WO2012056555A1 - Cooling apparatus and vehicle - Google Patents

Cooling apparatus and vehicle Download PDF

Info

Publication number
WO2012056555A1
WO2012056555A1 PCT/JP2010/069260 JP2010069260W WO2012056555A1 WO 2012056555 A1 WO2012056555 A1 WO 2012056555A1 JP 2010069260 W JP2010069260 W JP 2010069260W WO 2012056555 A1 WO2012056555 A1 WO 2012056555A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
expansion valve
state
unit
Prior art date
Application number
PCT/JP2010/069260
Other languages
French (fr)
Japanese (ja)
Inventor
芳昭 川上
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/069260 priority Critical patent/WO2012056555A1/en
Publication of WO2012056555A1 publication Critical patent/WO2012056555A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present invention relates to a cooling device and a vehicle, and more particularly, to a cooling device that cools electrical equipment using an air conditioning refrigeration cycle system.
  • Patent Document 1 discloses a cooling system for a hybrid vehicle that can improve assemblability, reduce costs, and reduce the size by sharing components.
  • This cooling system includes a compressor capable of sucking and compressing gas refrigerant, a main condenser capable of cooling with ambient air for condensing high-pressure gas refrigerant, and an evaporator capable of cooling a refrigerant by evaporating a low-temperature liquid refrigerant.
  • a pressure reducing means wherein a heat exchanger capable of absorbing heat from the motor and a second pressure reducing means are connected in parallel to the pressure reducing means and the evaporator.
  • the manufacturing cost can be reduced by improving the assemblability by sharing the components. Moreover, size reduction can be achieved.
  • An object of the present invention is to provide a cooling device and a vehicle for cooling an electric device without causing a significant increase in power required for the compressor and a deterioration in mountability on the vehicle.
  • the present invention is a cooling device for cooling an electric device mounted on a vehicle, and includes a compressor for circulating a refrigerant, a condenser for condensing the refrigerant, and an interior of the vehicle using the refrigerant.
  • a bypass passage for flowing toward the compressor without passing through the evaporator and a valve for changing the amount of refrigerant passing through the bypass passage are provided.
  • the cooling device is provided at an inlet portion of the cooling unit on the refrigerant path, and switches between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a passage state in which the refrigerant is passed in a liquid state.
  • a further possible first expansion valve portion and a second expansion valve portion which is provided at the entrance portion of the evaporator on the refrigerant path and changes from liquid to mist to evaporate the refrigerant are further provided.
  • the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit.
  • the control unit closes the valve and passes through the first expansion valve unit.
  • the control unit opens the valve, and the first The expansion valve part of is made into the atomization state.
  • the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit.
  • the first expansion valve unit includes an expansion valve that atomizes the refrigerant, a refrigerant passage provided in parallel with the expansion valve, and an electromagnetic valve that controls opening and closing of the refrigerant passage in response to an instruction from the control unit.
  • the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit.
  • the first expansion valve unit includes an electromagnetic valve configured to be able to change the opening degree between a passing state and an atomizing state in accordance with an instruction from the control unit.
  • the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first and second expansion valve units.
  • the second expansion valve unit is configured to be switchable between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a closed state in which the refrigerant is not allowed to pass.
  • the control unit sets the second expansion valve unit in an atomized state, and when the cooling by the evaporator is not performed, the control unit closes the second expansion valve unit.
  • the second expansion valve unit includes an expansion valve for atomizing the refrigerant, and an electromagnetic valve provided on the refrigerant path in series with the expansion valve and opened and closed according to an instruction from the control unit.
  • the second expansion valve unit includes an electromagnetic valve configured to change the opening degree between a closed state and an atomized state in accordance with an instruction from the control unit.
  • the electric device includes a drive device that drives a motor that propels the vehicle.
  • the present invention is a vehicle including any one of the above cooling devices.
  • the present invention it is possible to realize a cooling device that cools an electric device without causing a significant increase in power required for the compressor and a deterioration in mountability on a vehicle.
  • FIG. 1 It is the figure which showed the structure of the vehicle by which a cooling device is mounted in this Embodiment. It is a functional block diagram of ECU400 of the cooling device 10 which concerns on this Embodiment.
  • 3 is a flowchart for illustrating control of a program executed by ECU 400 of cooling device 10 according to Embodiment 1. 3 is a flowchart for explaining an operation of cooling device 10 according to the first embodiment. It is the figure which showed the structure of 10 A of cooling devices in Embodiment 2.
  • FIG. It is a functional block diagram of ECU 400A of cooling device 10A according to the second embodiment. It is a flowchart for demonstrating control of the program performed by ECU400A of 10 A of cooling devices which concern on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a vehicle on which a cooling device is mounted in the present embodiment.
  • the vehicle 601 is a hybrid vehicle that uses both a motor and an engine for driving wheels, but the present invention can also be applied to an electric vehicle and a fuel cell vehicle.
  • vehicle 601 includes front wheels 2FR, 2FL, rear wheels 2RR, 2RL, an engine 604, a planetary gear PG, a differential gear DG, and gears 605, 606.
  • Vehicle 601 further includes a battery B1, a boost unit 610 that boosts the DC power output from battery B1, and an inverter 122 that exchanges DC power with boost unit 610.
  • Vehicle 601 further includes a motor generator MG1 that generates electric power by receiving mechanical power from engine 604 via planetary gear PG, and a motor generator MG2 whose rotating shaft is connected to planetary gear PG.
  • Inverter 122 is connected to motor generators MG ⁇ b> 1 and MG ⁇ b> 2 and performs conversion between AC power and DC power from booster unit 610.
  • Planetary gear PG is coupled to engine 604 and motor generators MG1 and MG2, and operates as a power split mechanism that distributes power between them.
  • Planetary gear PG includes a sun gear, a ring gear, a pinion gear that meshes with both the sun gear and the ring gear, and a planetary carrier that rotatably supports the pinion gear around the sun gear.
  • Planetary gear PG has first to third rotation shafts.
  • the first rotating shaft is a rotating shaft of a planetary carrier connected to the engine 604.
  • the second rotating shaft is a rotating shaft of a sun gear connected to motor generator MG1.
  • the third rotating shaft is a rotating shaft of a ring gear connected to motor generator MG2.
  • engine 604 and motor generators MG1 and MG2 are connected to the rotating shafts of the engine 604 and the motor generators MG1 and MG2, respectively.
  • engine 604 and motor generators MG1 and MG2 can be mechanically connected to the power distribution mechanism by hollowing the rotor of motor generator MG1 and passing the crankshaft of engine 604 through the center thereof.
  • a gear 605 is attached to the third rotating shaft, and the gear 605 drives the gear 606 to transmit mechanical power to the differential gear DG.
  • the differential gear DG transmits the mechanical power received from the gear 606 to the front wheels 2FR and 2FL, and transmits the rotational force of the front wheels 2FR and 2FL to the third rotation shaft of the planetary gear PG via the gears 606 and 605.
  • the planetary gear PG determines the rotation of the remaining one rotating shaft in accordance with the rotation of two of the three rotating shafts. Therefore, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 604 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.
  • a speed reducer for the rotating shaft of motor generator MG2 may be further incorporated in planetary gear PG.
  • Boost unit 610 boosts the DC voltage received from battery B 1, and supplies the boosted DC voltage to inverter 122.
  • Inverter 122 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted to DC by inverter 122, converted to a voltage suitable for charging battery B1 by boosting unit 610, and battery B1 is charged.
  • the inverter 122 drives the motor generator MG2.
  • Motor generator MG2 drives front wheels 2FR and 2FL alone or with assistance of engine 604. At the time of braking, motor generator MG2 performs a regenerative operation and converts the rotational energy of the wheels into electric energy. The obtained electrical energy is returned to the battery B1 via the inverter 122 and the boost unit 610.
  • System main relays SR1 and SR2 are provided between the boost unit 610 and the battery B1, and the high voltage is cut off when the vehicle is not in operation.
  • the vehicle 601 further includes a vehicle speed sensor 608 that detects a vehicle speed, an accelerator sensor 609 that is an input unit that receives an acceleration request instruction from a driver and detects the position of an accelerator pedal, a voltage sensor 670 attached to the battery B1, A control device 660 for controlling engine 604, inverter 122 and booster unit 610 according to accelerator opening Acc from accelerator sensor 609 and voltage VB from voltage sensor 670. Voltage sensor 670 detects voltage VB of battery B1 and transmits it to control device 660.
  • Vehicle 601 further includes a socket 616 for connecting plug 704 provided at the end of charging cable 702 extending from external charging device 700, and a charging inverter that receives AC power from external charging device 700 via socket 616. 612. Charging inverter 612 is connected to battery B1 and supplies DC power for charging to battery B1.
  • control device 660 based on signal IG from the ignition switch (or ignition key) and charging state SOC of battery B1, control device 660 performs charging inverter 612 so that battery B1 is charged from an AC voltage applied from the outside of the vehicle. To control.
  • control device 660 determines whether charging is possible based on the charging state SOC of battery B1, and charging is performed. When it is determined that the charging is possible, the charging inverter 612 is driven. On the other hand, when control device 660 determines that battery B1 is almost fully charged and cannot be charged, control device 660 stops charging inverter 612 even if voltage is applied to socket 616 from the outside.
  • the present invention can also be applied to an electric vehicle.
  • the engine 604, the planetary gear PG, and the motor generator MG1 are not mounted.
  • the motor generator MG2 drives the differential gear via the gears 605 and 606 as the motor generator 124.
  • an electric vehicle or a hybrid vehicle can be configured without necessarily providing the boosting unit 610. Accordingly, portions that are not indispensable for the vehicle are indicated by broken-line frames.
  • Vehicle 601 further includes a cooling device 10 for cooling motor generators MG1 and MG2 or motor generator 124 and inverter 122.
  • the cooling device 10 shown in FIG. 1 cools electrical equipment mounted on a vehicle that uses a rotating electrical machine as a drive source.
  • vehicle using the rotating electric machine as a drive source include an electric vehicle, a fuel cell vehicle, a hybrid vehicle, and the like.
  • “electric equipment” to be cooled will be described by way of example of an inverter 122 for converting DC power to AC power and a motor generator 124 that is a rotating electrical machine. It is not limited.
  • the “electric device” further includes a battery B1, which is a power storage device, a boosting unit 610 for boosting the voltage of the battery B1, and a DC / DC converter (not shown) for stepping down the voltage of the battery. It may be included.
  • the battery is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • a capacitor may be used instead of the battery.
  • the electric device mounted on the vehicle is not particularly limited to the above-described electric device as long as it is an electric device that generates heat by at least operation.
  • the target temperature range for cooling is a temperature range suitable as a temperature environment for operating the electrical equipment.
  • Cooling device 10 includes an air-conditioning refrigeration cycle system 12 for cooling the interior of a vehicle, and cooling for cooling electrical equipment using a refrigerant circulating in air-conditioning refrigeration cycle system 12. Part 120 and ECU 400.
  • the refrigeration cycle system 12 for air conditioning includes a compressor 20, a condenser 40, an evaporator 80, and an expansion valve unit 150.
  • the cooling unit 120 is provided in series with the evaporator 80 on the refrigerant path flowing from the condenser 40 toward the compressor 20, and cools the electric device using the refrigerant.
  • the capacitor 40 and the evaporator 80 are connected by the first connection passage 302, the cooling passage 126 of the cooling unit 120, and the second connection passage 304.
  • the receiver 60 is described as being provided at the outlet of the capacitor 40, but the operation as a cooling device is possible without the receiver 60 being provided.
  • the cooling unit 120 is provided between the receiver 60 and the evaporator 80.
  • the evaporator 80 and the compressor 20 are connected by a third connection passage 306. Further, the compressor 20 and the condenser 40 are connected by a fourth connection passage 308.
  • the fourth connection passage 308 is provided with a check valve 140 that allows the refrigerant to flow only from the compressor 20 toward the condenser 40.
  • the check valve 140 is provided, the compressor can be intermittently operated during the cooling operation. However, the cooling operation is possible without the check valve 140 being provided.
  • the compressor 20 operates using a motor mounted on the vehicle as a power source, sucks and compresses the gas-phase refrigerant flowing from the evaporator 80 via the third connection passage 306 at the time of operation, and discharges it to the fourth connection passage 308.
  • the compressor 20 operates based on a control signal C1 from the ECU 400.
  • the compressor 20 may use an engine as a power source.
  • the air-conditioning refrigeration cycle system 12 For cooling using the air-conditioning refrigeration cycle system 12, for example, when a switch for performing cooling is turned on, or an automatic control mode for automatically adjusting the temperature in the vehicle interior to the set temperature is selected. And when the temperature in the passenger compartment is higher than the set temperature.
  • the condenser 40 condenses (liquefies) the refrigerant by radiating the refrigerant compressed in the compressor 20.
  • Capacitor 40 includes a tube for flowing the refrigerant, and fins for exchanging heat between the refrigerant circulating in the tube and the air around capacitor 40.
  • the condenser 40 is provided, for example, adjacent to an engine cooling radiator mounted on the vehicle, and performs heat exchange between the cooling air supplied by the traveling air of the vehicle or the cooling fan and the refrigerant. Due to the heat exchange in the condenser 40, the temperature of the refrigerant decreases and the refrigerant liquefies.
  • the specification (ie, size or heat dissipation performance) of the capacitor 40 may be determined such that at least the temperature of the liquid-phase refrigerant after passing through the capacitor 40 is lower than the temperature required for cooling the electrical equipment. desirable. It is desirable that the temperature required for cooling the electric device is at least a temperature lower than the upper limit value of the target temperature range as the temperature range of the electric device.
  • the capacitor 40 has a specification such that the heat dissipation amount is larger than the capacitor 40 of the air-conditioning refrigeration cycle system 12 when the cooling unit 120 is not provided, by the amount of heat expected to be received in the cooling unit 120. Is desirable. In this way, it is possible to appropriately cool the electric equipment without increasing the power performance of the compressor 20 while maintaining the cooling performance.
  • the receiver 60 is provided at the outlet of the capacitor 40, separates the refrigerant flowing from the capacitor 40 into a gas phase refrigerant and a liquid phase refrigerant, and stores the liquid phase refrigerant among the separated refrigerants.
  • the liquid-phase refrigerant in the receiver 60 flows through the first connection passage 302, passes through the cooling unit 120, and then flows through the second connection passage 304 to be supplied to the expansion valve unit 150.
  • the expansion valve unit 150 is a valve for expanding a high-temperature / high-pressure liquid refrigerant flowing through the second connection passage 304 by injecting it from a small hole to change it into a low-temperature / low-pressure mist refrigerant.
  • the expansion valve unit 150 is provided in series with the expansion valve main body 152 provided at a position upstream of the evaporator 80, a temperature sensing member 154 provided at a position downstream of the evaporator 80, and the expansion valve main body 152, and is connected to the second connection.
  • an electromagnetic valve 156 for opening and closing the passage 304.
  • the electromagnetic valve 156 is controlled to be opened and closed by a control signal S2 from the ECU 400.
  • the refrigeration cycle system 12 for air conditioning further includes a bypass passage 303 and an electromagnetic valve 305 for changing the amount of refrigerant passing through the bypass passage.
  • the solenoid valve 156 is controlled to be opened and closed by a control signal S3 from the ECU 400.
  • the ECU 400 controls the electromagnetic valve 305 to be in an open state and the electromagnetic valve 156 to be in a closed state.
  • the ECU 400 controls the electromagnetic valve 156 to be in an open state and the electromagnetic valve 305 to be in a closed state.
  • the flow rate of the refrigerant in the expansion valve main body 152 is determined according to the temperature of the refrigerant in the temperature-sensitive member 154.
  • the flow rate of the refrigerant is determined so that all of the refrigerant that has changed into a mist is vaporized in the evaporator 80 and the temperature of the temperature-sensitive member 154 is cooled to the set temperature.
  • a refrigerant is obtained by moving the valve body of the expansion valve main body 152 using a change in gas pressure in accordance with the temperature of the refrigerant in the temperature sensing member 154 in which gas is sealed in the container.
  • the flow rate is determined.
  • the relationship between the temperature of the refrigerant and the amount of movement of the valve body is adjusted in advance according to the size of the container or the amount of gas.
  • the evaporator 80 absorbs the heat of the air in the vehicle interior of the vehicle introduced so as to come into contact with the evaporator 80 when the mist refrigerant evaporates.
  • the air whose temperature has decreased due to heat absorption is returned to the vehicle interior to cool the vehicle interior.
  • the evaporator 80 includes a tube through which the refrigerant flows, and fins for exchanging heat between the refrigerant flowing through the tube and the air around the evaporator 80.
  • a mist-like refrigerant circulates in the tube. As the refrigerant circulating in the tube evaporates, the heat of the air in the vehicle interior is absorbed through the fins. The vaporized refrigerant flows toward the compressor 20 via the third connection passage 306.
  • Cooling unit 120 is provided so that heat can be exchanged between inverter 122 and motor generator 124 (in the following description, these electric devices may be simply referred to as “electric devices”) and the refrigerant. .
  • cooling unit 120 has a structure capable of exchanging heat between the electric device and the refrigerant by cooling passage 126 formed so that the refrigerant contacts the housing of the electric device.
  • the cooling unit 120 has a structure in which the heat exchanger and the refrigerant can be brought into contact with each other when the electric device and the heat exchanger are connected via heat transfer means such as a heat pipe. It may be.
  • cooling unit 120 may form cooling passage 126 so as to cool motor generator 124 after cooling inverter 122, or motor generator 124 after cooling motor generator 124.
  • the cooling passage 126 may be formed so as to cool the inverter, or the cooling passage 126 may be formed so as to cool the inverter 122 and the motor generator 124 in parallel.
  • the cooling unit 120 cools the electrical device with the lower upper limit value of the target temperature range among the electrical devices to be cooled, and then the electrical device with the higher upper limit value of the target temperature range. It is desirable to provide cooling.
  • the cooling unit 120 includes a cooling passage 126 and an expansion valve unit 130. Both ends of the cooling passage 126 are connected to the first connection passage 302 and the second connection passage 304, respectively.
  • the expansion valve unit 130 is a valve for expanding a high-temperature and high-pressure liquid refrigerant flowing through the cooling passage 126 by injecting the refrigerant from a small hole to change into a low-temperature and low-pressure mist refrigerant.
  • the expansion valve unit 130 includes an expansion valve main body 132 provided at a position upstream of the electric device to be cooled (the inverter 122 and the motor generator 124), and a temperature sensitive member 134 provided at a position downstream of the electric device to be cooled.
  • a refrigerant passage 135 provided in parallel with the expansion valve main body 132, and an electromagnetic valve 136 for opening and closing the refrigerant passage 135.
  • the cooling passage 126 has portions adjacent to the respective housings of the inverter 122 and the motor generator 124. In this portion, heat exchange between the refrigerant flowing through the cooling passage 126 and the inverter 122 and the motor generator 124 becomes possible.
  • the expansion valve main body 132 is provided on the inlet side of the cooling passage 126, that is, on the upstream side of the portion of the cooling passage 126 adjacent to the casing of the inverter 122 and the motor generator 124.
  • the electromagnetic valve 136 is controlled to be opened and closed by a control signal S1 from the ECU 400.
  • the flowable flow rate of the solenoid valve 136 and the refrigerant passage 135 is set so that the refrigerant does not atomize or change in pressure due to the expansion valve main body 132 when it is in a fully opened state.
  • the temperature sensing member 134 is provided at the outlet side of the cooling passage 126, that is, at a position downstream of the cooling passage 126 adjacent to the inverter 122 and the housing of the motor generator 124, and detects the temperature of the refrigerant at the position. To do.
  • the flow rate of the refrigerant in the expansion valve main body 132 is determined according to the temperature of the refrigerant in the temperature-sensitive member 134.
  • the flow rate of the refrigerant is determined such that all of the refrigerant that has changed into a mist is vaporized in the cooling passage 126 and the temperature of the temperature-sensitive member 134 is cooled to the set temperature.
  • the cooling passage 126 may have a structure that is advantageous for heat exchange with the surroundings, such as the evaporator 80.
  • the expansion valve unit 130 uses, for example, a change in gas pressure corresponding to the temperature of the refrigerant in the temperature-sensitive member 134 in which the gas is sealed inside the container.
  • the flow rate of the refrigerant is determined by moving the valve body of the valve body 132.
  • the relationship between the temperature of the refrigerant and the amount of movement of the valve body is adjusted in advance according to the size of the container or the amount of gas.
  • the ECU 400 generates a control signal C1 to operate the compressor 20 and transmits it to the compressor 20 when cooling is performed or when the electric device is cooled by the cooling unit 120, or a control signal S1 for controlling opening and closing.
  • ⁇ S3 is generated and transmitted to the electromagnetic valves 136, 156 and 305.
  • the cooling device 10 according to the first embodiment having the above-described configuration is characterized in that the ECU 400 operates as follows.
  • ECU 400 when cooling is performed, ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are opened and electromagnetic valve 305 is closed. When cooling is not performed, ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are closed and electromagnetic valve 305 is opened.
  • the ECU 400 opens the electromagnetic valve 136 even when cooling is not performed. It is good also as a state. At this time, the opening / closing of the electromagnetic valve 136 may be controlled in accordance with the operating state of the electric device to be cooled.
  • the expansion valve unit 130 is not provided and the refrigerant remains in a liquid state and is cooled. The passage 126 may flow.
  • FIG. 2 is a functional block diagram of ECU 400 of cooling device 10 according to the present embodiment.
  • ECU 400 includes an operation determination unit 402, a flow path switching control unit 404, and a compressor control unit 408.
  • the operation determination unit 402 determines whether or not cooling is performed.
  • the operation determination unit 402 is, for example, when a switch for cooling is turned on or when an automatic control mode for automatically adjusting the temperature of the vehicle interior to the set temperature is selected. And it determines with air_conditioning
  • the operation determination unit 402 may turn on the operation determination flag when it is determined that cooling is performed, for example.
  • the flow path switching determination unit 404 controls the control signals S1 to S3 so that the electromagnetic valves 136 and 156 are opened and the electromagnetic valve 305 is closed when cooling is performed. Is output. Based on the determination of the operation determination unit 402, the flow path switching determination unit 404 controls the control signals S1 to S1 so that the electromagnetic valves 136 and 156 are closed and the electromagnetic valve 305 is opened when cooling is not performed. S3 is output.
  • the operation determination unit 402 may determine the necessity of cooling or cooling of the electric device based on the room temperature or the operating state of the electric device to be cooled, and may control the degree of opening and closing of the electromagnetic valve based on the necessity. Good.
  • the compressor control unit 408 generates a control signal C1 so that the compressor 20 operates when cooling is not performed, and outputs the control signal C1 to the compressor 20.
  • the compressor control unit 408 generates the control signal C1 and outputs the control signal C1 to the compressor 20 so as to maintain the operating state if the compressor 20 is in operation.
  • the compressor control unit 408 controls the compressor 20 so that the operation amount of the compressor 20 becomes a predetermined operation amount.
  • the compressor control unit 408 may lower the operation amount of the compressor 20 when the cooling is not performed than when the cooling is performed. If it does in this way, overcooling of an electric equipment can be prevented and an electric equipment can be cooled appropriately.
  • operation determination unit 402 flow path switching control unit 404, and compressor control unit 408 are all realized by the CPU of ECU 400 executing a program stored in a memory. However, it may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
  • FIG. 3 is a flowchart for explaining control of a program executed by ECU 400 of cooling device 10 according to the first embodiment.
  • the processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
  • step S100 ECU 400 determines whether or not cooling is on (that is, whether or not cooling is being performed). If cooling is on (YES in S100), the process proceeds to S102. If not (NO in S100), the process proceeds to step S103.
  • step S102 the ECU 400 outputs control signals S1 to S3 so that the electromagnetic valves 136 and 156 are opened and the electromagnetic valve 305 is closed.
  • step S103 ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are closed and electromagnetic valve 305 is opened.
  • step S104 the ECU 400 operates the compressor 20 as necessary, and in step S105, the control is returned to the main routine.
  • FIG. 4 is a flowchart for explaining the operation of the cooling device 10 according to the first embodiment.
  • solenoid valves 136 and 156 are controlled to be in an open state and solenoid valve 305 is closed in accordance with control signals S1 to S3. .
  • the refrigerant flows from the receiver 60 toward the compressor 20 through the passages 302 ⁇ 126 ⁇ 304 ⁇ 306 in order.
  • the expansion valve section 130 allows the refrigerant to pass through the cooling passage 126, and the refrigerant is atomized by the expansion valve 152 and vaporized by the evaporator 80. For this reason, the refrigerant cools the inverter 122 and the motor generator 124 in the liquid state, and then the cooling is performed by absorbing the heat of vaporization from the air in the evaporator.
  • electromagnetic valves 136 and 156 are controlled to be closed and electromagnetic valve 305 is opened by control signals S1 to S3.
  • the refrigerant flows from the receiver 60 toward the compressor 20 through the passages 302 ⁇ 126 ⁇ 305 ⁇ 306 in order. Since there is no need for cooling, the refrigerant does not flow through the passage 304.
  • the expansion valve unit 130 atomizes the refrigerant from the liquid state and vaporizes it in the cooling passage 126. For this reason, since the heat of vaporization is absorbed from the electric equipment such as the inverter 122 and the motor generator 124, the electric equipment is cooled.
  • the cooling is performed by providing the cooling unit for cooling the electric equipment in series with the evaporator on the refrigerant path flowing from the condenser to the compressor.
  • the electrical equipment can be cooled using a liquid-phase refrigerant.
  • both the cooling and the cooling of the electric equipment can be performed with the same amount of operation of the compressor as in the normal cooling when the cooling unit is not provided.
  • it is not necessary to increase the power performance of the compressor in order to cool the electric device, and it is possible to avoid increasing the size of the compressor or providing a dedicated pump for cooling the electric device.
  • the refrigerant is supplied so as to be vaporized in the cooling section to cool the electric equipment, thereby ensuring necessary cooling performance and eliminating the passage loss in the evaporator.
  • the refrigerant circulation path and the place where the refrigerant is vaporized are changed by switching the flow path.
  • a solenoid valve is used as the expansion valve and the flow path is switched based on whether or not cooling is used while adjusting the opening according to the temperature, the refrigerant flow path can be simplified and the number of parts can be reduced. it can.
  • FIG. 5 is a diagram showing a configuration of cooling device 10A in the second embodiment. 5 includes a cooling unit 120A and an expansion valve unit 150A in place of the cooling unit 120 and the expansion valve unit 150, respectively, in the configuration of the cooling device 10 described in FIG.
  • the other configuration is the same as the configuration of the cooling device 10 according to the first embodiment described above. They are given the same reference numerals. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
  • the cooling unit 120A includes a cooling passage 126 and an expansion valve unit 130A.
  • the expansion valve unit 130A includes a solenoid valve 132A and a temperature sensor 134A.
  • the electromagnetic valve 132A is provided on the inlet side of the cooling passage 126, that is, on the upstream side of the portion of the cooling passage 126 adjacent to the casing of the inverter 122 and the motor generator 124.
  • the opening degree of the electromagnetic valve 132A is controlled by the ECU 400A from the fully open state to the fully closed state. That is, the electromagnetic valve 132A depressurizes the refrigerant by reducing the opening degree based on the control signal S1A received from the ECU 400A, or allows the refrigerant to pass through without being depressurized when the valve is fully opened.
  • the resistance received from the passage when the refrigerant flows through the electromagnetic valve 132A is the same as the resistance received from the passage when the refrigerant flows through a portion other than the electromagnetic valve 132A of the cooling passage 126. It is formed to become.
  • the electromagnetic valve 132A is formed such that the internal shape when the electromagnetic valve 132A is fully open matches the internal shape of the portion other than the electromagnetic valve 132A of the cooling passage 126.
  • the internal shape of the cooling passage 126 is a circle
  • the inner diameter when the electromagnetic valve 132A is in a fully open state is formed to be a circle that matches the inner diameter of the first connection passage 302. If it does in this way, the change of the pressure of the refrigerant before and after electromagnetic valve 132A when electromagnetic valve 132A is in a full open state can be controlled.
  • Temperature sensor 134A is provided at the outlet side of cooling passage 126, that is, at a position downstream of the portion of cooling passage 126 adjacent to the casing of inverter 122 and motor generator 124, and detects the temperature of the refrigerant at that position. .
  • the temperature sensor 134A transmits a signal indicating the detected refrigerant temperature T1 to the ECU 400A.
  • the expansion valve portion 150 ⁇ / b> A is provided in the electromagnetic valve 152 ⁇ / b> A provided in the second connection passage 304 upstream of the evaporator 80 and the third connection passage 306 downstream of the evaporator 80, and the temperature of the refrigerant in the third connection passage 306. And a temperature sensor 154A for detecting.
  • the temperature sensor 154A transmits a signal indicating the detected refrigerant temperature T2 to the ECU 400A.
  • ECU 400A determines the flow rate (decompression amount) of the refrigerant based on refrigerant temperature T2 received from temperature sensor 154A.
  • ECU 400A controls the opening degree of electromagnetic valve 152A so that the determined refrigerant flow rate is realized.
  • the opening degree of the electromagnetic valve 152A is controlled by the ECU 400A from the fully open state to the fully closed state. That is, the electromagnetic valve 152A reduces the refrigerant pressure by reducing the opening degree based on the control signal S2A received from the ECU 400A, or blocks the passage of the refrigerant in the passage 304 by being fully closed.
  • the ECU 400A generates the control signal C1 to operate the compressor 20 and transmits it to the compressor 20 when the cooling is performed and when the electric device is cooled by the cooling unit 120A, or the temperature of the refrigerant received from the temperature sensor 134A.
  • the flow rate in the electromagnetic valve 132A is determined based on T1, and a control signal S1 for operating the electromagnetic valve 132A to generate the determined flow rate is generated and transmitted to the electromagnetic valve 132A.
  • FIG. 6 is a functional block diagram of ECU 400A of cooling device 10A according to the second embodiment.
  • operation determination unit 402 determines whether or not cooling is performed.
  • the operation determination unit 402 is, for example, when a switch for cooling is turned on or when an automatic control mode for automatically adjusting the temperature of the vehicle interior to the set temperature is selected. And it determines with air_conditioning
  • the operation determination unit 402 may turn on the operation determination flag when it is determined that cooling is performed, for example.
  • the bypass opening / closing control unit 500 outputs a control signal S3 to the electromagnetic valve 305 in order to control opening / closing of the bypass passage 303.
  • the bypass opening / closing control unit 500 controls the electromagnetic valve 305 to be closed.
  • bypass opening / closing control unit 500 controls electromagnetic valve 305 to be in an open state when operation determination unit 402 determines that cooling is not performed (including when heating is performed).
  • the third decompression control unit 502 converts the liquid-phase refrigerant flowing through the second connection passage 304 into a mist refrigerant so that the evaporator 80 completely vaporizes when it is determined that the cooling is performed in the operation determination unit 402.
  • the refrigerant is depressurized so that
  • the third pressure reduction control unit 502 determines the flow rate (pressure reduction amount) of the refrigerant in the electromagnetic valve 152A based on the temperature of the refrigerant detected by the temperature sensor 154A, and the electromagnetic valve 152A so that the refrigerant flows at the determined flow rate. Adjust the opening.
  • the third pressure reduction control unit 502 is configured to reduce the refrigerant so that the liquid-phase refrigerant flowing through the second connection passage 304 becomes a mist refrigerant. May be controlled.
  • the liquid temperature determination unit 504 determines whether or not the liquid temperature of the refrigerant detected by the temperature sensor 134A is greater than a threshold value.
  • the threshold value is a threshold value for determining whether or not the liquid temperature of the refrigerant is in an appropriate range as a temperature for cooling the electric device.
  • the liquid temperature determination unit 504 may turn on the liquid temperature determination flag when the liquid temperature of the refrigerant detected by the temperature sensor 134A is higher than a threshold value.
  • the first depressurization control unit 406 depressurizes the refrigerant so that the liquid temperature becomes equal to or lower than the threshold when cooling is performed and the liquid temperature of the refrigerant is higher than the threshold.
  • the first decompression control unit 406 may decompress the refrigerant on the downstream side of the electromagnetic valve 132A by controlling the opening of the electromagnetic valve 132A to be closed by a predetermined opening.
  • the first depressurization control unit 406 may control the electromagnetic valve 132A so as to close only by the opening degree determined according to the difference between the current liquid temperature of the refrigerant and the threshold value.
  • the first decompression control unit 406 may decompress the refrigerant when, for example, the operation determination flag is turned on and the liquid temperature determination flag is turned on.
  • the refrigerant after decompression is used for cooling the electric device in the cooling unit 120A in a state where the refrigerant is maintained as a liquid phase refrigerant.
  • the second depressurization control unit 410 controls the electromagnetic valve 132A so as to depressurize the liquid-phase refrigerant when cooling is not performed.
  • the second pressure reduction control unit 410 determines the flow rate (pressure reduction amount) of the refrigerant in the electromagnetic valve 132A based on the temperature of the refrigerant detected by the temperature sensor 134A, and the electromagnetic valve 132A so that the refrigerant flows at the determined flow rate. Adjust the opening.
  • Second decompression control unit 410 depressurizes the refrigerant so that it becomes a mist refrigerant so that it is completely vaporized in cooling unit 120A.
  • the second decompression control unit 410 may control the electromagnetic valve 132A so as to decompress the refrigerant when the operation determination flag is turned off, for example.
  • the compressor control unit 408 generates a control signal C1 so that the compressor 20 operates when cooling is not performed, and outputs the control signal C1 to the compressor 20.
  • the compressor control unit 408 generates the control signal C1 and outputs the control signal C1 to the compressor 20 so as to maintain the operating state if the compressor 20 is in operation.
  • the compressor control unit 408 controls the compressor 20 so that the operation amount of the compressor 20 becomes a predetermined operation amount.
  • the compressor control unit 408 may operate the compressor 20 when the operation determination flag is turned off.
  • the compressor control unit 408 may lower the operation amount of the compressor 20 when the cooling is not performed than when the cooling is performed. If it does in this way, overcooling of an electric equipment can be prevented and an electric equipment can be cooled appropriately.
  • the full opening control unit 512 controls the electromagnetic valve 132A so that the opening degree of the electromagnetic valve 132A is fully opened when cooling is performed and the liquid temperature of the refrigerant is equal to or lower than the threshold value.
  • the full opening control unit 512 controls the electromagnetic valve 132A so that the opening degree of the electromagnetic valve 132A is fully opened when the operation determination flag is turned on and the liquid temperature determination flag is turned off. May be.
  • the threshold value of the coolant temperature for fully opening the opening of the electromagnetic valve 132A is smaller than the threshold value for executing the first pressure reduction control. If it does in this way, generation
  • FIG. 7 is a flowchart for explaining control of a program executed by ECU 400A of cooling device 10A according to the second embodiment.
  • step S200 it is determined whether cooling is on or off. If it is determined that the cooling is on (YES in S200), ECU 400A closes electromagnetic valve 305 and closes bypass passage 303 in step S201. Then, ECU 400 executes the third pressure reduction control. That is, ECU 400A controls the opening degree of electromagnetic valve 152A so as to decompress the refrigerant in order to completely vaporize the liquid refrigerant flowing through second connection passage 304 in evaporator 80, and the process proceeds to step S203. .
  • the first pressure reduction control is performed in step S204. That is, ECU 400A controls electromagnetic valve 132A to decompress the refrigerant until the liquid temperature becomes equal to or lower than the threshold value.
  • ECU 400A opens electromagnetic valve 305 to allow passage through bypass passage 303 and electromagnetic valve 152A is fully closed in step S206. To control. Thereby, the refrigerant does not flow to the evaporator 80.
  • step S207 the compressor 20 is operated, and in step S208, the ECU 400 executes the second pressure reduction control. That is, the electromagnetic valve 132A is controlled so as to depressurize the liquid-phase refrigerant.
  • the cooling unit 120A the refrigerant whose temperature has decreased due to the reduced pressure flows through the cooling passage 126, so that the inverter 122 and the motor generator 124 are cooled.
  • liquid-phase refrigerant flowing through second connection passage 304 is completely vaporized in evaporator 80 using electromagnetic valve 152A. Therefore, the refrigerant is depressurized to become a mist refrigerant (S202).
  • the first pressure reduction control is executed (S204).
  • the refrigerant is depressurized until the liquid temperature of the refrigerant becomes equal to or lower than the target value.
  • the liquid-phase refrigerant flowing from the capacitor 40 via the receiver 60 is cooled by the cooling unit 120 when the opening of the electromagnetic valve 132A is fully opened. Will be supplied.
  • the liquid-phase refrigerant supplied to the cooling unit 120 cools the inverter 122 and the motor generator 124 and then passes through the electromagnetic valve 152A.
  • the refrigerant that has passed through the electromagnetic valve 152 ⁇ / b> A is reduced in pressure by the execution of the third pressure reduction control, thereby changing to a mist-like refrigerant and supplied to the evaporator 80.
  • the mist refrigerant evaporates and absorbs the heat of the air in the vehicle interior. Therefore, the vapor-phase refrigerant that has evaporated flows through the third connection passage 306 and reaches the compressor 20.
  • the gas-phase refrigerant compressed in the compressor 20 is liquefied again by releasing heat in the capacitor 40. In this way, the refrigerant circulates through the air conditioning refrigeration cycle system 12A.
  • ECU 400 when cooling is not performed (NO in S200), ECU 400 operates compressor 20 (S207), and then executes the second pressure reduction control (S208). That is, the electromagnetic valve 132A is controlled so that the liquid-phase refrigerant is decompressed.
  • cooling unit 120A inverter 122 and motor generator 124 are cooled by the decompressed refrigerant.
  • the refrigerant is completely vaporized in the cooling unit 120 ⁇ / b> A, and the electric device is cooled by absorbing the heat of the electric device.
  • the gas-phase refrigerant evaporated in the cooling unit 120 ⁇ / b> A is returned to the compressor 20 via the bypass passage 303.
  • the same operational effects as the cooling device according to the first embodiment described above can be obtained. Further, the flow path is simplified and the number of parts is reduced.
  • the cooling devices 10 and 10 ⁇ / b> A for cooling the electrical equipment mounted on the vehicle include a compressor 20 for circulating the refrigerant, a condenser 40 for condensing the refrigerant, and a refrigerant.
  • An evaporator 80 for cooling the interior of the vehicle using a cooling unit 120, a cooling unit 120 provided in series with the evaporator on the path of the refrigerant flowing from the condenser toward the compressor, and for cooling the electrical equipment using the refrigerant, 120A, a bypass passage 303 for flowing the refrigerant that has passed through the cooling unit toward the compressor without passing through the evaporator, and an electromagnetic valve 305 for changing the amount of refrigerant passing through the bypass passage.
  • the cooling devices 10 and 10A are provided at an entrance portion of the cooling unit on the refrigerant path, and an atomized state in which the refrigerant is changed from a liquid state to a mist state in order to vaporize the refrigerant and a through state in which the refrigerant is passed in a liquid state.
  • Expansion valves 130, 130A that can be switched between and a second expansion valve that is provided at the entrance of the evaporator 80 on the refrigerant path and changes from liquid to mist to evaporate the refrigerant. Part 150 and 150A.
  • it further includes ECUs 400 and 400A for cooling control for controlling opening / closing of the electromagnetic valve 305 and switching of the first expansion valve units 130 and 130A.
  • ECUs 400 and 400A perform cooling by the evaporator 80
  • the electromagnetic valve 305 is in the closed state and the first expansion valve portions 130 and 130A are in the passing state and cooling is not performed by the evaporator 80
  • the electromagnetic valve 305 is in the open state and the first expansion valve portion 130 is used.
  • 130A is in an atomized state.
  • the cooling device 10 further includes a cooling control ECU 400 that controls opening and closing of the electromagnetic valve 305 and switching of the first expansion valve unit 130.
  • the first expansion valve unit 130 includes an expansion valve 132 that atomizes the refrigerant, a refrigerant passage 135 provided in parallel with the expansion valve 132, and an electromagnetic valve 136 that controls opening and closing of the refrigerant passage in response to an instruction from the ECU 400. including.
  • the first expansion valve portion 130A includes: It includes an electromagnetic valve 132A configured to be able to change the opening degree between a passing state and an atomizing state in accordance with an instruction from ECU 400A.
  • the cooling devices 10 and 10A control the opening and closing of the electromagnetic valve 305 and the switching of the first and second expansion valve portions 130, 150, 130A, and 150A.
  • ECU 400, 400A for cooling control is further provided.
  • the second expansion valve portions 150 and 150A are configured to be switchable between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a closed state in which the refrigerant is not allowed to pass through.
  • the ECUs 400 and 400A make the second expansion valve portions 150 and 150A atomized when cooling by the evaporator 80, and the second expansion valve portions 150 and 150A when not cooling by the evaporator 80. Closed.
  • the second expansion valve unit 150 is provided on the refrigerant passage 304 in series with the expansion valve 152 for atomizing the refrigerant and the expansion valve, and in accordance with an instruction from the ECU 400. And an electromagnetic valve 156 that opens and closes.
  • the second expansion valve portion 150A includes an electromagnetic valve 152A configured to be able to change the opening degree between a closed state and an atomized state in accordance with an instruction from the ECU 400A.
  • the electric device to be cooled includes an inverter 122 that is a drive device that drives a motor generator 124 that propels the vehicle 601 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A cooling apparatus (10) for cooling an electrical device installed in a vehicle is provided with: a compressor (20) for circulating a refrigerant; a condenser (40) for condensing the refrigerant; an evaporator (80) for cooling the inside air of the vehicle by using the refrigerant; a cooling section (120) disposed in series with the evaporator (80) on a flow path of the refrigerant from the condenser (40) to the compressor (20) so as to cool the electrical device by using the refrigerant; a bypass channel (303) for allowing the refrigerant that has passed through the cooling section (120) to flow into the compressor (20) without passing through the evaporator (80); and an electromagnetic valve (305) for varying the amount of the refrigerant that passes through the bypass channel (303).

Description

冷却装置および車両Cooling device and vehicle
 本発明は、冷却装置および車両に関し、特に、空調用冷凍サイクルシステムを利用して電気機器を冷却する冷却装置に関する。 The present invention relates to a cooling device and a vehicle, and more particularly, to a cooling device that cools electrical equipment using an air conditioning refrigeration cycle system.
 近年、環境問題対策の1つとして、モータの駆動力により走行するハイブリッド車、燃料電池車、電気自動車などが注目されている。 In recent years, attention has been focused on hybrid vehicles, fuel cell vehicles, electric vehicles, and the like that travel with the driving force of a motor as one of the environmental countermeasures.
 このような車両においては、モータ、ジェネレータ、インバータ、コンバータあるいはバッテリ等の電気機器は電力の授受によって発熱するためこれらの電気機器を冷却する必要がある。この場合、エンジンのみを使用する通常の車両のごとく、電気機器とラジエータとの間で冷却水を循環させるという冷却システムを新たに設けることが考えられるが、このような冷却システムを新たに設ける場合には、専用のラジエータを設ける必要があるため、車両搭載性が低くなる場合がある。 In such a vehicle, electric devices such as a motor, a generator, an inverter, a converter, and a battery generate heat when power is transmitted and received. Therefore, it is necessary to cool these electric devices. In this case, it is conceivable to provide a cooling system that circulates cooling water between the electrical equipment and the radiator as in a normal vehicle that uses only the engine. Since it is necessary to provide a dedicated radiator, vehicle mountability may be lowered.
 このような問題に鑑みて、特開2006-290254号公報(特許文献1)は、構成部品の共用化による組み付け性向上、原価低減そして小型化を図ることができるハイブリッド車の冷却システムを開示する。この冷却システムは、ガス冷媒を吸入圧縮可能なコンプレッサと、高圧のガス冷媒を凝縮させるための周囲空気で冷却可能なメインコンデンサと、低温の液冷媒を蒸発させて被冷媒物を冷却可能なるエバポレータと、減圧手段とを含み、減圧手段とエバポレータとに、モータから吸熱可能なる熱交換器及び第2減圧手段を並列に接続してなることを特徴とする。 In view of such a problem, Japanese Patent Laid-Open No. 2006-290254 (Patent Document 1) discloses a cooling system for a hybrid vehicle that can improve assemblability, reduce costs, and reduce the size by sharing components. . This cooling system includes a compressor capable of sucking and compressing gas refrigerant, a main condenser capable of cooling with ambient air for condensing high-pressure gas refrigerant, and an evaporator capable of cooling a refrigerant by evaporating a low-temperature liquid refrigerant. And a pressure reducing means, wherein a heat exchanger capable of absorbing heat from the motor and a second pressure reducing means are connected in parallel to the pressure reducing means and the evaporator.
 上述した公報に開示された冷却システムによると、構成部品の共用化による組み付け性が向上することで、製造原価が低減できる。また、小型化を図ることができる。 According to the cooling system disclosed in the above publication, the manufacturing cost can be reduced by improving the assemblability by sharing the components. Moreover, size reduction can be achieved.
特開2006-290254号公報JP 2006-290254 A 特開2007-69733号公報JP 2007-69733 A 特開2005-90862号公報JP 2005-90862 A
 しかしながら、上述した特許文献1に記載された冷却システムのように、エバポレータとモータから吸熱可能なる熱交換器とを並列に接続する場合には、エバポレータおよび熱交換器のそれぞれに冷媒を供給し、かつ、完全気体まで減圧する必要があるため、冷却に用いられるコンプレッサに要求される動力性能が高くなるという問題がある。そのため、コンプレッサが大型化すれば燃費悪化、更にこのコンプレッサ動力改善のためにコンデンサを大型化すれば搭載性悪化という問題がある。 However, when the evaporator and the heat exchanger capable of absorbing heat from the motor are connected in parallel like the cooling system described in Patent Document 1 described above, a refrigerant is supplied to each of the evaporator and the heat exchanger, In addition, since it is necessary to reduce the pressure to a complete gas, there is a problem that the power performance required for the compressor used for cooling is increased. Therefore, there is a problem that if the compressor is enlarged, the fuel consumption is deteriorated, and if the capacitor is enlarged for improving the compressor power, the mountability is deteriorated.
 本発明の目的は、コンプレッサに要求される動力の大幅な増加および車両への搭載性の悪化を招くことなく、電気機器を冷却する冷却装置および車両を提供することである。 An object of the present invention is to provide a cooling device and a vehicle for cooling an electric device without causing a significant increase in power required for the compressor and a deterioration in mountability on the vehicle.
 この発明は、要約すると、車両に搭載された電気機器を冷却するための冷却装置であって、冷媒を循環させるためのコンプレッサと、冷媒を凝縮するためのコンデンサと、冷媒を用いて車両の室内の冷房を行なうためのエバポレータと、コンデンサからコンプレッサに向けて流れる冷媒の経路上にエバポレータと直列に設けられ、冷媒を用いて電気機器を冷却するための冷却部と、冷却部を通過した冷媒をエバポレータを経由せずにコンプレッサに向けて流すためのバイパス通路と、バイパス通路の冷媒の通過量を変化させるための弁とを備える。 In summary, the present invention is a cooling device for cooling an electric device mounted on a vehicle, and includes a compressor for circulating a refrigerant, a condenser for condensing the refrigerant, and an interior of the vehicle using the refrigerant. An evaporator for cooling the refrigerant, a evaporator provided in series on the path of the refrigerant flowing from the condenser toward the compressor, a cooling unit for cooling the electrical equipment using the refrigerant, and a refrigerant that has passed through the cooling unit A bypass passage for flowing toward the compressor without passing through the evaporator and a valve for changing the amount of refrigerant passing through the bypass passage are provided.
 好ましくは、冷却装置は、冷媒の経路上において冷却部の入り口部分に設けられ、冷媒を気化させるために液状から霧状に変化させる霧化状態と冷媒を液状のまま通過させる通過状態とを切替可能な第1のエキスパンションバルブ部と、冷媒の経路上においてエバポレータの入り口部分に設けられ、冷媒を気化させるために液状から霧状に変化させるための第2のエキスパンションバルブ部とをさらに備える。 Preferably, the cooling device is provided at an inlet portion of the cooling unit on the refrigerant path, and switches between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a passage state in which the refrigerant is passed in a liquid state. A further possible first expansion valve portion and a second expansion valve portion which is provided at the entrance portion of the evaporator on the refrigerant path and changes from liquid to mist to evaporate the refrigerant are further provided.
 より好ましくは、冷却装置は、弁の開閉および第1のエキスパンションバルブ部の切替を制御する制御部をさらに備える。制御部は、エバポレータによる冷房を行なう場合には、弁を閉状態とし、かつ第1のエキスパンションバルブ部を通過状態とし、エバポレータによる冷房を行なわない場合には、弁を開状態とし、かつ第1のエキスパンションバルブ部を霧化状態とする。 More preferably, the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit. When the cooling by the evaporator is performed, the control unit closes the valve and passes through the first expansion valve unit. When the cooling by the evaporator is not performed, the control unit opens the valve, and the first The expansion valve part of is made into the atomization state.
 より好ましくは、冷却装置は、弁の開閉および第1のエキスパンションバルブ部の切替を制御する制御部をさらに備える。第1のエキスパンションバルブ部は、冷媒を霧化させるエキスパンションバルブと、エキスパンションバルブと並列に設けられる冷媒通路と、制御部の指示に応答して冷媒通路の開閉を制御する電磁弁とを含む。 More preferably, the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit. The first expansion valve unit includes an expansion valve that atomizes the refrigerant, a refrigerant passage provided in parallel with the expansion valve, and an electromagnetic valve that controls opening and closing of the refrigerant passage in response to an instruction from the control unit.
 より好ましくは、冷却装置は、弁の開閉および第1のエキスパンションバルブ部の切替を制御する制御部をさらに備える。第1のエキスパンションバルブ部は、制御部の指示に応じて通過状態と霧化状態に開度を変更可能に構成された電磁弁を含む。 More preferably, the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first expansion valve unit. The first expansion valve unit includes an electromagnetic valve configured to be able to change the opening degree between a passing state and an atomizing state in accordance with an instruction from the control unit.
 より好ましくは、冷却装置は、弁の開閉および第1および第2のエキスパンションバルブ部の切替を制御する制御部をさらに備える。第2のエキスパンションバルブ部は、冷媒を気化させるために液状から霧状に変化させる霧化状態と冷媒を通過させない閉状態とを切替可能に構成される。制御部は、エバポレータによる冷房を行なう場合には、第2のエキスパンションバルブ部を霧化状態にし、エバポレータによる冷房を行なわない場合には第2のエキスパンションバルブ部を閉状態とする。 More preferably, the cooling device further includes a control unit that controls opening and closing of the valve and switching of the first and second expansion valve units. The second expansion valve unit is configured to be switchable between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a closed state in which the refrigerant is not allowed to pass. When the cooling by the evaporator is performed, the control unit sets the second expansion valve unit in an atomized state, and when the cooling by the evaporator is not performed, the control unit closes the second expansion valve unit.
 さらに好ましくは、第2のエキスパンションバルブ部は、冷媒を霧化させるエキスパンションバルブと、エキスパンションバルブと直列に冷媒の経路上に設けられ、制御部の指示に応じて開閉する電磁弁とを含む。 More preferably, the second expansion valve unit includes an expansion valve for atomizing the refrigerant, and an electromagnetic valve provided on the refrigerant path in series with the expansion valve and opened and closed according to an instruction from the control unit.
 さらに好ましくは、第2のエキスパンションバルブ部は、制御部の指示に応じて閉状態と霧化状態に開度を変更可能に構成された電磁弁を含む。 More preferably, the second expansion valve unit includes an electromagnetic valve configured to change the opening degree between a closed state and an atomized state in accordance with an instruction from the control unit.
 好ましくは、電気機器は、車両を推進させるモータを駆動する駆動装置を含む。
 この発明は、他の局面においては、以上いずれかの冷却装置を備える車両である。
Preferably, the electric device includes a drive device that drives a motor that propels the vehicle.
In another aspect, the present invention is a vehicle including any one of the above cooling devices.
 本発明によれば、コンプレッサに要求される動力の大幅な増加および車両への搭載性の悪化を招くことなく、電気機器を冷却する冷却装置を実現することができる。 According to the present invention, it is possible to realize a cooling device that cools an electric device without causing a significant increase in power required for the compressor and a deterioration in mountability on a vehicle.
本実施の形態において冷却装置が搭載される車両の構成を示した図である。It is the figure which showed the structure of the vehicle by which a cooling device is mounted in this Embodiment. 本実施の形態に係る冷却装置10のECU400の機能ブロック図である。It is a functional block diagram of ECU400 of the cooling device 10 which concerns on this Embodiment. 実施の形態1に係る冷却装置10のECU400で実行されるプログラムの制御を説明するためのフローチャートである。3 is a flowchart for illustrating control of a program executed by ECU 400 of cooling device 10 according to Embodiment 1. 実施の形態1に係る冷却装置10の動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation of cooling device 10 according to the first embodiment. 実施の形態2における冷却装置10Aの構成を示した図である。It is the figure which showed the structure of 10 A of cooling devices in Embodiment 2. FIG. 実施の形態2に係る冷却装置10AのECU400Aの機能ブロック図である。It is a functional block diagram of ECU 400A of cooling device 10A according to the second embodiment. 実施の形態2に係る冷却装置10AのECU400Aで実行されるプログラムの制御について説明するためのフローチャートである。It is a flowchart for demonstrating control of the program performed by ECU400A of 10 A of cooling devices which concern on Embodiment 2. FIG.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一または相当する部品には同一の符号を付し、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 [冷却装置が搭載される車両の構成]
 図1は、本実施の形態において冷却装置が搭載される車両の構成を示した図である。この車両601は、車輪の駆動にモータとエンジンとを併用するハイブリッド自動車(Hybrid Vehicle)であるが、本願発明は、電気自動車や燃料電池自動車にも適用が可能である。
[Configuration of vehicle equipped with cooling device]
FIG. 1 is a diagram showing a configuration of a vehicle on which a cooling device is mounted in the present embodiment. The vehicle 601 is a hybrid vehicle that uses both a motor and an engine for driving wheels, but the present invention can also be applied to an electric vehicle and a fuel cell vehicle.
 図1を参照して、車両601は、前輪2FR,2FLと、後輪2RR,2RLと、エンジン604と、プラネタリギヤPGと、デファレンシャルギヤDGと、ギヤ605,606とを含む。 Referring to FIG. 1, vehicle 601 includes front wheels 2FR, 2FL, rear wheels 2RR, 2RL, an engine 604, a planetary gear PG, a differential gear DG, and gears 605, 606.
 車両601は、さらに、バッテリB1と、バッテリB1の出力する直流電力を昇圧する昇圧ユニット610と、昇圧ユニット610との間で直流電力を授受するインバータ122とを含む。 Vehicle 601 further includes a battery B1, a boost unit 610 that boosts the DC power output from battery B1, and an inverter 122 that exchanges DC power with boost unit 610.
 車両601は、さらに、プラネタリギヤPGを介してエンジン604の機械的動力を受けて発電を行なうモータジェネレータMG1と、回転軸がプラネタリギヤPGに接続されるモータジェネレータMG2とを含む。インバータ122はモータジェネレータMG1,MG2に接続され交流電力と昇圧ユニット610からの直流電力との変換を行なう。 Vehicle 601 further includes a motor generator MG1 that generates electric power by receiving mechanical power from engine 604 via planetary gear PG, and a motor generator MG2 whose rotating shaft is connected to planetary gear PG. Inverter 122 is connected to motor generators MG <b> 1 and MG <b> 2 and performs conversion between AC power and DC power from booster unit 610.
 プラネタリギヤPGは、エンジン604とモータジェネレータMG1,MG2に結合されてこれらの間で動力を分配する動力分割機構として動作する。 Planetary gear PG is coupled to engine 604 and motor generators MG1 and MG2, and operates as a power split mechanism that distributes power between them.
 プラネタリギヤPGは、サンギヤと、リングギヤと、サンギヤおよびリングギヤの両方に噛み合うピニオンギヤと、ピニオンギヤをサンギヤの周りに回転可能に支持するプラネタリキャリヤとを含む。プラネタリギヤPGは第1~第3の回転軸を有する。第1の回転軸はエンジン604に接続されるプラネタリキャリヤの回転軸である。第2の回転軸はモータジェネレータMG1に接続されるサンギヤの回転軸である。第3の回転軸はモータジェネレータMG2に接続されるリングギヤの回転軸である。 Planetary gear PG includes a sun gear, a ring gear, a pinion gear that meshes with both the sun gear and the ring gear, and a planetary carrier that rotatably supports the pinion gear around the sun gear. Planetary gear PG has first to third rotation shafts. The first rotating shaft is a rotating shaft of a planetary carrier connected to the engine 604. The second rotating shaft is a rotating shaft of a sun gear connected to motor generator MG1. The third rotating shaft is a rotating shaft of a ring gear connected to motor generator MG2.
 この3つの回転軸がエンジン604、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。たとえば、モータジェネレータMG1のロータを中空としてその中心にエンジン604のクランク軸を通すことで動力分配機構にエンジン604とモータジェネレータMG1,MG2とを機械的に接続することができる。 These three rotating shafts are connected to the rotating shafts of the engine 604 and the motor generators MG1 and MG2, respectively. For example, engine 604 and motor generators MG1 and MG2 can be mechanically connected to the power distribution mechanism by hollowing the rotor of motor generator MG1 and passing the crankshaft of engine 604 through the center thereof.
 この第3の回転軸にはギヤ605が取付けられ、このギヤ605はギヤ606を駆動することによりデファレンシャルギヤDGに機械的動力を伝達する。デファレンシャルギヤDGはギヤ606から受ける機械的動力を前輪2FR,2FLに伝達するとともに、ギヤ606,605を介して前輪2FR,2FLの回転力をプラネタリギヤPGの第3の回転軸に伝達する。 A gear 605 is attached to the third rotating shaft, and the gear 605 drives the gear 606 to transmit mechanical power to the differential gear DG. The differential gear DG transmits the mechanical power received from the gear 606 to the front wheels 2FR and 2FL, and transmits the rotational force of the front wheels 2FR and 2FL to the third rotation shaft of the planetary gear PG via the gears 606 and 605.
 プラネタリギヤPGは、3つの回転軸のうち2つの回転軸の回転に応じて、残る1つの回転軸の回転を決定する。したがって、エンジン604を最も効率のよい領域で動作させつつ、モータジェネレータMG1の発電量を制御してモータジェネレータMG2を駆動させることにより車速の制御を行ない、全体としてエネルギ効率のよい自動車を実現している。 The planetary gear PG determines the rotation of the remaining one rotating shaft in accordance with the rotation of two of the three rotating shafts. Therefore, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 604 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.
 なお、プラネタリギヤPGの内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んでもよい。 It should be noted that a speed reducer for the rotating shaft of motor generator MG2 may be further incorporated in planetary gear PG.
 昇圧ユニット610はバッテリB1から受ける直流電圧を昇圧し、その昇圧された直流電圧をインバータ122に供給する。インバータ122は、供給された直流電圧を交流電圧に変換してエンジン始動時にはモータジェネレータMG1を駆動制御する。また、エンジン始動後にはモータジェネレータMG1が発電した交流電力は、インバータ122によって直流に変換されて、昇圧ユニット610によってバッテリB1の充電に適切な電圧に変換されバッテリB1が充電される。 Boost unit 610 boosts the DC voltage received from battery B 1, and supplies the boosted DC voltage to inverter 122. Inverter 122 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted to DC by inverter 122, converted to a voltage suitable for charging battery B1 by boosting unit 610, and battery B1 is charged.
 また、インバータ122はモータジェネレータMG2を駆動する。モータジェネレータMG2は単独で、またはエンジン604を補助して、前輪2FR,2FLを駆動する。制動時には、モータジェネレータMG2は回生運転を行ない、車輪の回転エネルギを電気エネルギに変換する。得られた電気エネルギは、インバータ122および昇圧ユニット610を経由してバッテリB1に戻される。 Further, the inverter 122 drives the motor generator MG2. Motor generator MG2 drives front wheels 2FR and 2FL alone or with assistance of engine 604. At the time of braking, motor generator MG2 performs a regenerative operation and converts the rotational energy of the wheels into electric energy. The obtained electrical energy is returned to the battery B1 via the inverter 122 and the boost unit 610.
 昇圧ユニット610とバッテリB1との間にはシステムメインリレーSR1,SR2が設けられ車両非運転時には高電圧が遮断される。 System main relays SR1 and SR2 are provided between the boost unit 610 and the battery B1, and the high voltage is cut off when the vehicle is not in operation.
 車両601は、さらに、車速を検知する車速センサ608と、運転者からの加速要求指示を受ける入力部でありアクセルペダルの位置を検知するアクセルセンサ609と、バッテリB1に取付けられる電圧センサ670と、アクセルセンサ609からのアクセル開度Accおよび電圧センサ670からの電圧VBに応じてエンジン604、インバータ122および昇圧ユニット610を制御する制御装置660とを含む。電圧センサ670は、バッテリB1の電圧VBを検知して制御装置660に送信する。 The vehicle 601 further includes a vehicle speed sensor 608 that detects a vehicle speed, an accelerator sensor 609 that is an input unit that receives an acceleration request instruction from a driver and detects the position of an accelerator pedal, a voltage sensor 670 attached to the battery B1, A control device 660 for controlling engine 604, inverter 122 and booster unit 610 according to accelerator opening Acc from accelerator sensor 609 and voltage VB from voltage sensor 670. Voltage sensor 670 detects voltage VB of battery B1 and transmits it to control device 660.
 車両601は、さらに、外部充電装置700から延びる充電ケーブル702の先に設けられたプラグ704を接続するためのソケット616と、ソケット616を経由して外部充電装置700から交流電力を受ける充電用インバータ612とをさらに含む。充電用インバータ612は、バッテリB1に接続されており、充電用の直流電力をバッテリB1に対して供給する。 Vehicle 601 further includes a socket 616 for connecting plug 704 provided at the end of charging cable 702 extending from external charging device 700, and a charging inverter that receives AC power from external charging device 700 via socket 616. 612. Charging inverter 612 is connected to battery B1 and supplies DC power for charging to battery B1.
 ここで、制御装置660は、イグニッションスイッチ(またはイグニッションキー)からの信号IGおよびバッテリB1の充電状態SOCに基づいて、車外から与えられる交流電圧からバッテリB1に対する充電が行なわれるように充電用インバータ612を制御する。 Here, based on signal IG from the ignition switch (or ignition key) and charging state SOC of battery B1, control device 660 performs charging inverter 612 so that battery B1 is charged from an AC voltage applied from the outside of the vehicle. To control.
 すなわち、制御装置660は、車両が駐車状態で信号IGがオフでありかつソケット616に外部から電圧が与えられているときは、バッテリB1の充電状態SOCに基づいて充電可能かを判断し、充電可能と判断したときは、充電用インバータ612を駆動する。一方、制御装置660は、バッテリB1がほぼ満充電状態であり、充電可能でないと判断したときは、ソケット616に外部から電圧が与えられていても充電用インバータ612を停止させる。 That is, when the vehicle is parked and signal IG is off and voltage is applied to socket 616 from the outside, control device 660 determines whether charging is possible based on the charging state SOC of battery B1, and charging is performed. When it is determined that the charging is possible, the charging inverter 612 is driven. On the other hand, when control device 660 determines that battery B1 is almost fully charged and cannot be charged, control device 660 stops charging inverter 612 even if voltage is applied to socket 616 from the outside.
 なお、本発明は電気自動車にも適用が可能であり、電気自動車の場合には、エンジン604、プラネタリギヤPG、モータジェネレータMG1は搭載されない。またモータジェネレータMG2がモータジェネレータ124としてギヤ605,606を経由してディファレンシャルギヤを駆動する。また、昇圧ユニット610も必ずしも設けなくても電気自動車やハイブリッド自動車は構成可能である。したがって、車両として必要不可欠でない部分については破線の枠で示している。 Note that the present invention can also be applied to an electric vehicle. In the case of an electric vehicle, the engine 604, the planetary gear PG, and the motor generator MG1 are not mounted. The motor generator MG2 drives the differential gear via the gears 605 and 606 as the motor generator 124. Further, an electric vehicle or a hybrid vehicle can be configured without necessarily providing the boosting unit 610. Accordingly, portions that are not indispensable for the vehicle are indicated by broken-line frames.
 車両601は、モータジェネレータMG1,MG2またはモータジェネレータ124、およびインバータ122を冷却するために冷却装置10をさらに備える。 Vehicle 601 further includes a cooling device 10 for cooling motor generators MG1 and MG2 or motor generator 124 and inverter 122.
 図1に示した、冷却装置10は、回転電機を駆動源とする車両に搭載された電気機器を冷却する。回転電機を駆動源とする車両としては、たとえば、電気自動車、燃料電池車、ハイブリッド車両等である。本実施の形態において、冷却対象となる「電気機器」は、たとえば、直流電力を交流電力に変換するためのインバータ122と、回転電機であるモータジェネレータ124とを一例として説明するが、特にこれらに限定されるものではない。たとえば、「電気機器」は、蓄電装置であるバッテリB1と、バッテリB1の電圧を昇圧させるための昇圧ユニット610と、バッテリの電圧を降圧するためのDC/DCコンバータ(図示せず)とをさらに含むようにしてもよい。なお、バッテリは、リチウムイオン電池あるいはニッケル水素電池等の二次電池である。バッテリに代えてキャパシタを用いてもよい。なお、車両に搭載された電気機器としては、少なくとも作動によって熱を発生させる電気機器であれば、特に上記した電気機器に限定されるものではない。 The cooling device 10 shown in FIG. 1 cools electrical equipment mounted on a vehicle that uses a rotating electrical machine as a drive source. Examples of the vehicle using the rotating electric machine as a drive source include an electric vehicle, a fuel cell vehicle, a hybrid vehicle, and the like. In the present embodiment, “electric equipment” to be cooled will be described by way of example of an inverter 122 for converting DC power to AC power and a motor generator 124 that is a rotating electrical machine. It is not limited. For example, the “electric device” further includes a battery B1, which is a power storage device, a boosting unit 610 for boosting the voltage of the battery B1, and a DC / DC converter (not shown) for stepping down the voltage of the battery. It may be included. The battery is a secondary battery such as a lithium ion battery or a nickel metal hydride battery. A capacitor may be used instead of the battery. Note that the electric device mounted on the vehicle is not particularly limited to the above-described electric device as long as it is an electric device that generates heat by at least operation.
 なお、冷却の対象となる電気機器が複数個ある場合においては、複数の電気機器は、冷却の目標となる温度範囲が共通していることが望ましい。冷却の目標となる温度範囲は、電気機器を作動させる温度環境として適切な温度範囲である。 In addition, when there are a plurality of electrical devices to be cooled, it is desirable that the plurality of electrical devices have a common temperature range to be cooled. The target temperature range for cooling is a temperature range suitable as a temperature environment for operating the electrical equipment.
 [冷却装置の実施の形態1]
 本実施の形態に係る冷却装置10は、車両の室内の冷房を行なうための空調用冷凍サイクルシステム12と、空調用冷凍サイクルシステム12内を循環する冷媒を用いて電気機器を冷却するための冷却部120と、ECU400とを含む。
[First Embodiment of Cooling Device]
Cooling device 10 according to the present embodiment includes an air-conditioning refrigeration cycle system 12 for cooling the interior of a vehicle, and cooling for cooling electrical equipment using a refrigerant circulating in air-conditioning refrigeration cycle system 12. Part 120 and ECU 400.
 空調用冷凍サイクルシステム12は、コンプレッサ20と、コンデンサ40と、エバポレータ80と、エキスパンションバルブ部150とを含む。冷却部120は、コンデンサ40からコンプレッサ20に向けて流れる冷媒の経路上にエバポレータ80と直列に設けられ、冷媒を用いて電気機器を冷却する。 The refrigeration cycle system 12 for air conditioning includes a compressor 20, a condenser 40, an evaporator 80, and an expansion valve unit 150. The cooling unit 120 is provided in series with the evaporator 80 on the refrigerant path flowing from the condenser 40 toward the compressor 20, and cools the electric device using the refrigerant.
 具体的には、コンデンサ40とエバポレータ80とは、第1接続通路302と冷却部120の冷却通路126と第2接続通路304とによって接続される。なお、本実施の形態においては、コンデンサ40の出口にレシーバ60が設けられるとして説明するが特にレシーバ60は設けなくても冷却装置として動作は可能である。冷却部120は、レシーバ60とエバポレータ80との間に設けられる。 Specifically, the capacitor 40 and the evaporator 80 are connected by the first connection passage 302, the cooling passage 126 of the cooling unit 120, and the second connection passage 304. In the present embodiment, the receiver 60 is described as being provided at the outlet of the capacitor 40, but the operation as a cooling device is possible without the receiver 60 being provided. The cooling unit 120 is provided between the receiver 60 and the evaporator 80.
 エバポレータ80とコンプレッサ20とは、第3接続通路306によって接続される。さらに、コンプレッサ20とコンデンサ40とは、第4接続通路308によって接続される。第4接続通路308には、コンプレッサ20からコンデンサ40に向けてのみ冷媒を流す逆止弁140が設けられる。逆止弁140を設けることで冷却動作中のコンプレッサの間欠運転が可能となるが、逆止弁140を設けなくても冷却動作は可能である。 The evaporator 80 and the compressor 20 are connected by a third connection passage 306. Further, the compressor 20 and the condenser 40 are connected by a fourth connection passage 308. The fourth connection passage 308 is provided with a check valve 140 that allows the refrigerant to flow only from the compressor 20 toward the condenser 40. Although the check valve 140 is provided, the compressor can be intermittently operated during the cooling operation. However, the cooling operation is possible without the check valve 140 being provided.
 コンプレッサ20は、車両に搭載されたモータを動力源として作動し、作動時にエバポレータ80から第3接続通路306を経由して流通する気相冷媒を吸入圧縮して第4接続通路308に吐出する。コンプレッサ20は、ECU400からの制御信号C1に基づいて作動する。なお、車両がハイブリッド自動車である場合には、コンプレッサ20は、エンジンを動力源とするものであってもよい。 The compressor 20 operates using a motor mounted on the vehicle as a power source, sucks and compresses the gas-phase refrigerant flowing from the evaporator 80 via the third connection passage 306 at the time of operation, and discharges it to the fourth connection passage 308. The compressor 20 operates based on a control signal C1 from the ECU 400. When the vehicle is a hybrid vehicle, the compressor 20 may use an engine as a power source.
 空調用冷凍サイクルシステム12を用いた冷房は、たとえば、冷房を行なうためのスイッチがオンされた場合あるいは自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されている場合であって、かつ、車室内の温度が設定温度よりも高い場合に行なわれる。 For cooling using the air-conditioning refrigeration cycle system 12, for example, when a switch for performing cooling is turned on, or an automatic control mode for automatically adjusting the temperature in the vehicle interior to the set temperature is selected. And when the temperature in the passenger compartment is higher than the set temperature.
 コンデンサ40は、コンプレッサ20において圧縮された冷媒を放熱することによって冷媒を凝縮(液化)する。コンデンサ40は、冷媒を流すためのチューブと、チューブ内を流通する冷媒とコンデンサ40の周囲の空気との間で熱交換を行なうためのフィンとを含む。コンデンサ40は、たとえば、車両に搭載されたエンジン冷却用ラジエータに隣接して設けられ、車両の走行風あるいは冷却ファンによって供給された冷却風と冷媒との間で熱交換を行なう。コンデンサ40における熱交換によって冷媒の温度は低下し冷媒は液化する。 The condenser 40 condenses (liquefies) the refrigerant by radiating the refrigerant compressed in the compressor 20. Capacitor 40 includes a tube for flowing the refrigerant, and fins for exchanging heat between the refrigerant circulating in the tube and the air around capacitor 40. The condenser 40 is provided, for example, adjacent to an engine cooling radiator mounted on the vehicle, and performs heat exchange between the cooling air supplied by the traveling air of the vehicle or the cooling fan and the refrigerant. Due to the heat exchange in the condenser 40, the temperature of the refrigerant decreases and the refrigerant liquefies.
 コンデンサ40の仕様(すなわち、サイズあるいは放熱性能)は、少なくともコンデンサ40を通過した後の液相冷媒の温度が電気機器を冷却するために必要とされる温度よりも低下するように定められることが望ましい。電気機器を冷却するために必要される温度は、少なくとも電気機器の温度範囲として目標となる温度範囲の上限値よりも低い温度であることが望ましい。好ましくは、コンデンサ40は、冷却部120を有しない場合の空調用冷凍サイクルシステム12のコンデンサ40よりも冷却部120において受けることが想定される熱量分だけ大きい放熱量を有するような仕様であることが望ましい。このようにすると、冷房性能を維持しつつ、コンプレッサ20の動力性能を増加させることなく、電気機器を適切に冷却することができる。 The specification (ie, size or heat dissipation performance) of the capacitor 40 may be determined such that at least the temperature of the liquid-phase refrigerant after passing through the capacitor 40 is lower than the temperature required for cooling the electrical equipment. desirable. It is desirable that the temperature required for cooling the electric device is at least a temperature lower than the upper limit value of the target temperature range as the temperature range of the electric device. Preferably, the capacitor 40 has a specification such that the heat dissipation amount is larger than the capacitor 40 of the air-conditioning refrigeration cycle system 12 when the cooling unit 120 is not provided, by the amount of heat expected to be received in the cooling unit 120. Is desirable. In this way, it is possible to appropriately cool the electric equipment without increasing the power performance of the compressor 20 while maintaining the cooling performance.
 レシーバ60は、コンデンサ40の出口に設けられ、コンデンサ40から流通する冷媒を気相冷媒と液相冷媒に分離し、分離した冷媒のうちの液相冷媒を貯留する。レシーバ60内の液相冷媒は、第1接続通路302を流通して冷却部120を経由した後に第2接続通路304を流通してエキスパンションバルブ部150に供給される。 The receiver 60 is provided at the outlet of the capacitor 40, separates the refrigerant flowing from the capacitor 40 into a gas phase refrigerant and a liquid phase refrigerant, and stores the liquid phase refrigerant among the separated refrigerants. The liquid-phase refrigerant in the receiver 60 flows through the first connection passage 302, passes through the cooling unit 120, and then flows through the second connection passage 304 to be supplied to the expansion valve unit 150.
 エキスパンションバルブ部150は、第2接続通路304を流通する高温・高圧の液相冷媒を小さな孔から噴射させることにより膨張させて、低温・低圧の霧状冷媒に変化させるための弁である。エキスパンションバルブ部150は、エバポレータ80よりも上流の位置に設けられるエキスパンションバルブ本体152と、エバポレータ80よりも下流の位置に設けられる感温部材154と、エキスパンションバルブ本体152と直列に設けられ第2接続通路304を開閉するための電磁弁156とを含む。電磁弁156は、ECU400からの制御信号S2によって開閉状態が制御される。 The expansion valve unit 150 is a valve for expanding a high-temperature / high-pressure liquid refrigerant flowing through the second connection passage 304 by injecting it from a small hole to change it into a low-temperature / low-pressure mist refrigerant. The expansion valve unit 150 is provided in series with the expansion valve main body 152 provided at a position upstream of the evaporator 80, a temperature sensing member 154 provided at a position downstream of the evaporator 80, and the expansion valve main body 152, and is connected to the second connection. And an electromagnetic valve 156 for opening and closing the passage 304. The electromagnetic valve 156 is controlled to be opened and closed by a control signal S2 from the ECU 400.
 空調用冷凍サイクルシステム12は、バイパス通路303と、バイパス通路の冷媒の通過量を変化させるための電磁弁305とをさらに備える。電磁弁156は、ECU400からの制御信号S3によって開閉状態が制御される。 The refrigeration cycle system 12 for air conditioning further includes a bypass passage 303 and an electromagnetic valve 305 for changing the amount of refrigerant passing through the bypass passage. The solenoid valve 156 is controlled to be opened and closed by a control signal S3 from the ECU 400.
 車室内の冷房を行なわない場合には、ECU400は、電磁弁305を開状態とし、電磁弁156を閉状態とするように制御を行なう。車室内の冷房を行なう場合には、ECU400は、電磁弁156を開状態とし、電磁弁305を閉状態とするように制御を行なう。なお、冷房を行なう場合に冷房の必要度合いの程度に応じて電磁弁156,電磁弁305の開度を調整するようにしてもよい。 When the vehicle interior is not cooled, the ECU 400 controls the electromagnetic valve 305 to be in an open state and the electromagnetic valve 156 to be in a closed state. When cooling the passenger compartment, the ECU 400 controls the electromagnetic valve 156 to be in an open state and the electromagnetic valve 305 to be in a closed state. In addition, when performing cooling, you may make it adjust the opening degree of the solenoid valve 156 and the solenoid valve 305 according to the grade of the necessity degree of cooling.
 エキスパンションバルブ部150においては、感温部材154における冷媒の温度に応じてエキスパンションバルブ本体152における冷媒の流量が定まる。この冷媒の流量は、霧状に変化した冷媒の全てがエバポレータ80において気化され、感温部材154の温度が設定温度に冷却されるように定められる。 In the expansion valve unit 150, the flow rate of the refrigerant in the expansion valve main body 152 is determined according to the temperature of the refrigerant in the temperature-sensitive member 154. The flow rate of the refrigerant is determined so that all of the refrigerant that has changed into a mist is vaporized in the evaporator 80 and the temperature of the temperature-sensitive member 154 is cooled to the set temperature.
 エキスパンションバルブ部150においては、たとえば、容器内部にガスが封入された感温部材154における冷媒の温度に応じたガスの圧力の変化を利用してエキスパンションバルブ本体152の弁体を移動させることによって冷媒の流量が定まる。なお、冷媒の温度と弁体の移動量との関係は容器の大きさあるいはガス量等によって予め調整される。 In the expansion valve unit 150, for example, a refrigerant is obtained by moving the valve body of the expansion valve main body 152 using a change in gas pressure in accordance with the temperature of the refrigerant in the temperature sensing member 154 in which gas is sealed in the container. The flow rate is determined. The relationship between the temperature of the refrigerant and the amount of movement of the valve body is adjusted in advance according to the size of the container or the amount of gas.
 エバポレータ80は、霧状冷媒が気化することによってエバポレータ80に接触するように導入された車両の室内の空気の熱を吸熱する。吸熱によって温度が低下した空気は、車両の室内に再び戻されることによって車両の室内の冷房が行なわれる。 The evaporator 80 absorbs the heat of the air in the vehicle interior of the vehicle introduced so as to come into contact with the evaporator 80 when the mist refrigerant evaporates. The air whose temperature has decreased due to heat absorption is returned to the vehicle interior to cool the vehicle interior.
 エバポレータ80は、冷媒を流通するチューブと、チューブ内を流通する冷媒とエバポレータ80の周囲の空気との間で熱交換するためのフィンとを含む。チューブ内には、霧状の冷媒が流通する。チューブ内の流通する冷媒が蒸発することによって車両の室内の空気の熱をフィンを経由して吸熱する。気化した冷媒は、第3接続通路306を経由してコンプレッサ20に向けて流れる。 The evaporator 80 includes a tube through which the refrigerant flows, and fins for exchanging heat between the refrigerant flowing through the tube and the air around the evaporator 80. A mist-like refrigerant circulates in the tube. As the refrigerant circulating in the tube evaporates, the heat of the air in the vehicle interior is absorbed through the fins. The vaporized refrigerant flows toward the compressor 20 via the third connection passage 306.
 冷却部120は、インバータ122およびモータジェネレータ124(以下の説明においては、これらの電気機器を単に「電気機器」と記載する場合がある)と冷媒との間で熱交換が可能なように設けられる。本実施の形態においては、冷却部120は、たとえば、電気機器の筐体に冷媒が接触するように形成された冷却通路126によって電気機器と冷媒との間で熱交換が可能な構造を有するとして説明するが、冷却部120は、電気機器とヒートパイプ等の熱伝達手段を経由して熱交換器とが接続されている場合に熱交換器と冷媒とが接触可能に設けられる構造を有していてもよい。 Cooling unit 120 is provided so that heat can be exchanged between inverter 122 and motor generator 124 (in the following description, these electric devices may be simply referred to as “electric devices”) and the refrigerant. . In the present embodiment, for example, cooling unit 120 has a structure capable of exchanging heat between the electric device and the refrigerant by cooling passage 126 formed so that the refrigerant contacts the housing of the electric device. As will be described, the cooling unit 120 has a structure in which the heat exchanger and the refrigerant can be brought into contact with each other when the electric device and the heat exchanger are connected via heat transfer means such as a heat pipe. It may be.
 本実施の形態において、冷却部120は、インバータ122を冷却した後にモータジェネレータ124を冷却するように冷却通路126を形成するようにしてもよいし、あるいは、モータジェネレータ124を冷却した後にモータジェネレータ124を冷却するように冷却通路126を形成するようにしてもよいし、あるいは、インバータ122とモータジェネレータ124とを並行して冷却するように冷却通路126を形成するようにしてもよい。好ましくは、冷却部120は、冷却の対象となる電気機器のうちの目標となる温度範囲の上限値が低い方の電気機器を冷却した後に目標となる温度範囲の上限値が高い方の電気機器を冷却するように設けられることが望ましい。 In the present embodiment, cooling unit 120 may form cooling passage 126 so as to cool motor generator 124 after cooling inverter 122, or motor generator 124 after cooling motor generator 124. The cooling passage 126 may be formed so as to cool the inverter, or the cooling passage 126 may be formed so as to cool the inverter 122 and the motor generator 124 in parallel. Preferably, the cooling unit 120 cools the electrical device with the lower upper limit value of the target temperature range among the electrical devices to be cooled, and then the electrical device with the higher upper limit value of the target temperature range. It is desirable to provide cooling.
 冷却部120は、冷却通路126と、エキスパンションバルブ部130とを含む。冷却通路126の両端は、第1接続通路302と第2接続通路304とにそれぞれ接続される。 The cooling unit 120 includes a cooling passage 126 and an expansion valve unit 130. Both ends of the cooling passage 126 are connected to the first connection passage 302 and the second connection passage 304, respectively.
 エキスパンションバルブ部130は、冷却通路126を流通する高温・高圧の液相冷媒を小さな孔から噴射させることにより膨張させて、低温・低圧の霧状冷媒に変化させるための弁である。エキスパンションバルブ部130は、冷却対象の電気機器(インバータ122、モータジェネレータ124)よりも上流の位置に設けられるエキスパンションバルブ本体132と、冷却対象の電気機器よりも下流の位置に設けられる感温部材134と、エキスパンションバルブ本体132と並列に設けられる冷媒通路135と、冷媒通路135を開閉するための電磁弁136とを含む。 The expansion valve unit 130 is a valve for expanding a high-temperature and high-pressure liquid refrigerant flowing through the cooling passage 126 by injecting the refrigerant from a small hole to change into a low-temperature and low-pressure mist refrigerant. The expansion valve unit 130 includes an expansion valve main body 132 provided at a position upstream of the electric device to be cooled (the inverter 122 and the motor generator 124), and a temperature sensitive member 134 provided at a position downstream of the electric device to be cooled. A refrigerant passage 135 provided in parallel with the expansion valve main body 132, and an electromagnetic valve 136 for opening and closing the refrigerant passage 135.
 冷却通路126は、インバータ122およびモータジェネレータ124のそれぞれの筐体と隣接する部分を有する。当該部分において冷却通路126を流れる冷媒とインバータ122およびモータジェネレータ124との間で熱交換が可能となる。 The cooling passage 126 has portions adjacent to the respective housings of the inverter 122 and the motor generator 124. In this portion, heat exchange between the refrigerant flowing through the cooling passage 126 and the inverter 122 and the motor generator 124 becomes possible.
 エキスパンションバルブ本体132は、冷却通路126の入口側、すなわち、インバータ122およびモータジェネレータ124の筐体と隣接する冷却通路126の部分よりも上流側の位置に設けられる。電磁弁136は、ECU400からの制御信号S1によって開閉状態が制御される。 The expansion valve main body 132 is provided on the inlet side of the cooling passage 126, that is, on the upstream side of the portion of the cooling passage 126 adjacent to the casing of the inverter 122 and the motor generator 124. The electromagnetic valve 136 is controlled to be opened and closed by a control signal S1 from the ECU 400.
 電磁弁136および冷媒通路135の通過可能流量は、全開状態である場合にエキスパンションバルブ本体132による冷媒の霧化または圧力変化が起こらないように設定する。 The flowable flow rate of the solenoid valve 136 and the refrigerant passage 135 is set so that the refrigerant does not atomize or change in pressure due to the expansion valve main body 132 when it is in a fully opened state.
 感温部材134は、冷却通路126の出口側、すなわち、インバータ122およびモータジェネレータ124の筐体と隣接する冷却通路126の部分よりも下流側の位置に設けられ、当該位置における冷媒の温度を検出する。 The temperature sensing member 134 is provided at the outlet side of the cooling passage 126, that is, at a position downstream of the cooling passage 126 adjacent to the inverter 122 and the housing of the motor generator 124, and detects the temperature of the refrigerant at the position. To do.
 エキスパンションバルブ部130においては、感温部材134における冷媒の温度に応じてエキスパンションバルブ本体132における冷媒の流量が定まる。この冷媒の流量は、霧状に変化した冷媒の全てが冷却通路126において気化され、感温部材134の温度が設定温度に冷却されるように定められる。冷却通路126は、エバポレータ80のような周囲と熱交換に有利な構造を有するものでもよい。 In the expansion valve unit 130, the flow rate of the refrigerant in the expansion valve main body 132 is determined according to the temperature of the refrigerant in the temperature-sensitive member 134. The flow rate of the refrigerant is determined such that all of the refrigerant that has changed into a mist is vaporized in the cooling passage 126 and the temperature of the temperature-sensitive member 134 is cooled to the set temperature. The cooling passage 126 may have a structure that is advantageous for heat exchange with the surroundings, such as the evaporator 80.
 電磁弁136が閉状態である場合には、エキスパンションバルブ部130においては、たとえば、容器内部にガスが封入された感温部材134における冷媒の温度に応じたガスの圧力の変化を利用してエキスパンションバルブ本体132の弁体を移動させることによって冷媒の流量が定まる。なお、冷媒の温度と弁体の移動量との関係は容器の大きさあるいはガス量等によって予め調整される。 When the solenoid valve 136 is in the closed state, the expansion valve unit 130 uses, for example, a change in gas pressure corresponding to the temperature of the refrigerant in the temperature-sensitive member 134 in which the gas is sealed inside the container. The flow rate of the refrigerant is determined by moving the valve body of the valve body 132. The relationship between the temperature of the refrigerant and the amount of movement of the valve body is adjusted in advance according to the size of the container or the amount of gas.
 ECU400は、冷房が行なわれる場合および冷却部120によって電気機器を冷却する場合にコンプレッサ20を作動させるために制御信号C1を生成してコンプレッサ20に送信したり、開閉を制御するための制御信号S1~S3を生成して電磁弁136,156,305に送信したりする。 The ECU 400 generates a control signal C1 to operate the compressor 20 and transmits it to the compressor 20 when cooling is performed or when the electric device is cooled by the cooling unit 120, or a control signal S1 for controlling opening and closing. ~ S3 is generated and transmitted to the electromagnetic valves 136, 156 and 305.
 以上のような構成を有する実施の形態1に係る冷却装置10においては、ECU400が、以下のように動作する点に特徴を有する。 The cooling device 10 according to the first embodiment having the above-described configuration is characterized in that the ECU 400 operates as follows.
 すなわち、ECU400は、冷房が行なわれる場合には、電磁弁136,156を開状態、電磁弁305を閉状態とするように制御信号S1~S3を出力する。ECU400は、冷房が行なわれない場合には、電磁弁136,156を閉状態、電磁弁305を開状態とするように制御信号S1~S3を出力する。 That is, when cooling is performed, ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are opened and electromagnetic valve 305 is closed. When cooling is not performed, ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are closed and electromagnetic valve 305 is opened.
 なお、コンデンサ40における放熱量が十分に大きく、感温部材134によって検出される冷媒の温度が確実にしきい値以下になる場合には、ECU400は、冷房が行なわれないときでも電磁弁136を開状態としてもよい。また、このときには、冷却対象の電気機器の作動状態に応じて電磁弁136の開閉を制御するようにしてもよい。またコンデンサ40における放熱量が十分に大きく、感温部材134によって検出される冷媒の温度が確実にしきい値以下になる場合には、エキスパンションバルブ部130を設けずに、冷媒が液状のままで冷却通路126を流すようにしてもよい。 Note that if the amount of heat radiation in the capacitor 40 is sufficiently large and the temperature of the refrigerant detected by the temperature-sensitive member 134 is reliably below the threshold value, the ECU 400 opens the electromagnetic valve 136 even when cooling is not performed. It is good also as a state. At this time, the opening / closing of the electromagnetic valve 136 may be controlled in accordance with the operating state of the electric device to be cooled. In addition, when the heat radiation amount in the capacitor 40 is sufficiently large and the temperature of the refrigerant detected by the temperature-sensitive member 134 surely falls below the threshold value, the expansion valve unit 130 is not provided and the refrigerant remains in a liquid state and is cooled. The passage 126 may flow.
 図2は、本実施の形態に係る冷却装置10のECU400の機能ブロック図である。
 図2を参照して、ECU400は、作動判定部402と、流路切換制御部404と、コンプレッサ制御部408とを含む。
FIG. 2 is a functional block diagram of ECU 400 of cooling device 10 according to the present embodiment.
Referring to FIG. 2, ECU 400 includes an operation determination unit 402, a flow path switching control unit 404, and a compressor control unit 408.
 作動判定部402は、冷房が行なわれるか否かを判定する。作動判定部402は、たとえば、冷房を行なうためのスイッチがオンされた場合あるいは自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されている場合であって、かつ、車室内の温度が設定温度よりも高い場合に冷房が行なわれると判定する。なお、作動判定部402は、たとえば、冷房が行なわれると判定された場合に作動判定フラグをオンするようにしてもよい。 The operation determination unit 402 determines whether or not cooling is performed. The operation determination unit 402 is, for example, when a switch for cooling is turned on or when an automatic control mode for automatically adjusting the temperature of the vehicle interior to the set temperature is selected. And it determines with air_conditioning | cooling being performed when the temperature in a vehicle interior is higher than preset temperature. The operation determination unit 402 may turn on the operation determination flag when it is determined that cooling is performed, for example.
 流路切換判定部404は、作動判定部402の判定に基づいて、冷房が行なわれる場合には、電磁弁136,156を開状態、電磁弁305を閉状態とするように制御信号S1~S3を出力する。流路切換判定部404は、作動判定部402の判定に基づいて、冷房が行なわれない場合には、電磁弁136,156を閉状態、電磁弁305を開状態とするように制御信号S1~S3を出力する。 Based on the determination of the operation determination unit 402, the flow path switching determination unit 404 controls the control signals S1 to S3 so that the electromagnetic valves 136 and 156 are opened and the electromagnetic valve 305 is closed when cooling is performed. Is output. Based on the determination of the operation determination unit 402, the flow path switching determination unit 404 controls the control signals S1 to S1 so that the electromagnetic valves 136 and 156 are closed and the electromagnetic valve 305 is opened when cooling is not performed. S3 is output.
 なお、作動判定部402によって室内温度や冷却対象電気機器の作動状態に基づいて冷房や電気機器の冷却の必要度合いを判断し、必要度合いに基づいて電磁弁の開閉度合いを制御するようにしてもよい。 The operation determination unit 402 may determine the necessity of cooling or cooling of the electric device based on the room temperature or the operating state of the electric device to be cooled, and may control the degree of opening and closing of the electromagnetic valve based on the necessity. Good.
 コンプレッサ制御部408は、冷房が行なわれない場合にコンプレッサ20が作動するように制御信号C1を生成して、コンプレッサ20に出力する。あるいは、コンプレッサ制御部408は、コンプレッサ20が作動中であれば作動状態を維持するように制御信号C1を生成してコンプレッサ20に出力する。コンプレッサ制御部408は、たとえば、コンプレッサ20の作動量が予め定められた作動量になるようにコンプレッサ20を制御する。 The compressor control unit 408 generates a control signal C1 so that the compressor 20 operates when cooling is not performed, and outputs the control signal C1 to the compressor 20. Alternatively, the compressor control unit 408 generates the control signal C1 and outputs the control signal C1 to the compressor 20 so as to maintain the operating state if the compressor 20 is in operation. For example, the compressor control unit 408 controls the compressor 20 so that the operation amount of the compressor 20 becomes a predetermined operation amount.
 また、コンプレッサ制御部408は、冷房が行なわれない場合のコンプレッサ20の作動量を冷房が行なわれる場合よりも低下させてもよい。このようにすると、電気機器の過冷却を防止し、適切に電気機器を冷却することができる。 Further, the compressor control unit 408 may lower the operation amount of the compressor 20 when the cooling is not performed than when the cooling is performed. If it does in this way, overcooling of an electric equipment can be prevented and an electric equipment can be cooled appropriately.
 本実施の形態において、作動判定部402と、流路切換制御部404と、コンプレッサ制御部408ととは、いずれもECU400のCPUがメモリに記憶されたプログラムを実行することにより実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアにより実現されるようにしてもよい。なお、このようなプログラムは記憶媒体に記録されて車両に搭載される。 In the present embodiment, operation determination unit 402, flow path switching control unit 404, and compressor control unit 408 are all realized by the CPU of ECU 400 executing a program stored in a memory. However, it may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
 図3は、実施の形態1に係る冷却装置10のECU400で実行されるプログラムの制御を説明するためのフローチャートである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。 FIG. 3 is a flowchart for explaining control of a program executed by ECU 400 of cooling device 10 according to the first embodiment. The processing of this flowchart is called from the main routine and executed at regular time intervals or whenever a predetermined condition is satisfied.
 図3を参照して、ステップS100にて、ECU400は、冷房がオンであるか否か(すなわち、冷房が行なわれているか否か)を判定する。冷房がオンである場合(S100にてYES)、処理はS102に移される。もしそうでない場合(S100にてNO)、処理はステップS103に移される。 Referring to FIG. 3, in step S100, ECU 400 determines whether or not cooling is on (that is, whether or not cooling is being performed). If cooling is on (YES in S100), the process proceeds to S102. If not (NO in S100), the process proceeds to step S103.
 ステップS102にて、ECU400は、電磁弁136,156を開状態、電磁弁305を閉状態とするように制御信号S1~S3を出力する。一方、ステップS103では、ECU400は、電磁弁136,156を閉状態、電磁弁305を開状態とするように制御信号S1~S3を出力する。 In step S102, the ECU 400 outputs control signals S1 to S3 so that the electromagnetic valves 136 and 156 are opened and the electromagnetic valve 305 is closed. On the other hand, in step S103, ECU 400 outputs control signals S1 to S3 so that electromagnetic valves 136 and 156 are closed and electromagnetic valve 305 is opened.
 ステップS102またはステップS103の処理が終了したら、ステップS104に処理が進む。ステップS104ではECU400は、必要に応じてコンプレッサ20の作動を行なわせ、ステップS105において制御はメインルーチンに戻される。 When the process of step S102 or step S103 is completed, the process proceeds to step S104. In step S104, the ECU 400 operates the compressor 20 as necessary, and in step S105, the control is returned to the main routine.
 図4は、実施の形態1に係る冷却装置10の動作を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the operation of the cooling device 10 according to the first embodiment.
 図2、図4を参照して、冷房が行なわれる場合には(S100にてYES)、制御信号S1~S3によって、電磁弁136,156が開状態、電磁弁305が閉状態に制御される。その結果、冷媒は、レシーバ60から通路302→126→304→306を順に経由してコンプレッサ20に向けて流れる。エキスパンションバルブ部130は、冷媒が液の状態で冷却通路126を通過させ、エキスパンションバルブ152によって冷媒が霧化されエバポレータ80で気化する。このため液状態のまま冷媒はインバータ122やモータジェネレータ124を冷却し、その後気化熱をエバポレータにおいて空気から吸収することで冷房が実行される。 Referring to FIGS. 2 and 4, when cooling is performed (YES in S100), solenoid valves 136 and 156 are controlled to be in an open state and solenoid valve 305 is closed in accordance with control signals S1 to S3. . As a result, the refrigerant flows from the receiver 60 toward the compressor 20 through the passages 302 → 126 → 304 → 306 in order. The expansion valve section 130 allows the refrigerant to pass through the cooling passage 126, and the refrigerant is atomized by the expansion valve 152 and vaporized by the evaporator 80. For this reason, the refrigerant cools the inverter 122 and the motor generator 124 in the liquid state, and then the cooling is performed by absorbing the heat of vaporization from the air in the evaporator.
 一方、冷房が行なわれない場合(S100にてNO)、制御信号S1~S3によって、電磁弁136,156が閉状態、電磁弁305が開状態に制御される。その結果、冷媒は、レシーバ60から通路302→126→305→306を順に経由してコンプレッサ20に向けて流れる。冷房を行なう必要がないため通路304に冷媒は流れない。エキスパンションバルブ部130は、冷媒を液状態から霧化させ冷却通路126において気化させる。このため気化熱がインバータ122やモータジェネレータ124等の電気機器から吸収されるので、電気機器の冷却が実行される。 On the other hand, when cooling is not performed (NO in S100), electromagnetic valves 136 and 156 are controlled to be closed and electromagnetic valve 305 is opened by control signals S1 to S3. As a result, the refrigerant flows from the receiver 60 toward the compressor 20 through the passages 302 → 126 → 305 → 306 in order. Since there is no need for cooling, the refrigerant does not flow through the passage 304. The expansion valve unit 130 atomizes the refrigerant from the liquid state and vaporizes it in the cooling passage 126. For this reason, since the heat of vaporization is absorbed from the electric equipment such as the inverter 122 and the motor generator 124, the electric equipment is cooled.
 以上説明したように、実施の形態1に係る冷却装置によると、電気機器を冷却するための冷却部をコンデンサからコンプレッサに流通する冷媒の経路上にエバポレータと直列に設けることによって、冷房が行なわれる場合に液相の冷媒を用いて電気機器を冷却することができる。 As described above, according to the cooling device according to the first embodiment, the cooling is performed by providing the cooling unit for cooling the electric equipment in series with the evaporator on the refrigerant path flowing from the condenser to the compressor. In some cases, the electrical equipment can be cooled using a liquid-phase refrigerant.
 そのため、冷却部を有しない場合の通常の冷房時と同様のコンプレッサの作動量で冷房と電気機器の冷却との両方を実施することができる。すなわち、電気機器を冷却するためにコンプレッサの動力性能を高くする必要がなくなり、コンプレッサを大型化したり電気機器を冷却するための専用のポンプを設けたりすることを回避することができる。 Therefore, both the cooling and the cooling of the electric equipment can be performed with the same amount of operation of the compressor as in the normal cooling when the cooling unit is not provided. In other words, it is not necessary to increase the power performance of the compressor in order to cool the electric device, and it is possible to avoid increasing the size of the compressor or providing a dedicated pump for cooling the electric device.
 さらに、冷房が行なわれない場合には、冷却部において気化するように冷媒を供給して電気機器を冷却することによって必要な冷却性能を確保するとともに、エバポレータにおける通過損失をなくすことができる。 Furthermore, when cooling is not performed, the refrigerant is supplied so as to be vaporized in the cooling section to cool the electric equipment, thereby ensuring necessary cooling performance and eliminating the passage loss in the evaporator.
 したがって、コンプレッサ所要動力および車両への搭載性を悪化させることなく、電気機器を冷却する冷却装置を提供することができる。 Therefore, it is possible to provide a cooling device that cools an electric device without deteriorating the power required for the compressor and the mountability on the vehicle.
 [冷却装置の実施の形態2]
 実施の形態1では、流路の切換によって冷媒の循環経路と冷媒を気化させる場所を変更した。しかし、エキスパンションバルブに電磁弁を用いて、温度に応じた開度の調節とともに冷房の使用の有無に基づく流路の切換を行なえば、冷媒流路をより簡単にでき、部品点数も減らすことができる。
[Second Embodiment of Cooling Device]
In the first embodiment, the refrigerant circulation path and the place where the refrigerant is vaporized are changed by switching the flow path. However, if a solenoid valve is used as the expansion valve and the flow path is switched based on whether or not cooling is used while adjusting the opening according to the temperature, the refrigerant flow path can be simplified and the number of parts can be reduced. it can.
 図5は、実施の形態2における冷却装置10Aの構成を示した図である。
 図5に示される冷却装置10Aは、図2で説明した冷却装置10の構成において、冷却部120、エキスパンションバルブ部150に代えて、それぞれ冷却部120A、エキスパンションバルブ部150Aを含む。それ以外の構成は、上述の第1の実施の形態に係る冷却装置10の構成と同じ構成である。それらについては同じ参照符号が付してある。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
FIG. 5 is a diagram showing a configuration of cooling device 10A in the second embodiment.
5 includes a cooling unit 120A and an expansion valve unit 150A in place of the cooling unit 120 and the expansion valve unit 150, respectively, in the configuration of the cooling device 10 described in FIG. The other configuration is the same as the configuration of the cooling device 10 according to the first embodiment described above. They are given the same reference numerals. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
 冷却部120Aは、冷却通路126と、エキスパンションバルブ部130Aとを含む。エキスパンションバルブ部130Aは、電磁弁132Aと、温度センサ134Aとを含む。 The cooling unit 120A includes a cooling passage 126 and an expansion valve unit 130A. The expansion valve unit 130A includes a solenoid valve 132A and a temperature sensor 134A.
 電磁弁132Aは、冷却通路126の入口側、すなわち、インバータ122およびモータジェネレータ124の筐体と隣接する冷却通路126の部分よりも上流側の位置に設けられる。電磁弁132Aは、ECU400Aによって全開状態から全閉状態までの間で開度が制御される。すなわち、電磁弁132Aは、ECU400Aから受信する制御信号S1Aに基づいて開度を絞ることによって冷媒を減圧したり、全開状態となることによって冷媒を減圧することなく通過させたりする。 The electromagnetic valve 132A is provided on the inlet side of the cooling passage 126, that is, on the upstream side of the portion of the cooling passage 126 adjacent to the casing of the inverter 122 and the motor generator 124. The opening degree of the electromagnetic valve 132A is controlled by the ECU 400A from the fully open state to the fully closed state. That is, the electromagnetic valve 132A depressurizes the refrigerant by reducing the opening degree based on the control signal S1A received from the ECU 400A, or allows the refrigerant to pass through without being depressurized when the valve is fully opened.
 電磁弁132Aは、全開状態である場合に冷媒が電磁弁132Aを流通するときの通路から受ける抵抗が、冷媒が冷却通路126の電磁弁132A以外の部分を流通するときの通路から受ける抵抗と同じになるように形成される。 When the electromagnetic valve 132A is in a fully opened state, the resistance received from the passage when the refrigerant flows through the electromagnetic valve 132A is the same as the resistance received from the passage when the refrigerant flows through a portion other than the electromagnetic valve 132A of the cooling passage 126. It is formed to become.
 具体的には、電磁弁132Aは、電磁弁132Aが全開状態である場合の内部形状が冷却通路126の電磁弁132A以外の部分の内部形状と一致するように形成される。たとえば、冷却通路126の内部形状が円形である場合には、電磁弁132Aが全開状態である場合の内径が第1接続通路302の内径と一致する円形になるように形成される。このようにすると、電磁弁132Aが全開状態である場合の電磁弁132Aの前後での冷媒の圧力の変化を抑制することができる。 Specifically, the electromagnetic valve 132A is formed such that the internal shape when the electromagnetic valve 132A is fully open matches the internal shape of the portion other than the electromagnetic valve 132A of the cooling passage 126. For example, when the internal shape of the cooling passage 126 is a circle, the inner diameter when the electromagnetic valve 132A is in a fully open state is formed to be a circle that matches the inner diameter of the first connection passage 302. If it does in this way, the change of the pressure of the refrigerant before and after electromagnetic valve 132A when electromagnetic valve 132A is in a full open state can be controlled.
 温度センサ134Aは、冷却通路126の出口側、すなわち、インバータ122およびモータジェネレータ124の筐体と隣接する冷却通路126の部分よりも下流側の位置に設けられ、当該位置における冷媒の温度を検出する。温度センサ134Aは、検出した冷媒の温度T1を示す信号をECU400Aに送信する。 Temperature sensor 134A is provided at the outlet side of cooling passage 126, that is, at a position downstream of the portion of cooling passage 126 adjacent to the casing of inverter 122 and motor generator 124, and detects the temperature of the refrigerant at that position. . The temperature sensor 134A transmits a signal indicating the detected refrigerant temperature T1 to the ECU 400A.
 エキスパンションバルブ部150Aは、エバポレータ80よりも上流側の第2接続通路304に設けられる電磁弁152Aと、エバポレータ80の下流側の第3接続通路306に設けられ、第3接続通路306の冷媒の温度を検出するための温度センサ154Aとを含む。 The expansion valve portion 150 </ b> A is provided in the electromagnetic valve 152 </ b> A provided in the second connection passage 304 upstream of the evaporator 80 and the third connection passage 306 downstream of the evaporator 80, and the temperature of the refrigerant in the third connection passage 306. And a temperature sensor 154A for detecting.
 温度センサ154Aは、検出した冷媒の温度T2を示す信号をECU400Aに送信する。ECU400Aは、温度センサ154Aから受信した冷媒の温度T2に基づいて冷媒の流量(減圧量)を決定する。ECU400Aは、決定された冷媒の流量が実現されるように電磁弁152Aの開度を制御する。 The temperature sensor 154A transmits a signal indicating the detected refrigerant temperature T2 to the ECU 400A. ECU 400A determines the flow rate (decompression amount) of the refrigerant based on refrigerant temperature T2 received from temperature sensor 154A. ECU 400A controls the opening degree of electromagnetic valve 152A so that the determined refrigerant flow rate is realized.
 電磁弁152Aは、ECU400Aによって全開状態から全閉状態までの間で開度が制御される。すなわち、電磁弁152Aは、ECU400Aから受信する制御信号S2Aに基づいて開度を絞ることによって冷媒を減圧したり、全閉状態となることによって通路304の冷媒を通過を遮断させたりする。 The opening degree of the electromagnetic valve 152A is controlled by the ECU 400A from the fully open state to the fully closed state. That is, the electromagnetic valve 152A reduces the refrigerant pressure by reducing the opening degree based on the control signal S2A received from the ECU 400A, or blocks the passage of the refrigerant in the passage 304 by being fully closed.
 ECU400Aは、冷房が行なわれる場合および冷却部120Aによって電気機器を冷却する場合にコンプレッサ20を作動させるために制御信号C1を生成してコンプレッサ20に送信したり、温度センサ134Aから受信する冷媒の温度T1に基づいて電磁弁132Aにおける流量を決定し、決定された流量となるように電磁弁132Aを作動させるための制御信号S1を生成して電磁弁132Aに送信したりする。 The ECU 400A generates the control signal C1 to operate the compressor 20 and transmits it to the compressor 20 when the cooling is performed and when the electric device is cooled by the cooling unit 120A, or the temperature of the refrigerant received from the temperature sensor 134A. The flow rate in the electromagnetic valve 132A is determined based on T1, and a control signal S1 for operating the electromagnetic valve 132A to generate the determined flow rate is generated and transmitted to the electromagnetic valve 132A.
 図6は、実施の形態2に係る冷却装置10AのECU400Aの機能ブロック図である。 FIG. 6 is a functional block diagram of ECU 400A of cooling device 10A according to the second embodiment.
 図6を参照して、作動判定部402は、冷房が行なわれるか否かを判定する。作動判定部402は、たとえば、冷房を行なうためのスイッチがオンされた場合あるいは自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されている場合であって、かつ、車室内の温度が設定温度よりも高い場合に冷房が行なわれると判定する。なお、作動判定部402は、たとえば、冷房が行なわれると判定された場合に作動判定フラグをオンするようにしてもよい。 Referring to FIG. 6, operation determination unit 402 determines whether or not cooling is performed. The operation determination unit 402 is, for example, when a switch for cooling is turned on or when an automatic control mode for automatically adjusting the temperature of the vehicle interior to the set temperature is selected. And it determines with air_conditioning | cooling being performed when the temperature in a vehicle interior is higher than preset temperature. The operation determination unit 402 may turn on the operation determination flag when it is determined that cooling is performed, for example.
 バイパス開閉制御部500は、バイパス通路303の開閉を制御するために電磁弁305に制御信号S3を出力する。作動判定部402において冷房が行なわれると判定された場合には、バイパス開閉制御部500は、電磁弁305を閉状態に制御する。一方、バイパス開閉制御部500は、作動判定部402において冷房が行なわれない(暖房実行時も含む)と判定された場合には、電磁弁305を開状態に制御する。 The bypass opening / closing control unit 500 outputs a control signal S3 to the electromagnetic valve 305 in order to control opening / closing of the bypass passage 303. When the operation determination unit 402 determines that cooling is to be performed, the bypass opening / closing control unit 500 controls the electromagnetic valve 305 to be closed. On the other hand, bypass opening / closing control unit 500 controls electromagnetic valve 305 to be in an open state when operation determination unit 402 determines that cooling is not performed (including when heating is performed).
 第3減圧制御部502は、作動判定部402において冷房が行なわれると判定された場合に、第2接続通路304を流通する液相の冷媒をエバポレータ80において完全に気化させるために霧状冷媒になるように冷媒を減圧する。第3減圧制御部502は、温度センサ154Aによって検出された冷媒の温度に基づいて電磁弁152Aにおける冷媒の流量(減圧量)を決定し、決定された流量で冷媒が流通するように電磁弁152Aの開度を調整する。なお、第3減圧制御部502は、たとえば、作動判定フラグがオンである場合に第2接続通路304を流通する液相の冷媒を霧状冷媒になるように冷媒を減圧するように電磁弁152Aを制御するようにしてもよい。 The third decompression control unit 502 converts the liquid-phase refrigerant flowing through the second connection passage 304 into a mist refrigerant so that the evaporator 80 completely vaporizes when it is determined that the cooling is performed in the operation determination unit 402. The refrigerant is depressurized so that The third pressure reduction control unit 502 determines the flow rate (pressure reduction amount) of the refrigerant in the electromagnetic valve 152A based on the temperature of the refrigerant detected by the temperature sensor 154A, and the electromagnetic valve 152A so that the refrigerant flows at the determined flow rate. Adjust the opening. For example, when the operation determination flag is on, the third pressure reduction control unit 502 is configured to reduce the refrigerant so that the liquid-phase refrigerant flowing through the second connection passage 304 becomes a mist refrigerant. May be controlled.
 液温判定部504は、温度センサ134Aによって検出された冷媒の液温がしきい値よりも大きいか否かを判定する。しきい値は、冷媒の液温が電気機器を冷却するための温度として適切な範囲であるか否かを判定するためのしきい値である。液温判定部504は、たとえば、温度センサ134Aによって検出された冷媒の液温がしきい値よりも大きい場合に液温判定フラグをオンするようにしてもよい。 The liquid temperature determination unit 504 determines whether or not the liquid temperature of the refrigerant detected by the temperature sensor 134A is greater than a threshold value. The threshold value is a threshold value for determining whether or not the liquid temperature of the refrigerant is in an appropriate range as a temperature for cooling the electric device. For example, the liquid temperature determination unit 504 may turn on the liquid temperature determination flag when the liquid temperature of the refrigerant detected by the temperature sensor 134A is higher than a threshold value.
 第1減圧制御部406は、冷房が行なわれる場合であって、かつ、冷媒の液温がしきい値よりも大きい場合に液温がしきい値以下になるように冷媒を減圧する。たとえば、第1減圧制御部406は、電磁弁132Aの開度を予め定められた開度だけ閉じるように制御することによって電磁弁132Aの下流側の冷媒を減圧するようにしてもよい。あるいは、第1減圧制御部406は、冷媒の現在の液温としきい値との差に応じて決定される開度だけ閉じるように電磁弁132Aを制御するようにしてもよい。なお、第1減圧制御部406は、たとえば、作動判定フラグがオンされており、液温判定フラグがオンされている場合に冷媒を減圧するようにしてもよい。また、冷房が行なわれる場合、好ましくは、減圧後の冷媒が液相冷媒を維持した状態で冷却部120Aにおける電気機器の冷却に用いられることが望ましい。 The first depressurization control unit 406 depressurizes the refrigerant so that the liquid temperature becomes equal to or lower than the threshold when cooling is performed and the liquid temperature of the refrigerant is higher than the threshold. For example, the first decompression control unit 406 may decompress the refrigerant on the downstream side of the electromagnetic valve 132A by controlling the opening of the electromagnetic valve 132A to be closed by a predetermined opening. Alternatively, the first depressurization control unit 406 may control the electromagnetic valve 132A so as to close only by the opening degree determined according to the difference between the current liquid temperature of the refrigerant and the threshold value. Note that the first decompression control unit 406 may decompress the refrigerant when, for example, the operation determination flag is turned on and the liquid temperature determination flag is turned on. When cooling is performed, it is preferable that the refrigerant after decompression is used for cooling the electric device in the cooling unit 120A in a state where the refrigerant is maintained as a liquid phase refrigerant.
 第2減圧制御部410は、冷房が行なわれない場合に液相の冷媒を減圧するように電磁弁132Aを制御する。第2減圧制御部410は、温度センサ134Aによって検出された冷媒の温度に基づいて電磁弁132Aにおける冷媒の流量(減圧量)を決定し、決定された流量で冷媒が流通するように電磁弁132Aの開度を調整する。第2減圧制御部410は、冷却部120Aにおいて完全に気化されるように霧状冷媒になるように冷媒を減圧する。なお、第2減圧制御部410は、たとえば、作動判定フラグがオフされている場合に冷媒を減圧するように電磁弁132Aを制御してもよい。 The second depressurization control unit 410 controls the electromagnetic valve 132A so as to depressurize the liquid-phase refrigerant when cooling is not performed. The second pressure reduction control unit 410 determines the flow rate (pressure reduction amount) of the refrigerant in the electromagnetic valve 132A based on the temperature of the refrigerant detected by the temperature sensor 134A, and the electromagnetic valve 132A so that the refrigerant flows at the determined flow rate. Adjust the opening. Second decompression control unit 410 depressurizes the refrigerant so that it becomes a mist refrigerant so that it is completely vaporized in cooling unit 120A. Note that the second decompression control unit 410 may control the electromagnetic valve 132A so as to decompress the refrigerant when the operation determination flag is turned off, for example.
 コンプレッサ制御部408は、冷房が行なわれない場合にコンプレッサ20が作動するように制御信号C1を生成して、コンプレッサ20に出力する。あるいは、コンプレッサ制御部408は、コンプレッサ20が作動中であれば作動状態を維持するように制御信号C1を生成してコンプレッサ20に出力する。コンプレッサ制御部408は、たとえば、コンプレッサ20の作動量が予め定められた作動量になるようにコンプレッサ20を制御する。なお、コンプレッサ制御部408は、たとえば、作動判定フラグがオフされている場合にコンプレッサ20を作動させるようにしてもよい。 The compressor control unit 408 generates a control signal C1 so that the compressor 20 operates when cooling is not performed, and outputs the control signal C1 to the compressor 20. Alternatively, the compressor control unit 408 generates the control signal C1 and outputs the control signal C1 to the compressor 20 so as to maintain the operating state if the compressor 20 is in operation. For example, the compressor control unit 408 controls the compressor 20 so that the operation amount of the compressor 20 becomes a predetermined operation amount. For example, the compressor control unit 408 may operate the compressor 20 when the operation determination flag is turned off.
 また、コンプレッサ制御部408は、冷房が行なわれない場合のコンプレッサ20の作動量を冷房が行なわれる場合よりも低下させてもよい。このようにすると、電気機器の過冷却を防止し、適切に電気機器を冷却することができる。 Further, the compressor control unit 408 may lower the operation amount of the compressor 20 when the cooling is not performed than when the cooling is performed. If it does in this way, overcooling of an electric equipment can be prevented and an electric equipment can be cooled appropriately.
 全開制御部512は、冷房が行なわれる場合であって、かつ、冷媒の液温がしきい値以下である場合に電磁弁132Aの開度が全開になるように電磁弁132Aを制御する。全開制御部512は、たとえば、作動判定フラグがオンされており、かつ、液温判定フラグがオフされている場合に電磁弁132Aの開度が全開になるように電磁弁132Aを制御するようにしてもよい。 The full opening control unit 512 controls the electromagnetic valve 132A so that the opening degree of the electromagnetic valve 132A is fully opened when cooling is performed and the liquid temperature of the refrigerant is equal to or lower than the threshold value. For example, the full opening control unit 512 controls the electromagnetic valve 132A so that the opening degree of the electromagnetic valve 132A is fully opened when the operation determination flag is turned on and the liquid temperature determination flag is turned off. May be.
 なお、好ましくは、電磁弁132Aの開度を全開にするための冷媒の液温のしきい値は、第1減圧制御を実行するためのしきい値より小さくすることが望ましい。このようにすると、電磁弁132Aの制御ハンチングの発生を抑制することができる。 Note that, preferably, the threshold value of the coolant temperature for fully opening the opening of the electromagnetic valve 132A is smaller than the threshold value for executing the first pressure reduction control. If it does in this way, generation | occurrence | production of the control hunting of electromagnetic valve 132A can be suppressed.
 図7は、実施の形態2に係る冷却装置10AのECU400Aで実行されるプログラムの制御について説明するためのフローチャートである。 FIG. 7 is a flowchart for explaining control of a program executed by ECU 400A of cooling device 10A according to the second embodiment.
 図7を参照して、ステップS200において、冷房がオンであるかオフであるかが判断される。冷房がオンであると判定された場合(S200にてYES)、ステップS201にて、ECU400Aは電磁弁305を閉じてバイパス通路303を閉鎖する。そしてECU400は、第3減圧制御を実行する。すなわち、ECU400Aは、第2接続通路304を流通する液相の冷媒をエバポレータ80において完全に気化させるために冷媒を減圧するように電磁弁152Aの開度を制御して、処理をステップS203に進める。 Referring to FIG. 7, in step S200, it is determined whether cooling is on or off. If it is determined that the cooling is on (YES in S200), ECU 400A closes electromagnetic valve 305 and closes bypass passage 303 in step S201. Then, ECU 400 executes the third pressure reduction control. That is, ECU 400A controls the opening degree of electromagnetic valve 152A so as to decompress the refrigerant in order to completely vaporize the liquid refrigerant flowing through second connection passage 304 in evaporator 80, and the process proceeds to step S203. .
 冷却通路126の出口側の冷媒の液温が目標値以下であると判定した場合(S203にてNO)、ステップS205にて、ECU400は、電磁弁132Aの開度が全開になるように電磁弁132Aを制御する。 If it is determined that the coolant temperature at the outlet side of cooling passage 126 is equal to or lower than the target value (NO in S203), ECU 400 causes solenoid valve 132A to open the solenoid valve 132A so that the opening degree is fully opened in step S205. 132A is controlled.
 冷却通路126の出口側の冷媒の液温が目標値より高いと判定された場合(S203にてYES)、ステップS204にて、第1減圧制御が行なわれる。すなわち、ECU400Aは、液温がしきい値以下になるまで冷媒を減圧するように電磁弁132Aを制御する。 If it is determined that the liquid temperature of the refrigerant on the outlet side of cooling passage 126 is higher than the target value (YES in S203), the first pressure reduction control is performed in step S204. That is, ECU 400A controls electromagnetic valve 132A to decompress the refrigerant until the liquid temperature becomes equal to or lower than the threshold value.
 一方、冷房がオフであると判定された場合(S200にてNO)、ステップS206にて、ECU400Aは電磁弁305を開いてバイパス通路303を通過可能状態とすると共に、電磁弁152Aを全閉状態に制御する。これにより、エバポレータ80には冷媒が流れなくなる。 On the other hand, when it is determined that the cooling is off (NO in S200), ECU 400A opens electromagnetic valve 305 to allow passage through bypass passage 303 and electromagnetic valve 152A is fully closed in step S206. To control. Thereby, the refrigerant does not flow to the evaporator 80.
 そしてステップS207においてコンプレッサ20が作動され、ステップS208にて、ECU400は、第2減圧制御を実行する。すなわち、液相の冷媒を減圧するように電磁弁132Aが制御される。冷却部120Aには減圧によって温度が低下した冷媒が冷却通路126を流通するためインバータ122およびモータジェネレータ124が冷却される。 Then, in step S207, the compressor 20 is operated, and in step S208, the ECU 400 executes the second pressure reduction control. That is, the electromagnetic valve 132A is controlled so as to depressurize the liquid-phase refrigerant. In the cooling unit 120A, the refrigerant whose temperature has decreased due to the reduced pressure flows through the cooling passage 126, so that the inverter 122 and the motor generator 124 are cooled.
 以上のような構造およびフローチャートに基づく実施の形態2に係る冷却装置10Aの動作について説明する。 The operation of the cooling device 10A according to the second embodiment based on the above-described structure and flowchart will be described.
 たとえば、冷房が行なわれる場合(S200にてYES)、第3減圧制御が実行されるため、電磁弁152Aを用いて第2接続通路304を流通する液相の冷媒をエバポレータ80において完全に気化させるために霧状冷媒になるように冷媒が減圧される(S202)。 For example, when cooling is performed (YES in S200), since the third pressure reduction control is executed, liquid-phase refrigerant flowing through second connection passage 304 is completely vaporized in evaporator 80 using electromagnetic valve 152A. Therefore, the refrigerant is depressurized to become a mist refrigerant (S202).
 第2接続通路304を流通する冷媒の液温が目標値よりも高い場合(S203にてYES)、第1減圧制御が実行される(S204)。第1減圧制御の実行によって冷媒の液温が目標値以下になるまで冷媒が減圧される。冷媒の液温が目標値以下になる場合に(S203にてNO)、電磁弁132Aの開度が全開になることによってコンデンサ40からレシーバ60を経由して流通する液相の冷媒が冷却部120に供給されることとなる。 When the liquid temperature of the refrigerant flowing through the second connection passage 304 is higher than the target value (YES in S203), the first pressure reduction control is executed (S204). By performing the first pressure reduction control, the refrigerant is depressurized until the liquid temperature of the refrigerant becomes equal to or lower than the target value. When the liquid temperature of the refrigerant is equal to or lower than the target value (NO in S203), the liquid-phase refrigerant flowing from the capacitor 40 via the receiver 60 is cooled by the cooling unit 120 when the opening of the electromagnetic valve 132A is fully opened. Will be supplied.
 冷却部120に供給された液相の冷媒はインバータ122およびモータジェネレータ124とを冷却した後に電磁弁152Aを通過する。電磁弁152Aを通過した冷媒は第3減圧制御の実行によって減圧されることによって霧状冷媒に変化してエバポレータ80に供給される。エバポレータ80において霧状冷媒は、蒸発するとともに車両の室内の空気の熱を吸熱する。そのため、蒸発した気相の冷媒が第3接続通路306を流れてコンプレッサ20に達する。コンプレッサ20において圧縮された気相の冷媒は、コンデンサ40において放熱されることによって再び液化する。このようにして冷媒が空調用冷凍サイクルシステム12Aを循環する。 The liquid-phase refrigerant supplied to the cooling unit 120 cools the inverter 122 and the motor generator 124 and then passes through the electromagnetic valve 152A. The refrigerant that has passed through the electromagnetic valve 152 </ b> A is reduced in pressure by the execution of the third pressure reduction control, thereby changing to a mist-like refrigerant and supplied to the evaporator 80. In the evaporator 80, the mist refrigerant evaporates and absorbs the heat of the air in the vehicle interior. Therefore, the vapor-phase refrigerant that has evaporated flows through the third connection passage 306 and reaches the compressor 20. The gas-phase refrigerant compressed in the compressor 20 is liquefied again by releasing heat in the capacitor 40. In this way, the refrigerant circulates through the air conditioning refrigeration cycle system 12A.
 一方、冷房が行なわれない場合(S200にてNO)、ECU400は、コンプレッサ20を作動させた後に(S207)、第2減圧制御を実行する(S208)。すなわち、液相の冷媒が減圧されるように電磁弁132Aが制御される。冷却部120Aにおいて、減圧された冷媒によってインバータ122およびモータジェネレータ124が冷却される。冷媒は、冷却部120Aにおいて完全に気化するとともに電気機器の熱を吸熱することによって電気機器が冷却される。冷却部120Aにおいて気化された気相の冷媒は、バイパス通路303を経由してコンプレッサ20に戻される。 On the other hand, when cooling is not performed (NO in S200), ECU 400 operates compressor 20 (S207), and then executes the second pressure reduction control (S208). That is, the electromagnetic valve 132A is controlled so that the liquid-phase refrigerant is decompressed. In cooling unit 120A, inverter 122 and motor generator 124 are cooled by the decompressed refrigerant. The refrigerant is completely vaporized in the cooling unit 120 </ b> A, and the electric device is cooled by absorbing the heat of the electric device. The gas-phase refrigerant evaporated in the cooling unit 120 </ b> A is returned to the compressor 20 via the bypass passage 303.
 以上のようにして、実施の形態2に係る冷却装置によると、上述した第1の実施の形態に係る冷却装置と同様の作用効果を奏する。また、流路が簡単になり、部品点数も少なくなる。 As described above, according to the cooling device according to the second embodiment, the same operational effects as the cooling device according to the first embodiment described above can be obtained. Further, the flow path is simplified and the number of parts is reduced.
 最後に再び図面を参照して、実施の形態1、2の冷却装置について総括する。図2,5に示されるように、車両に搭載された電気機器を冷却するための冷却装置10,10Aは、冷媒を循環させるためのコンプレッサ20と、冷媒を凝縮するためのコンデンサ40と、冷媒を用いて車両の室内の冷房を行なうためのエバポレータ80と、コンデンサからコンプレッサに向けて流れる冷媒の経路上にエバポレータと直列に設けられ、冷媒を用いて電気機器を冷却するための冷却部120,120Aと、冷却部を通過した冷媒をエバポレータを経由せずにコンプレッサに向けて流すためのバイパス通路303と、バイパス通路の冷媒の通過量を変化させるための電磁弁305とを備える。 Finally, referring to the drawings again, the cooling devices of the first and second embodiments will be summarized. As shown in FIGS. 2 and 5, the cooling devices 10 and 10 </ b> A for cooling the electrical equipment mounted on the vehicle include a compressor 20 for circulating the refrigerant, a condenser 40 for condensing the refrigerant, and a refrigerant. An evaporator 80 for cooling the interior of the vehicle using a cooling unit 120, a cooling unit 120 provided in series with the evaporator on the path of the refrigerant flowing from the condenser toward the compressor, and for cooling the electrical equipment using the refrigerant, 120A, a bypass passage 303 for flowing the refrigerant that has passed through the cooling unit toward the compressor without passing through the evaporator, and an electromagnetic valve 305 for changing the amount of refrigerant passing through the bypass passage.
 好ましくは、冷却装置10,10Aは、冷媒の経路上において冷却部の入り口部分に設けられ、冷媒を気化させるために液状から霧状に変化させる霧化状態と冷媒を液状のまま通過させる通過状態とを切替可能な第1のエキスパンションバルブ部130,130Aと、冷媒の経路上においてエバポレータ80の入り口部分に設けられ、冷媒を気化させるために液状から霧状に変化させるための第2のエキスパンションバルブ部150,150Aとをさらに備える。 Preferably, the cooling devices 10 and 10A are provided at an entrance portion of the cooling unit on the refrigerant path, and an atomized state in which the refrigerant is changed from a liquid state to a mist state in order to vaporize the refrigerant and a through state in which the refrigerant is passed in a liquid state. Expansion valves 130, 130A that can be switched between and a second expansion valve that is provided at the entrance of the evaporator 80 on the refrigerant path and changes from liquid to mist to evaporate the refrigerant. Part 150 and 150A.
 より好ましくは、電磁弁305の開閉および第1のエキスパンションバルブ部130,130Aの切替を制御する冷却制御用のECU400,400Aをさらに備え、ECU400,400Aは、エバポレータ80による冷房を行なう場合には、電磁弁305を閉状態とし、かつ第1のエキスパンションバルブ部130,130Aを通過状態とし、エバポレータ80による冷房を行なわない場合には、電磁弁305を開状態とし、かつ第1のエキスパンションバルブ部130,130Aを霧化状態とする。 More preferably, it further includes ECUs 400 and 400A for cooling control for controlling opening / closing of the electromagnetic valve 305 and switching of the first expansion valve units 130 and 130A. When the ECUs 400 and 400A perform cooling by the evaporator 80, When the electromagnetic valve 305 is in the closed state and the first expansion valve portions 130 and 130A are in the passing state and cooling is not performed by the evaporator 80, the electromagnetic valve 305 is in the open state and the first expansion valve portion 130 is used. , 130A is in an atomized state.
 図2に示されるように、より好ましくは、冷却装置10は、電磁弁305の開閉および第1のエキスパンションバルブ部130の切替を制御する冷却制御用のECU400をさらに備える。第1のエキスパンションバルブ部130は、冷媒を霧化させるエキスパンションバルブ132と、エキスパンションバルブ132と並列に設けられる冷媒通路135と、ECU400の指示に応答して冷媒通路の開閉を制御する電磁弁136とを含む。 As shown in FIG. 2, more preferably, the cooling device 10 further includes a cooling control ECU 400 that controls opening and closing of the electromagnetic valve 305 and switching of the first expansion valve unit 130. The first expansion valve unit 130 includes an expansion valve 132 that atomizes the refrigerant, a refrigerant passage 135 provided in parallel with the expansion valve 132, and an electromagnetic valve 136 that controls opening and closing of the refrigerant passage in response to an instruction from the ECU 400. including.
 また、図5に示されるように、より好ましくは、電磁弁305の開閉および第1のエキスパンションバルブ部130Aの切替を制御する冷却制御用のECU400Aをさらに備え、第1のエキスパンションバルブ部130Aは、ECU400Aの指示に応じて通過状態と霧化状態に開度を変更可能に構成された電磁弁132Aを含む。 Further, as shown in FIG. 5, more preferably, it further includes an ECU 400A for cooling control that controls opening / closing of the electromagnetic valve 305 and switching of the first expansion valve portion 130A, and the first expansion valve portion 130A includes: It includes an electromagnetic valve 132A configured to be able to change the opening degree between a passing state and an atomizing state in accordance with an instruction from ECU 400A.
 また、図2、図5に示されるように、より好ましくは、冷却装置10,10Aは、電磁弁305の開閉および第1および第2のエキスパンションバルブ部130,150,130A,150Aの切替を制御する冷却制御用のECU400,400Aをさらに備える。第2のエキスパンションバルブ部150,150Aは、冷媒を気化させるために液状から霧状に変化させる霧化状態と冷媒を通過させない閉状態とを切替可能に構成される。ECU400,400Aは、エバポレータ80による冷房を行なう場合には、第2のエキスパンションバルブ部150,150Aを霧化状態にし、エバポレータ80による冷房を行なわない場合には第2のエキスパンションバルブ部150,150Aを閉状態とする。 2 and 5, more preferably, the cooling devices 10 and 10A control the opening and closing of the electromagnetic valve 305 and the switching of the first and second expansion valve portions 130, 150, 130A, and 150A. ECU 400, 400A for cooling control is further provided. The second expansion valve portions 150 and 150A are configured to be switchable between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a closed state in which the refrigerant is not allowed to pass through. The ECUs 400 and 400A make the second expansion valve portions 150 and 150A atomized when cooling by the evaporator 80, and the second expansion valve portions 150 and 150A when not cooling by the evaporator 80. Closed.
 図2に示されるように、さらに好ましくは、第2のエキスパンションバルブ部150は、冷媒を霧化させるエキスパンションバルブ152と、エキスパンションバルブと直列に冷媒の通路304上に設けられ、ECU400の指示に応じて開閉する電磁弁156とを含む。 As shown in FIG. 2, more preferably, the second expansion valve unit 150 is provided on the refrigerant passage 304 in series with the expansion valve 152 for atomizing the refrigerant and the expansion valve, and in accordance with an instruction from the ECU 400. And an electromagnetic valve 156 that opens and closes.
 図5に示されるように、さらに好ましくは、第2のエキスパンションバルブ部150Aは、ECU400Aの指示に応じて閉状態と霧化状態に開度を変更可能に構成された電磁弁152Aを含む。 As shown in FIG. 5, more preferably, the second expansion valve portion 150A includes an electromagnetic valve 152A configured to be able to change the opening degree between a closed state and an atomized state in accordance with an instruction from the ECU 400A.
 冷却対象である電気機器は、図1の車両601を推進させるモータジェネレータ124を駆動する駆動装置であるインバータ122を含む。 The electric device to be cooled includes an inverter 122 that is a drive device that drives a motor generator 124 that propels the vehicle 601 in FIG.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2FR,2FL 前輪、2RR,2RL 後輪、10,10A 冷却装置、12,12A 空調用冷凍サイクルシステム、20 コンプレッサ、40 コンデンサ、60 レシーバ、80 エバポレータ、120,120A 冷却部、122 インバータ、124,MG1,MG2 モータジェネレータ、126 冷却通路、130,130A,150,150A エキスパンションバルブ部、132,152 エキスパンションバルブ本体、132A,136,152A,156,305,305 電磁弁、134,154 感温部材、134A,154A 温度センサ、135 冷媒通路、140 逆止弁、302 第1接続通路、303 バイパス通路、304 第2接続通路、306 第3接続通路、308 第4接続通路、402 作動判定部、404 流路切換制御部、406 第1減圧制御部、408 コンプレッサ制御部、410 第2減圧制御部、500 バイパス開閉制御部、502 第3減圧制御部、504 液温判定部、512 全開制御部、601 車両、604 エンジン、605,605,606,606,605,606 ギヤ、608 車速センサ、609 アクセルセンサ、610 昇圧ユニット、612 充電用インバータ、616 ソケット、660 制御装置、670 電圧センサ、700 外部充電装置、702 充電ケーブル、704 プラグ、B1 バッテリ、DG デファレンシャルギヤ、PG プラネタリギヤ、SR1,SR2 システムメインリレー。 2FR, 2FL front wheel, 2RR, 2RL rear wheel, 10, 10A cooling device, 12, 12A air-conditioning refrigeration cycle system, 20 compressor, 40 condenser, 60 receiver, 80 evaporator, 120, 120A cooling unit, 122 inverter, 124, MG1 , MG2 motor generator, 126 cooling passage, 130, 130A, 150, 150A expansion valve section, 132, 152 expansion valve body, 132A, 136, 152A, 156, 305, 305 solenoid valve, 134, 154 temperature sensitive member, 134A, 154A temperature sensor, 135 refrigerant passage, 140 check valve, 302 first connection passage, 303 bypass passage, 304 second connection passage, 306 third connection passage, 308 fourth connection passage, 40 Operation determination unit, 404, flow path switching control unit, 406, first pressure reduction control unit, 408 compressor control unit, 410, second pressure reduction control unit, 500 bypass opening / closing control unit, 502, third pressure reduction control unit, 504 liquid temperature determination unit, 512 Fully open control unit, 601 vehicle, 604 engine, 605, 605, 606, 606, 605, 606 gear, 608 vehicle speed sensor, 609 accelerator sensor, 610 boosting unit, 612 charging inverter, 616 socket, 660 control device, 670 voltage sensor , 700 External charging device, 702 charging cable, 704 plug, B1 battery, DG differential gear, PG planetary gear, SR1, SR2 system main relay.

Claims (10)

  1.  車両に搭載された電気機器を冷却するための冷却装置(10)であって、
     冷媒を循環させるためのコンプレッサ(20)と、
     前記冷媒を凝縮するためのコンデンサ(40)と、
     前記冷媒を用いて前記車両の室内の冷房を行なうためのエバポレータ(80)と、
     前記コンデンサから前記コンプレッサに向けて流れる前記冷媒の経路上に前記エバポレータと直列に設けられ、前記冷媒を用いて前記電気機器を冷却するための冷却部(120,120A)と、
     前記冷却部を通過した前記冷媒を前記エバポレータを経由せずに前記コンプレッサに向けて流すためのバイパス通路(303)と、
     前記バイパス通路の前記冷媒の通過量を変化させるための弁(305)とを備える、冷却装置。
    A cooling device (10) for cooling an electric device mounted on a vehicle,
    A compressor (20) for circulating the refrigerant;
    A condenser (40) for condensing the refrigerant;
    An evaporator (80) for cooling the interior of the vehicle using the refrigerant;
    A cooling unit (120, 120A) provided in series with the evaporator on a path of the refrigerant flowing from the condenser toward the compressor, and for cooling the electric device using the refrigerant;
    A bypass passage (303) for allowing the refrigerant that has passed through the cooling section to flow toward the compressor without passing through the evaporator;
    And a valve (305) for changing the amount of the refrigerant passing through the bypass passage.
  2.  前記冷媒の経路上において前記冷却部の入り口部分に設けられ、前記冷媒を気化させるために液状から霧状に変化させる霧化状態と前記冷媒を液状のまま通過させる通過状態とを切替可能な第1のエキスパンションバルブ部(130)と、
     前記冷媒の経路上において前記エバポレータの入り口部分に設けられ、前記冷媒を気化させるために液状から霧状に変化させるための第2のエキスパンションバルブ部(150)とをさらに備える、請求の範囲第1項に記載の冷却装置。
    Provided at an inlet portion of the cooling section on the refrigerant path, and is capable of switching between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a passage state in which the refrigerant is passed in a liquid state. 1 expansion valve section (130);
    A first expansion valve portion (150) provided at an entrance portion of the evaporator on the refrigerant path and configured to change from a liquid state to a mist state in order to vaporize the refrigerant. The cooling device according to item.
  3.  前記弁の開閉および前記第1のエキスパンションバルブ部の切替を制御する制御部(400)をさらに備え、
     前記制御部は、前記エバポレータによる冷房を行なう場合には、前記弁を閉状態とし、かつ前記第1のエキスパンションバルブ部を通過状態とし、前記エバポレータによる冷房を行なわない場合には、前記弁を開状態とし、かつ前記第1のエキスパンションバルブ部を霧化状態とする、請求の範囲第2項に記載の冷却装置。
    A control unit (400) for controlling opening and closing of the valve and switching of the first expansion valve unit;
    When the cooling by the evaporator is performed, the control unit closes the valve and passes through the first expansion valve unit. When the cooling is not performed by the evaporator, the control unit opens the valve. The cooling device according to claim 2, wherein the cooling device is in a state and the first expansion valve portion is in an atomized state.
  4.  前記弁の開閉および前記第1のエキスパンションバルブ部の切替を制御する制御部(400)をさらに備え、
     前記第1のエキスパンションバルブ部は、
     前記冷媒を霧化させるエキスパンションバルブ(132)と、
     前記エキスパンションバルブと並列に設けられる冷媒通路(135)と、
     前記制御部の指示に応答して前記冷媒通路の開閉を制御する電磁弁(136)とを含む、請求の範囲第2項に記載の冷却装置。
    A control unit (400) for controlling opening and closing of the valve and switching of the first expansion valve unit;
    The first expansion valve portion is
    An expansion valve (132) for atomizing the refrigerant;
    A refrigerant passage (135) provided in parallel with the expansion valve;
    The cooling device according to claim 2, further comprising: an electromagnetic valve (136) that controls opening and closing of the refrigerant passage in response to an instruction from the control unit.
  5.  前記弁の開閉および前記第1のエキスパンションバルブ部の切替を制御する制御部(400A)をさらに備え、
     前記第1のエキスパンションバルブ部(130A)は、前記制御部の指示に応じて通過状態と霧化状態に開度を変更可能に構成された電磁弁(132A)を含む、請求の範囲第2項に記載の冷却装置。
    A control unit (400A) for controlling opening and closing of the valve and switching of the first expansion valve unit;
    The said 1st expansion valve part (130A) contains the electromagnetic valve (132A) comprised so that an opening degree could be changed into a passage state and an atomization state according to the instruction | indication of the said control part. The cooling device according to 1.
  6.  前記弁の開閉および前記第1および第2のエキスパンションバルブ部の切替を制御する制御部(400)をさらに備え、
     前記第2のエキスパンションバルブ部は、前記冷媒を気化させるために液状から霧状に変化させる霧化状態と前記冷媒を通過させない閉状態とを切替可能に構成され、
     前記制御部は、前記エバポレータによる冷房を行なう場合には、前記第2のエキスパンションバルブ部を霧化状態にし、前記エバポレータによる冷房を行なわない場合には前記第2のエキスパンションバルブ部を閉状態とする、請求の範囲第2項に記載の冷却装置。
    A control unit (400) for controlling opening and closing of the valve and switching of the first and second expansion valve units;
    The second expansion valve unit is configured to be switchable between an atomization state in which the refrigerant is changed from a liquid state to a mist state to vaporize the refrigerant and a closed state in which the refrigerant is not allowed to pass through.
    The controller sets the second expansion valve unit to an atomized state when cooling by the evaporator, and closes the second expansion valve unit when cooling by the evaporator is not performed. The cooling device according to claim 2.
  7.  前記第2のエキスパンションバルブ部(150)は、
     前記冷媒を霧化させるエキスパンションバルブ(152)と、
     前記エキスパンションバルブと直列に前記冷媒の経路上に設けられ、前記制御部の指示に応じて開閉する電磁弁(156)とを含む、請求の範囲第6項に記載の冷却装置。
    The second expansion valve portion (150)
    An expansion valve (152) for atomizing the refrigerant;
    The cooling device according to claim 6, further comprising: an electromagnetic valve (156) provided on the refrigerant path in series with the expansion valve and opened and closed according to an instruction from the control unit.
  8.  前記第2のエキスパンションバルブ部(150A)は、前記制御部の指示に応じて閉状態と霧化状態に開度を変更可能に構成された電磁弁(152A)を含む、請求の範囲第6項に記載の冷却装置。 The second expansion valve section (150A) includes an electromagnetic valve (152A) configured to be able to change an opening degree between a closed state and an atomization state in accordance with an instruction from the control section. The cooling device according to 1.
  9.  前記電気機器は、前記車両を推進させるモータ(124)を駆動する駆動装置(122)を含む、請求の範囲第1項に記載の冷却装置。 The cooling device according to claim 1, wherein the electric device includes a drive device (122) for driving a motor (124) for propelling the vehicle.
  10.  請求の範囲第1項~第9項のいずれか1項に記載の冷却装置を備える車両。 A vehicle comprising the cooling device according to any one of claims 1 to 9.
PCT/JP2010/069260 2010-10-29 2010-10-29 Cooling apparatus and vehicle WO2012056555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069260 WO2012056555A1 (en) 2010-10-29 2010-10-29 Cooling apparatus and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069260 WO2012056555A1 (en) 2010-10-29 2010-10-29 Cooling apparatus and vehicle

Publications (1)

Publication Number Publication Date
WO2012056555A1 true WO2012056555A1 (en) 2012-05-03

Family

ID=45993309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069260 WO2012056555A1 (en) 2010-10-29 2010-10-29 Cooling apparatus and vehicle

Country Status (1)

Country Link
WO (1) WO2012056555A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168928A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Electric automobile
FR3086888A1 (en) * 2018-10-09 2020-04-10 Renault S.A.S COOLING SYSTEM FOR A COMPUTER OF A MOTOR VEHICLE USING THE REFRIGERANT FLUID OF THE VEHICLE AIR CONDITIONING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150813U (en) * 1987-03-25 1988-10-04
JPH05344606A (en) * 1992-06-04 1993-12-24 Seiko Epson Corp Cooling system of electric automobile
JPH0840056A (en) * 1993-09-21 1996-02-13 Nippondenso Co Ltd Air conditioner
JP2000280733A (en) * 1999-03-31 2000-10-10 Calsonic Kansei Corp Automobile air conditioner
JP2001309506A (en) * 2000-04-25 2001-11-02 Denso Corp Inverter circuit device for driving vehicle traveling motor and cooling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150813U (en) * 1987-03-25 1988-10-04
JPH05344606A (en) * 1992-06-04 1993-12-24 Seiko Epson Corp Cooling system of electric automobile
JPH0840056A (en) * 1993-09-21 1996-02-13 Nippondenso Co Ltd Air conditioner
JP2000280733A (en) * 1999-03-31 2000-10-10 Calsonic Kansei Corp Automobile air conditioner
JP2001309506A (en) * 2000-04-25 2001-11-02 Denso Corp Inverter circuit device for driving vehicle traveling motor and cooling method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168928A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Electric automobile
FR3086888A1 (en) * 2018-10-09 2020-04-10 Renault S.A.S COOLING SYSTEM FOR A COMPUTER OF A MOTOR VEHICLE USING THE REFRIGERANT FLUID OF THE VEHICLE AIR CONDITIONING DEVICE

Similar Documents

Publication Publication Date Title
EP2699432B1 (en) Cooling apparatus
JP4321587B2 (en) Energy recovery system
WO2013157214A1 (en) Onboard device temperature adjusting apparatus
US10814694B2 (en) Hybrid vehicle
JP5522275B2 (en) Cooling system
JP5949522B2 (en) Temperature control device
EP2694303B1 (en) Cooling apparatus
RU2478810C2 (en) Automobile drive assembly
JP5724610B2 (en) Refrigeration cycle equipment for vehicles
US9322586B2 (en) Control device and control method for cooling system
EP2739494B1 (en) Cooling system
JP2013067247A (en) Charging apparatus for vehicle
JP2018151117A (en) Battery cooling system
CN104136865A (en) Cooling device, vehicle provided with same, and control method for cooling device
US20140297083A1 (en) Controller for hybrid vehicle
WO2013125006A1 (en) Cooling device and vehicle mounted with same, and method for controlling cooling device
JP2014121228A (en) Vehicle
JP7095512B2 (en) Hybrid vehicle cooling system
WO2012056555A1 (en) Cooling apparatus and vehicle
JP2011178309A (en) Air conditioner for vehicle
JP3772338B2 (en) Air conditioning control device for hybrid vehicle
JP2014136552A (en) Vehicle control device, vehicle, and vehicle control method
US20150158375A1 (en) Cooling unit in electric four wheel drive system
JP5692121B2 (en) COOLING DEVICE, VEHICLE MOUNTING IT, AND COOLING DEVICE CONTROL METHOD
JP5500008B2 (en) Cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP