JP2013203190A - Battery temperature adjusting device - Google Patents

Battery temperature adjusting device Download PDF

Info

Publication number
JP2013203190A
JP2013203190A JP2012073508A JP2012073508A JP2013203190A JP 2013203190 A JP2013203190 A JP 2013203190A JP 2012073508 A JP2012073508 A JP 2012073508A JP 2012073508 A JP2012073508 A JP 2012073508A JP 2013203190 A JP2013203190 A JP 2013203190A
Authority
JP
Japan
Prior art keywords
battery
temperature
air
outside air
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073508A
Other languages
Japanese (ja)
Inventor
Seiji Inoue
誠司 井上
Masayuki Takeuchi
雅之 竹内
Hideaki Okawa
英晃 大川
Takashi Yamanaka
隆 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012073508A priority Critical patent/JP2013203190A/en
Publication of JP2013203190A publication Critical patent/JP2013203190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery temperature adjusting device capable of achieving battery heating with high efficiency even under an extremely cold condition by guiding temperature-controlled air subjected to a refrigeration cycle to a battery through a circulation flow passage or an outside air introduction flow passage.SOLUTION: A battery temperature adjusting device is structured so that a case 30 is provided on the way to a circulation duct 33 that permits a circulation mode for circulating inside air and an outside air mode for incorporating and circulating outside air to be switchable by a damper 6; an evaporator 21 and a condenser 22 of a refrigeration cycle 2 is built in the case 30, with a motor driving battery 1 for vehicle running sandwiched therebetween; during cooling of the battery 1, the damper 6 is switched so that a lower one of outside air and circulating air temperatures is supplied to the battery 1; and during heating of the battery 1, hot air is supplied to the battery 1 to heat the battery 1 by switching a refrigerant flow passage of the refrigeration cycle 2 or changing a flow direction of circulating air in the circulation duct 33.

Description

本発明は、ハイブリッド車、プラグインハイブリッド車、電気自動車(以後これらをまとめてEVと記す)に搭載されたバッテリの温度調節装置に関する。バッテリの温度調節装置は、温度調節された空気にてバッテリの加熱、冷却を行う装置である。   The present invention relates to a temperature control device for a battery mounted on a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle (hereinafter collectively referred to as EV). The battery temperature control device is a device that heats and cools the battery with temperature-controlled air.

エンジンだけを動力源とする車両に搭載されるバッテリは、エンジン始動、電気補機の駆動に使用されるだけであるので、容量は比較的小さい。これに対して、EVに搭載されるバッテリは、走行用モータに長時間に渡って電力を供給するので、電圧が高く、容量も大きい。そして、EVに搭載されるバッテリは、充電時やモータに電力を供給する放電時に流れる電流で発熱を生じて高温となることがあるので、高温による性能低下や劣化を避けるために冷却が必要である。一方、EVに搭載されるバッテリは、低温状態では入出力の性能が発揮できないので、性能を発揮できるように加熱することも必要である。特に、外気温度が非常に低い時(例えば、−20°C以下の時)は、加熱してバッテリの性能を引き出すことが望まれている。   A battery mounted on a vehicle using only the engine as a power source is only used for starting the engine and driving an electric auxiliary machine, and therefore has a relatively small capacity. On the other hand, since the battery mounted on the EV supplies electric power to the traveling motor for a long time, the voltage is high and the capacity is large. The battery mounted on the EV may generate heat due to current flowing during charging or discharging to supply power to the motor, and may become high temperature. Therefore, cooling is necessary to avoid performance degradation and deterioration due to high temperature. is there. On the other hand, since the battery mounted on the EV cannot exhibit input / output performance in a low temperature state, it is necessary to heat the battery so as to exhibit performance. In particular, when the outside air temperature is very low (for example, when the temperature is −20 ° C. or lower), it is desired to heat the battery to bring out the performance of the battery.

更に、消費エネルギ低減の要求や環境保護の要求のために、EVはエンジンを稼動させずにバッテリだけで走行する距離をできるだけ延ばすことへの機運が高まっている。これらの要求に対応するための従来技術として、特許文献1や特許文献2のような技術が知られている。   Furthermore, due to demands for reducing energy consumption and environmental protection, EVs are increasingly motivated to extend the distance traveled by batteries alone without operating the engine. As conventional techniques for meeting these requirements, techniques such as Patent Document 1 and Patent Document 2 are known.

特許文献1の技術は、バッテリの温度調整用に設けられた冷凍サイクルにより冷却、加熱された温度調節風を用いてバッテリを冷却、加熱しており、冷凍サイクルの本質的な性能の高さ(動作係数COPの高さ)から高効率な冷却加熱を可能にするものである。また、特許文献2の技術は、温度調節風を循環させることにより、外気温の影響を受けずにバッテリを加熱することが出来る技術である。   The technology of Patent Document 1 cools and heats a battery using temperature-controlled air that is cooled and heated by a refrigeration cycle provided for adjusting the temperature of the battery. This enables high-efficiency cooling and heating from the height of the operating coefficient COP. Moreover, the technique of patent document 2 is a technique which can heat a battery, without receiving the influence of external temperature by circulating temperature control wind.

しかしながら、特許文献1の技術では、蒸発器および凝縮器の少なくとも1つが外気と連通しているために、外気温度が非常に低い時は冷凍サイクル(ヒートポンプ)の作動が不可能になるという課題が残っている。また、特許文献2の技術では、冷凍サイクルを持たずに電気ヒーターのみでの加熱(冷却は単純な空冷)なので効率が低く、消費エネルギの増大やバッテリだけでの走行距離が大幅に短くなるという課題を持っている。   However, in the technique of Patent Document 1, since at least one of the evaporator and the condenser communicates with the outside air, there is a problem that the operation of the refrigeration cycle (heat pump) becomes impossible when the outside air temperature is very low. Remaining. Moreover, in the technique of patent document 2, since it is heating only by an electric heater without having a refrigeration cycle (cooling is simple air cooling), the efficiency is low, and the increase in energy consumption and the travel distance with only the battery are greatly shortened. Have a challenge.

特開2011−178270号公報JP 2011-178270 A

特開2009−272112号公報JP 2009-272112 A

本発明は、上記問題に鑑み、冷凍サイクルを使用して温度調節風をバッテリに導くと共に、温度調節風の流路を循環流路と外気循環流路に切り換え可能とし、高効率で極寒状態でもバッテリ加熱を可能としたバッテリの温度調節装置を提供することを目的とする。   In view of the above problems, the present invention guides the temperature-controlled air to the battery using a refrigeration cycle, and enables the temperature-controlled air flow path to be switched between a circulation flow path and an outside air circulation flow path, even in an extremely cold state with high efficiency. An object of the present invention is to provide a battery temperature control device that enables battery heating.

上記課題を解決する本発明のバッテリの温度調節装置は、車両の走行用モータ駆動用のバッテリ1の温度調節装置10であって、ケース30、ダクト33、送風機5を備え、内部を空気が流れる通風経路3と、ダクト33に接続する第1と第2の外気連通ダクト31,32と、第1と第2の外気連通ダクト31,32のダクト33への接続点に設けられ、通風経路3を内気循環経路と外気を取り入れて循環後に排出する外気循環経路の何れかに切り替えるダンパ6と、ケース30内に蒸発器21と凝縮器22を備え、冷媒により蒸発器21を高温にし、凝縮器22を低温にする冷凍サイクル2とを備え、バッテリ1を凝縮器21と蒸発器22の間のケース30内に配置して、バッテリ1の加熱が必要な時には空気を凝縮器21側からバッテリ1に向けて流し、バッテリ1の冷却が必要な時には空気を蒸発器22側からバッテリ1に向けて流すようにしたことを特徴とするものである。   The battery temperature adjusting device of the present invention that solves the above problems is a temperature adjusting device 10 for a battery 1 for driving a motor for driving a vehicle, and includes a case 30, a duct 33, and a blower 5, and air flows inside. The ventilation path 3 is provided at a connection point between the first and second outside air communication ducts 31 and 32 connected to the duct 33 and the duct 33 of the first and second outside air communication ducts 31 and 32. Is provided with a damper 6 that switches between an inside air circulation path and an outside air circulation path that takes in outside air and discharges it after circulation, an evaporator 21 and a condenser 22 in a case 30, and the evaporator 21 is heated to a high temperature by a refrigerant. The battery 1 is disposed in a case 30 between the condenser 21 and the evaporator 22 so that the battery 1 is heated from the condenser 21 side when the battery 1 needs to be heated. Flow towards, when the battery 1 cooling is required and is characterized in that it has to flow toward the air from the evaporator 22 side to the battery 1.

これにより、冷凍サイクルを使用して温度調節が可能な温度調節風を作り、これをバッテリに導くことにより、バッテリの置かれた環境に応じて、バッテリの加熱及び冷却の両方が可能であり、バッテリを高効率で使用することが可能となる。   This makes it possible to heat and cool the battery according to the environment in which the battery is placed by creating a temperature-controlled wind that can be temperature-controlled using the refrigeration cycle and guiding it to the battery. The battery can be used with high efficiency.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

本発明のバッテリの温度調節装置の車両における設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position in the vehicle of the temperature control apparatus of the battery of this invention. バッテリの温度調節装置の第1の実施例の構成を示す構成図である。It is a block diagram which shows the structure of the 1st Example of the temperature control apparatus of a battery. 図2に示したバッテリの温度調節装置におけるバッテリ加熱時の空気の流れを示すものであり、(a)は循環ダクト内の内気を循環させて加熱を行う時の空気の流れを示す動作説明図、(b)は外気を取り入れて加熱を行う時の空気の流れを示す動作説明図である。FIG. 2 shows an air flow during battery heating in the battery temperature control apparatus shown in FIG. 2, and (a) is an operation explanatory diagram showing an air flow when heating is performed by circulating the inside air in the circulation duct. (B) is operation | movement explanatory drawing which shows the flow of air when taking in external air and heating. バッテリの温度調節装置の第2の実施例の構成とバッテリの加熱/冷却動作を示すものであり、(a)はバッテリ加熱時の四方弁の動作と内気と外気の流れを示す構成図であり、(b)はバッテリ冷却時の四方弁の動作と内気と外気の流れを示す部分構成図である。The structure of 2nd Example of the temperature control apparatus of a battery and the heating / cooling operation | movement of a battery are shown, (a) is a block diagram which shows the operation | movement of the four-way valve at the time of battery heating, and the flow of internal air and external air (B) is a partial block diagram which shows the operation | movement of the four-way valve at the time of battery cooling, and the flow of internal air and external air. バッテリの温度調節装置の第3の実施例の構成とバッテリの加熱/冷却動作を示すものであり、(a)はバッテリ加熱時の内気と外気の流れを示す構成図であり、(b)はバッテリ冷却時の内気と外気の流れを示す構成図である。The structure of 3rd Example of the temperature control apparatus of a battery and a heating / cooling operation | movement of a battery are shown, (a) is a block diagram which shows the flow of the internal air at the time of battery heating, and external air, (b) It is a block diagram which shows the flow of the internal air at the time of battery cooling, and external air. 図4(a)、(b)に示した冷凍サイクルの四方弁を二方弁と三方弁の組み合わせで置き換えた実施例を示すものであり、(a)はバッテリ加熱時の二方弁と三方弁の動作を示す冷凍サイクルの動作図、(b)はバッテリ冷却時の二方弁と三方弁の動作を示す冷凍サイクルの動作図である。4A and 4B show an embodiment in which the four-way valve of the refrigeration cycle shown in FIGS. 4A and 4B is replaced with a combination of a two-way valve and a three-way valve, and FIG. 4A shows a two-way valve and a three-way valve during battery heating. The operation diagram of the refrigeration cycle showing the operation of the valve, (b) is an operation diagram of the refrigeration cycle showing the operation of the two-way valve and the three-way valve during battery cooling. 本発明のバッテリの温度調節装置の冷凍サイクルで加熱又は冷却するバッテリに放熱フィンを取り付けた変形実施例の部分構成図である。It is a partial block diagram of the modification which attached the radiation fin to the battery heated or cooled with the refrigerating cycle of the temperature control apparatus of the battery of this invention. 本発明のバッテリの温度調節装置の冷凍サイクルの通風経路を断熱材で覆った変形実施例の部分構成図である。It is the partial block diagram of the modified example which covered the ventilation path of the refrigerating cycle of the temperature control apparatus of the battery of this invention with the heat insulating material.

以下、図面を参照して、本発明の幾つかの実施形態を実施例に基いて説明する。各実施例においては、同一構成の部分には、同一の符号を付してその説明を省略する。   Hereinafter, several embodiments of the present invention will be described based on examples with reference to the drawings. In each embodiment, parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.

図1は、本発明のバッテリの温度調節装置10の、車両9における設置位置の一例を示すものである。車両9には通常、車室8内の温度を調節するためのエアコンユニット7がエンジンルーム等に設けられている。エアコンユニット7は、外気Aや室内8を循環した循環空気Cを装置本体内に取り込み、図示しないクーラユニットやヒーターユニットを通すことによって温度調節した冷風CAや温風WAを室内8に吹き出すように動作する。   FIG. 1 shows an example of an installation position in a vehicle 9 of a battery temperature adjusting device 10 of the present invention. The vehicle 9 is usually provided with an air conditioner unit 7 for adjusting the temperature in the passenger compartment 8 in an engine room or the like. The air conditioner unit 7 takes in the outside air A and the circulated air C circulated through the room 8 into the apparatus main body, and blows out the cold air CA and the hot air WA adjusted in temperature by passing through a cooler unit and a heater unit (not shown) into the room 8. Operate.

車両9がEVである場合は、図示しない走行用モータに電力供給するための高電圧バッテリ1(以後単にバッテリ1と記す)が搭載されている。EV用のバッテリ1は大容量でサイズが大きいために、車両9のトランクルームのような車両の後部に搭載されることが多い。従って、バッテリの温度調節装置10はエアコンユニット7とは別の位置に搭載される。本発明のバッテリの温度調節装置10は、このバッテリ1の温度を調節するものであり、バッテリ1を内蔵する通風経路3と通風経路3内を流れる空気の温度を変更する冷凍サイクル2とを備える。本発明のバッテリの温度調節装置10は、バッテリ1の搭載位置によってその設置位置が変わる。   When the vehicle 9 is an EV, a high voltage battery 1 (hereinafter simply referred to as a battery 1) for supplying power to a travel motor (not shown) is mounted. Since the EV battery 1 has a large capacity and a large size, the EV battery 1 is often mounted in a rear portion of a vehicle such as a trunk room of the vehicle 9. Therefore, the battery temperature control device 10 is mounted at a position different from that of the air conditioner unit 7. The battery temperature adjusting device 10 according to the present invention adjusts the temperature of the battery 1, and includes a ventilation path 3 that houses the battery 1 and a refrigeration cycle 2 that changes the temperature of air flowing in the ventilation path 3. . The battery temperature control device 10 according to the present invention changes its installation position depending on the mounting position of the battery 1.

図2は、図1に示したバッテリの温度調節装置10の第1の実施例の構成を示すものである。第1の実施例のバッテリの温度調節装置10にある通風経路3は、バッテリ1を収容するケース30と、ケース30の入口と出口を結ぶダクト33とを備える。ダクト33には第1の外気連通ダクト31と第2の外気連通ダクト32が隣接して接続しており、第1と第2の外気連通ダクト31,32のダクト33への接続点にダンパ6が設けられている。ダンパ6は実線で示す位置と破線で示す位置の2つの位置を取ることができる。ダンパ6が実線位置にある時は、第1と第2の外気連通ダクト31,32はダクト33に連通せず、内気循環経路が形成される。一方、ダンパ6が破線位置にある時はダクト33が二分割され、ダクト33の分割点の一方が第1の外気連通ダクト31を通じて外気に連通し、他方が第2の外気連通ダクト32を通じて外気に連通して外気循環経路が形成される。   FIG. 2 shows the configuration of the first embodiment of the battery temperature control apparatus 10 shown in FIG. The ventilation path 3 in the battery temperature control apparatus 10 of the first embodiment includes a case 30 that houses the battery 1 and a duct 33 that connects the inlet and the outlet of the case 30. A first outside air communication duct 31 and a second outside air communication duct 32 are adjacently connected to the duct 33, and the damper 6 is connected to the connection point of the first and second outside air communication ducts 31, 32 to the duct 33. Is provided. The damper 6 can take two positions, a position indicated by a solid line and a position indicated by a broken line. When the damper 6 is at the solid line position, the first and second outside air communication ducts 31 and 32 do not communicate with the duct 33 and an inside air circulation path is formed. On the other hand, when the damper 6 is at the position of the broken line, the duct 33 is divided into two, one of the dividing points of the duct 33 communicates with the outside air through the first outside air communicating duct 31, and the other passes through the second outside air communicating duct 32. An outside air circulation path is formed in communication with the.

ダクト33の内部の所定位置には、モータ50とブレード51を備えた送風機5が設けられている。第1の実施例の送風機5はダクト33内の空気を一方向に送るものであり、逆転して空気を反対方向に送ることはできない。通風経路3の外部には、第1の温度センサとして外気温度を測定する外気温度センサ41が設けられており、ダクト33内のケース30から空気が出てくる部分には、第2の温度センサとして循環気温度センサ42が設けられている。外気温度センサ41の設置位置は外気温度が測定できる場所ならどこでも良いが、第1の外気連通ダクト31の上流側が望ましい。   A blower 5 including a motor 50 and a blade 51 is provided at a predetermined position inside the duct 33. The blower 5 of the first embodiment sends air in the duct 33 in one direction, and cannot reversely send air in the opposite direction. Outside the ventilation path 3, an outside air temperature sensor 41 for measuring the outside air temperature is provided as a first temperature sensor, and a second temperature sensor is provided at a portion where the air exits from the case 30 in the duct 33. A circulating air temperature sensor 42 is provided. The installation position of the outside air temperature sensor 41 may be anywhere as long as the outside air temperature can be measured, but the upstream side of the first outside air communication duct 31 is desirable.

バッテリの温度調節装置10には更に制御装置4が設けられている。外気温度センサ41の温度検出値と循環気温度センサ42の温度検出値は制御装置4に入力される。また、制御装置4はダンパ6の位置の切り替えと、送風機5のモータ50の回転を制御する。制御装置4は、外気温度センサ41の温度検出値と循環気温度センサ42の温度検出値とを比較して、ダンパ6を切り替えると共に、送風機5のモータ50の回転を制御する。   The battery temperature control device 10 is further provided with a control device 4. The temperature detection value of the outside air temperature sensor 41 and the temperature detection value of the circulating air temperature sensor 42 are input to the control device 4. The control device 4 controls the switching of the position of the damper 6 and the rotation of the motor 50 of the blower 5. The control device 4 compares the temperature detection value of the outside air temperature sensor 41 with the temperature detection value of the circulating air temperature sensor 42, switches the damper 6, and controls the rotation of the motor 50 of the blower 5.

冷凍サイクル2は、凝縮器21、蒸発器22、コンプレッサ23及び膨張弁24を備えており、これらを接続する冷媒の流路を冷媒が循環する。凝縮器21と蒸発器22はケース30の内部に設けられており、凝縮器21と蒸発器22の間にバッテリ1が収容されている。第1の実施例ではバッテリ1は複数のセルを備えているが、バッテリ1は一体型の場合もある。凝縮器21にはコンプレッサ23で圧縮された高温高圧の冷媒(気体)が流入するので、凝縮器21は高温になる。また、蒸発器22では膨張弁24からの低温低圧の冷媒(液体)が流入するので、蒸発器22は低温になる。冷凍サイクル2は以上のような部材を備えているので、循環気温度センサ42は、蒸発器22の下流側の空気の温度を検出することになる。冷凍サイクル2もこの制御装置4か、あるいは図示しない制御装置に接続され、凝縮器21或いは蒸発器22を通過してバッテリ1に向かう空気が所定温度になるように制御される。   The refrigeration cycle 2 includes a condenser 21, an evaporator 22, a compressor 23, and an expansion valve 24, and the refrigerant circulates through a refrigerant flow path connecting them. The condenser 21 and the evaporator 22 are provided inside the case 30, and the battery 1 is accommodated between the condenser 21 and the evaporator 22. In the first embodiment, the battery 1 includes a plurality of cells, but the battery 1 may be integrated. Since the high-temperature and high-pressure refrigerant (gas) compressed by the compressor 23 flows into the condenser 21, the condenser 21 becomes high temperature. Further, since the low-temperature and low-pressure refrigerant (liquid) from the expansion valve 24 flows into the evaporator 22, the evaporator 22 has a low temperature. Since the refrigeration cycle 2 includes the above members, the circulating air temperature sensor 42 detects the temperature of the air downstream of the evaporator 22. The refrigeration cycle 2 is also connected to the control device 4 or a control device (not shown), and is controlled so that the air passing through the condenser 21 or the evaporator 22 toward the battery 1 reaches a predetermined temperature.

ここで、図3(a)、(b)を用いて、図2に示した第1の実施例のバッテリの温度調節装置10におけるバッテリ1の加熱動作を説明する。図3(a)は、外気温度センサ41で検出した外気温度の方が、循環気温度センサ42で検出した内気の温度よりも低い場合を示している。この時は、制御装置4により、ダンパ6が第1と第2の外気連通ダクト31,32を閉じる位置に制御される。この状態では蒸発器22を通過した空気は凝縮器21の上流に循環する(これを循環モードと記す)。   Here, the heating operation of the battery 1 in the battery temperature control apparatus 10 of the first embodiment shown in FIG. 2 will be described with reference to FIGS. FIG. 3A shows a case where the outside air temperature detected by the outside air temperature sensor 41 is lower than the inside air temperature detected by the circulating air temperature sensor 42. At this time, the control device 4 controls the damper 6 to a position where the first and second outside air communication ducts 31 and 32 are closed. In this state, the air that has passed through the evaporator 22 circulates upstream of the condenser 21 (this is referred to as a circulation mode).

冷凍サイクル2が作動すると、凝縮器21は高温になり、蒸発器22は低温になる。この状態で送風機5を作動させると、凝縮器21を通過して加熱された空気が実線で示すように移動し、バッテリ1の近傍や間隙を通過するので、バッテリ1が加熱される。バッテリ1を通過した空気は蒸発器22を通過し、循環ダクト33を通って凝縮器21に戻る。この場合、外界とは熱の授受がないので、バッテリ1はコンプレッサ動力として投入されるエネルギ分だけ加熱される。外界と熱の授受がないことから、この循環モードはどのような外気温度の状態でも作動可能である。   When the refrigeration cycle 2 is activated, the condenser 21 becomes high temperature and the evaporator 22 becomes low temperature. When the blower 5 is operated in this state, the air heated through the condenser 21 moves as indicated by the solid line and passes through the vicinity of the battery 1 and the gap, so that the battery 1 is heated. The air that has passed through the battery 1 passes through the evaporator 22 and returns to the condenser 21 through the circulation duct 33. In this case, since heat is not exchanged with the outside, the battery 1 is heated by the amount of energy input as compressor power. Since there is no heat exchange with the outside world, this circulation mode can be operated at any ambient temperature.

一方、外気温度センサ41で測定した温度が、循環気温度センサ42で測定した温度より高い場合は、制御装置4により、ダンパ6が第1と第2の外気連通ダクト31,32が循環ダクト33に接続され、循環ダクト33が二分割される。ダンパ6により、凝縮器21側の循環ダクト33は第1の外気連通ダクト31を通じて外気に連通し、蒸発器22側の循環ダクト33は第2の外気連通ダクト32を通じて外気に連通する。   On the other hand, when the temperature measured by the outside air temperature sensor 41 is higher than the temperature measured by the circulating air temperature sensor 42, the control device 4 causes the damper 6 to connect the first and second outside air communication ducts 31 and 32 to the circulation duct 33. The circulation duct 33 is divided into two. By the damper 6, the circulation duct 33 on the condenser 21 side communicates with the outside air through the first outside air communication duct 31, and the circulation duct 33 on the evaporator 22 side communicates with the outside air through the second outside air communication duct 32.

冷凍サイクル2が作動すると、凝縮器21は高温になり、蒸発器22は低温になる。この状態で送風機5を作動させると、第1の外気連通ダクト31を通じて取り込まれた空気が、破線で示すように移動し、凝縮器21を通過して加熱される。加熱された空気はバッテリ1の近傍や間隙を通過するので、バッテリ1が加熱される。バッテリ1を通過した空気は蒸発器22を通過し、第2の外気連通ダクト32を通って外部に排出される。(これを外気モードと記す)。この場合、蒸発器22の下流の空気より、外部から取り入れた外気の方が暖かいので冷凍サイクル2は外気から熱をくみ上げたことになり、エネルギー効率が向上する、すなわち前述の動作係数COPが向上する。   When the refrigeration cycle 2 is activated, the condenser 21 becomes high temperature and the evaporator 22 becomes low temperature. When the blower 5 is operated in this state, the air taken in through the first outside air communication duct 31 moves as indicated by a broken line and is heated through the condenser 21. Since the heated air passes through the vicinity of the battery 1 and the gap, the battery 1 is heated. The air that has passed through the battery 1 passes through the evaporator 22, and is discharged to the outside through the second outside air communication duct 32. (This is referred to as outside air mode). In this case, since the outside air taken from the outside is warmer than the air downstream of the evaporator 22, the refrigeration cycle 2 draws heat from the outside air, so that energy efficiency is improved, that is, the above-described operating coefficient COP is improved. To do.

このように、冷凍サイクル2を備え、循環モードと外気モードを切り替えられる通風経路3の設置により、外気温が低い場合には循環モードで、通常外気温時は外気モードでバッテリ1を加熱することができ、バッテリ1の温度調節を高効率で行うことができる。また、冷凍サイクル2の動作を停止させて、通風経路3を外気モードとすれば、外気によるバッテリ1の冷却を行うことができ、夏期などのバッテリ冷却が必要なときにも最低限の冷却が可能となる。   In this way, by providing the ventilation path 3 that includes the refrigeration cycle 2 and can switch between the circulation mode and the outside air mode, the battery 1 is heated in the circulation mode when the outside air temperature is low, and in the outside air mode at the normal outside temperature. The temperature of the battery 1 can be adjusted with high efficiency. Further, if the operation of the refrigeration cycle 2 is stopped and the ventilation path 3 is set to the outside air mode, the battery 1 can be cooled by the outside air, and the minimum cooling is possible even when the battery cooling is necessary in summer or the like. It becomes possible.

図4(a)、(b)は、第2の実施例のバッテリの温度調節装置10Aの構成とバッテリ1の加熱/冷却動作を示すものである。第2の実施例のバッテリの温度調節装置10Aが第1の実施例のバッテリの温度調節装置10と異なる点は、冷凍サイクル2のコンプレッサ23の冷媒の吐出側に流路切替動作が可能な四方弁25を設けた点である。四方弁25が図4(a)に示す状態にある時は、コンプレッサ23から吐出された冷媒は凝縮器21に入力され、蒸発器22から出た冷媒がコンプレッサ23に入力される。この時のバッテリの温度調節装置10Aの動作は第1の実施例のバッテリの温度調節装置10の動作と全く同じである。従って、ダンパ6が実線位置にある時は循環モードであり、ダンパ6が破線位置にある時は外気モードとなる。   FIGS. 4A and 4B show the configuration of the battery temperature control apparatus 10A and the heating / cooling operation of the battery 1 according to the second embodiment. The battery temperature adjusting device 10A of the second embodiment is different from the battery temperature adjusting device 10 of the first embodiment in that the flow path switching operation is possible on the refrigerant discharge side of the compressor 23 of the refrigeration cycle 2. The valve 25 is provided. When the four-way valve 25 is in the state shown in FIG. 4A, the refrigerant discharged from the compressor 23 is input to the condenser 21, and the refrigerant output from the evaporator 22 is input to the compressor 23. The operation of the battery temperature adjusting device 10A at this time is exactly the same as the operation of the battery temperature adjusting device 10 of the first embodiment. Therefore, when the damper 6 is at the solid line position, the circulation mode is set, and when the damper 6 is at the broken line position, the outside air mode is set.

一方、図4(a)の状態にある四方弁25を90°回転させると図4(b)に示すようになる。四方弁25が図4(b)に示す状態にある時は、コンプレッサ23から吐出された冷媒は蒸発器22に入力され、凝縮器21から出た冷媒がコンプレッサ23に入力される。即ち、凝縮器21と蒸発器22の機能が逆転し、凝縮器21が蒸発器となり、蒸発器22が凝縮器となる。図4(b)に示す状態では、冷凍サイクル2が作動すると、蒸発器22(機能は蒸発器)が高温になり、凝縮器21(機能は蒸発器)は低温になる。   On the other hand, when the four-way valve 25 in the state of FIG. 4A is rotated by 90 °, the state is as shown in FIG. When the four-way valve 25 is in the state shown in FIG. 4B, the refrigerant discharged from the compressor 23 is input to the evaporator 22, and the refrigerant discharged from the condenser 21 is input to the compressor 23. That is, the functions of the condenser 21 and the evaporator 22 are reversed, the condenser 21 becomes an evaporator, and the evaporator 22 becomes a condenser. In the state shown in FIG. 4B, when the refrigeration cycle 2 is operated, the evaporator 22 (function is an evaporator) becomes high temperature, and the condenser 21 (function is an evaporator) becomes low temperature.

この状態で送風機5を作動させると、低温になった凝縮器21(機能は蒸発器)を通る空気を冷却でき、バッテリ1を冷却することが可能になる。第2の実施例のバッテリの温度調節装置10Aにおいても、ダンパ6の切り替えにより、前述の循環モードと外気モードとを切り替えることができる。図4(b)に実線で示す空気の流れが循環モードにおける空気の流れを示しており、破線で示す空気の流れが外気モードにおける空気の流れを示している。第2の実施例のバッテリの温度調節装置10Aでは、バッテリを外気温以下に冷却することができる。   When the blower 5 is operated in this state, the air passing through the condenser 21 (functioning as an evaporator) having a low temperature can be cooled, and the battery 1 can be cooled. Also in the battery temperature control apparatus 10A of the second embodiment, the circulation mode and the outside air mode can be switched by switching the damper 6. In FIG. 4B, the air flow indicated by the solid line indicates the air flow in the circulation mode, and the air flow indicated by the broken line indicates the air flow in the outside air mode. In the battery temperature control apparatus 10A of the second embodiment, the battery can be cooled to an ambient temperature or lower.

図5は第3の実施例のバッテリの温度調節装置10Bの構成とバッテリの加熱/冷却動作を示すものである。第3の実施例のバッテリの温度調節装置10Bが第1の実施例のバッテリの温度調節装置10と異なる点は、送風機5を逆転運転可能な軸流ファン53にした点である。軸流ファン53はモータ50の回転軸52の先端部分に取り付けられており、正転及び逆転が可能である。図5(a)は軸流ファン53を正転させた状態を示しており、このとき、ケース30内を流れる空気は凝縮器21側から蒸発器22側に流れる。この時のバッテリの温度調節装置10Bの動作は第1の実施例のバッテリの温度調節装置10の動作と全く同じである。従って、ダンパ6が実線位置にある時は循環モードであり、ダンパ6が破線位置にある時は外気モードとなる。   FIG. 5 shows the configuration of the battery temperature adjusting device 10B of the third embodiment and the battery heating / cooling operation. The battery temperature adjusting device 10B of the third embodiment is different from the battery temperature adjusting device 10 of the first embodiment in that the blower 5 is an axial flow fan 53 that can be operated in reverse. The axial fan 53 is attached to the tip portion of the rotating shaft 52 of the motor 50, and can rotate forward and backward. FIG. 5A shows a state in which the axial flow fan 53 is rotated forward. At this time, the air flowing in the case 30 flows from the condenser 21 side to the evaporator 22 side. The operation of the battery temperature control device 10B at this time is exactly the same as the operation of the battery temperature control device 10 of the first embodiment. Therefore, when the damper 6 is at the solid line position, the circulation mode is set, and when the damper 6 is at the broken line position, the outside air mode is set.

一方、軸流ファン53を逆転させると、図5(b)に示すように、ケース30内を流れる空気は蒸発器22側から凝縮器21側に流れる。従って、低温状態の蒸発器22を通る空気を冷却でき、バッテリ1を冷却することが可能になる。第3の実施例のバッテリの温度調節装置10Bにおいても、ダンパ6の切り替えにより、前述の循環モードと外気モードとを切り替えることができる。図5(b)に実線で示す空気の流れが循環モードにおける空気の流れを示しており、破線で示す空気の流れが外気モードにおける空気の流れを示している。第3の実施例のバッテリの温度調節装置10Bでも、バッテリを外気温以下に冷却することができる。   On the other hand, when the axial fan 53 is reversed, the air flowing in the case 30 flows from the evaporator 22 side to the condenser 21 side as shown in FIG. Therefore, the air passing through the evaporator 22 in the low temperature state can be cooled, and the battery 1 can be cooled. Also in the battery temperature control apparatus 10B of the third embodiment, the circulation mode and the outside air mode can be switched by switching the damper 6. The air flow indicated by the solid line in FIG. 5B indicates the air flow in the circulation mode, and the air flow indicated by the broken line indicates the air flow in the outside air mode. The battery temperature control apparatus 10B of the third embodiment can also cool the battery below the outside air temperature.

なお、第3の実施例のバッテリの温度調節装置10Bでは、反転可能な送風機5として軸流ファン53を用いているが、他の反転可能な送風機の使用も可能である。また、反転不可能な送風機でも、循環ダクト33内で向きを反転できるようにしたり、循環ダクト33を送風機部分だけ2系統のダクトとし、それぞれのダクトないに向きの異なる送風機を設置してダクトを切り替えるようにしても良い。   In the battery temperature control apparatus 10B of the third embodiment, the axial flow fan 53 is used as the reversible blower 5. However, other reversible blowers can be used. In addition, even in a fan that cannot be reversed, the direction can be reversed in the circulation duct 33, or the circulation duct 33 is configured as a two-line duct only in the fan part, and different ducts can be installed by installing different fans in each direction. You may make it switch.

図6(a)、(b)は、図4(a)、(b)に示した冷凍サイクル2の四方弁25を、二方弁26と三方弁27,28の組み合わせで置き換えた第2の実施例の変形実施例を示すものである。変形実施例には、冷凍サイクル2の構成のみを示してある。変形実施例では、冷凍サイクル2のコンプレッサ23に2系統のバイパス流路BP1、BP2を設けている。バイパス流路BP1には、図4に示した制御装置によって開閉(ON/OFF)される二方弁26を設ける。バイパス流路BP2はその接続部にそれぞれ三方弁27,28を設ける。三方弁27,28は、制御装置により流路「白」−「白」が連通するか、流路「黒」−「黒」が連通するものとする。   6 (a) and 6 (b) show a second example in which the four-way valve 25 of the refrigeration cycle 2 shown in FIGS. 4 (a) and 4 (b) is replaced with a combination of a two-way valve 26 and three-way valves 27 and 28. The modified example of an Example is shown. In the modified embodiment, only the configuration of the refrigeration cycle 2 is shown. In the modified embodiment, the compressor 23 of the refrigeration cycle 2 is provided with two systems of bypass flow paths BP1 and BP2. The bypass passage BP1 is provided with a two-way valve 26 that is opened and closed (ON / OFF) by the control device shown in FIG. The bypass flow path BP2 is provided with three-way valves 27 and 28 at its connection portions, respectively. The three-way valves 27 and 28 are configured such that the flow path “white”-“white” communicates with the control device, or the flow paths “black”-“black” communicate with each other.

図6(a)に示す状態は、二方弁26が閉(OFF)状態であり、三方弁27,28は、流路「白」−「白」が連通している状態である。コンプレッサ23から吐出された冷媒は凝縮器21に入力され、蒸発器22から出た冷媒がコンプレッサ23に入力される。この時の冷凍サイクル2の動作は、図4(a)に示した冷凍サイクル2の動作と全く同じである。図6(b)に示す状態は、二方弁26が開(ON)状態であり、三方弁27,28は、流路「黒」−「黒」が連通している状態である。コンプレッサ23から吐出された冷媒は蒸発器22に入力され、凝縮器21から出た冷媒がコンプレッサ23に入力される。この時の冷凍サイクル2の動作は、図4(b)に示した冷凍サイクル2の動作と全く同じである。   The state shown in FIG. 6A is a state in which the two-way valve 26 is closed (OFF), and the three-way valves 27 and 28 are in a state in which the flow paths “white”-“white” are in communication. The refrigerant discharged from the compressor 23 is input to the condenser 21, and the refrigerant discharged from the evaporator 22 is input to the compressor 23. The operation of the refrigeration cycle 2 at this time is exactly the same as the operation of the refrigeration cycle 2 shown in FIG. The state shown in FIG. 6B is a state in which the two-way valve 26 is open (ON), and the three-way valves 27 and 28 are in a state where the flow paths “black”-“black” are in communication. The refrigerant discharged from the compressor 23 is input to the evaporator 22, and the refrigerant output from the condenser 21 is input to the compressor 23. The operation of the refrigeration cycle 2 at this time is exactly the same as the operation of the refrigeration cycle 2 shown in FIG.

図7は、本発明のバッテリの温度調節装置10、10A,10Bの冷凍サイクル2を用いて加熱又は冷却するバッテリ1に放熱フィン11を取り付けた変形実施例を示すものである。個々のバッテリ1の間にフィン11などの伝熱促進構造を持たせると、バッテリ1との熱の授受が促進される。また、図示はしないが、バッテリ1に特に加熱や冷却を重点的に行いたい部位がある場合は、その部分を凝縮器や蒸発器と熱的に接触させることも可能である。   FIG. 7 shows a modified embodiment in which the radiating fins 11 are attached to the battery 1 to be heated or cooled using the refrigeration cycle 2 of the battery temperature adjusting device 10, 10A, 10B of the present invention. When a heat transfer promoting structure such as the fin 11 is provided between the individual batteries 1, heat exchange with the battery 1 is promoted. Although not shown, when there is a part in the battery 1 where heating or cooling is particularly important, the part can be brought into thermal contact with a condenser or an evaporator.

図8は、本発明のバッテリの温度調節装置10、10A,10Bの冷凍サイクル2の通風経路3を断熱材35で覆った変形実施例を示すものである。通風経路3の全部あるいは一部を外部と断熱させると、これまで述べた効果がより一層大きなものとなる。   FIG. 8 shows a modified embodiment in which the ventilation path 3 of the refrigeration cycle 2 of the battery temperature control device 10, 10 </ b> A, 10 </ b> B of the present invention is covered with a heat insulating material 35. When all or a part of the ventilation path 3 is thermally insulated from the outside, the effects described so far become even greater.

更に、第1および第2の外気連通ダクト31,32の両方あるいは片方を、車室8内の空間と連通させることも可能である。この場合は、車室8内の熱エネルギを利用することが可能になる。   Further, both or one of the first and second outside air communication ducts 31 and 32 can be communicated with the space in the passenger compartment 8. In this case, it is possible to use the heat energy in the passenger compartment 8.

更に、前述の実施例におけるセンサ41と42を、温度と湿度が測定可能なもの(一体型でも別体でも良い)とし、温度及び湿度から制御装置4によって算出されるエンタルピーの大小により循環モードと外気モードを切り替えることが可能である。エンタルピーの大小により循環モードと外気モードを切り替えるようにすれば、一層高効率なシステムにすることができる。   Further, the sensors 41 and 42 in the above-described embodiment are those that can measure temperature and humidity (either an integrated type or a separate body), and the circulation mode is determined by the magnitude of the enthalpy calculated by the control device 4 from the temperature and humidity. It is possible to switch the outside air mode. If the circulation mode and the outside air mode are switched depending on the enthalpy, the system can be made more efficient.

1 バッテリ
2 冷凍サイクル
3 通風経路
6 ダンパ
10,10A,10B バッテリの温度調節装置
21 凝縮器
22 蒸発器
30 ケース
33 循環ダクト
41,42 温度センサ
DESCRIPTION OF SYMBOLS 1 Battery 2 Refrigerating cycle 3 Ventilation path 6 Damper 10, 10A, 10B Battery temperature control device 21 Condenser 22 Evaporator 30 Case 33 Circulation duct 41, 42 Temperature sensor

Claims (8)

車両の走行用モータに電力供給するバッテリ(1)の温度調節装置(10)であって、
ケース(30)、ダクト(33)、送風機(5)を備え、内部を空気が流れる通風経路(3)と、
前記ダクト(33)に接続する第1と第2の外気連通ダクト(31,32)と、
前記第1と第2の外気連通ダクト(31,32)の前記ダクト(33)への接続点に設けられ、前記通風経路(3)を内気循環経路と外気を取り入れて循環後に排出する外気循環経路の何れかに切り替えるダンパ(6)と、
前記ケース(30)内に凝縮器(21)と蒸発器(22)を備え、冷媒により前記凝縮器(21)を高温にし、前記蒸発器(22)を低温にする冷凍サイクル(2)とを備え、
前記バッテリ(1)を前記凝縮器(21)と前記蒸発器(22)の間の前記ケース(30)内に配置して、前記バッテリ(1)の加熱が必要な時には空気を前記凝縮器(21)側から前記バッテリ(1)に向けて流し、前記バッテリ(1)の冷却が必要な時には空気を前記蒸発器(22)側から前記バッテリ(1)に向けて流すようにしたことを特徴とするバッテリの温度調節装置。
A temperature control device (10) for a battery (1) for supplying electric power to a motor for driving a vehicle,
A ventilation path (3) including a case (30), a duct (33), and a blower (5), through which air flows;
First and second outside air communication ducts (31, 32) connected to the duct (33);
An outside air circulation which is provided at a connection point of the first and second outside air communication ducts (31, 32) to the duct (33) and takes out the inside air circulation path and outside air through the ventilation path (3) and circulates after circulation. A damper (6) for switching to one of the routes;
A refrigeration cycle (2) comprising a condenser (21) and an evaporator (22) in the case (30), the refrigerant (21) being heated to a high temperature and the evaporator (22) being cooled to a low temperature by a refrigerant. Prepared,
The battery (1) is placed in the case (30) between the condenser (21) and the evaporator (22), and when the battery (1) needs to be heated, air is sent to the condenser ( 21) from the side toward the battery (1), and when the battery (1) needs to be cooled, air is allowed to flow from the evaporator (22) side toward the battery (1). Battery temperature control device.
外気温度を検出する第1の温度センサ(41)と、
前記蒸発器(22)の下流側の空気の温度を検出する第2の温度センサ(42)と、
前記第1と第2の温度センサ(41,42)の温度検出値を比較して前記ダンパ(6)を切り替える制御装置(4)とを更に備え、
前記制御装置(4)は、前記バッテリ(1)の冷却が必要な時に、前記第1の温度センサ(41)の検出値が前記第2の温度センサ(42)の検出値より高い場合には、前記通風経路(3)を内気循環経路とし、前記第1の温度センサ(41)の検出値が前記第2の温度センサ(42)の検出値より低い場合には、前記通風経路(3)を外気循環経路とすることを特徴とする請求項1に記載のバッテリの温度調節装置。
A first temperature sensor (41) for detecting the outside air temperature;
A second temperature sensor (42) for detecting the temperature of the air downstream of the evaporator (22);
A control device (4) for switching the damper (6) by comparing the temperature detection values of the first and second temperature sensors (41, 42);
When the battery (1) needs to be cooled and the detected value of the first temperature sensor (41) is higher than the detected value of the second temperature sensor (42), the control device (4) When the ventilation path (3) is an inside air circulation path and the detection value of the first temperature sensor (41) is lower than the detection value of the second temperature sensor (42), the ventilation path (3) The battery temperature control device according to claim 1, wherein the outside air circulation path is used.
前記制御装置(4)は、前記バッテリ(1)の加熱が必要な時に、前記第1の温度センサ(41)の検出値が前記第2の温度センサ(42)の検出値より高い場合には、前記通風経路(3)を外気循環経路とし、前記第1の温度センサ(41)の検出値が前記第2の温度センサ(42)の検出値より低い場合には、前記通風経路(3)を内気循環経路とすることを特徴とする請求項2に記載のバッテリの温度調節装置。   When the battery (1) needs to be heated and the detected value of the first temperature sensor (41) is higher than the detected value of the second temperature sensor (42), the control device (4) When the ventilation path (3) is an outside air circulation path and the detection value of the first temperature sensor (41) is lower than the detection value of the second temperature sensor (42), the ventilation path (3) The temperature adjusting device for a battery according to claim 2, wherein the internal air circulation path is used. 前記送風機(5)は逆転運転可能であり、前記通風経路(3)を流れる空気の流れを逆転することができることを特徴とする請求項1から3の何れか1項に記載のバッテリの温度調節装置。   The temperature control of the battery according to any one of claims 1 to 3, wherein the blower (5) can be reversely operated and can reverse the flow of air flowing through the ventilation path (3). apparatus. 前記送風機(5)により前記通風経路(3)を流れる空気の流れは常に一方向であり、前記冷凍サイクル(2)を流れる冷媒の向きを逆にすることにより、前記凝縮器(21)と前記蒸発器(22)の機能を入れ替えることを特徴とする請求項1から3の何れか1項に記載のバッテリの温度調節装置。   The flow of air flowing through the ventilation path (3) by the blower (5) is always in one direction, and by reversing the direction of the refrigerant flowing through the refrigeration cycle (2), the condenser (21) and the The battery temperature control device according to any one of claims 1 to 3, wherein the function of the evaporator (22) is exchanged. 前記冷凍サイクル(2)の冷媒の流路に四方弁(25)が設けられており、前記四方弁(25)の流路切替動作によって前記冷凍サイクル(2)を流れる冷媒の向きが逆になることを特徴とする請求項5に記載のバッテリの温度調節装置。   A four-way valve (25) is provided in the refrigerant flow path of the refrigeration cycle (2), and the direction of the refrigerant flowing through the refrigeration cycle (2) is reversed by the flow path switching operation of the four-way valve (25). The battery temperature control device according to claim 5, wherein 前記冷凍サイクル(2)の冷媒流路に二方弁(26)と2つの三方弁(27,28)が設けられており、前記二方弁(26)と2つの三方弁(27,28)の流路切替動作によって前記冷凍サイクル(2)を流れる冷媒の向きが逆になることを特徴とする請求項5に記載のバッテリの温度調節装置。   The refrigerant flow path of the refrigeration cycle (2) is provided with a two-way valve (26) and two three-way valves (27, 28), and the two-way valve (26) and two three-way valves (27, 28). The battery temperature control device according to claim 5, wherein the direction of the refrigerant flowing through the refrigeration cycle (2) is reversed by the flow path switching operation. 前記通風経路(3)の全部又は一部が断熱材(35)で覆われていることを特徴とする請求項1から7の何れか1項に記載のバッテリの温度調節装置。   The battery temperature control device according to any one of claims 1 to 7, wherein all or part of the ventilation path (3) is covered with a heat insulating material (35).
JP2012073508A 2012-03-28 2012-03-28 Battery temperature adjusting device Pending JP2013203190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073508A JP2013203190A (en) 2012-03-28 2012-03-28 Battery temperature adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073508A JP2013203190A (en) 2012-03-28 2012-03-28 Battery temperature adjusting device

Publications (1)

Publication Number Publication Date
JP2013203190A true JP2013203190A (en) 2013-10-07

Family

ID=49522774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073508A Pending JP2013203190A (en) 2012-03-28 2012-03-28 Battery temperature adjusting device

Country Status (1)

Country Link
JP (1) JP2013203190A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219942A (en) * 2014-05-13 2015-12-07 株式会社デンソー Battery pack
CN105235539A (en) * 2014-07-07 2016-01-13 三菱自动车工业株式会社 Temperature control device for battery pack of vehicle
WO2020033148A1 (en) * 2018-08-08 2020-02-13 Bae Systems Controls Inc. Active internal air cooled vehicle battery pack
JP2021024297A (en) * 2019-07-31 2021-02-22 株式会社Subaru vehicle
CN117559043A (en) * 2024-01-11 2024-02-13 深圳市电科电源股份有限公司 Temperature control assembly and photovoltaic energy storage battery pack with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291532A (en) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd Battery temperature regulation device
JP2002313441A (en) * 2001-04-17 2002-10-25 Zexel Valeo Climate Control Corp Battery cooling device
WO2011074335A1 (en) * 2009-12-14 2011-06-23 本田技研工業株式会社 Cooling structure for electricity storage device
JP2011178270A (en) * 2010-03-01 2011-09-15 Denso Corp Battery temperature adjusting device
JP2012001037A (en) * 2010-06-15 2012-01-05 Panasonic Corp Air conditioning device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291532A (en) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd Battery temperature regulation device
JP2002313441A (en) * 2001-04-17 2002-10-25 Zexel Valeo Climate Control Corp Battery cooling device
WO2011074335A1 (en) * 2009-12-14 2011-06-23 本田技研工業株式会社 Cooling structure for electricity storage device
JP2011178270A (en) * 2010-03-01 2011-09-15 Denso Corp Battery temperature adjusting device
JP2012001037A (en) * 2010-06-15 2012-01-05 Panasonic Corp Air conditioning device for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219942A (en) * 2014-05-13 2015-12-07 株式会社デンソー Battery pack
CN105235539A (en) * 2014-07-07 2016-01-13 三菱自动车工业株式会社 Temperature control device for battery pack of vehicle
JP2016018620A (en) * 2014-07-07 2016-02-01 三菱自動車工業株式会社 Battery pack temperature controller of vehicle
US10218041B2 (en) 2014-07-07 2019-02-26 Mitsubishi Jidosha Kabushiki Kaisha Temperature control device for battery pack of vehicle
WO2020033148A1 (en) * 2018-08-08 2020-02-13 Bae Systems Controls Inc. Active internal air cooled vehicle battery pack
US11108101B2 (en) 2018-08-08 2021-08-31 Bae Systems Controls Inc. Active internal air cooled vehicle battery pack
JP2021024297A (en) * 2019-07-31 2021-02-22 株式会社Subaru vehicle
JP7222841B2 (en) 2019-07-31 2023-02-15 株式会社Subaru vehicle
CN117559043A (en) * 2024-01-11 2024-02-13 深圳市电科电源股份有限公司 Temperature control assembly and photovoltaic energy storage battery pack with same
CN117559043B (en) * 2024-01-11 2024-03-26 深圳市电科电源股份有限公司 Temperature control assembly and photovoltaic energy storage battery pack with same

Similar Documents

Publication Publication Date Title
JP7185469B2 (en) vehicle thermal management system
JP7202124B2 (en) vehicle thermal management system
JP6041423B2 (en) Vehicular heat pump system and control method thereof
WO2012114447A1 (en) Vehicle heat system
JP5983534B2 (en) Battery temperature control system
US20100293966A1 (en) Vehicle air conditioner
JP2020055343A (en) Heat management system of vehicle
JP2019085102A (en) Thermal management system
JP2019119437A (en) Vehicular cooling system
US20220212517A1 (en) Thermal management system, method for controlling thermal management system, and electric vehicle
CN108128118B (en) Electric automobile thermal control system
KR20120108078A (en) Heat pump system for vehicle
JP2013212829A (en) Temperature adjustment device
CN109383228B (en) Heat pump air conditioner and control method thereof
JP7185468B2 (en) vehicle thermal management system
CN109203909B (en) Heating, ventilation and air conditioning system for a vehicle
JP5463982B2 (en) Refrigerant circuit adjustment device
KR102318996B1 (en) Heat pump system for vehicle
CN102555726A (en) Multifunctional air conditioning system applied to heat management of electric vehicle
KR101178945B1 (en) Heat Pump System Using Dual Heat Sources for Electric Vehicle
KR100923113B1 (en) Heating and cooling Apparatus of an electric car
JP7467814B2 (en) Air Conditioning System
JP2013203190A (en) Battery temperature adjusting device
JP2014037179A (en) Thermal management system for electric vehicle
KR20220036260A (en) Vehicle thermal management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728