32. Therefore, since the pressure loss of the vapor compression refrigeration cycle 10 does not increase, the HV equipment 31 can be cooled without increasing the power of the compressor 12.

代替的には、冷却部30は、HV機器31と冷却通路32との間に介在して配置された任意の公知のヒートパイプを備えてもよい。この場合HV機器31は、冷却通路32の外周面にヒートパイプを介して接続され、HV機器31から冷却通路32へヒートパイプを経由して熱伝達することにより、冷却される。HV機器31をヒートパイプの加熱部とし冷却通路32をヒートパイプの冷却部とすることで、冷却通路32とHV機器31との間の熱伝達効率が高められるので、HV機器31の冷却効率を向上できる。たとえばウィック式のヒートパイプを使用することができる。   Alternatively, the cooling unit 30 may include any known heat pipe disposed between the HV device 31 and the cooling passage 32. In this case, the HV device 31 is connected to the outer peripheral surface of the cooling passage 32 via a heat pipe, and is cooled by transferring heat from the HV device 31 to the cooling passage 32 via the heat pipe. Since the heat transfer efficiency between the cooling passage 32 and the HV equipment 31 can be increased by using the HV equipment 31 as the heat pipe heating section and the cooling passage 32 as the heat pipe cooling section, the cooling efficiency of the HV equipment 31 can be increased. It can be improved. For example, a wick-type heat pipe can be used.

ヒートパイプによってHV機器31から冷却通路32へ確実に熱伝達することができるので、HV機器31と冷却通路32との間に距離があってもよく、HV機器31に冷却通路32を接触させるために冷却通路32を複雑に配置する必要がない。その結果、HV機器31の配置の自由度を向上することができる。   Since heat can be reliably transferred from the HV device 31 to the cooling passage 32 by the heat pipe, there may be a distance between the HV device 31 and the cooling passage 32, and the cooling passage 32 is brought into contact with the HV device 31. It is not necessary to arrange the cooling passage 32 in a complicated manner. As a result, the degree of freedom of arrangement of the HV device 31 can be improved.

熱交換器14と膨張弁16との間を冷媒が流通する経路として、冷却部30を通過する冷媒の経路である冷媒通路33〜36および冷却通路32と、冷却部30を通過しない冷媒の経路である冷媒通路23aと、が並列に設けられる。冷媒通路33〜36および冷却通路32を含むHV機器31の冷却系は、冷媒通路23aと並列に接続されている。熱交換器14と膨張弁16との間を冷却部30を経由せずに流れる冷媒の経路と冷却部30を経由して流れる冷媒の経路とを並列に設け、一部の冷媒のみを冷媒通路33〜36へ流通させることで、熱交換器14と膨張弁16との間を流れる冷媒の一部のみが冷却部30へ流れる。   As a path through which the refrigerant flows between the heat exchanger 14 and the expansion valve 16, the refrigerant paths 33 to 36 and the cooling path 32 that are paths of the refrigerant that passes through the cooling unit 30, and the path of the refrigerant that does not pass through the cooling unit 30 The refrigerant passage 23a is provided in parallel. The cooling system of the HV device 31 including the refrigerant passages 33 to 36 and the cooling passage 32 is connected in parallel with the refrigerant passage 23a. A refrigerant path that flows between the heat exchanger 14 and the expansion valve 16 without passing through the cooling unit 30 and a refrigerant path that flows through the cooling unit 30 are provided in parallel, and only a part of the refrigerant passes through the refrigerant path. By allowing the refrigerant to flow to 33 to 36, only a part of the refrigerant flowing between the heat exchanger 14 and the expansion valve 16 flows to the cooling unit 30.

冷却部30においてHV機器31を冷却するために必要な量の冷媒を冷媒通路33〜36へ流通させ、全ての冷媒が冷却部30に流れない。したがって、HV機器31は適切に冷却され、HV機器31が過冷却されることを防止できる。また、冷媒通路33〜36および冷却通路32を含むHV機器31の冷却系への冷媒の流通に係る、圧力損失を低減することができる。それに伴い、冷媒を循環させるための圧縮機12の運転に必要な消費電力を低減することができる。   An amount of refrigerant necessary for cooling the HV device 31 in the cooling unit 30 is circulated through the refrigerant passages 33 to 36, and all the refrigerant does not flow to the cooling unit 30. Therefore, the HV device 31 is appropriately cooled, and the HV device 31 can be prevented from being overcooled. Moreover, the pressure loss which concerns on the distribution | circulation of the refrigerant | coolant to the cooling system of the HV apparatus 31 containing the refrigerant paths 33-36 and the cooling path 32 can be reduced. Accordingly, it is possible to reduce the power consumption necessary for the operation of the compressor 12 for circulating the refrigerant.

HV機器31は、電力の授受によって発熱する電気機器を含む。電気機器は、たとえば、直流電力を交流電力に変換するためのインバータ、回転電機であるモータジェネレータ、蓄電装置であるバッテリ、バッテリの電圧を昇圧させるためのコンバータ、バッテリの電圧を降圧するためのDC/DCコンバータなどの、少なくともいずれか一つを含む。バッテリは、リチウムイオン電池あるいはニッケル水素電池等の二次電池である。バッテリに代えてキャパシタが用いられてもよい。   The HV device 31 includes an electrical device that generates heat when power is transferred. The electrical equipment includes, for example, an inverter for converting DC power into AC power, a motor generator that is a rotating electrical machine, a battery that is a power storage device, a converter that boosts the voltage of the battery, and a DC that steps down the voltage of the battery. Including at least one of DC / DC converters and the like. The battery is a secondary battery such as a lithium ion battery or a nickel metal hydride battery. A capacitor may be used instead of the battery.

熱交換器18は、空気が流通するダクト90の内部に配置されている。熱交換器18は、冷媒とダクト90内を流通する空調用空気との間で熱交換して、空調用空気の温度を調節する。ダクト90は、ダクト90に空調用空気が流入する入口であるダクト入口91と、ダクト90から空調用空気が流出する出口であるダクト出口92と、を有する。ダクト90の内部の、ダクト入口91の近傍には、ファン93が配置されている。   The heat exchanger 18 is disposed inside a duct 90 through which air flows. The heat exchanger 18 exchanges heat between the refrigerant and the air-conditioning air flowing through the duct 90 to adjust the temperature of the air-conditioning air. The duct 90 has a duct inlet 91 that is an inlet through which air-conditioning air flows into the duct 90, and a duct outlet 92 that is an outlet through which air-conditioning air flows out from the duct 90. A fan 93 is disposed in the vicinity of the duct inlet 91 inside the duct 90.

ファン93が駆動することにより、ダクト90内に空気が流通する。ファン93が稼働すると、ダクト入口91を経由してダクト90の内部へ空調用空気が流入する。ダクト90へ流入する空気は、外気であってもよく、車両の室内の空気であってもよい。図1中の矢印95は、熱交換器18を経由して流通し、蒸気圧縮式冷凍サイクル10の冷媒と熱交換する空調用空気の流れを示す。冷房運転時には、熱交換器18において空調用空気が冷却され、冷媒は空調用空気からの熱伝達を受けて加熱される。暖房運転時には、熱交換器18において空調用空気が加熱され、冷媒は空調用空気へ熱伝達することにより冷却される。矢印96は、熱交換器18で温度調節され、ダクト出口92を経由してダクト90から流出する、空調用空気の流れを示す。   When the fan 93 is driven, air flows in the duct 90. When the fan 93 is in operation, air for air conditioning flows into the duct 90 via the duct inlet 91. The air flowing into the duct 90 may be outside air or air in the vehicle interior. An arrow 95 in FIG. 1 indicates the flow of air-conditioning air that flows through the heat exchanger 18 and exchanges heat with the refrigerant of the vapor compression refrigeration cycle 10. During the cooling operation, the air-conditioning air is cooled in the heat exchanger 18, and the refrigerant is heated by receiving heat transfer from the air-conditioning air. During the heating operation, the air-conditioning air is heated in the heat exchanger 18, and the refrigerant is cooled by transferring heat to the air-conditioning air. An arrow 96 indicates the flow of air-conditioning air that is temperature-adjusted by the heat exchanger 18 and flows out of the duct 90 via the duct outlet 92.

冷房運転時には、図1に示すA点、B点、C点、D点およびE点を順に通過するように蒸気圧縮式冷凍サイクル10内を冷媒が流れ、圧縮機12と熱交換器14と膨張弁16と熱交換器18とに冷媒が循環する。冷媒は、圧縮機12と熱交換器14と膨張弁16と熱交換器18とが冷媒通路21〜26によって順次接続された冷媒循環流路を通って、蒸気圧縮式冷凍サイクル10内を循環する。   During the cooling operation, the refrigerant flows through the vapor compression refrigeration cycle 10 so as to pass through the points A, B, C, D, and E shown in FIG. 1 in order, and the compressor 12, the heat exchanger 14, and the expansion The refrigerant circulates between the valve 16 and the heat exchanger 18. The refrigerant circulates in the vapor compression refrigeration cycle 10 through a refrigerant circulation passage in which the compressor 12, the heat exchanger 14, the expansion valve 16, and the heat exchanger 18 are sequentially connected by refrigerant passages 21 to 26. .

図2は、実施の形態1の蒸気圧縮式冷凍サイクル10の冷房運転時の冷媒の状態を示すモリエル線図である。図2中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図2中には、圧縮機12から熱交換器14を経由して冷媒通路23へ流入し、HV機器31を冷却し、冷媒通路23へ戻り膨張弁16、熱交換器18を経由して圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,C,DおよびE点)における冷媒の熱力学状態が示される。   FIG. 2 is a Mollier diagram showing the state of the refrigerant during the cooling operation of the vapor compression refrigeration cycle 10 of the first embodiment. The horizontal axis in FIG. 2 represents the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis represents the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. In FIG. 2, the refrigerant flows into the refrigerant passage 23 from the compressor 12 via the heat exchanger 14, cools the HV equipment 31, returns to the refrigerant passage 23, and compresses via the expansion valve 16 and the heat exchanger 18. Returning to the machine 12, the thermodynamic state of the refrigerant at each point in the vapor compression refrigeration cycle 10 (ie, points A, B, C, D and E) is shown.

図2に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は熱交換器14へと流れる。   As shown in FIG. 2, the superheated vapor refrigerant (point A) sucked into the compressor 12 is adiabatically compressed along the isentropic line in the compressor 12. As the compressor is compressed, the pressure and temperature of the refrigerant rise and become high-temperature and high-pressure superheated steam with a high degree of superheat (point B), and the refrigerant flows to the heat exchanger 14.

熱交換器14へ入った高圧の冷媒蒸気は、熱交換器14において外気と熱交換して冷却される。冷媒は、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(C点)。熱交換器14は、圧縮機12において圧縮された過熱状態冷媒ガスを、外部媒体へ等圧的に放熱させて冷媒液とする。圧縮機12から吐出された気相冷媒は、熱交換器14において周囲に放熱し冷却されることによって、凝縮(液化)する。熱交換器14における熱交換によって、冷媒の温度は低下し冷媒は液化する。   The high-pressure refrigerant vapor entering the heat exchanger 14 is cooled by exchanging heat with the outside air in the heat exchanger 14. Refrigerant changes from superheated steam to dry steam with constant pressure, releases latent heat of condensation, gradually liquefies and becomes wet steam in a gas-liquid mixed state, becomes saturated liquid when all of the refrigerant condenses, and further sensible heat To become supercooled liquid (point C). The heat exchanger 14 causes the superheated refrigerant gas compressed in the compressor 12 to dissipate heat to the external medium in an isobaric manner to obtain a refrigerant liquid. The gas-phase refrigerant discharged from the compressor 12 is condensed (liquefied) by releasing heat to the surroundings in the heat exchanger 14 and being cooled. By the heat exchange in the heat exchanger 14, the temperature of the refrigerant decreases and the refrigerant liquefies.

熱交換器14で液化した高圧の液相冷媒は、冷媒通路33、三方弁42および冷媒通路34を順に経由して冷却部30へ流れ、HV機器31を冷却する。HV機器31との熱交換により、冷媒の過冷却度が小さくなる。つまり、HV機器31から顕熱を受けて過冷却液の状態の冷媒の温度が上昇し、液冷媒の飽和温度に近づき、飽和温度をわずかに下回る温度にまで加熱される(D点)。その後冷媒は、冷媒通路35,三方弁46および冷媒通路36を順に経由して冷媒通路23へ戻り、冷媒通路23を経由して膨張弁16に流入する。膨張弁16を通過することで、過冷却液状態の冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(E点)。   The high-pressure liquid-phase refrigerant liquefied by the heat exchanger 14 flows to the cooling unit 30 via the refrigerant passage 33, the three-way valve 42, and the refrigerant passage 34 in order, and cools the HV equipment 31. The degree of supercooling of the refrigerant is reduced by heat exchange with the HV device 31. That is, the temperature of the refrigerant in the supercooled liquid state rises upon receiving sensible heat from the HV device 31, approaches the saturation temperature of the liquid refrigerant, and is heated to a temperature slightly below the saturation temperature (point D). Thereafter, the refrigerant returns to the refrigerant passage 23 via the refrigerant passage 35, the three-way valve 46 and the refrigerant passage 36 in order, and flows into the expansion valve 16 via the refrigerant passage 23. By passing through the expansion valve 16, the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy of the refrigerant does not change, the temperature and pressure are reduced, and the low temperature and low pressure gas-liquid mixed vapor is obtained ( E point).

膨張弁16から出た湿り蒸気状態の冷媒は、冷媒通路24を経由して熱交換器18へ流入する。熱交換器18のチューブ内には、湿り蒸気状態の冷媒が流入する。冷媒は、熱交換器18のチューブ内を流通する際に、フィンを経由して空調用空気の熱を蒸発潜熱として吸収することによって、等圧のまま蒸発する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となる(A点)。冷媒は、熱交換器18において周囲から吸熱し加熱される。気化した冷媒は、冷媒通路25を経由して四方弁13へ流れ、さらに冷媒通路26を経由して圧縮機12に吸入される。圧縮機12は、熱交換器18から流通する冷媒を圧縮する。冷媒はこのようなサイクルに従って、圧縮、凝縮、絞り膨張、蒸発の状態変化を連続的に繰り返す。   The wet steam refrigerant that has flowed out of the expansion valve 16 flows into the heat exchanger 18 via the refrigerant passage 24. A wet steam refrigerant flows into the tube of the heat exchanger 18. When the refrigerant flows through the tube of the heat exchanger 18, it absorbs the heat of the air-conditioning air as a latent heat of evaporation via the fins, and evaporates at a constant pressure. When all the refrigerants are dry and become saturated vapor, the temperature of the refrigerant vapor further rises due to sensible heat and becomes superheated vapor (point A). The refrigerant absorbs heat from the surroundings in the heat exchanger 18 and is heated. The vaporized refrigerant flows to the four-way valve 13 via the refrigerant passage 25 and further sucked into the compressor 12 via the refrigerant passage 26. The compressor 12 compresses the refrigerant flowing from the heat exchanger 18. In accordance with such a cycle, the refrigerant continuously repeats the compression, condensation, throttle expansion, and evaporation state changes.

なお、上述した蒸気圧縮式冷凍サイクルの説明では、理論冷凍サイクルについて説明しているが、実際の蒸気圧縮式冷凍サイクル10では、圧縮機12における損失、冷媒の圧力損失および熱損失を考慮する必要があるのは勿論である。   In the above description of the vapor compression refrigeration cycle, the theoretical refrigeration cycle is described. However, in the actual vapor compression refrigeration cycle 10, it is necessary to consider the loss in the compressor 12, the pressure loss of the refrigerant, and the heat loss. Of course there is.

冷房運転時に、熱交換器18は、その内部を流通する霧状冷媒が気化することによって、熱交換器18に接触するように導入された周囲の空気の熱を吸収する。熱交換器18は、膨張弁16によって絞り膨張され減圧された低温低圧の冷媒を用いて、冷媒の湿り蒸気が蒸発して冷媒ガスとなる際の気化熱を、車両の室内へ流通する空調用空気から吸収して、車両の室内の冷房を行なう。熱が熱交換器18に吸収されることによって温度が低下した空調用空気が車両の室内に流入することによって、車両の室内の冷房が行なわれる。   During the cooling operation, the heat exchanger 18 absorbs the heat of ambient air introduced so as to come into contact with the heat exchanger 18 by vaporizing the mist refrigerant flowing through the heat exchanger 18. The heat exchanger 18 is used for air conditioning in which the low-temperature and low-pressure refrigerant that has been expanded by the expansion valve 16 and reduced in pressure is used to circulate heat of vaporization when the refrigerant's wet vapor evaporates into refrigerant gas into the vehicle interior. Absorbs from the air and cools the interior of the vehicle. Air-conditioning air whose temperature has been reduced by heat being absorbed by the heat exchanger 18 flows into the vehicle compartment, thereby cooling the vehicle compartment.

蒸気圧縮式冷凍サイクル10の運転中に、冷媒は、熱交換器18において気化熱を空調用空気から吸収して、車室内の冷房を行なう。加えて、熱交換器14から出た高圧の液冷媒が冷却部30へ流通し、HV機器31と熱交換することでHV機器31を冷却する。冷却装置1は、車両に搭載された発熱源であるHV機器31を、車両の室内の空調用の蒸気圧縮式冷凍サイクル10を利用して、冷却する。なお、HV機器31を冷却するために必要とされる温度は、少なくともHV機器31の温度範囲として目標となる温度範囲の上限値よりも低い温度であることが望ましい。   During the operation of the vapor compression refrigeration cycle 10, the refrigerant absorbs heat of vaporization from the air-conditioning air in the heat exchanger 18 and cools the passenger compartment. In addition, the high-pressure liquid refrigerant output from the heat exchanger 14 flows to the cooling unit 30 and heat-exchanges with the HV device 31 to cool the HV device 31. The cooling device 1 cools the HV equipment 31 that is a heat source mounted on the vehicle by using a vapor compression refrigeration cycle 10 for air conditioning in the vehicle interior. Note that the temperature required for cooling the HV device 31 is desirably at least lower than the upper limit value of the target temperature range as the temperature range of the HV device 31.

図1に戻って、冷却装置1は、流量調整弁51を備える。流量調整弁51は、熱交換器14と膨張弁16との間の冷媒通路23の一部を形成する冷媒通路23aに配置されている。流量調整弁51は、その弁開度を変動させ、冷媒通路23aを流れる冷媒の圧力損失を増減させることにより、冷媒通路23aを流れる冷媒の流量と、冷媒通路33〜36および冷却通路32を流れる冷媒の流量と、を任意に調節する。   Returning to FIG. 1, the cooling device 1 includes a flow rate adjustment valve 51. The flow rate adjusting valve 51 is disposed in a refrigerant passage 23 a that forms a part of the refrigerant passage 23 between the heat exchanger 14 and the expansion valve 16. The flow rate adjusting valve 51 changes the valve opening, and increases or decreases the pressure loss of the refrigerant flowing through the refrigerant passage 23a, thereby flowing through the refrigerant flow rate through the refrigerant passage 23a, the refrigerant passages 33 to 36, and the cooling passage 32. The flow rate of the refrigerant is arbitrarily adjusted.

たとえば、流量調整弁51を全閉にして弁開度を0%にすると、熱交換器14と膨張弁16との間を流れる冷媒の全量が冷媒通路33〜36および冷却通路32へ流入する。流量調整弁51の弁開度を大きくすれば、熱交換器14と膨張弁16との間を流れる冷媒のうち、冷媒通路23aを経由して流れる流量が大きくなり、冷媒通路33〜36および冷却通路32を経由して流れHV機器31を冷却する冷媒の流量が小さくなる。流量調整弁51の弁開度を小さくすれば、熱交換器14と膨張弁16との間を流れる冷媒のうち、冷媒通路23aを経由して流れる流量が小さくなり、冷媒通路33〜36および冷却通路32を経由して流れHV機器31を冷却する冷媒の流量が大きくなる。   For example, when the flow rate adjustment valve 51 is fully closed and the valve opening degree is set to 0%, the entire amount of refrigerant flowing between the heat exchanger 14 and the expansion valve 16 flows into the refrigerant passages 33 to 36 and the cooling passage 32. If the valve opening degree of the flow rate adjusting valve 51 is increased, the flow rate of the refrigerant flowing between the heat exchanger 14 and the expansion valve 16 through the refrigerant passage 23a increases, and the refrigerant passages 33 to 36 and the cooling passages are cooled. The flow rate of the refrigerant that flows through the passage 32 and cools the HV equipment 31 is reduced. If the valve opening degree of the flow rate adjusting valve 51 is reduced, the flow rate flowing through the refrigerant passage 23a among the refrigerant flowing between the heat exchanger 14 and the expansion valve 16 is reduced, and the refrigerant passages 33 to 36 and the cooling passages are cooled. The flow rate of the refrigerant that flows through the passage 32 and cools the HV equipment 31 increases.

流量調整弁51の弁開度を大きくするとHV機器31を冷却する冷媒の流量が小さくなり、HV機器31の冷却能力が低下する。流量調整弁51の弁開度を小さくするとHV機器31を冷却する冷媒の流量が大きくなり、HV機器31の冷却能力が向上する。流量調整弁51を使用して、冷却部30に流れる冷媒の量を最適に調節できるので、HV機器31の過冷却を確実に防止することができ、加えて、冷媒通路33〜36および冷却通路32の冷媒の流通に係る圧力損失および冷媒を循環させるための圧縮機12の消費電力を、確実に低減することができる。   When the valve opening degree of the flow rate adjusting valve 51 is increased, the flow rate of the refrigerant that cools the HV device 31 is decreased, and the cooling capacity of the HV device 31 is decreased. When the valve opening degree of the flow rate adjusting valve 51 is reduced, the flow rate of the refrigerant that cools the HV device 31 is increased, and the cooling capacity of the HV device 31 is improved. Since the amount of the refrigerant flowing through the cooling unit 30 can be optimally adjusted using the flow rate adjusting valve 51, it is possible to reliably prevent overcooling of the HV equipment 31, and in addition, the refrigerant passages 33 to 36 and the cooling passage The pressure loss associated with the circulation of the 32 refrigerant and the power consumption of the compressor 12 for circulating the refrigerant can be reliably reduced.

冷却装置1は、第一連通路としての冷媒通路41を備える。冷媒通路41の一端は、圧縮機12と熱交換器14との間の冷媒の経路である冷媒通路22に接続されている。冷媒通路41が接続されるので、冷媒通路22は、冷媒通路22と冷媒通路41との接続部位よりも四方弁13に近接する側の冷媒通路22aと、当該接続部位よりも熱交換器14に近接する側の冷媒通路22bと、に二分割されている。冷媒通路41の他端は、三方弁42に接続されている。冷媒通路41は、冷却部30へ冷媒を流通させる第二通路のうち、冷却部30に対し熱交換器14に近接する側の冷媒の経路である冷媒通路33,34に、三方弁42を介して接続されている。冷媒通路41は、冷媒通路22と冷媒通路33,34とを連通する。   The cooling device 1 includes a refrigerant passage 41 as a first series passage. One end of the refrigerant passage 41 is connected to the refrigerant passage 22 which is a refrigerant path between the compressor 12 and the heat exchanger 14. Since the refrigerant passage 41 is connected, the refrigerant passage 22 is connected to the refrigerant passage 22a closer to the four-way valve 13 than the connection portion between the refrigerant passage 22 and the refrigerant passage 41, and to the heat exchanger 14 than the connection portion. The refrigerant passage 22b is divided into two adjacent parts. The other end of the refrigerant passage 41 is connected to the three-way valve 42. The refrigerant passage 41 is connected to the refrigerant passages 33 and 34, which are refrigerant paths closer to the heat exchanger 14 with respect to the cooling unit 30, of the second passage through which the refrigerant flows to the cooling unit 30 via the three-way valve 42. Connected. The refrigerant passage 41 communicates the refrigerant passage 22 with the refrigerant passages 33 and 34.

冷媒通路41には、膨張弁47が設けられている。膨張弁47は、膨張弁16と同様に、冷媒を絞り膨張させ、冷媒の比エンタルピーは変化させずに冷媒の温度と圧力とを低下させる。膨張弁47は、第一連通路に配置されている。   An expansion valve 47 is provided in the refrigerant passage 41. Like the expansion valve 16, the expansion valve 47 expands and expands the refrigerant, and reduces the temperature and pressure of the refrigerant without changing the specific enthalpy of the refrigerant. The expansion valve 47 is disposed in the first series passage.

冷却装置1は、第二連通路を構成する冷媒通路43,45および膨張弁44を備える。
冷媒通路43と冷媒通路45とは、膨張弁44を介して連通している。減圧器(膨張弁16)とは異なる他の減圧器としての膨張弁44は、膨張弁16と同様に、冷媒を絞り膨張させ、冷媒の比エンタルピーは変化させずに冷媒の温度と圧力とを低下させる。膨張弁44は、第二連通路に配置されている。
The cooling device 1 includes refrigerant passages 43 and 45 and an expansion valve 44 that constitute a second communication passage.
The refrigerant passage 43 and the refrigerant passage 45 communicate with each other via an expansion valve 44. The expansion valve 44 as another decompressor different from the decompressor (expansion valve 16), like the expansion valve 16, expands and expands the refrigerant, and adjusts the temperature and pressure of the refrigerant without changing the specific enthalpy of the refrigerant. Reduce. The expansion valve 44 is disposed in the second communication path.

冷媒通路43の一端は膨張弁44に接続され、他端は膨張弁16と熱交換器18との間の冷媒の経路である冷媒通路24に接続される。冷媒通路43が接続されるので、冷媒通路24は、冷媒通路24と冷媒通路43との接続部位よりも膨張弁16に近接する側の冷媒通路24aと、当該接続部位よりも熱交換器18に近接する側の冷媒通路24bと、に二分割されている。   One end of the refrigerant passage 43 is connected to the expansion valve 44, and the other end is connected to the refrigerant passage 24 that is a refrigerant path between the expansion valve 16 and the heat exchanger 18. Since the refrigerant passage 43 is connected, the refrigerant passage 24 is connected to the refrigerant passage 24a closer to the expansion valve 16 than the connection portion between the refrigerant passage 24 and the refrigerant passage 43, and to the heat exchanger 18 than the connection portion. The refrigerant passage 24b is divided into two, which are adjacent to each other.

冷媒通路45の一端は膨張弁44に接続され、他端は三方弁46に接続される。冷媒通路45は、冷却部30へ冷媒を流通させる第二通路のうち、冷却部30に対し膨張弁16に近接する側の冷媒の経路である冷媒通路35,36に、三方弁46を介して接続されている。冷媒通路43,45および膨張弁44を含む第二連通路は、冷媒通路24と冷媒通路35,36とを連通する。   One end of the refrigerant passage 45 is connected to the expansion valve 44, and the other end is connected to the three-way valve 46. The refrigerant passage 45 is connected to the refrigerant passages 35 and 36, which are refrigerant paths close to the expansion valve 16 with respect to the cooling unit 30, of the second passage through which the refrigerant flows to the cooling unit 30 via the three-way valve 46. It is connected. The second communication passage including the refrigerant passages 43 and 45 and the expansion valve 44 communicates the refrigerant passage 24 and the refrigerant passages 35 and 36.

図3は、四方弁13を切り換えた状態の冷却装置1を示す模式図である。図1と図3とを比較して、四方弁13が90°回転することにより、圧縮機12出口から四方弁13へ流入した冷媒が四方弁13を出る経路が切り換えられている。図1に示す冷房運転時には、圧縮機12において圧縮された冷媒は、圧縮機12から熱交換器14へ向かって流れる。一方、図3に示す暖房運転時には、圧縮機12において圧縮された冷媒は、圧縮機12から熱交換器18へ向かって流れる。   FIG. 3 is a schematic diagram showing the cooling device 1 in a state where the four-way valve 13 is switched. Comparing FIG. 1 and FIG. 3, when the four-way valve 13 rotates by 90 °, the path from which the refrigerant flowing into the four-way valve 13 from the outlet of the compressor 12 exits the four-way valve 13 is switched. During the cooling operation shown in FIG. 1, the refrigerant compressed in the compressor 12 flows from the compressor 12 toward the heat exchanger 14. On the other hand, during the heating operation shown in FIG. 3, the refrigerant compressed in the compressor 12 flows from the compressor 12 toward the heat exchanger 18.

図1に示す冷房運転時には、第一の弁としての三方弁42は、冷媒通路33と冷媒通路34とを連通し、冷媒通路41と冷媒通路33,34とは連通しないように、開閉を設定される。第二の弁としての三方弁46は、冷媒通路35と冷媒通路36とを連通し、冷媒通路45と冷媒通路35,36とは連通しないように、開閉を設定される。冷房運転時に三方弁42は、冷却部30へ流通する冷媒の経路である第二通路に含まれる冷媒通路33,34と、第一連通路としての冷媒通路41と、の間の冷媒の流通を禁止する。冷房運転時に三方弁46は、第二通路に含まれる冷媒通路35,36と、第二連通路に含まれる冷媒通路43,45と、の間の冷媒の流通を禁止する。   During the cooling operation shown in FIG. 1, the three-way valve 42 as the first valve is set to open and close so that the refrigerant passage 33 and the refrigerant passage 34 communicate with each other and the refrigerant passage 41 and the refrigerant passages 33 and 34 do not communicate with each other. Is done. The three-way valve 46 as the second valve is set to open and close so that the refrigerant passage 35 and the refrigerant passage 36 communicate with each other, and the refrigerant passage 45 and the refrigerant passages 35 and 36 do not communicate with each other. During the cooling operation, the three-way valve 42 allows the refrigerant to flow between the refrigerant passages 33 and 34 included in the second passage, which is the passage of the refrigerant flowing to the cooling unit 30, and the refrigerant passage 41 as the first series passage. Ban. During the cooling operation, the three-way valve 46 prohibits the circulation of the refrigerant between the refrigerant passages 35 and 36 included in the second passage and the refrigerant passages 43 and 45 included in the second communication passage.

一方、図3に示す暖房運転時には、三方弁42は、冷媒通路34と冷媒通路41とを連通し、冷媒通路33と冷媒通路34,41とを連通しないように、開閉を切り換えられる。三方弁46は、冷媒通路35と冷媒通路45とを連通し、冷媒通路36と冷媒通路35,45とを連通しないように、開閉を切り換えられる。暖房運転時に三方弁42は、冷媒通路34と冷媒通路41との間の冷媒の流通を許容する。暖房運転時に三方弁46は、冷媒通路35と冷媒通路43,45との間の冷媒の流通を許容する。   On the other hand, during the heating operation shown in FIG. 3, the three-way valve 42 is switched between open and closed so that the refrigerant passage 34 and the refrigerant passage 41 communicate with each other and the refrigerant passage 33 and the refrigerant passages 34 and 41 do not communicate with each other. The three-way valve 46 can be switched between open and closed so that the refrigerant passage 35 and the refrigerant passage 45 communicate with each other and the refrigerant passage 36 and the refrigerant passages 35 and 45 do not communicate with each other. During the heating operation, the three-way valve 42 allows the refrigerant to flow between the refrigerant passage 34 and the refrigerant passage 41. During the heating operation, the three-way valve 46 allows the refrigerant to flow between the refrigerant passage 35 and the refrigerant passages 43 and 45.

そのため暖房運転時には、圧縮機12で断熱圧縮され熱交換器18で空調用空気と熱交換した冷媒は、冷媒通路24bから冷媒通路24aと冷媒通路43との二方向へ分岐して流入する。冷媒通路24aへ流入した冷媒は、膨張弁16を通過して冷媒通路23を流通し、熱交換器14を経由して冷媒通路22bへ至る。冷媒通路43へ流入した冷媒は、膨張弁44を通過して冷媒通路45,35を流通し、冷却部30を経由して冷媒通路34を流通し、三方弁42から冷媒通路41へ至る。冷媒通路22bを流れる冷媒と冷媒通路41を流れる冷媒とは、冷媒通路22,41の接続部において合流し、冷媒通路22aへ流通する。   Therefore, during the heating operation, the refrigerant adiabatically compressed by the compressor 12 and heat-exchanged with the air-conditioning air by the heat exchanger 18 branches from the refrigerant passage 24b into the refrigerant passage 24a and the refrigerant passage 43 and flows in. The refrigerant that has flowed into the refrigerant passage 24 a passes through the expansion valve 16, flows through the refrigerant passage 23, and reaches the refrigerant passage 22 b through the heat exchanger 14. The refrigerant that has flowed into the refrigerant passage 43 passes through the expansion valve 44 and flows through the refrigerant passages 45 and 35, passes through the refrigerant passage 34 via the cooling unit 30, and reaches the refrigerant passage 41 from the three-way valve 42. The refrigerant flowing through the refrigerant passage 22b and the refrigerant flowing through the refrigerant passage 41 merge at the connection portion of the refrigerant passages 22 and 41 and flow to the refrigerant passage 22a.

つまり、暖房運転時には、図3に示すA点、B点、E点、D点、C点およびJ点を順に通過するように蒸気圧縮式冷凍サイクル10内を冷媒が流れ、圧縮機12と熱交換器18と膨張弁44と冷却部30とに冷媒が循環し、かつ、図3に示すA点、B点、E点、F点およびG点を順に通過するように冷媒が流れ、圧縮機12と熱交換器18と膨張弁16と熱交換器14とに冷媒が循環する。冷媒は、圧縮機12と熱交換器18と膨張弁44と冷却部30とが順次接続された冷媒循環流路と、圧縮機12と熱交換器18と膨張弁16と熱交換器14とが順次接続された冷媒循環流路と、を通って、蒸気圧縮式冷凍サイクル10内を循環する。   That is, during the heating operation, the refrigerant flows through the vapor compression refrigeration cycle 10 so as to sequentially pass through the points A, B, E, D, C, and J shown in FIG. The refrigerant circulates through the exchanger 18, the expansion valve 44, and the cooling unit 30, and flows through the points A, B, E, F, and G shown in FIG. 12, the refrigerant circulates in the heat exchanger 18, the expansion valve 16, and the heat exchanger 14. The refrigerant includes a refrigerant circulation passage in which the compressor 12, the heat exchanger 18, the expansion valve 44, and the cooling unit 30 are sequentially connected, the compressor 12, the heat exchanger 18, the expansion valve 16, and the heat exchanger 14. It circulates through the vapor compression refrigeration cycle 10 through the sequentially connected refrigerant circulation passages.

図4は、実施の形態1の蒸気圧縮式冷凍サイクル10の暖房運転時の冷媒の状態を示すモリエル線図である。図4中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図4中には、圧縮機12から熱交換器18、膨張弁44および冷却部30を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,D,CおよびJ点)における冷媒の熱力学状態が示される。図4中にはまた、圧縮機12から熱交換器18、膨張弁16および熱交換器14を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,FおよびG点)における冷房の熱力学状態が示される。   FIG. 4 is a Mollier diagram showing the state of the refrigerant during the heating operation of the vapor compression refrigeration cycle 10 of the first embodiment. The horizontal axis in FIG. 4 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. In FIG. 4, each point in the vapor compression refrigeration cycle 10 (that is, A, B) that flows from the compressor 12 through the heat exchanger 18, the expansion valve 44, and the cooling unit 30 in order and returns to the compressor 12. , E, D, C and J points) shows the thermodynamic state of the refrigerant. In FIG. 4, each point in the vapor compression refrigeration cycle 10 (that is, A) flows from the compressor 12 through the heat exchanger 18, the expansion valve 16, and the heat exchanger 14 in order and returns to the compressor 12. , B, E, F and G points) shows the thermodynamic state of the cooling.

図4に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は熱交換器18へと流れる。   As shown in FIG. 4, the superheated vapor refrigerant (point A) sucked into the compressor 12 is adiabatically compressed in the compressor 12 along the isentropic entropy line. As the compressor is compressed, the pressure and temperature of the refrigerant rise and become high-temperature and high-pressure superheated steam with a high degree of superheat (point B), and the refrigerant flows to the heat exchanger 18.

熱交換器18へ入った高圧の冷媒蒸気は、熱交換器18において冷却され、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(E点)。熱交換器18は、圧縮機12において圧縮された過熱状態冷媒ガスを、外部媒体へ等圧的に放熱させて冷媒液とする。圧縮機12から吐出された気相冷媒は、熱交換器18において周囲に放熱し冷却されることによって、凝縮(液化)する。熱交換器18における熱交換によって、冷媒の温度は低下し冷媒は液化する。冷媒は、熱交換器18において周囲へ放熱し冷却される。   The high-pressure refrigerant vapor that has entered the heat exchanger 18 is cooled in the heat exchanger 18, and changes from superheated steam to dry saturated vapor while maintaining the constant pressure, releases latent heat of condensation, gradually liquefies, and wets in a gas-liquid mixed state. When it becomes steam and all of the refrigerant condenses, it becomes a saturated liquid, further releases sensible heat and becomes a supercooled liquid (point E). The heat exchanger 18 causes the superheated refrigerant gas compressed in the compressor 12 to dissipate heat to the external medium in an isobaric manner to obtain a refrigerant liquid. The gas phase refrigerant discharged from the compressor 12 is condensed (liquefied) by releasing heat to the surroundings in the heat exchanger 18 and being cooled. By the heat exchange in the heat exchanger 18, the temperature of the refrigerant is lowered and the refrigerant is liquefied. The refrigerant dissipates heat to the surroundings in the heat exchanger 18 and is cooled.

熱交換器18で液化した高圧の液相冷媒は、冷媒通路24bから冷媒通路24aと冷媒通路43とに分岐する。冷媒通路24aへ流通する一部の液相冷媒は、冷媒通路24aを経由して膨張弁16に流入する。膨張弁16において、過冷却液状態の冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(F点)。膨張弁16において温度が下げられた冷媒は、冷媒通路23を経由して熱交換器14へ流入する。熱交換器14のチューブ内には、湿り蒸気状態の冷媒が流入する。冷媒は、チューブ内を流通する際に、フィンを経由して外気の熱を蒸発潜熱として吸収することによって加熱され、等圧のまま蒸発し、冷媒の乾き度が増大する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となる(G点)。   The high-pressure liquid refrigerant liquefied by the heat exchanger 18 branches from the refrigerant passage 24b to the refrigerant passage 24a and the refrigerant passage 43. A part of the liquid-phase refrigerant flowing into the refrigerant passage 24a flows into the expansion valve 16 through the refrigerant passage 24a. In the expansion valve 16, the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy of the refrigerant does not change, the temperature and pressure decrease, and the mixture becomes wet steam in a low-temperature and low-pressure gas-liquid mixed state (point F). The refrigerant whose temperature has been lowered in the expansion valve 16 flows into the heat exchanger 14 via the refrigerant passage 23. A wet steam refrigerant flows into the tube of the heat exchanger 14. When the refrigerant circulates in the tube, the refrigerant is heated by absorbing the heat of the outside air as latent heat of evaporation via the fins, evaporates while maintaining the equal pressure, and the dryness of the refrigerant increases. When all the refrigerants are dry and become saturated vapor, the refrigerant vapor further rises in temperature due to sensible heat and becomes superheated vapor (point G).

冷媒通路43へ流通する一部の液相冷媒は、冷媒通路43を経由して膨張弁44に流入する。膨張弁44において、過冷却液状態の冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、気液混合状態の湿り蒸気となる(D点)。膨張弁44において温度が下げられた冷媒は、冷媒通路45,35を経由して冷却部30の冷却通路32へ流れ、HV機器31を冷却する。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。HV機器31から潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(C点)。   A part of the liquid-phase refrigerant flowing into the refrigerant passage 43 flows into the expansion valve 44 via the refrigerant passage 43. In the expansion valve 44, the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy of the refrigerant does not change, the temperature and pressure are reduced, and the gas-liquid mixed wet steam is obtained (point D). The refrigerant whose temperature has been lowered in the expansion valve 44 flows into the cooling passage 32 of the cooling unit 30 via the refrigerant passages 45 and 35 and cools the HV equipment 31. By the heat exchange with the HV equipment 31, the refrigerant is heated and the dryness of the refrigerant increases. By receiving latent heat from the HV device 31 and vaporizing a part of the refrigerant, the ratio of saturated vapor contained in the refrigerant in the wet vapor state increases (point C).

冷却部30から出て冷媒通路34を流通する湿り蒸気状態の冷媒は、冷媒通路41を経由して膨張弁47に流入する。膨張弁47において、冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下する(J点)。膨張弁47を通過した後の冷媒の圧力は、膨張弁16を通過して圧力を下げられた後の冷却部30を経由せずに流通する冷媒の圧力と等しくなる。膨張弁47を通過した後の冷媒通路41を流通する湿り蒸気状態の冷媒と、熱交換器14を経由して冷媒通路22bを流通する過熱蒸気状態の冷媒とは、同圧力となる。そのため、冷媒通路41を流通する冷媒と冷媒通路22bを流通する冷媒とは、ともに冷媒通路22aへ流入して混合される。   The wet vapor refrigerant flowing out of the cooling unit 30 and flowing through the refrigerant passage 34 flows into the expansion valve 47 via the refrigerant passage 41. In the expansion valve 47, the refrigerant is throttled and expanded, and the specific enthalpy of the refrigerant does not change, and the temperature and pressure decrease (point J). The pressure of the refrigerant after passing through the expansion valve 47 becomes equal to the pressure of the refrigerant flowing through the cooling valve 30 after passing through the expansion valve 16 and being reduced in pressure. The wet vapor refrigerant flowing through the refrigerant passage 41 after passing through the expansion valve 47 and the superheated vapor refrigerant flowing through the refrigerant passage 22b via the heat exchanger 14 have the same pressure. Therefore, both the refrigerant flowing through the refrigerant passage 41 and the refrigerant flowing through the refrigerant passage 22b flow into the refrigerant passage 22a and are mixed.

混合された冷媒は、図4に示すJ,G点における圧力と等しい圧力を有する。混合された冷媒の比エンタルピーは、冷媒通路22b,41の各々を流通する冷媒の比エンタルピーおよび流量の比によって決まる。たとえば、冷媒通路22b,41を流れる冷媒の流量が相等しければ、混合された冷媒は、J点における比エンタルピーとG点における比エンタルピーとの中間の比エンタルピーを有する(A点)。冷媒通路22aを流通する冷媒は、冷媒通路22b,41を流通する冷媒と等しい圧力を有し、冷媒通路22bを流通する冷媒以下冷媒通路41を流通する冷媒以上の比エンタルピーを有する。   The mixed refrigerant has a pressure equal to the pressure at points J and G shown in FIG. The specific enthalpy of the mixed refrigerant is determined by the specific enthalpy and flow rate ratio of the refrigerant flowing through each of the refrigerant passages 22b and 41. For example, if the flow rates of the refrigerants flowing through the refrigerant passages 22b and 41 are equal, the mixed refrigerant has a specific enthalpy intermediate between the specific enthalpy at the point J and the specific enthalpy at the point G (point A). The refrigerant flowing through the refrigerant passage 22a has the same pressure as the refrigerant flowing through the refrigerant passages 22b and 41, and has a specific enthalpy greater than that of the refrigerant flowing through the refrigerant passage 41 below the refrigerant flowing through the refrigerant passage 22b.

その後冷媒は、四方弁13および冷媒通路26を経由して、圧縮機12に吸入される。圧縮機12は、冷媒通路26から流入する冷媒を圧縮する。冷媒はこのようなサイクルに従って、圧縮、凝縮、絞り膨張、蒸発の状態変化を連続的に繰り返す。   Thereafter, the refrigerant is sucked into the compressor 12 via the four-way valve 13 and the refrigerant passage 26. The compressor 12 compresses the refrigerant flowing from the refrigerant passage 26. In accordance with such a cycle, the refrigerant continuously repeats the compression, condensation, throttle expansion, and evaporation state changes.

暖房運転時に、熱交換器18は、その内部を流通する冷媒蒸気が凝縮することによって、熱交換器18に接触するように導入された周囲の空気へ熱を加える。熱交換器18は、圧縮機12で断熱圧縮された高温高圧の冷媒を用いて、冷媒ガスが凝縮して冷媒の湿り蒸気となる際の凝縮熱を、車両の室内へ流通する空調用空気へ放出して、車両の室内の暖房を行なう。熱交換器18から熱を受け取ることによって温度が上昇した空調用空気が車両の室内に流入することによって、車両の室内の暖房が行なわれる。   During the heating operation, the heat exchanger 18 adds heat to the ambient air introduced so as to come into contact with the heat exchanger 18 by condensing the refrigerant vapor flowing through the heat exchanger 18. The heat exchanger 18 uses the high-temperature and high-pressure refrigerant that is adiabatically compressed by the compressor 12, and the heat of condensation when the refrigerant gas is condensed into wet refrigerant vapor into the air-conditioning air that circulates in the vehicle interior. To release and heat the interior of the vehicle. Air-conditioning air whose temperature has been increased by receiving heat from the heat exchanger 18 flows into the vehicle interior, thereby heating the vehicle interior.

以上のように、本実施の形態の冷却装置1は、熱交換器18において空調用空気と熱交換することで車両の室内の冷暖房を行なうために設けられた、蒸気圧縮式冷凍サイクル10を備える。冷房運転時と暖房運転時とで蒸気圧縮式冷凍サイクル10内の冷媒の流れる方向を四方弁13を用いて切り換えることにより、一台の熱交換器18を使用して、冷房運転時と暖房運転時との両方の場合に、車両の室内へ流通する空調用空気の温度を適切に調節できる。空調用空気と熱交換する熱交換器を二台配置する必要がないので、冷却装置1のコストを低減することができ、かつ冷却装置1を小型化することができる。   As described above, the cooling device 1 according to the present embodiment includes the vapor compression refrigeration cycle 10 that is provided to heat and cool the vehicle interior by exchanging heat with air-conditioning air in the heat exchanger 18. . By switching the flow direction of the refrigerant in the vapor compression refrigeration cycle 10 during the cooling operation and during the heating operation using the four-way valve 13, the single heat exchanger 18 is used to perform the cooling operation and the heating operation. In both cases, the temperature of the air-conditioning air flowing into the vehicle interior can be adjusted appropriately. Since it is not necessary to arrange two heat exchangers for exchanging heat with air for air conditioning, the cost of the cooling device 1 can be reduced and the cooling device 1 can be downsized.

また冷媒は、冷却部30へ流通し、HV機器31と熱交換することでHV機器31を冷却する。冷却装置1は、車両に搭載された発熱源であるHV機器31を、車両の室内の空調用の蒸気圧縮式冷凍サイクル10を利用して、冷却する。熱交換器18において空調用空気と熱交換することで車両の室内の冷暖房を行なうために設けられた蒸気圧縮式冷凍サイクル10を利用して、HV機器31の冷却が行なわれる。   The refrigerant flows to the cooling unit 30 and cools the HV equipment 31 by exchanging heat with the HV equipment 31. The cooling device 1 cools the HV equipment 31 that is a heat source mounted on the vehicle by using a vapor compression refrigeration cycle 10 for air conditioning in the vehicle interior. The HV equipment 31 is cooled by using the vapor compression refrigeration cycle 10 provided to heat and cool the vehicle interior by exchanging heat with air-conditioning air in the heat exchanger 18.

HV機器31の冷却のために、専用の水循環ポンプまたは冷却ファンなどの冷却機器を設ける必要はない。そのため、HV機器31の冷却装置1のために必要な構成を低減でき、装置構成を単純にできるので、冷却装置1の製造コストを低減することができる。加えて、HV機器31の冷却のためにポンプや冷却ファンなどの動力源を運転する必要がなく、動力源を運転するための消費動力を必要としない。したがって、HV機器31の冷却のための消費動力を低減することができる。   It is not necessary to provide a cooling device such as a dedicated water circulation pump or a cooling fan for cooling the HV device 31. Therefore, the configuration necessary for the cooling device 1 of the HV equipment 31 can be reduced and the device configuration can be simplified, so that the manufacturing cost of the cooling device 1 can be reduced. In addition, there is no need to operate a power source such as a pump or a cooling fan for cooling the HV equipment 31, and no power consumption is required to operate the power source. Therefore, power consumption for cooling the HV equipment 31 can be reduced.

冷房運転時に冷媒は、膨張弁16の出口において、車両の室内の冷房のために本来必要とされる温度および圧力を有する。熱交換器14は、冷媒を十分に冷却できる程度に、その放熱能力が定められている。膨張弁16を通過した後の冷媒をHV機器31の冷却に使用すると、熱交換器18における空調用空気の冷却能力が減少して車室用の冷房能力が低下するが、本実施の形態の冷却装置1では、熱交換器14において冷媒を十分な過冷却状態にまで冷却し、熱交換器14の出口の高圧の冷媒をHV機器31の冷却に使用する。そのため、車室内の空気を冷却する冷房の能力に影響を与えることなく、HV機器31を冷却することができる。   During the cooling operation, the refrigerant has a temperature and pressure that are originally required for cooling the interior of the vehicle at the outlet of the expansion valve 16. The heat exchanger 14 has a heat dissipating capacity that can sufficiently cool the refrigerant. When the refrigerant that has passed through the expansion valve 16 is used for cooling the HV equipment 31, the cooling capacity of the air-conditioning air in the heat exchanger 18 decreases and the cooling capacity for the passenger compartment decreases. In the cooling device 1, the refrigerant is cooled to a sufficiently supercooled state in the heat exchanger 14, and the high-pressure refrigerant at the outlet of the heat exchanger 14 is used for cooling the HV equipment 31. Therefore, the HV device 31 can be cooled without affecting the cooling capability of cooling the air in the passenger compartment.

熱交換器14の仕様(すなわち、熱交換器14のサイズまたは熱交換性能)は、熱交換器14を通過した後の液相冷媒の温度が車室内の冷房のために必要とされる温度よりも低下するように、定められる。熱交換器14の仕様は、HV機器31を冷却しない場合の蒸気圧縮式冷凍サイクルの熱交換器よりも、冷媒がHV機器31から受け取ると想定される熱量分だけ大きい放熱量を有するように、定められる。このような仕様の熱交換器14を備える冷却装置1は、車両の室内の優れた冷房性能を維持しつつ、圧縮機12の動力を増加させることなく、HV機器31を適切に冷却できる。   The specification of the heat exchanger 14 (that is, the size of the heat exchanger 14 or the heat exchange performance) is such that the temperature of the liquid refrigerant after passing through the heat exchanger 14 is higher than the temperature required for cooling the vehicle interior. Is also determined to decrease. The specification of the heat exchanger 14 is such that the refrigerant has a heat radiation amount that is larger than the heat exchanger of the vapor compression refrigeration cycle when the HV device 31 is not cooled, by the amount of heat that the refrigerant is assumed to receive from the HV device 31. Determined. The cooling device 1 including the heat exchanger 14 having such specifications can appropriately cool the HV equipment 31 without increasing the power of the compressor 12 while maintaining excellent cooling performance in the vehicle interior.

暖房運転時に冷媒は、熱交換器14において外気から吸熱することにより加熱され、また、冷却部30においてHV機器31から吸熱することにより加熱される。冷却部30と熱交換器14との両方で冷媒を加熱することにより、車両の室内の優れた暖房性能を維持しつつ、HV機器31を適切に冷却できる。冷却部30で冷媒が加熱され、HV機器31の廃熱を室内の暖房に有効利用できるので、成績係数が向上し、より効率よく暖房運転することができる。   During the heating operation, the refrigerant is heated by absorbing heat from outside air in the heat exchanger 14, and is heated by absorbing heat from the HV device 31 in the cooling unit 30. By heating the refrigerant in both the cooling unit 30 and the heat exchanger 14, the HV equipment 31 can be appropriately cooled while maintaining excellent heating performance in the vehicle interior. Since the refrigerant is heated in the cooling unit 30 and the waste heat of the HV equipment 31 can be effectively used for indoor heating, the coefficient of performance is improved and the heating operation can be performed more efficiently.

暖房運転時、冷却部30を通過してHV機器31を冷却する冷媒は、冷媒通路41を経由して圧縮機12と熱交換器14との間の冷媒通路22へ直接流通することができ、熱交換器14へは流通しない。冷媒の一部のみが熱交換器14を流通するように冷媒の経路を構成することにより、圧縮機12の吸入圧力が高められる。図4中に示す破線は、冷媒通路41が設けられず全ての冷媒が熱交換器14へ流れる場合の冷媒の熱力学状態を示す。この破線の場合と比較して、本実施の形態では、圧縮機12の入口における冷媒の圧力が上昇している。   During the heating operation, the refrigerant that passes through the cooling unit 30 and cools the HV equipment 31 can directly flow to the refrigerant passage 22 between the compressor 12 and the heat exchanger 14 via the refrigerant passage 41. It does not circulate to the heat exchanger 14. By configuring the refrigerant path so that only a part of the refrigerant flows through the heat exchanger 14, the suction pressure of the compressor 12 is increased. The broken lines shown in FIG. 4 indicate the thermodynamic state of the refrigerant when the refrigerant passage 41 is not provided and all the refrigerant flows to the heat exchanger 14. Compared to the case of this broken line, in the present embodiment, the refrigerant pressure at the inlet of the compressor 12 is increased.

圧縮機12の入口での冷媒の圧力を上昇させることで、圧縮効率の低い条件で圧縮機12が作動することを抑制できるので、暖房運転時の圧縮機12での冷媒の断熱圧縮のための消費動力を低減することができる。これに伴い、圧縮機12の吐出ガス温度を低くできるので、圧縮機12の構成部品や潤滑油の劣化を抑制することができる。   By increasing the pressure of the refrigerant at the inlet of the compressor 12, it is possible to suppress the operation of the compressor 12 under a condition of low compression efficiency. Therefore, for adiabatic compression of the refrigerant in the compressor 12 during heating operation Power consumption can be reduced. Along with this, the discharge gas temperature of the compressor 12 can be lowered, so that deterioration of the components of the compressor 12 and the lubricating oil can be suppressed.

(実施の形態2)
図5は、実施の形態2の冷却装置1の構成を示す模式図である。実施の形態1と異なり、実施の形態2の冷却装置1は、冷却部30と膨張弁16との間の冷媒の経路に配置された、第三熱交換器としての熱交換器15を備える。
(Embodiment 2)
FIG. 5 is a schematic diagram illustrating a configuration of the cooling device 1 according to the second embodiment. Unlike the first embodiment, the cooling device 1 according to the second embodiment includes a heat exchanger 15 as a third heat exchanger disposed in the refrigerant path between the cooling unit 30 and the expansion valve 16.

熱交換器15が設けられるので、熱交換器14と膨張弁16との間の冷媒の経路は、熱交換器15よりも熱交換器14に近接する側の冷媒通路23と、熱交換器15よりも膨張弁16に近接する側の冷媒通路27と、に分割されている。冷媒通路23は、熱交換器14と熱交換器15との間を流通する冷媒の経路として設けられている。冷却通路32を含むHV機器31の冷却系である第二通路は、冷媒通路23の一部を形成する冷媒通路23aと並列に接続されている。   Since the heat exchanger 15 is provided, the refrigerant path between the heat exchanger 14 and the expansion valve 16 has a refrigerant path 23 closer to the heat exchanger 14 than the heat exchanger 15, and the heat exchanger 15. And a refrigerant passage 27 closer to the expansion valve 16. The refrigerant passage 23 is provided as a refrigerant path that circulates between the heat exchanger 14 and the heat exchanger 15. A second passage that is a cooling system of the HV device 31 including the cooling passage 32 is connected in parallel with a refrigerant passage 23 a that forms a part of the refrigerant passage 23.

冷却装置1はまた、飽和液と飽和蒸気とが混合した湿り蒸気の状態の冷媒を気相冷媒と液相冷媒とに分離する、気液分離器60を備える。気液分離器60へ流入する気液二相状態の冷媒は、気液分離器60の内部において気相と液相とに分離される。気液分離器60は、冷媒を液体状の冷媒液62とガス状の冷媒蒸気61とに分離して、一時的に蓄える。気液分離器60の内部では、冷媒液62が下側、冷媒蒸気61が上側に溜まる。   The cooling device 1 also includes a gas-liquid separator 60 that separates a wet vapor refrigerant in which a saturated liquid and a saturated vapor are mixed into a vapor-phase refrigerant and a liquid-phase refrigerant. The gas-liquid two-phase refrigerant flowing into the gas-liquid separator 60 is separated into a gas phase and a liquid phase inside the gas-liquid separator 60. The gas-liquid separator 60 separates the refrigerant into a liquid refrigerant liquid 62 and a gaseous refrigerant vapor 61 and temporarily stores them. Inside the gas-liquid separator 60, the refrigerant liquid 62 accumulates on the lower side and the refrigerant vapor 61 accumulates on the upper side.

熱交換器14と冷却部30との間を流通する冷媒の経路は、熱交換器14に近接する側の冷媒通路33と、冷却部30に近接する側の冷媒通路34と、を含む。冷媒通路33の一方の端部は、気液分離器60の内部の天井側に配置され、冷媒蒸気61中に配置されている。冷媒通路34の一方の端部は、気液分離器60の内部の底側に配置され、冷媒液62中に浸漬されている。   The refrigerant path flowing between the heat exchanger 14 and the cooling unit 30 includes a refrigerant passage 33 on the side close to the heat exchanger 14 and a refrigerant passage 34 on the side close to the cooling unit 30. One end of the refrigerant passage 33 is arranged on the ceiling side inside the gas-liquid separator 60 and is arranged in the refrigerant vapor 61. One end of the refrigerant passage 34 is disposed on the bottom side inside the gas-liquid separator 60 and is immersed in the refrigerant liquid 62.

冷房運転時に、飽和液と飽和蒸気とが混合した気液二相状態の湿り蒸気の状態にある冷媒が熱交換器14から流出し、冷媒通路33を通って気液分離器60へ供給される。気液分離器60は、熱交換器14から流出して冷媒通路33を流通する冷媒を、気相冷媒である冷媒蒸気61と液相冷媒である冷媒液62とに分離する。分離された冷媒液62は、冷媒通路34を経由して、気液分離器60の外部へ流出する。気液分離器60内の液相中に配置された冷媒通路34の端部は、液相冷媒の気液分離器60からの流出口を形成する。気液分離器60の底側から冷媒通路34を経由して、冷媒液62のみが気液分離器60の外部へ送り出される。   During the cooling operation, the refrigerant in the state of gas-liquid two-phase wet steam in which saturated liquid and saturated steam are mixed flows out of the heat exchanger 14 and is supplied to the gas-liquid separator 60 through the refrigerant passage 33. . The gas-liquid separator 60 separates the refrigerant that flows out of the heat exchanger 14 and flows through the refrigerant passage 33 into refrigerant vapor 61 that is a gas-phase refrigerant and refrigerant liquid 62 that is a liquid-phase refrigerant. The separated refrigerant liquid 62 flows out of the gas-liquid separator 60 via the refrigerant passage 34. The end of the refrigerant passage 34 disposed in the liquid phase in the gas-liquid separator 60 forms an outlet for the liquid-phase refrigerant from the gas-liquid separator 60. Only the refrigerant liquid 62 is sent out of the gas-liquid separator 60 from the bottom side of the gas-liquid separator 60 via the refrigerant passage 34.

冷媒通路41の一端は、冷媒通路22に接続されている。冷媒通路41の他端は、気液分離器60の内部の、冷媒蒸気61中に配置されており、冷媒通路41を経由して冷媒蒸気61のみを確実に気液分離器60から流出できる構成とされている。冷媒通路41には、冷媒を絞り膨張させて冷媒の温度と圧力とを低下させる膨張弁47が設けられる。冷媒通路48は、気液分離器60と冷媒通路24aとを連通する。冷媒通路48の一端は、気液分離器60の内部に配置され、冷媒液62中に浸漬されている。冷媒通路48の他端は、冷媒通路24aに接続されている。冷媒通路48には、冷媒通路48への冷媒の流通を許容または禁止する開閉弁49が設けられる。冷房運転時には、膨張弁47と開閉弁49とはいずれも閉状態とされている。   One end of the refrigerant passage 41 is connected to the refrigerant passage 22. The other end of the refrigerant passage 41 is disposed in the refrigerant vapor 61 inside the gas-liquid separator 60, and only the refrigerant vapor 61 can reliably flow out of the gas-liquid separator 60 via the refrigerant passage 41. It is said that. The refrigerant passage 41 is provided with an expansion valve 47 that expands and expands the refrigerant to reduce the temperature and pressure of the refrigerant. The refrigerant passage 48 communicates the gas-liquid separator 60 and the refrigerant passage 24a. One end of the refrigerant passage 48 is disposed inside the gas-liquid separator 60 and is immersed in the refrigerant liquid 62. The other end of the refrigerant passage 48 is connected to the refrigerant passage 24a. The refrigerant passage 48 is provided with an opening / closing valve 49 that allows or prohibits the refrigerant from flowing into the refrigerant passage 48. During the cooling operation, both the expansion valve 47 and the on-off valve 49 are closed.

冷却装置1はさらに、熱交換器14と冷却部30との間の冷媒の経路において、冷媒通路33を連通または非連通の状態にする開閉弁37と、第一減圧器(膨張弁16)とは異なる第二減圧器としての膨張弁38とを備える。膨張弁38は、膨張弁16,44と同様に、冷媒を絞り膨張させ、冷媒の温度と圧力とを低下させる。さらに、膨張弁38をバイパスする冷媒の経路である冷媒通路72と、冷媒通路72上に設けられ冷媒通路72への冷媒の流通を切り換える開閉弁71と、が設けられている。   The cooling device 1 further includes an on-off valve 37 that brings the refrigerant passage 33 into a communication state or a non-communication state in the refrigerant path between the heat exchanger 14 and the cooling unit 30, and a first pressure reducer (expansion valve 16). Comprises an expansion valve 38 as a different second pressure reducer. Similarly to the expansion valves 16 and 44, the expansion valve 38 squeezes and expands the refrigerant to reduce the temperature and pressure of the refrigerant. Furthermore, a refrigerant passage 72 that is a refrigerant path that bypasses the expansion valve 38 and an on-off valve 71 that is provided on the refrigerant passage 72 and switches the refrigerant flow to the refrigerant passage 72 are provided.

冷房運転時には、図5に示すように、開閉弁37は開状態とされ、開閉弁71は閉状態とされる。熱交換器14において凝縮された冷媒は、冷媒通路33、気液分離器60、冷媒通路34、膨張弁38を経由して、冷却部30へ向かって流通する。冷却部30へ流通し、冷却通路32を経由して流れる冷媒は、HV機器31から熱を奪って、HV機器31を冷却させる。冷却部30は、気液分離器60から出て膨張弁38で減圧された低温低圧の冷媒を用いて、HV機器31を冷却する。   During the cooling operation, as shown in FIG. 5, the on-off valve 37 is opened and the on-off valve 71 is closed. The refrigerant condensed in the heat exchanger 14 flows toward the cooling unit 30 via the refrigerant passage 33, the gas-liquid separator 60, the refrigerant passage 34, and the expansion valve 38. The refrigerant flowing to the cooling unit 30 and flowing through the cooling passage 32 takes heat from the HV device 31 and cools the HV device 31. The cooling unit 30 cools the HV equipment 31 using the low-temperature and low-pressure refrigerant that has been discharged from the gas-liquid separator 60 and decompressed by the expansion valve 38.

冷房運転時には、図5に示すA点、B点、H点、C点、D点、F点およびE点を順に通過するように蒸気圧縮式冷凍サイクル10内を冷媒が流れ、圧縮機12と熱交換器14,15と膨張弁16と熱交換器18とに冷媒が循環する。冷媒は、圧縮機12と熱交換器14,15と膨張弁16と熱交換器18とが順次接続された冷媒循環流路を通って、蒸気圧縮式冷凍サイクル10内を循環する。   During the cooling operation, the refrigerant flows through the vapor compression refrigeration cycle 10 so as to pass through the points A, B, H, C, D, F, and E shown in FIG. The refrigerant circulates in the heat exchangers 14 and 15, the expansion valve 16, and the heat exchanger 18. The refrigerant circulates in the vapor compression refrigeration cycle 10 through a refrigerant circulation passage in which the compressor 12, the heat exchangers 14 and 15, the expansion valve 16 and the heat exchanger 18 are sequentially connected.

図6は、実施の形態2の蒸気圧縮式冷凍サイクル10の冷房運転時の冷媒の状態を示すモリエル線図である。図6中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図6中には、圧縮機12から熱交換器14、気液分離器60を経由して冷却部30へ流入し、HV機器31を冷却し、熱交換器15、膨張弁16、熱交換器18を経由して圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,H,C,D,FおよびE点)における冷媒の熱力学状態が示される。   FIG. 6 is a Mollier diagram showing the state of the refrigerant during the cooling operation of the vapor compression refrigeration cycle 10 of the second embodiment. The horizontal axis in FIG. 6 shows the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis shows the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. In FIG. 6, it flows into the cooling part 30 via the heat exchanger 14 and the gas-liquid separator 60 from the compressor 12, the HV equipment 31 is cooled, the heat exchanger 15, the expansion valve 16, and the heat exchanger. The thermodynamic state of the refrigerant at each point in the vapor compression refrigeration cycle 10 (ie, points A, B, H, C, D, F, and E) that returns to the compressor 12 via 18 is shown.

実施の形態2の蒸気圧縮式冷凍サイクル10は、熱交換器14から膨張弁16へ至る系統を除いて、実施の形態1と同じである。つまり、図2に示すモリエル線図におけるE点からA点を経由してB点へ至る冷媒の状態と、図6に示すモリエル線図におけるE点からA点を経由してB点へ至る冷媒の状態と、は同じである。そのため、実施の形態2の蒸気圧縮式冷凍サイクル10に特有の、B点からE点へ至る冷媒の状態について、以下に説明する。   The vapor compression refrigeration cycle 10 of the second embodiment is the same as that of the first embodiment except for the system from the heat exchanger 14 to the expansion valve 16. That is, the state of the refrigerant from the E point in the Mollier diagram shown in FIG. 2 to the B point via the A point, and the refrigerant from the E point to the B point in the Mollier diagram shown in FIG. The state of is the same. Therefore, the state of the refrigerant from point B to point E, which is characteristic of the vapor compression refrigeration cycle 10 of the second embodiment, will be described below.

圧縮機12によって断熱圧縮された高温高圧の過熱蒸気状態の冷媒(B点)は、熱交換器14において冷却される。冷媒は、等圧のまま顕熱を放出して過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になる。熱交換器14から流出した湿り蒸気状態の冷媒は、冷媒通路23,33を経由して気液分離器60へ流入する。   The high-temperature and high-pressure refrigerant (point B) adiabatically compressed by the compressor 12 is cooled in the heat exchanger 14. Refrigerant releases sensible heat with constant pressure and becomes dry steam from superheated steam, releases latent heat of condensation and gradually liquefies to become wet steam in a gas-liquid mixed state. The wet vapor refrigerant flowing out of the heat exchanger 14 flows into the gas-liquid separator 60 via the refrigerant passages 23 and 33.

気液分離器60で、気液二相状態にある冷媒が気液分離され、液相冷媒である冷媒液62のみが気液分離器60から流出し、冷媒通路34へ流れ(H点)、膨張弁38に流入する。膨張弁38において、飽和液状体の冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、飽和液と飽和蒸気とが混合した湿り蒸気となる(C点)。膨張弁38において温度が下げられた冷媒は、冷却部30の冷却通路32へ供給される。冷却部30において、熱交換器14を通過して凝縮された液冷媒に熱を放出することで、HV機器31が冷却される。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。HV機器31から潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(D点)。   In the gas-liquid separator 60, the refrigerant in the gas-liquid two-phase state is gas-liquid separated, and only the refrigerant liquid 62, which is a liquid-phase refrigerant, flows out of the gas-liquid separator 60 and flows into the refrigerant passage 34 (point H). It flows into the expansion valve 38. In the expansion valve 38, the refrigerant of the saturated liquid is squeezed and expanded, the specific enthalpy of the refrigerant is not changed, the temperature and the pressure are lowered, and the saturated liquid and the saturated vapor are mixed to become a wet vapor (point C). The refrigerant whose temperature has been lowered in the expansion valve 38 is supplied to the cooling passage 32 of the cooling unit 30. In the cooling unit 30, the HV equipment 31 is cooled by releasing heat to the liquid refrigerant condensed through the heat exchanger 14. By the heat exchange with the HV equipment 31, the refrigerant is heated and the dryness of the refrigerant increases. By receiving latent heat from the HV device 31 and evaporating a part of the refrigerant, the proportion of saturated vapor contained in the wet vapor refrigerant increases (point D).

その後冷媒は、熱交換器15に流入する。冷媒の湿り蒸気は、熱交換器15において外気と熱交換することで再度凝縮され、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却された過冷却液になる(F点)。その後膨張弁16を通過することで、過冷却液状態の冷媒は絞り膨張され、比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(E点)。   Thereafter, the refrigerant flows into the heat exchanger 15. The wet steam of the refrigerant is condensed again by exchanging heat with the outside air in the heat exchanger 15. When all of the refrigerant is condensed, it becomes a saturated liquid, and further releases sensible heat to become a supercooled liquid that is supercooled ( F point). By passing through the expansion valve 16 after that, the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy does not change, the temperature and pressure are reduced, and the low temperature and low pressure gas-liquid mixed vapor is obtained (E point).

気液分離器60から流出する液相冷媒は、過不足の全くない真に飽和液状態の冷媒である。気液分離器60から液相の冷媒のみを取り出し冷却部30へ流すことにより、気液分離器60の上流側に配置された熱交換器14の能力を最大限に活用してHV機器31を冷却することができるので、HV機器31の冷却能力を向上させた冷却装置1を提供することができる。   The liquid-phase refrigerant flowing out of the gas-liquid separator 60 is a truly saturated liquid refrigerant with no excess or deficiency. By taking out only the liquid-phase refrigerant from the gas-liquid separator 60 and flowing it to the cooling unit 30, the HV equipment 31 can be used by maximizing the ability of the heat exchanger 14 arranged on the upstream side of the gas-liquid separator 60. Since it can cool, the cooling device 1 which improved the cooling capability of the HV apparatus 31 can be provided.

膨張弁38で膨張することにより温度が低下した冷媒を使用してHV機器31を冷却できるので、HV機器31をより効率よく冷却できる。膨張弁38の仕様を最適に選定することにより、冷却部30でHV機器31を冷却する冷媒の温度を任意に調整することができる。HV機器31の冷却に適したより低い温度の冷媒を冷却部30に供給して、HV機器31を冷却することができる。   Since the HV device 31 can be cooled by using the refrigerant whose temperature has been lowered by expanding with the expansion valve 38, the HV device 31 can be cooled more efficiently. By optimally selecting the specification of the expansion valve 38, the temperature of the refrigerant that cools the HV device 31 by the cooling unit 30 can be arbitrarily adjusted. The HV device 31 can be cooled by supplying a coolant having a lower temperature suitable for cooling the HV device 31 to the cooling unit 30.

蒸気圧縮式冷凍サイクル10において、圧縮機12から吐出された高圧の冷媒は、熱交換器14と熱交換器15との両方によって凝縮される。熱交換器15において十分に冷媒を冷却することにより、膨張弁16の出口において、冷媒は、車両の室内の冷房のために本来必要とされる温度および圧力を有する。そのため、熱交換器18において冷媒が蒸発するときに外部から受け取る熱量を十分に大きくすることができる。冷媒を十分に冷却できる熱交換器15の放熱能力を定めることにより、車室内の空気を冷却する冷房の能力に影響を与えることなく、HV機器31を冷却することができる。したがって、HV機器31の冷却能力と、車室用の冷房能力との両方を、確実に確保することができる。   In the vapor compression refrigeration cycle 10, the high-pressure refrigerant discharged from the compressor 12 is condensed by both the heat exchanger 14 and the heat exchanger 15. By sufficiently cooling the refrigerant in the heat exchanger 15, at the outlet of the expansion valve 16, the refrigerant has a temperature and pressure originally required for cooling the interior of the vehicle. Therefore, the amount of heat received from the outside when the refrigerant evaporates in the heat exchanger 18 can be sufficiently increased. By determining the heat dissipation capability of the heat exchanger 15 that can sufficiently cool the refrigerant, the HV equipment 31 can be cooled without affecting the cooling capability of cooling the air in the passenger compartment. Therefore, both the cooling capacity of the HV device 31 and the cooling capacity for the passenger compartment can be ensured reliably.

実施の形態1の蒸気圧縮式冷凍サイクル10では、圧縮機12と膨張弁16との間に熱交換器14が配置され、冷房運転時には、冷房とHV機器31の冷却とに相当する分の熱交換を熱交換器14で行なう必要がある。そのため、熱交換器14において冷媒を飽和液の状態からさらに冷却し、冷媒が所定の過冷却度を有するまで冷却する必要があった。過冷却液の状態の冷媒を冷却すると、冷媒の温度が大気温度に近づき、冷媒の冷却効率が低下するので、熱交換器14の容量を増大させる必要がある。その結果、熱交換器14のサイズが増大し、車載用の冷却装置1として不利になるという問題がある。一方、車両へ搭載するために熱交換器14を小型化すると、熱交換器14の放熱能力も小さくなり、その結果、膨張弁16の出口における冷媒の温度を十分に低くできず、車室用の冷房能力が不足する虞がある。   In the vapor compression refrigeration cycle 10 according to the first embodiment, the heat exchanger 14 is disposed between the compressor 12 and the expansion valve 16, and heat corresponding to cooling and cooling of the HV device 31 during cooling operation. The exchange needs to be performed by the heat exchanger 14. Therefore, it is necessary to further cool the refrigerant from the saturated liquid state in the heat exchanger 14 and to cool the refrigerant until it has a predetermined degree of supercooling. When the refrigerant in the supercooled liquid state is cooled, the temperature of the refrigerant approaches the atmospheric temperature and the cooling efficiency of the refrigerant decreases, so the capacity of the heat exchanger 14 needs to be increased. As a result, there is a problem that the size of the heat exchanger 14 increases, which is disadvantageous as the in-vehicle cooling device 1. On the other hand, if the heat exchanger 14 is reduced in size for mounting on a vehicle, the heat dissipation capability of the heat exchanger 14 is also reduced. As a result, the temperature of the refrigerant at the outlet of the expansion valve 16 cannot be sufficiently lowered, and the vehicle compartment is used. There is a risk that the cooling capacity will be insufficient.

これに対し、実施の形態2の蒸気圧縮式冷凍サイクル10では、圧縮機12と膨張弁16との間に二段の熱交換器14,15を配置し、HV機器31の冷却系である冷却部30が熱交換器14と熱交換器15との間に設けられる。熱交換器14では、冷媒を湿り蒸気の状態にまで冷却すればよい。湿り蒸気状態の冷媒が気液分離された飽和液状態の冷媒が膨張弁38を通過して温度と圧力とを下げられ、冷却部30においてHV機器31と熱交換する。   On the other hand, in the vapor compression refrigeration cycle 10 of the second embodiment, the two-stage heat exchangers 14 and 15 are arranged between the compressor 12 and the expansion valve 16, and cooling that is a cooling system of the HV equipment 31. The unit 30 is provided between the heat exchanger 14 and the heat exchanger 15. In the heat exchanger 14, the refrigerant may be cooled to a wet steam state. The saturated liquid refrigerant obtained by gas-liquid separation of the wet vapor refrigerant passes through the expansion valve 38 to reduce the temperature and pressure, and exchanges heat with the HV equipment 31 in the cooling unit 30.

HV機器31から蒸発潜熱を受け取り一部気化した湿り蒸気の状態の冷媒は、熱交換器15で再度冷却される。湿り蒸気状態の冷媒を凝縮させ完全に飽和液にするまで、冷媒は一定の温度で状態変化する。熱交換器15はさらに、車両の室内の冷房のために必要な程度の過冷却度にまで、冷媒を冷却する。そのため、実施の形態1と比較して、冷媒の過冷却度を大きくする必要がなく、熱交換器14,15の容量を低減することができる。したがって、車室用の冷房能力を確保でき、かつ、熱交換器14,15のサイズを低減することができるので小型化され車載用に有利な、冷却装置1を得ることができる。   The refrigerant in the state of wet steam that has received the latent heat of evaporation from the HV device 31 and is partially vaporized is cooled again by the heat exchanger 15. The refrigerant changes its state at a constant temperature until the wet vapor state refrigerant is condensed and completely saturated. The heat exchanger 15 further cools the refrigerant to a degree of supercooling necessary for cooling the vehicle interior. Therefore, compared with Embodiment 1, it is not necessary to increase the degree of supercooling of the refrigerant, and the capacity of the heat exchangers 14 and 15 can be reduced. Therefore, the cooling capacity for the passenger compartment can be ensured, and the size of the heat exchangers 14 and 15 can be reduced, so that the cooling device 1 that is downsized and advantageous for in-vehicle use can be obtained.

図7は、四方弁13を切り換えた状態の実施の形態2の冷却装置1を示す模式図である。図5と図7とを比較して、四方弁13が90°回転することにより、圧縮機12出口から四方弁13へ流入した冷媒が四方弁13を出る経路が、実施の形態1と同様に切り換えられている。図7に示す暖房運転時には、三方弁46は、冷媒通路35と冷媒通路45とを連通し、冷媒通路36と冷媒通路35,45とを連通しないように、開閉を切り換えられる。また、開閉弁37が閉じられ膨張弁38が全閉(開度0%)とされ、膨張弁47が冷媒を適切に絞り膨張するために開度調整され、開閉弁49,71が開かれる。   FIG. 7 is a schematic diagram showing the cooling device 1 according to the second embodiment in a state where the four-way valve 13 is switched. 5 and FIG. 7, the path through which the refrigerant flowing into the four-way valve 13 from the outlet of the compressor 12 exits the four-way valve 13 by rotating the four-way valve 13 by 90 ° is the same as in the first embodiment. It has been switched. During the heating operation shown in FIG. 7, the three-way valve 46 is switched between open and closed so that the refrigerant passage 35 and the refrigerant passage 45 communicate with each other and the refrigerant passage 36 and the refrigerant passages 35 and 45 do not communicate with each other. Further, the opening / closing valve 37 is closed, the expansion valve 38 is fully closed (opening degree 0%), the opening degree of the expansion valve 47 is adjusted to appropriately squeeze and expand the refrigerant, and the opening / closing valves 49, 71 are opened.

そのため暖房運転時には、熱交換器18で空調用空気と熱交換した冷媒は、冷媒通路24bから冷媒通路24aと冷媒通路43との二方向へ分岐して流入する。冷媒通路24aへ流入した冷媒は、膨張弁16を通過して冷媒通路23を流通し、熱交換器15,14を経由して冷媒通路22bへ至る。冷媒通路43へ流入した冷媒は、膨張弁44を通過して冷媒通路45,35を流通し、冷却部30を経由して冷媒通路34,71を流通し、気液分離器60へ流入する。気液分離器60で気液分離された冷媒蒸気61は、気液分離器60から流出して冷媒通路41を流れる。冷媒通路22bを流れる冷媒と冷媒通路41を流れる冷媒とは、冷媒通路22,41の接続部において合流し、冷媒通路22aへ流通する。気液分離器60で気液分離された冷媒液62は、気液分離器60から流出して冷媒通路48を流れ、冷媒通路24aを経由して膨張弁16へ供給される。   Therefore, during the heating operation, the refrigerant that has exchanged heat with the air-conditioning air by the heat exchanger 18 branches from the refrigerant passage 24b into the refrigerant passage 24a and the refrigerant passage 43 in two directions. The refrigerant that has flowed into the refrigerant passage 24 a passes through the expansion valve 16, flows through the refrigerant passage 23, and reaches the refrigerant passage 22 b through the heat exchangers 15 and 14. The refrigerant flowing into the refrigerant passage 43 passes through the expansion valve 44 and flows through the refrigerant passages 45 and 35, passes through the refrigerant passages 34 and 71 via the cooling unit 30, and flows into the gas-liquid separator 60. The refrigerant vapor 61 that has been gas-liquid separated by the gas-liquid separator 60 flows out of the gas-liquid separator 60 and flows through the refrigerant passage 41. The refrigerant flowing through the refrigerant passage 22b and the refrigerant flowing through the refrigerant passage 41 merge at the connection portion of the refrigerant passages 22 and 41 and flow to the refrigerant passage 22a. The refrigerant liquid 62 separated from the gas-liquid separator 60 flows out of the gas-liquid separator 60, flows through the refrigerant passage 48, and is supplied to the expansion valve 16 via the refrigerant passage 24a.

つまり、暖房運転時には、図7に示すA点、B点、E点、D点、H点、K点およびJ点を順に通過するように蒸気圧縮式冷凍サイクル10内を冷媒が流れ、圧縮機12と熱交換器18と膨張弁44と冷却部30とに冷媒が循環し、かつ、図7に示すA点、B点、E点、M点、N点、F点、I点およびG点を順に通過するように冷媒が流れ、圧縮機12と熱交換器18と膨張弁16と熱交換器15,14とに冷媒が循環する。冷媒は、圧縮機12と熱交換器18と膨張弁44と冷却部30とが順次接続された冷媒循環流路と、圧縮機12と熱交換器18と膨張弁16と熱交換器15,14とが順次接続された冷媒循環流路と、を通って、蒸気圧縮式冷凍サイクル10内を循環する。   That is, during the heating operation, the refrigerant flows through the vapor compression refrigeration cycle 10 so as to sequentially pass through the points A, B, E, D, H, K, and J shown in FIG. 12, the heat exchanger 18, the expansion valve 44, and the cooling unit 30 circulate through the refrigerant, and the points A, B, E, M, N, F, I, and G shown in FIG. The refrigerant flows so as to sequentially pass through the refrigerant, and the refrigerant circulates through the compressor 12, the heat exchanger 18, the expansion valve 16, and the heat exchangers 15 and 14. The refrigerant includes a refrigerant circulation passage in which the compressor 12, the heat exchanger 18, the expansion valve 44, and the cooling unit 30 are sequentially connected, the compressor 12, the heat exchanger 18, the expansion valve 16, and the heat exchangers 15 and 14. Are circulated in the vapor compression refrigeration cycle 10 through the refrigerant circulation passages sequentially connected to each other.

冷媒通路24aの、冷媒通路24aと冷媒通路43との接続点と、冷媒通路24aと冷媒通路48との接続点と、の間には、流量調整弁52と膨張弁17とが配置されている。流量調整弁52は、その弁開度を変動させ、冷媒通路24aを流れる冷媒の圧力損失を増減させることにより、冷媒通路24aを流れる冷媒の流量と、冷媒通路43,45,35、冷却通路32、冷媒通路34,71、気液分離器60および冷媒通路41を順に流れる冷媒の流量と、を任意に調節する。膨張弁17は、他の膨張弁と同様に、冷媒通路24aを流通する冷媒を絞り膨張させ、冷媒の温度と圧力とを低下させる。   Between the connection point of the refrigerant passage 24a and the refrigerant passage 43 and the connection point of the refrigerant passage 24a and the refrigerant passage 48, the flow rate adjustment valve 52 and the expansion valve 17 are disposed. . The flow rate adjusting valve 52 varies the valve opening degree, and increases or decreases the pressure loss of the refrigerant flowing through the refrigerant passage 24a, so that the flow rate of the refrigerant flowing through the refrigerant passage 24a, the refrigerant passages 43, 45, and 35, and the cooling passage 32 are increased. The flow rate of the refrigerant flowing through the refrigerant passages 34 and 71, the gas-liquid separator 60 and the refrigerant passage 41 in order is arbitrarily adjusted. As with the other expansion valves, the expansion valve 17 expands and expands the refrigerant flowing through the refrigerant passage 24a to reduce the temperature and pressure of the refrigerant.

実施の形態1で説明した流量調整弁51と同様に、流量調整弁52を使用して、冷却部30に流れる冷媒の量を最適に調節できるので、HV機器31の過冷却を確実に防止することができる。また、冷却部30への冷媒の流通に係る圧力損失および冷媒を循環させるための圧縮機12の消費電力を、確実に低減することができる。さらに、膨張弁16を通過する冷媒と、膨張弁44を通過する冷媒と、の各々の流量を適宜調整できるので、圧縮機12の吸入圧力を最適に設定して、暖房運転時の圧縮機12での冷媒の断熱圧縮のための消費動力を低減することができる。   Similarly to the flow rate adjustment valve 51 described in the first embodiment, the amount of the refrigerant flowing through the cooling unit 30 can be optimally adjusted using the flow rate adjustment valve 52, so that overcooling of the HV equipment 31 is reliably prevented. be able to. In addition, the pressure loss associated with the refrigerant flow to the cooling unit 30 and the power consumption of the compressor 12 for circulating the refrigerant can be reliably reduced. Furthermore, since the flow rates of the refrigerant passing through the expansion valve 16 and the refrigerant passing through the expansion valve 44 can be adjusted as appropriate, the suction pressure of the compressor 12 is set optimally and the compressor 12 during heating operation is set. The power consumption for adiabatic compression of the refrigerant at can be reduced.

図8は、実施の形態2の蒸気圧縮式冷凍サイクル10の暖房運転時の冷媒の状態を示すモリエル線図である。図8中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図8中には、圧縮機12から熱交換器18、膨張弁44および冷却部30を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,D,H,KおよびJ点)における冷媒の熱力学状態が示される。図8中にはまた、圧縮機12から熱交換器18、膨張弁16および熱交換器15,14を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,M,N,F,IおよびG点)における冷房の熱力学状態が示される。   FIG. 8 is a Mollier diagram showing the state of the refrigerant during the heating operation of the vapor compression refrigeration cycle 10 of the second embodiment. The horizontal axis in FIG. 8 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. In FIG. 8, each point (namely, A, B) in the vapor compression refrigeration cycle 10 that flows from the compressor 12 through the heat exchanger 18, the expansion valve 44, and the cooling unit 30 in order and returns to the compressor 12. , E, D, H, K and J points) shows the thermodynamic state of the refrigerant. In FIG. 8, each point in the vapor compression refrigeration cycle 10 that flows from the compressor 12 through the heat exchanger 18, the expansion valve 16, and the heat exchangers 15 and 14 in order and returns to the compressor 12 ( That is, the thermodynamic state of cooling at points A, B, E, M, N, F, I, and G) is shown.

実施の形態2の蒸気圧縮式冷凍サイクル10は、熱交換器18出口から圧縮機12入口へ至る系統を除いて、実施の形態1と同じである。つまり、図4に示すモリエル線図におけるA点からB点を経由してE点へ至る冷媒の状態と、図8に示すモリエル線図におけるA点からB点を経由してE点へ至る冷媒の状態と、は同じである。そのため、実施の形態2の蒸気圧縮式冷凍サイクル10に特有の、E点からA点へ至る冷媒の状態について、以下に説明する。   The vapor compression refrigeration cycle 10 of the second embodiment is the same as that of the first embodiment except for the system from the heat exchanger 18 outlet to the compressor 12 inlet. That is, the state of the refrigerant from the A point to the E point via the B point in the Mollier diagram shown in FIG. 4, and the refrigerant from the A point to the E point via the B point in the Mollier diagram shown in FIG. The state of is the same. Therefore, the state of the refrigerant from point E to point A, which is unique to the vapor compression refrigeration cycle 10 of the second embodiment, will be described below.

熱交換器18で空調用空気と熱交換して液化した過冷却液状態の冷媒は、冷媒通路24bから冷媒通路24aと冷媒通路43とに分岐する。   The refrigerant in the supercooled liquid state that is liquefied by heat exchange with air-conditioning air in the heat exchanger 18 branches from the refrigerant passage 24 b to the refrigerant passage 24 a and the refrigerant passage 43.

冷媒通路43へ流通する一部の液相冷媒は、膨張弁44において絞り膨張され、低温低圧の気液混合状態の湿り蒸気となる(D点)。膨張弁16において温度が下げられた冷媒は、冷媒通路45,35を経由して冷却部30の冷却通路32へ流れ、HV機器31を冷却する。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。HV機器31から潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(H点)。   A part of the liquid-phase refrigerant flowing into the refrigerant passage 43 is throttled and expanded by the expansion valve 44, and becomes wet steam in a low-temperature and low-pressure gas-liquid mixed state (point D). The refrigerant whose temperature has been lowered in the expansion valve 16 flows into the cooling passage 32 of the cooling unit 30 via the refrigerant passages 45 and 35 and cools the HV equipment 31. By the heat exchange with the HV equipment 31, the refrigerant is heated and the dryness of the refrigerant increases. By receiving the latent heat from the HV device 31 and evaporating a part of the refrigerant, the ratio of saturated vapor contained in the wet vapor refrigerant increases (H point).

冷却部30から流出した湿り蒸気状態の冷媒は、冷媒通路34,72を経由して気液分離器60へ流入する。気液分離器60で、気液二相状態にある冷媒は、冷媒蒸気61と冷媒液62とに気液分離される。気液分離器60は、冷却部30から流出して冷媒通路34を流通する冷媒を、気相冷媒と液相冷媒とに分離する。気液分離器60は、冷却部30において気化された冷媒を液体状の冷媒液62とガス状の冷媒蒸気61とに分離して、一時的に蓄える。   The wet vapor refrigerant flowing out of the cooling unit 30 flows into the gas-liquid separator 60 via the refrigerant passages 34 and 72. In the gas-liquid separator 60, the refrigerant in the gas-liquid two-phase state is gas-liquid separated into the refrigerant vapor 61 and the refrigerant liquid 62. The gas-liquid separator 60 separates the refrigerant flowing out of the cooling unit 30 and flowing through the refrigerant passage 34 into a gas phase refrigerant and a liquid phase refrigerant. The gas-liquid separator 60 separates the refrigerant vaporized in the cooling unit 30 into a liquid refrigerant liquid 62 and a gaseous refrigerant vapor 61 and temporarily stores them.

飽和蒸気状態の冷媒蒸気61(K点)は、気液分離器60から流出して冷媒通路41へ流れ、膨張弁47に流入する。膨張弁47において、冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下する(J点)。飽和液状態の冷媒液62(L点)は、気液分離器60から流出して、冷媒通路48を経由して冷媒通路24aへ流通する。   The saturated vapor state refrigerant vapor 61 (point K) flows out of the gas-liquid separator 60, flows into the refrigerant passage 41, and flows into the expansion valve 47. In the expansion valve 47, the refrigerant is throttled and expanded, and the specific enthalpy of the refrigerant does not change, and the temperature and pressure decrease (point J). The refrigerant liquid 62 (point L) in the saturated liquid state flows out of the gas-liquid separator 60 and flows through the refrigerant passage 48 to the refrigerant passage 24a.

冷媒通路24bから冷媒通路24aへ流通する一部の液相冷媒は、膨張弁17において絞り膨張され、冷媒の温度と圧力が低下する(M点)。膨張弁17を通過した後の冷媒の圧力は、気液分離器60から流出する冷媒液62の圧力と等しくする。そのため、膨張弁17を通過した気液混合状態の冷媒と、気液分離器60から流出した液相の冷媒とは、共に膨張弁16の上流側の冷媒通路24aに流通する。気液分離器60から冷媒通路48を介して冷媒通路24aへ流れる冷媒と、冷媒通路24bから直接冷媒通路24aへ流れる冷媒とは、膨張弁16入口の冷媒通路24aにおいて混合される。   A part of the liquid-phase refrigerant flowing from the refrigerant passage 24b to the refrigerant passage 24a is expanded and expanded in the expansion valve 17, and the temperature and pressure of the refrigerant are lowered (point M). The pressure of the refrigerant after passing through the expansion valve 17 is made equal to the pressure of the refrigerant liquid 62 flowing out from the gas-liquid separator 60. Therefore, the gas-liquid mixed refrigerant that has passed through the expansion valve 17 and the liquid-phase refrigerant that has flowed out of the gas-liquid separator 60 both flow into the refrigerant passage 24 a on the upstream side of the expansion valve 16. The refrigerant flowing from the gas-liquid separator 60 to the refrigerant passage 24a via the refrigerant passage 48 and the refrigerant flowing directly from the refrigerant passage 24b to the refrigerant passage 24a are mixed in the refrigerant passage 24a at the inlet of the expansion valve 16.

混合された冷媒は、図8に示すL,M点と等しい圧力を有する。混合された冷媒の比エンタルピーは、混合される前の各々の冷媒の比エンタルピーおよび流量の比によって決まる。たとえば、混合される前の冷媒の流量が相等しければ、混合された冷媒は、L点における比エンタルピーとM点における比エンタルピーとの中間の比エンタルピーを有する(N点)。N点において冷媒は、L,M点における冷媒と等しい圧力を有し、L点の飽和液状態の冷媒以上、M点の気液混合状態の冷媒以下の比エンタルピーを有する。   The mixed refrigerant has a pressure equal to the L and M points shown in FIG. The specific enthalpy of the mixed refrigerant is determined by the specific enthalpy and flow rate ratio of each refrigerant before mixing. For example, if the flow rates of the refrigerant before being mixed are equal, the mixed refrigerant has a specific enthalpy intermediate between the specific enthalpy at the L point and the specific enthalpy at the M point (N point). At the point N, the refrigerant has a pressure equal to that of the refrigerant at the L and M points, and has a specific enthalpy greater than or equal to the refrigerant in the saturated liquid state at the L point and less than that in the gas-liquid mixed state at the M point.

混合された冷媒はその後、膨張弁16へ流通し、膨張弁16を通過することで絞り膨張され、低温低圧の気液混合状態の湿り蒸気となる(F点)。膨張弁16において温度が下げられた冷媒は、冷媒通路27を経由して熱交換器15へ流入する。熱交換器15のチューブ内には、湿り蒸気状態の冷媒が流入する。冷媒は、チューブ内を流通する際に、フィンを経由して外気の熱を蒸発潜熱として吸収することによって等圧のまま蒸発する。熱交換器15における外気との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。熱交換器15において潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(I点)。   The mixed refrigerant then flows to the expansion valve 16 and is expanded by passing through the expansion valve 16 to become wet steam in a low-temperature and low-pressure gas-liquid mixed state (point F). The refrigerant whose temperature has been lowered in the expansion valve 16 flows into the heat exchanger 15 via the refrigerant passage 27. A wet steam refrigerant flows into the tube of the heat exchanger 15. When the refrigerant circulates in the tube, it absorbs the heat of the outside air as the latent heat of vaporization via the fins, and evaporates with a constant pressure. The heat exchange with the outside air in the heat exchanger 15 heats the refrigerant and increases the dryness of the refrigerant. When the latent heat is received in the heat exchanger 15 and a part of the refrigerant is vaporized, the ratio of the saturated steam contained in the wet steam refrigerant increases (point I).

熱交換器15から出た湿り蒸気状態の冷媒は、冷媒通路23を経由して熱交換器14へ流入する。熱交換器14のチューブ内には、湿り蒸気状態の冷媒が流入する。冷媒は、チューブ内を流通する際に、フィンを経由して外気の熱を蒸発潜熱として吸収することによって加熱され、等圧のまま蒸発し、冷媒の乾き度が増大する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となる(G点)。   The wet steam refrigerant that has flowed out of the heat exchanger 15 flows into the heat exchanger 14 via the refrigerant passage 23. A wet steam refrigerant flows into the tube of the heat exchanger 14. When the refrigerant circulates in the tube, the refrigerant is heated by absorbing the heat of the outside air as latent heat of evaporation via the fins, evaporates while maintaining the equal pressure, and the dryness of the refrigerant increases. When all the refrigerants are dry and become saturated vapor, the refrigerant vapor further rises in temperature due to sensible heat and becomes superheated vapor (point G).

膨張弁47において絞り膨張され圧力が下げられた冷媒(J点)は、熱交換器14を経由して冷媒通路22bを流通する過熱蒸気状態の冷媒(G点)と等しい圧力を有する。そのため、冷媒通路41を流通する冷媒と冷媒通路22bを流通する冷媒とは、ともに冷媒通路22aへ流入して混合される。混合された冷媒は、図8に示すJ,G点における圧力と等しい圧力を有する。混合された冷媒の比エンタルピーは、冷媒通路22b,41の各々を流通する冷媒の比エンタルピーおよび流量の比によって決まる。たとえば、混合される前の冷媒の流量が相等しければ、混合された冷媒は、J点における比エンタルピーとG点における比エンタルピーとの中間の比エンタルピーを有する(A点)。   The refrigerant (point J) that has been expanded and reduced in the expansion valve 47 has a pressure equal to that of the superheated vapor refrigerant (point G) that flows through the refrigerant passage 22b via the heat exchanger 14. Therefore, both the refrigerant flowing through the refrigerant passage 41 and the refrigerant flowing through the refrigerant passage 22b flow into the refrigerant passage 22a and are mixed. The mixed refrigerant has a pressure equal to the pressure at points J and G shown in FIG. The specific enthalpy of the mixed refrigerant is determined by the specific enthalpy and flow rate ratio of the refrigerant flowing through each of the refrigerant passages 22b and 41. For example, if the flow rates of the refrigerant before being mixed are equal, the mixed refrigerant has a specific enthalpy intermediate between the specific enthalpy at point J and the specific enthalpy at point G (point A).

気液分離器60の出口で飽和液の状態にある冷媒を、冷房運転時に冷媒通路34へ流通させ、暖房運転時に冷媒通路48へ流通させることにより、気相状態の冷媒蒸気が冷媒通路34,48へ流入することを抑制できる。そのため、冷媒の流速が早くなり圧力損失が増大することを抑制でき、冷媒を流通させるための圧縮機12の消費電力を低減できるので、蒸気圧縮式冷凍サイクル10の性能の悪化を回避することができる。   The refrigerant in the saturated liquid state at the outlet of the gas-liquid separator 60 is circulated to the refrigerant passage 34 during the cooling operation and is circulated to the refrigerant passage 48 during the heating operation, so that the refrigerant vapor in the gas phase is converted into the refrigerant passage 34, Inflow to 48 can be suppressed. Therefore, it is possible to suppress an increase in pressure loss due to an increase in the flow rate of the refrigerant, and it is possible to reduce the power consumption of the compressor 12 for circulating the refrigerant, thereby avoiding deterioration of the performance of the vapor compression refrigeration cycle 10. it can.

気液分離器60の内部には、飽和液状態の冷媒液62が貯留されている。気液分離器60は、その内部に冷媒液62を一時的に溜める蓄液器として機能する。気液分離器60内に所定量の冷媒液62が溜められることにより、暖房運転から冷房運転への切り換え時に気液分離器60から冷却部30へ流れる冷媒の流量を維持できる。気液分離器60が液だめ機能を有することにより、冷暖房切換の際に熱交換器14から気液分離器60へ流れる冷媒の流量が一時的に低下する冷媒流量の変動を吸収できる。したがって、暖房から冷房への切り換え時に冷却部30への冷媒供給量が不足することを回避でき、HV機器31の冷却性能を安定させることができる。   A refrigerant liquid 62 in a saturated liquid state is stored inside the gas-liquid separator 60. The gas-liquid separator 60 functions as a liquid accumulator that temporarily stores the refrigerant liquid 62 therein. By storing a predetermined amount of the refrigerant liquid 62 in the gas-liquid separator 60, the flow rate of the refrigerant flowing from the gas-liquid separator 60 to the cooling unit 30 can be maintained when switching from the heating operation to the cooling operation. Since the gas-liquid separator 60 has a liquid reservoir function, it is possible to absorb a change in the refrigerant flow rate that temporarily decreases the flow rate of the refrigerant flowing from the heat exchanger 14 to the gas-liquid separator 60 when switching between heating and cooling. Therefore, it is possible to avoid a shortage of the refrigerant supply amount to the cooling unit 30 when switching from heating to cooling, and to stabilize the cooling performance of the HV equipment 31.

暖房運転時、冷媒の一部のみが熱交換器14を流通するように冷媒の経路を構成することにより、圧縮機12の入口での冷媒の圧力を上昇させ、圧縮効率の低い条件で圧縮機12が作動することを抑制できるので、暖房運転時の圧縮機12での冷媒の断熱圧縮のための消費動力を低減することができる。   By configuring the refrigerant path so that only a part of the refrigerant flows through the heat exchanger 14 during the heating operation, the pressure of the refrigerant at the inlet of the compressor 12 is increased, and the compressor is operated under a condition where the compression efficiency is low. Since it can suppress that 12 operates, the power consumption for the adiabatic compression of the refrigerant | coolant with the compressor 12 at the time of heating operation can be reduced.

実施の形態1では、熱交換器14から流出した冷媒を、冷却部30から流出した湿り蒸気状態の冷媒と混合させる必要がある。そのため、過熱蒸気の状態の冷媒を冷媒通路22aに流通させるために、熱交換器14において冷媒を乾き飽和蒸気の状態からさらに加熱し、冷媒が所定の過熱度を有するまで加熱する必要があった。そのため、熱交換器14の容量を増大させる必要があり、熱交換器14のサイズが増大し、車載用の冷却装置1として不利になるという問題がある。   In the first embodiment, the refrigerant that has flowed out of the heat exchanger 14 needs to be mixed with the refrigerant in a wet vapor state that has flowed out of the cooling unit 30. Therefore, in order to distribute the refrigerant in the superheated steam state to the refrigerant passage 22a, it is necessary to further heat the refrigerant in the heat exchanger 14 from the saturated vapor state and to heat the refrigerant until the refrigerant has a predetermined superheat degree. . Therefore, it is necessary to increase the capacity of the heat exchanger 14, which increases the size of the heat exchanger 14, which is disadvantageous as the in-vehicle cooling device 1.

これに対し、実施の形態2の蒸気圧縮式冷凍サイクル10では、熱交換器14から流出した冷媒を、気液分離器60で分離された乾き飽和蒸気状態の冷媒と混合させて、圧縮機12の吸入圧力の上昇に用いるので、熱交換器14出口の冷媒の過熱度を大きくする必要がない。たとえば、膨張弁47で絞り膨張された冷媒(J点)の比エンタルピーと略等しい比エンタルピーを有する過熱蒸気の状態になるように、熱交換器14出口の冷媒(G点)の過熱度を調整してもよい。そのため、実施の形態1と比較して、熱交換器14,15の容量をより低減することができる。したがって、熱交換器14,15のサイズを低減することができるので小型化され車載用に有利な、冷却装置1を得ることができる。   On the other hand, in the vapor compression refrigeration cycle 10 of the second embodiment, the refrigerant flowing out of the heat exchanger 14 is mixed with the dry saturated vapor refrigerant separated by the gas-liquid separator 60, and the compressor 12. Therefore, it is not necessary to increase the degree of superheat of the refrigerant at the outlet of the heat exchanger 14. For example, the degree of superheat of the refrigerant (point G) at the outlet of the heat exchanger 14 is adjusted so that the state of superheated steam having a specific enthalpy substantially equal to the specific enthalpy of the refrigerant expanded by the expansion valve 47 (point J) is obtained. May be. Therefore, compared with Embodiment 1, the capacity | capacitance of the heat exchangers 14 and 15 can be reduced more. Therefore, since the size of the heat exchangers 14 and 15 can be reduced, it is possible to obtain the cooling device 1 that is downsized and advantageous for in-vehicle use.

圧縮機12と膨張弁16との間に二段の熱交換器14,15が配置されるので、暖房運転時に冷媒は、熱交換器14,15の両方において外気から吸熱することにより加熱される。冷却部30と熱交換器14,15との両方で冷媒を加熱することにより、熱交換器14,15の各々の熱交換容量を低減することができる。熱交換器14の出口において冷媒を十分な過熱蒸気の状態にまで加熱できるので、車両の室内の優れた暖房性能を維持できる。   Since the two-stage heat exchangers 14 and 15 are disposed between the compressor 12 and the expansion valve 16, the refrigerant is heated by absorbing heat from the outside air in both the heat exchangers 14 and 15 during the heating operation. . By heating the refrigerant in both the cooling unit 30 and the heat exchangers 14 and 15, the heat exchange capacity of each of the heat exchangers 14 and 15 can be reduced. Since the refrigerant can be heated to the state of sufficient superheated steam at the outlet of the heat exchanger 14, excellent heating performance in the vehicle interior can be maintained.

なお、実施の形態2では、膨張弁38と膨張弁38をバイパスする冷媒通路72とを備える冷却装置1の例について説明した。冷房運転時に冷却部30へ流入する冷媒が膨張弁38で絞り膨張され、暖房運転時には冷媒が膨張弁38を通過するときの圧力損失を小さくできるような膨張弁38を選定できるのであれば、冷媒通路72は設けられなくても構わない。   In the second embodiment, the example of the cooling device 1 including the expansion valve 38 and the refrigerant passage 72 that bypasses the expansion valve 38 has been described. If the expansion valve 38 can be selected such that the refrigerant flowing into the cooling unit 30 during the cooling operation is throttled and expanded by the expansion valve 38 and the pressure loss when the refrigerant passes through the expansion valve 38 during the heating operation can be selected. The passage 72 may not be provided.

(実施の形態3)
図9は、実施の形態3の冷却装置1の構成を示す模式図である。実施の形態3の冷却装置1は、実施の形態2と同じ構成を有するが、暖房運転時に、開閉弁49が閉じられ膨張弁16が全閉(開度0%)とされ膨張弁47が全開(開度100%)とされている点で、実施の形態2と異なっている。
(Embodiment 3)
FIG. 9 is a schematic diagram illustrating a configuration of the cooling device 1 according to the third embodiment. The cooling device 1 of the third embodiment has the same configuration as that of the second embodiment. However, during heating operation, the on-off valve 49 is closed, the expansion valve 16 is fully closed (opening degree 0%), and the expansion valve 47 is fully opened. This is different from the second embodiment in that (the opening degree is 100%).

このとき、圧縮機12で断熱圧縮され熱交換器18で空調用空気と熱交換した冷媒の全量が、冷媒通路24bから冷媒通路43へ流入する。冷媒通路43へ流入した冷媒は、膨張弁44を通過して絞り膨張され、冷却部30の冷却通路32を流通してHV機器31を冷却し、気液分離器60で気液分離され、冷媒蒸気61のみが気液分離器60から流出して冷媒通路41,22aを経由して圧縮機12へ戻る。   At this time, the entire amount of refrigerant adiabatically compressed by the compressor 12 and heat-exchanged with the air-conditioning air by the heat exchanger 18 flows into the refrigerant passage 43 from the refrigerant passage 24b. The refrigerant flowing into the refrigerant passage 43 passes through the expansion valve 44 and is squeezed and expanded, passes through the cooling passage 32 of the cooling unit 30, cools the HV device 31, and is separated into gas and liquid by the gas-liquid separator 60. Only the vapor 61 flows out of the gas-liquid separator 60 and returns to the compressor 12 via the refrigerant passages 41 and 22a.

つまり、暖房運転時には、図9に示すA点、B点、E点、D点およびH点を順に通過するように蒸気圧縮式冷凍サイクル10内を冷媒が流れ、圧縮機12と熱交換器18と膨張弁44と冷却部30とに冷媒が循環する。冷媒は、圧縮機12と熱交換器18と膨張弁44と冷却部30とが順次接続された冷媒循環流路を通って、蒸気圧縮式冷凍サイクル10内を循環する。   That is, during the heating operation, the refrigerant flows through the vapor compression refrigeration cycle 10 so as to pass through the points A, B, E, D, and H shown in FIG. 9 in order, and the compressor 12 and the heat exchanger 18 are passed through. Then, the refrigerant circulates through the expansion valve 44 and the cooling unit 30. The refrigerant circulates in the vapor compression refrigeration cycle 10 through a refrigerant circulation passage in which the compressor 12, the heat exchanger 18, the expansion valve 44, and the cooling unit 30 are sequentially connected.

図10は、実施の形態3の蒸気圧縮式冷凍サイクル10の暖房運転時の冷媒の状態を示すモリエル線図である。図10中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図10中には、圧縮機12から熱交換器18、膨張弁44および冷却部30を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,DおよびH点)における冷媒の熱力学状態が示される。   FIG. 10 is a Mollier diagram showing the state of the refrigerant during the heating operation of the vapor compression refrigeration cycle 10 of the third embodiment. The horizontal axis in FIG. 10 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. In FIG. 10, each point in the vapor compression refrigeration cycle 10 (that is, A, B) that flows from the compressor 12 through the heat exchanger 18, the expansion valve 44, and the cooling unit 30 in order and returns to the compressor 12. , E, D, and H points) shows the thermodynamic state of the refrigerant.

図10に示すように、圧縮機12の入口において、冷媒は、乾き飽和蒸気の状態にある(A点)。乾き飽和蒸気状態の冷媒は、圧縮機12に吸入され、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は熱交換器18へと流れる。熱交換器18へ入った高圧の冷媒蒸気は、熱交換器18において冷却され、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(E点)。   As shown in FIG. 10, at the inlet of the compressor 12, the refrigerant is in a dry saturated vapor state (point A). The refrigerant in the dry saturated vapor state is sucked into the compressor 12 and adiabatically compressed along the isentropic line in the compressor 12. As the compressor is compressed, the pressure and temperature of the refrigerant rise and become high-temperature and high-pressure superheated steam with a high degree of superheat (point B), and the refrigerant flows to the heat exchanger 18. The high-pressure refrigerant vapor that has entered the heat exchanger 18 is cooled in the heat exchanger 18, and changes from superheated steam to dry saturated vapor while maintaining the constant pressure, releases latent heat of condensation, gradually liquefies, and wets in a gas-liquid mixed state. When it becomes steam and all of the refrigerant condenses, it becomes a saturated liquid, further releases sensible heat and becomes a supercooled liquid (point E).

熱交換器18で液化した高圧の液相冷媒は、冷媒通路24bから冷媒通路43へ流入する。冷媒通路23へ流通した過冷却液状態の冷媒は、膨張弁44において絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(D点)。膨張弁44において温度が下げられた冷媒は、冷媒通路45,35を経由して冷却部30の冷却通路32へ流れ、HV機器31を冷却する。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。HV機器31から潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(H点)。   The high-pressure liquid-phase refrigerant liquefied by the heat exchanger 18 flows into the refrigerant passage 43 from the refrigerant passage 24b. The refrigerant in the supercooled liquid state flowing into the refrigerant passage 23 is squeezed and expanded in the expansion valve 44, the specific enthalpy of the refrigerant does not change, and the temperature and pressure are reduced. (D point). The refrigerant whose temperature has been lowered in the expansion valve 44 flows into the cooling passage 32 of the cooling unit 30 via the refrigerant passages 45 and 35 and cools the HV equipment 31. By the heat exchange with the HV equipment 31, the refrigerant is heated and the dryness of the refrigerant increases. By receiving the latent heat from the HV device 31 and evaporating a part of the refrigerant, the ratio of saturated vapor contained in the wet vapor refrigerant increases (H point).

冷却部30から流出した湿り蒸気状態の冷媒は、気液分離器60で、冷媒蒸気61と冷媒液62とに気液分離される。気液分離器60から飽和蒸気状態の冷媒蒸気61のみが流出して、冷媒通路41へ流れ、冷媒通路22a、四方弁13および冷媒通路26を経由して、圧縮機12に吸入される(A点)。圧縮機12は、冷媒通路26から流入する冷媒を圧縮する。冷媒はこのようなサイクルに従って、圧縮、凝縮、絞り膨張、蒸発の状態変化を連続的に繰り返す。   The wet vapor refrigerant flowing out of the cooling unit 30 is gas-liquid separated into the refrigerant vapor 61 and the refrigerant liquid 62 by the gas-liquid separator 60. Only the saturated vapor state refrigerant vapor 61 flows out from the gas-liquid separator 60, flows into the refrigerant passage 41, and is sucked into the compressor 12 via the refrigerant passage 22a, the four-way valve 13 and the refrigerant passage 26 (A point). The compressor 12 compresses the refrigerant flowing from the refrigerant passage 26. In accordance with such a cycle, the refrigerant continuously repeats the compression, condensation, throttle expansion, and evaporation state changes.

図9に示すように弁の開閉を設定することにより、暖房運転時に、全ての冷媒を冷媒通路24bから冷媒通路43へ流通させることができる。すなわち、暖房運転時に、膨張弁16を通過した低温低圧の冷媒が熱交換器15,14に流通しない設定とすることができる。   By setting the opening and closing of the valves as shown in FIG. 9, all the refrigerant can be circulated from the refrigerant passage 24b to the refrigerant passage 43 during the heating operation. That is, it can be set so that the low-temperature and low-pressure refrigerant that has passed through the expansion valve 16 does not flow to the heat exchangers 15 and 14 during the heating operation.

たとえば氷点下以下など外気温が低い条件下では、暖房運転時に、熱交換器14,15において大気から吸熱することが難しく、そのため冷媒圧力が低下してしまう。冷媒圧力が下がりすぎると、圧縮機12の消費動力が増大する、圧縮機12からの吐出ガスが高温になり絶縁材や潤滑油が劣化する、熱交換器14,15への霜付きが発生するので霜を除去するための冷房運転(デフロスト運転)が必要になる、などの課題が生じる。   For example, under conditions where the outside air temperature is low, such as below the freezing point, it is difficult to absorb heat from the atmosphere in the heat exchangers 14 and 15 during heating operation, so that the refrigerant pressure decreases. When the refrigerant pressure is too low, the power consumption of the compressor 12 increases, the gas discharged from the compressor 12 becomes high temperature, the insulating material and the lubricating oil deteriorate, and the heat exchangers 14 and 15 are frosted. Therefore, the subject that the air_conditionaing | cooling operation (defrost operation) for removing frost is needed arises.

そのため、低外気温条件では、実施の形態3に示すように暖房運転時に冷媒を熱交換器14,15に流通させないように、弁の開閉設定を切り換える。このようにすれば、冷却部30に冷媒を流通させることでHV機器31の冷却を確保でき、かつ、熱交換器18で十分に空調用空気を加温できるので暖房性能を確保できる。加えて、上述した課題が生じることを回避することができる。   Therefore, under the low outside air temperature condition, the valve opening / closing setting is switched so that the refrigerant does not flow through the heat exchangers 14 and 15 during the heating operation as shown in the third embodiment. If it does in this way, cooling of HV equipment 31 can be secured by circulating a refrigerant to cooling part 30, and since air for air-conditioning can be fully heated with heat exchanger 18, heating performance can be secured. In addition, the above-described problems can be avoided.

(実施の形態4)
図11は、実施の形態4の冷却装置1の構成を示す模式図である。実施の形態4の冷却装置1は、実施の形態2と比較して、エジェクタ80を備える点で異なっている。エジェクタ80には、冷媒通路43から分岐した冷媒通路81と、気液分離器60と冷却部30との間を流通する冷媒の経路である冷媒通路34のうち膨張弁38に対して冷却部30に近接する側から分岐した冷媒通路83と、冷媒通路34のうち膨張弁38に対して気液分離器60に近接する側から分岐した冷媒通路85と、が接続されている。
(Embodiment 4)
FIG. 11 is a schematic diagram illustrating a configuration of the cooling device 1 according to the fourth embodiment. The cooling device 1 according to the fourth embodiment is different from the second embodiment in that an ejector 80 is provided. The ejector 80 includes a refrigerant passage 81 branched from the refrigerant passage 43, and the cooling portion 30 with respect to the expansion valve 38 in the refrigerant passage 34 that is a refrigerant passage that circulates between the gas-liquid separator 60 and the cooling portion 30. The refrigerant passage 83 branched from the side adjacent to the refrigerant passage 34 and the refrigerant passage 85 branched from the side closer to the gas-liquid separator 60 to the expansion valve 38 in the refrigerant passage 34 are connected.

冷媒通路81には、冷媒通路81を経由する冷媒の流通を許容または禁止する開閉弁82が配置されている。冷媒通路83には、冷媒通路83を経由する冷媒の流通を許容または禁止する開閉弁84が配置されている。冷媒通路85には、冷媒通路85を経由する冷媒の流通を許容または禁止する開閉弁86が配置されている。   In the refrigerant passage 81, an on-off valve 82 that allows or prohibits the refrigerant flow through the refrigerant passage 81 is disposed. In the refrigerant passage 83, an on-off valve 84 that allows or prohibits the refrigerant flow through the refrigerant passage 83 is disposed. In the refrigerant passage 85, an on-off valve 86 that allows or prohibits the refrigerant flow through the refrigerant passage 85 is disposed.

図11に示す冷房運転時には、開閉弁82,84,86はいずれも閉とされる。そのため冷媒は、図6と同様に状態を変化させながら、蒸気圧縮式冷凍サイクル10内を循環する。したがって、実施の形態2と同様に、気液分離器60から液相の冷媒のみを取り出し、膨張弁38で膨張することにより温度が低下した冷媒を使用してHV機器31を冷却できるので、HV機器31をより効率よく冷却することができる。   During the cooling operation shown in FIG. 11, the on-off valves 82, 84, 86 are all closed. Therefore, the refrigerant circulates in the vapor compression refrigeration cycle 10 while changing the state as in FIG. Accordingly, as in the second embodiment, only the liquid-phase refrigerant is taken out from the gas-liquid separator 60, and the HV device 31 can be cooled using the refrigerant whose temperature has been lowered by expansion by the expansion valve 38. The device 31 can be cooled more efficiently.

図12は、四方弁13を切り換えた状態の実施の形態4の冷却装置1を示す模式図である。図12に示す暖房運転時に、開閉弁82,84,86が全て開とされ、かつ膨張弁38は全閉とされる。そのため、エジェクタ80に冷媒が流れる。エジェクタ80は、膨張弁44を通過する前の高圧の冷媒を駆動流とし、膨張弁44を通過し冷却部30においてHV機器31を冷却した後の冷媒を二次流とし、駆動流と二次流とを混合して、冷却部30から気液分離器60に向けて流通する低圧の冷媒の圧力を上昇させる、昇圧機として機能する。   FIG. 12 is a schematic diagram illustrating the cooling device 1 according to the fourth embodiment in a state where the four-way valve 13 is switched. During the heating operation shown in FIG. 12, all of the on-off valves 82, 84, 86 are opened, and the expansion valve 38 is fully closed. Therefore, the refrigerant flows through the ejector 80. The ejector 80 uses the high-pressure refrigerant before passing through the expansion valve 44 as a driving flow, and uses the refrigerant after passing through the expansion valve 44 and cooling the HV device 31 in the cooling unit 30 as a secondary flow. It functions as a booster that mixes the flow and raises the pressure of the low-pressure refrigerant flowing from the cooling unit 30 toward the gas-liquid separator 60.

冷媒通路43から冷媒通路81を経由してエジェクタ80へ流入した高圧の冷媒を駆動流としてノズルから噴出させ、駆動流の噴出によりエジェクタ80内部に生じる負圧と駆動流の粘性とによって冷媒通路83から冷媒をエジェクタ80内に吸引する。エジェクタ80の内部で、冷媒通路81から流入した冷媒と冷媒通路83から流入した冷媒とが完全に混合し、その後ディフューザを通過することによって圧力を高められて、冷媒通路85に放出される。膨張弁44を通過して圧力が低下した冷媒は、エジェクタ80で昇圧されて、冷媒通路85,34を経由して気液分離器60へ流れる。   The high-pressure refrigerant flowing into the ejector 80 from the refrigerant passage 43 via the refrigerant passage 81 is ejected from the nozzle as a driving flow, and the refrigerant passage 83 is generated by the negative pressure generated in the ejector 80 due to the ejection of the driving flow and the viscosity of the driving flow. Then, the refrigerant is sucked into the ejector 80. Inside the ejector 80, the refrigerant flowing in from the refrigerant passage 81 and the refrigerant flowing in from the refrigerant passage 83 are completely mixed, and then the pressure is increased by passing through the diffuser and is discharged to the refrigerant passage 85. The refrigerant whose pressure has decreased after passing through the expansion valve 44 is pressurized by the ejector 80 and flows to the gas-liquid separator 60 via the refrigerant passages 85 and 34.

図13は、実施の形態4の蒸気圧縮式冷凍サイクル10の暖房運転時の冷媒の状態を示すモリエル線図である。図13中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。   FIG. 13 is a Mollier diagram showing the state of the refrigerant during the heating operation of the vapor compression refrigeration cycle 10 of the fourth embodiment. The horizontal axis in FIG. 13 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant. The curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant.

図13中には、熱交換器18の出口から冷媒通路43へ流入し、膨張弁44において絞り膨張され、HV機器31を冷却した後にエジェクタ80で昇圧され、気液分離器60で気液分離された冷媒蒸気61が気液分離器60から流出して冷媒通路41,22aを経由して圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,D,C,H,KおよびJ点)における冷媒の熱力学状態が示される。図13中にはまた、圧縮機12から熱交換器18、膨張弁16および熱交換器15,14を順に経由して流通し圧縮機12へ戻る、蒸気圧縮式冷凍サイクル10中の各点(すなわちA,B,E,M,N,F,IおよびG点)における冷房の熱力学状態が示される。   In FIG. 13, the refrigerant flows into the refrigerant passage 43 from the outlet of the heat exchanger 18, is throttled and expanded by the expansion valve 44, is cooled by the ejector 80 after cooling the HV device 31, and is separated by the gas-liquid separator 60. The refrigerant vapor 61 thus discharged flows out of the gas-liquid separator 60 and returns to the compressor 12 via the refrigerant passages 41 and 22a (that is, A, B, E, D, and so on). The thermodynamic state of the refrigerant at points C, H, K and J) is shown. In FIG. 13, each point in the vapor compression refrigeration cycle 10 that flows from the compressor 12 through the heat exchanger 18, the expansion valve 16, and the heat exchangers 15 and 14 in order and returns to the compressor 12 ( That is, the thermodynamic state of cooling at points A, B, E, M, N, F, I, and G) is shown.

図13に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は熱交換器18へと流れる。   As shown in FIG. 13, the superheated vapor refrigerant (point A) sucked into the compressor 12 is adiabatically compressed along the isentropic line in the compressor 12. As the compressor is compressed, the pressure and temperature of the refrigerant rise and become high-temperature and high-pressure superheated steam with a high degree of superheat (point B), and the refrigerant flows to the heat exchanger 18.

熱交換器18へ入った高圧の冷媒蒸気は、熱交換器18において冷却され、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(E点)。熱交換器18で液化した高圧の液相冷媒は、冷媒通路24bから冷媒通路24aと冷媒通路43とに分岐する。   The high-pressure refrigerant vapor that has entered the heat exchanger 18 is cooled in the heat exchanger 18, and changes from superheated steam to dry saturated vapor while maintaining the constant pressure, releases latent heat of condensation, gradually liquefies, and wets in a gas-liquid mixed state. When it becomes steam and all of the refrigerant condenses, it becomes a saturated liquid, further releases sensible heat and becomes a supercooled liquid (point E). The high-pressure liquid refrigerant liquefied by the heat exchanger 18 branches from the refrigerant passage 24b to the refrigerant passage 24a and the refrigerant passage 43.

冷媒通路43へ流通する一部の液相冷媒は、冷媒通路43を経由して膨張弁44に流入する。膨張弁44において、過冷却液状態の冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(D点)。膨張弁44において温度が下げられた冷媒は、冷媒通路45,35を経由して冷却部30の冷却通路32へ流れ、HV機器31を冷却する。HV機器31との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。HV機器31から潜熱を受け取って一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加する(C点)。   A part of the liquid-phase refrigerant flowing into the refrigerant passage 43 flows into the expansion valve 44 via the refrigerant passage 43. In the expansion valve 44, the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy of the refrigerant does not change, the temperature and pressure are reduced, and it becomes wet steam in a low-temperature and low-pressure gas-liquid mixed state (point D). The refrigerant whose temperature has been lowered in the expansion valve 44 flows into the cooling passage 32 of the cooling unit 30 via the refrigerant passages 45 and 35 and cools the HV equipment 31. By the heat exchange with the HV equipment 31, the refrigerant is heated and the dryness of the refrigerant increases. By receiving latent heat from the HV device 31 and vaporizing a part of the refrigerant, the ratio of saturated vapor contained in the refrigerant in the wet vapor state increases (point C).

冷却部30において温められた冷媒は、エジェクタ80で昇圧される。膨張弁44を通過しない高圧冷媒を冷媒通路81からエジェクタ80へ供給し、膨張弁44を通過して圧力が低下した低圧冷媒を冷媒通路83からエジェクタ80へ供給することにより、低圧冷媒が昇圧され、かつ低圧冷媒の温度が上昇する。エジェクタ80は、高圧冷媒を駆動ガスとし低圧冷媒を吸込ガスとすることで、高圧冷媒と低圧冷媒との差圧を利用して低圧冷媒をエジェクタ80に導入し、低圧冷媒の圧力を上昇させ、より圧力の高い冷媒を吐出する(H点)。   The refrigerant warmed in the cooling unit 30 is pressurized by the ejector 80. The high-pressure refrigerant that does not pass through the expansion valve 44 is supplied from the refrigerant passage 81 to the ejector 80, and the low-pressure refrigerant that has passed through the expansion valve 44 and the pressure has decreased is supplied from the refrigerant passage 83 to the ejector 80, whereby the low-pressure refrigerant is boosted. And the temperature of the low-pressure refrigerant rises. The ejector 80 introduces the low-pressure refrigerant into the ejector 80 using the differential pressure between the high-pressure refrigerant and the low-pressure refrigerant by using the high-pressure refrigerant as the driving gas and the low-pressure refrigerant as the suction gas, and increases the pressure of the low-pressure refrigerant. A refrigerant having a higher pressure is discharged (point H).

低圧冷媒を昇圧するための昇圧機としてエジェクタ80が使用されるので、消費動力を必要とするコンプレッサを駆動させて冷媒を昇圧させる必要がない。そのため、消費動力の増加を回避することができる。エジェクタ80は、ノズルとディフューザとが組み合わされた簡単な構造であって、運動する部分を有しないために、耐久性および信頼性に優れた昇圧機を提供することができる。   Since the ejector 80 is used as a booster for boosting the low-pressure refrigerant, there is no need to drive the compressor that requires power consumption to boost the refrigerant. Therefore, an increase in power consumption can be avoided. Since the ejector 80 has a simple structure in which a nozzle and a diffuser are combined and does not have a moving part, a booster excellent in durability and reliability can be provided.

その後冷媒は、冷媒通路85,34を経由して気液分離器60へ流入する。気液分離器60で、気液二相状態にある冷媒は、冷媒蒸気61と冷媒液62とに気液分離される。気液分離器60で分離された乾き飽和蒸気状態の冷媒蒸気61(K点)は、気液分離器60から流出して冷媒通路41へ流れ、膨張弁47に流入する。膨張弁47において、冷媒は絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下する(J点)。飽和液状態の冷媒液62(L点)は、気液分離器60から流出して、冷媒通路48を経由して冷媒通路24aへ流通する。   Thereafter, the refrigerant flows into the gas-liquid separator 60 via the refrigerant passages 85 and 34. In the gas-liquid separator 60, the refrigerant in the gas-liquid two-phase state is gas-liquid separated into the refrigerant vapor 61 and the refrigerant liquid 62. The dry saturated vapor state refrigerant vapor 61 (point K) separated by the gas-liquid separator 60 flows out from the gas-liquid separator 60, flows into the refrigerant passage 41, and flows into the expansion valve 47. In the expansion valve 47, the refrigerant is throttled and expanded, and the specific enthalpy of the refrigerant does not change, and the temperature and pressure decrease (point J). The refrigerant liquid 62 (point L) in the saturated liquid state flows out of the gas-liquid separator 60 and flows through the refrigerant passage 48 to the refrigerant passage 24a.

冷媒通路24bから冷媒通路24aへ流通する一部の液相冷媒は、膨張弁17において絞り膨張され、冷媒の温度と圧力が低下する(M点)。膨張弁17を通過した後の冷媒の圧力は、気液分離器60から流出する冷媒液62の圧力と等しくする。そのため、膨張弁17を通過した気液混合状態の冷媒と、気液分離器60から流出した液相の冷媒とは、共に膨張弁16の上流側の冷媒通路24aに流通する。気液分離器60から冷媒通路48を介して冷媒通路24aへ流れる冷媒と、冷媒通路24bから直接冷媒通路24aへ流れる冷媒とは、膨張弁16入口の冷媒通路24aにおいて混合される。   A part of the liquid-phase refrigerant flowing from the refrigerant passage 24b to the refrigerant passage 24a is expanded and expanded in the expansion valve 17, and the temperature and pressure of the refrigerant are lowered (point M). The pressure of the refrigerant after passing through the expansion valve 17 is made equal to the pressure of the refrigerant liquid 62 flowing out from the gas-liquid separator 60. Therefore, the gas-liquid mixed refrigerant that has passed through the expansion valve 17 and the liquid-phase refrigerant that has flowed out of the gas-liquid separator 60 both flow into the refrigerant passage 24 a on the upstream side of the expansion valve 16. The refrigerant flowing from the gas-liquid separator 60 to the refrigerant passage 24a via the refrigerant passage 48 and the refrigerant flowing directly from the refrigerant passage 24b to the refrigerant passage 24a are mixed in the refrigerant passage 24a at the inlet of the expansion valve 16.

混合された冷媒は、図13に示すL,M点と等しい圧力を有する。混合された冷媒の比エンタルピーは、混合される前の各々の冷媒の比エンタルピーおよび流量の比によって決まる。たとえば、混合される前の冷媒の流量が相等しければ、混合された冷媒は、L点における比エンタルピーとM点における比エンタルピーとの中間の比エンタルピーを有する(N点)。N点において冷媒は、L,M点における冷媒と等しい圧力を有し、L点の飽和液状態の冷媒以上、M点の気液混合状態の冷媒以下の比エンタルピーを有する。   The mixed refrigerant has a pressure equal to the L and M points shown in FIG. The specific enthalpy of the mixed refrigerant is determined by the specific enthalpy and flow rate ratio of each refrigerant before mixing. For example, if the flow rates of the refrigerant before being mixed are equal, the mixed refrigerant has a specific enthalpy intermediate between the specific enthalpy at the L point and the specific enthalpy at the M point (N point). At the point N, the refrigerant has a pressure equal to that of the refrigerant at the L and M points, and has a specific enthalpy greater than or equal to the refrigerant in the saturated liquid state at the L point and less than that in the gas-liquid mixed state at the M point.

混合された冷媒はその後、膨張弁16へ流通し、膨張弁16を通過することで膨張弁16において絞り膨張され、冷媒の比エンタルピーは変化せず温度と圧力とが低下して、気液混合状態の湿り蒸気となる(F点)。膨張弁16において温度が下げられた冷媒は、冷媒通路27を経由して熱交換器15へ流入する。熱交換器15において外気から潜熱を受け取って冷媒が加熱され、一部の冷媒が気化することにより、湿り蒸気状態の冷媒中に含まれる飽和蒸気の割合が増加し、冷媒の乾き度が増大する(I点)。   The mixed refrigerant then flows to the expansion valve 16 and passes through the expansion valve 16 so that the refrigerant is throttled and expanded in the expansion valve 16. The specific enthalpy of the refrigerant does not change, and the temperature and pressure are reduced. It becomes wet steam in the state (point F). The refrigerant whose temperature has been lowered in the expansion valve 16 flows into the heat exchanger 15 via the refrigerant passage 27. In the heat exchanger 15, the latent heat is received from the outside air, the refrigerant is heated, and a part of the refrigerant is vaporized, whereby the ratio of saturated vapor contained in the wet vapor refrigerant increases and the dryness of the refrigerant increases. (Point I).

熱交換器15から出た湿り蒸気状態の冷媒は、冷媒通路23を経由して熱交換器14へ流入する。冷媒は、熱交換器14を流通する際に、外気の熱を蒸発潜熱として吸収することによって加熱され、等圧のまま蒸発し、冷媒の乾き度が増大する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して過熱蒸気となる(G点)。   The wet steam refrigerant that has flowed out of the heat exchanger 15 flows into the heat exchanger 14 via the refrigerant passage 23. When the refrigerant flows through the heat exchanger 14, it is heated by absorbing the heat of the outside air as latent heat of vaporization, evaporates while maintaining the same pressure, and the dryness of the refrigerant increases. When all the refrigerant is dry and becomes saturated vapor, the refrigerant vapor further rises in temperature due to sensible heat and becomes superheated vapor (point G).

膨張弁47において絞り膨張され圧力が下げられた冷媒(J点)は、熱交換器14を経由して冷媒通路22bを流通する過熱蒸気状態の冷媒(G点)と等しい圧力を有する。そのため、冷媒通路41を流通する冷媒と冷媒通路22bを流通する冷媒とは、ともに冷媒通路22aへ流入して混合される。混合された冷媒は、図13に示すJ,G点における圧力と等しい圧力を有する。混合された冷媒の比エンタルピーは、冷媒通路22b,41の各々を流通する冷媒の比エンタルピーおよび流量の比によって決まる。たとえば、混合される前の冷媒の流量が相等しければ、混合された冷媒は、J点における比エンタルピーとG点における比エンタルピーとの中間の比エンタルピーを有する(A点)。その後冷媒は、四方弁13および冷媒通路26を経由して、圧縮機12に吸入される。圧縮機12は、冷媒通路26から流入する冷媒を圧縮する。   The refrigerant (point J) that has been expanded and reduced in the expansion valve 47 has a pressure equal to that of the superheated vapor refrigerant (point G) that flows through the refrigerant passage 22b via the heat exchanger 14. Therefore, both the refrigerant flowing through the refrigerant passage 41 and the refrigerant flowing through the refrigerant passage 22b flow into the refrigerant passage 22a and are mixed. The mixed refrigerant has a pressure equal to the pressure at points J and G shown in FIG. The specific enthalpy of the mixed refrigerant is determined by the specific enthalpy and flow rate ratio of the refrigerant flowing through each of the refrigerant passages 22b and 41. For example, if the flow rates of the refrigerant before being mixed are equal, the mixed refrigerant has a specific enthalpy intermediate between the specific enthalpy at point J and the specific enthalpy at point G (point A). Thereafter, the refrigerant is sucked into the compressor 12 via the four-way valve 13 and the refrigerant passage 26. The compressor 12 compresses the refrigerant flowing from the refrigerant passage 26.

エジェクタ80により昇圧されたH点の冷媒の温度および圧力を、図7に示すエジェクタ80を備えない構成の冷却装置1における気液分離器60の入口側のH点の冷媒の温度および圧力と等しくなるようにすれば、HV機器31を冷却する冷媒の温度および圧力を低くできる。つまり、図13に示すD点からC点へ流通する冷媒の温度および圧力は、エジェクタ80で昇圧される分、図8に示すD点からH点へ流通する冷媒の温度および圧力と比較して、相対的に低くなる。そのため、HV機器31と冷却部30を流通する冷媒との温度差が大きくなり、冷媒のHV機器31からの吸熱量が大きくなる。   The temperature and pressure of the refrigerant at the point H boosted by the ejector 80 are equal to the temperature and pressure of the refrigerant at the point H on the inlet side of the gas-liquid separator 60 in the cooling device 1 having no configuration shown in FIG. By doing so, the temperature and pressure of the refrigerant that cools the HV equipment 31 can be lowered. That is, the temperature and pressure of the refrigerant flowing from the point D to the point C shown in FIG. 13 are compared with the temperature and pressure of the refrigerant flowing from the point D to the point H shown in FIG. , Relatively low. Therefore, the temperature difference between the HV device 31 and the refrigerant flowing through the cooling unit 30 increases, and the amount of heat absorbed from the HV device 31 by the refrigerant increases.

冷却部30においてHV機器31から冷媒に与えられる熱量が大きくなるので、熱交換器14,15で冷媒が外気から吸熱する熱量を、相対的に小さくすることができる。この場合、外気と冷媒との温度差を小さくできることになるから、膨張弁16を経由して熱交換器15,14を経由して流れる冷媒の温度および圧力を相対的に高くすることができる。すなわち、図13と図8とを比較すると、F点からG点へ至る冷媒の圧力は、図13の方がより高くなっている。   Since the amount of heat given from the HV device 31 to the refrigerant in the cooling unit 30 increases, the amount of heat that the refrigerant absorbs from the outside air in the heat exchangers 14 and 15 can be relatively reduced. In this case, since the temperature difference between the outside air and the refrigerant can be reduced, the temperature and pressure of the refrigerant flowing via the expansion valve 16 and the heat exchangers 15 and 14 can be relatively increased. That is, when FIG. 13 and FIG. 8 are compared, the pressure of the refrigerant from the F point to the G point is higher in FIG.

前述した通り、膨張弁47での絞り膨張により冷媒通路41を流れる冷媒の圧力は、冷媒通路22bを流れる冷媒の圧力と等しくされる。換言すると、圧縮機12に流入する冷媒の圧力は、G点における冷媒の圧力に合わせられる。そのため、図13と図8とを比較すると、A点における圧力は図13の方がより高くなる。冷却部30でHV機器31を冷却した後の冷媒をエジェクタ80を使用して昇圧することで、圧縮機12の入口での冷媒の圧力をさらに上昇させることができる。したがって、実施の形態1〜3と比較して圧縮機12の消費動力をさらに低減することができる。   As described above, the pressure of the refrigerant flowing through the refrigerant passage 41 by the expansion of the expansion valve 47 is made equal to the pressure of the refrigerant flowing through the refrigerant passage 22b. In other words, the pressure of the refrigerant flowing into the compressor 12 is adjusted to the pressure of the refrigerant at point G. Therefore, when FIG. 13 is compared with FIG. 8, the pressure at point A is higher in FIG. The pressure of the refrigerant at the inlet of the compressor 12 can be further increased by increasing the pressure of the refrigerant after the HV device 31 is cooled by the cooling unit 30 using the ejector 80. Therefore, the power consumption of the compressor 12 can be further reduced as compared with the first to third embodiments.

なお、実施の形態1〜4においては、HV機器31を例として車両に搭載された電気機器を冷却する冷却装置1について説明した。電気機器としては、少なくとも作動によって熱を発生させる電気機器であれば、インバータ、モータジェネレータなどの例示された電気機器に限定されるものではなく、任意の電気機器であってもよい。冷却の対象となる電気機器が複数個ある場合においては、複数の電気機器は、冷却の目標となる温度範囲が共通していることが望ましい。冷却の目標となる温度範囲は、電気機器を作動させる温度環境として適切な温度範囲である。   In the first to fourth embodiments, the cooling device 1 that cools an electric device mounted on a vehicle using the HV device 31 as an example has been described. The electric device is not limited to the exemplified electric device such as an inverter and a motor generator as long as it is an electric device that generates heat at least by operation, and may be any electric device. When there are a plurality of electrical devices to be cooled, it is desirable that the plurality of electrical devices have a common temperature range to be cooled. The target temperature range for cooling is a temperature range suitable as a temperature environment for operating the electrical equipment.

さらに、本発明の冷却装置1により冷却される発熱源は、車両に搭載された電気機器に限られず、熱を発生する任意の機器、または任意の機器の発熱する一部分であってもよい。   Furthermore, the heat generation source cooled by the cooling device 1 of the present invention is not limited to an electric device mounted on a vehicle, and may be an arbitrary device that generates heat, or a part that generates heat from an arbitrary device.

以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組合せてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments of the present invention have been described above, the configurations of the embodiments may be appropriately combined. In addition, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の冷却装置は、モータジェネレータおよびインバータなどの電気機器を搭載するハイブリッド車、燃料電池車、電気自動車などの車両における、車内の冷房を行なうための蒸気圧縮式冷凍サイクルを使用した電気機器の冷却に、特に有利に適用され得る。   The cooling device of the present invention is an electrical device using a vapor compression refrigeration cycle for cooling the interior of a vehicle such as a hybrid vehicle, a fuel cell vehicle, and an electric vehicle equipped with electrical devices such as a motor generator and an inverter. It can be applied particularly advantageously to cooling.

1 冷却装置、10 蒸気圧縮式冷凍サイクル、12 圧縮機、13 四方弁、14,15,18 熱交換器、16,17,38,44,47 膨張弁、21,22,22a,22b,23,23a,24、24a,24b,25,26,27,33,34,35,36,41,43,45,48,72,81,83,85 冷媒通路、30 冷却部、31 HV機器、32 冷却通路、37,49,71,82,84,86 開閉弁、42,46 三方弁、51,52 流量調整弁、60 気液分離器、61 冷媒蒸気、62 冷媒液、80 エジェクタ、90 ダクト、91 ダクト入口、92 ダクト出口、93 ファン。   DESCRIPTION OF SYMBOLS 1 Cooling device, 10 Vapor compression refrigeration cycle, 12 Compressor, 13 Four-way valve, 14, 15, 18 Heat exchanger, 16, 17, 38, 44, 47 Expansion valve, 21, 22, 22a, 22b, 23, 23a, 24, 24a, 24b, 25, 26, 27, 33, 34, 35, 36, 41, 43, 45, 48, 72, 81, 83, 85 Refrigerant passage, 30 cooling section, 31 HV equipment, 32 cooling Passage, 37, 49, 71, 82, 84, 86 On-off valve, 42, 46 Three-way valve, 51, 52 Flow control valve, 60 Gas-liquid separator, 61 Refrigerant vapor, 62 Refrigerant liquid, 80 Ejector, 90 Duct, 91 Duct inlet, 92 duct outlet, 93 fans.

Claims (7)

発熱源を冷却する冷却装置であって、
冷媒を循環させるための圧縮機と、
前記冷媒と外気との間で熱交換する第一熱交換器と、
前記冷媒を減圧する減圧器と、
前記冷媒と空調用空気との間で熱交換する第二熱交換器と、
前記圧縮機から前記第一熱交換器へ向かう前記冷媒の流れと、前記圧縮機から前記第二熱交換器へ向かう前記冷媒の流れと、を切り換える四方弁と、
前記第一熱交換器と前記減圧器との間に並列に接続された前記冷媒の経路である第一通路および第二通路と、
前記第二通路上に設けられ、前記冷媒を用いて前記発熱源を冷却する冷却部と、
前記圧縮機と前記第一熱交換器との間の前記冷媒の経路と、前記冷却部に対し前記第一熱交換器に近接する側の前記第二通路と、を連通する、第一連通路と、
前記減圧器と前記第二熱交換器との間の前記冷媒の経路と、前記冷却部に対し前記減圧器に近接する側の前記第二通路と、を連通する、第二連通路と、を備える、冷却装置。
A cooling device for cooling a heat source,
A compressor for circulating the refrigerant;
A first heat exchanger for exchanging heat between the refrigerant and outside air;
A decompressor for decompressing the refrigerant;
A second heat exchanger that exchanges heat between the refrigerant and air-conditioning air;
A four-way valve that switches between the flow of the refrigerant from the compressor toward the first heat exchanger and the flow of the refrigerant from the compressor toward the second heat exchanger;
A first passage and a second passage which are paths of the refrigerant connected in parallel between the first heat exchanger and the decompressor;
A cooling unit provided on the second passage for cooling the heat generation source using the refrigerant;
A first series passage that communicates the refrigerant path between the compressor and the first heat exchanger and the second passage on the side close to the first heat exchanger with respect to the cooling unit. When,
A second communication path that communicates the refrigerant path between the pressure reducer and the second heat exchanger and the second passage on the side close to the pressure reducer with respect to the cooling unit; A cooling device.
前記冷却部と前記減圧器との間を流通する前記冷媒の経路に設けられ、前記冷媒と外気との間で熱交換する第三熱交換器を備える、請求項1に記載の冷却装置。   The cooling device according to claim 1, further comprising a third heat exchanger that is provided in a path of the refrigerant flowing between the cooling unit and the decompressor and exchanges heat between the refrigerant and outside air. 前記第一熱交換器と前記冷却部との間を流通する前記冷媒の経路に設けられた第二減圧器を備える、請求項1または請求項2に記載の冷却装置。   The cooling device according to claim 1, further comprising a second pressure reducer provided in a path of the refrigerant flowing between the first heat exchanger and the cooling unit. 前記冷却部に対し前記第一熱交換器に近接する側の前記第二通路に配置された気液分離器を備える、請求項1から請求項3のいずれかに記載の冷却装置。   The cooling device according to any one of claims 1 to 3, further comprising a gas-liquid separator disposed in the second passage on a side close to the first heat exchanger with respect to the cooling unit. 前記第一連通路の一端は、前記気液分離器の気相中に配置されている、請求項4に記載の冷却装置。   The cooling device according to claim 4, wherein one end of the first series passage is disposed in a gas phase of the gas-liquid separator. 前記冷却部から前記第一連通路に向けて流通する前記冷媒の圧力を上昇させる昇圧機を備える、請求項1から請求項5のいずれかに記載の冷却装置。   The cooling device according to any one of claims 1 to 5, further comprising a booster that increases a pressure of the refrigerant flowing from the cooling unit toward the first series passage. 前記冷媒が前記圧縮機から前記第二熱交換器へ向けて流通するように前記四方弁を設定したとき、前記第一熱交換器に前記冷媒が流通しないように前記冷媒の経路を切り換える、請求項1から請求項6のいずれかに記載の冷却装置。   The refrigerant path is switched so that the refrigerant does not flow through the first heat exchanger when the four-way valve is set so that the refrigerant flows from the compressor toward the second heat exchanger. The cooling device according to any one of claims 1 to 6.
JP2011118275A 2011-05-26 2011-05-26 Cooling system Withdrawn JP2012245856A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011118275A JP2012245856A (en) 2011-05-26 2011-05-26 Cooling system
PCT/IB2012/000942 WO2012160426A1 (en) 2011-05-26 2012-05-15 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118275A JP2012245856A (en) 2011-05-26 2011-05-26 Cooling system

Publications (1)

Publication Number Publication Date
JP2012245856A true JP2012245856A (en) 2012-12-13

Family

ID=46178577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118275A Withdrawn JP2012245856A (en) 2011-05-26 2011-05-26 Cooling system

Country Status (2)

Country Link
JP (1) JP2012245856A (en)
WO (1) WO2012160426A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040563B1 (en) * 2015-08-25 2019-11-01 Valeo Systemes De Controle Moteur SYSTEM FOR A MOTOR VEHICLE
EP3361191B1 (en) * 2017-02-10 2022-04-06 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
CN108583348B (en) * 2018-06-08 2023-08-18 上海加冷松芝汽车空调股份有限公司 Charging station capable of providing preheating and cooling for rechargeable battery of new energy automobile
WO2020055462A1 (en) * 2018-09-10 2020-03-19 Carrier Corporation Ejector heat pump operation
FR3129628B1 (en) * 2021-11-29 2023-10-20 Psa Automobiles Sa Ventilation system for motor vehicle
CN116742200B (en) * 2023-08-08 2023-11-03 江苏中关村科技产业园节能环保研究有限公司 Vehicle cooling system based on refrigerant injection cycle and working method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484871B2 (en) 1996-04-24 2004-01-06 株式会社デンソー Vehicle air conditioner
JPH11223406A (en) 1998-02-05 1999-08-17 Nippon Soken Inc Heat pump cycle
JP4075285B2 (en) 2000-04-25 2008-04-16 株式会社デンソー Inverter circuit device for driving vehicle motor
US6370903B1 (en) * 2001-03-14 2002-04-16 Visteon Global Technologies, Inc. Heat-pump type air conditioning and heating system for fuel cell vehicles
JP2005090862A (en) 2003-09-17 2005-04-07 Toyota Motor Corp Cooling system
US7287581B2 (en) * 2003-12-18 2007-10-30 General Motors Corporation Full function vehicle HVAC/PTC thermal system
JP2007069733A (en) 2005-09-07 2007-03-22 Valeo Thermal Systems Japan Corp Heating element cooling system using air conditioner for vehicle

Also Published As

Publication number Publication date
WO2012160426A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5755490B2 (en) Cooling system
JP5522275B2 (en) Cooling system
JP5373841B2 (en) Cooling system
JP5655954B2 (en) COOLING DEVICE AND COOLING DEVICE CONTROL METHOD
JP5815284B2 (en) Cooling system
JP2012172917A (en) Cooling device
US9681590B2 (en) Cooling system with controlled apportioning of the cooled high pressure refrigerant between the condenser and the expansion valve
JP5531045B2 (en) Cooling system
JP5669778B2 (en) Cooling device and vehicle including the same
JP5798402B2 (en) Cooling system
CN103998874A (en) Cooling device
CN103842741B (en) The control method of cooling device
JP5852368B2 (en) Cooling system
JP2014029232A (en) Cooling device
JP2013023186A (en) Cooling apparatus
JP2012245856A (en) Cooling system
JP2012245857A (en) Cooling apparatus, and method and device for controlling the same
JP5320419B2 (en) Cooling system
JP2014051118A (en) Cooling device
JP5917966B2 (en) Cooling device and vehicle including the same
JP5618011B2 (en) Control method of cooling device
JP2014088997A (en) Cooling device
JP2014088996A (en) Cooling apparatus
JP2015152244A (en) Cooling device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805