WO2013157214A1 - Onboard device temperature adjusting apparatus - Google Patents

Onboard device temperature adjusting apparatus Download PDF

Info

Publication number
WO2013157214A1
WO2013157214A1 PCT/JP2013/002337 JP2013002337W WO2013157214A1 WO 2013157214 A1 WO2013157214 A1 WO 2013157214A1 JP 2013002337 W JP2013002337 W JP 2013002337W WO 2013157214 A1 WO2013157214 A1 WO 2013157214A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
vehicle
temperature
throttle
battery
Prior art date
Application number
PCT/JP2013/002337
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 雅之
井上 誠司
山中 隆
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013157214A1 publication Critical patent/WO2013157214A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to an in-vehicle device temperature control device applied to heating and cooling an in-vehicle device such as an automobile component using a cooling cycle of a vehicle air conditioner, and in particular, a battery for an electric vehicle such as an electric vehicle or a hybrid vehicle.
  • the present invention relates to an on-vehicle equipment temperature control device applied to heating and cooling of automobile components such as a motor and an inverter.
  • an electric vehicle such as an electric vehicle or a hybrid vehicle
  • electric energy stored in a power storage device such as a secondary battery
  • a motor is driven to run.
  • These electronic devices such as batteries, inverters, and motors generate heat when they are in use, such as when they are traveling, and not only do not have sufficient functions at high temperatures, but also cause deterioration and damage to the devices.
  • a cooling means is required to maintain.
  • the temperature at which the battery operates optimally is generally 10 ° C. to 40 ° C., and if it exceeds 40 ° C. on the high temperature side, the battery will deteriorate, particularly at 60 ° C. or higher. If the temperature is lower than 10 ° C. on the low temperature side, the input / output characteristics of the battery are significantly reduced, and there are cases where the battery cannot be accelerated, cannot be regenerated, or cannot be charged.
  • a battery cooling device described in Patent Document 1 provides a battery cooling device capable of effectively cooling a battery against heat generation at the time of charging / discharging of the battery that depends on the driving state of the vehicle, temperature changes due to environmental changes due to outside air temperature, and the like.
  • an evaporator cooled by the refrigerant supplied from the refrigeration cycle of the air conditioner via the refrigerant bypass passage is arranged in the cooling passage where a part or all of the battery is exposed, and the air in the cooling passage is blown by the blower. Circulating the battery effectively cools the battery.
  • the refrigerant of the low-pressure side (endothermic side) of the refrigeration cycle used for air conditioning is branched, and devices such as batteries are cooled by the principle of the air conditioner cooler.
  • the technique of the above-mentioned Patent Document 1 can be cooled but cannot be heated, so it is necessary to provide another heating means such as an electric heater, which may increase the cost.
  • heating means such as an electric heater is low in efficiency, a large amount of energy may be required for adjusting the temperature of the apparatus, particularly during heating.
  • An object of the present disclosure is to provide an on-vehicle equipment temperature control device that can achieve both cooling and warm-up of automobile components such as a battery by using a highly efficient refrigeration cycle, and has a simple configuration and low cost. Yes.
  • the in-vehicle device temperature control device includes the in-vehicle device and a vehicle cooling cycle device that cools the conditioned air.
  • the vehicle cooling cycle device includes a compressor that compresses and discharges the refrigerant, a condenser that dissipates heat of the refrigerant discharged from the compressor, a liquid storage mechanism that is disposed downstream of the refrigerant flow of the condenser, A first throttle that is arranged on the downstream side of the refrigerant flow of the liquid reservoir mechanism to restrict the flow of the refrigerant, and an on-vehicle device that is arranged on the downstream side of the refrigerant flow of the first throttle and heat-exchanges with the on-vehicle device to heat or cool the on-vehicle device.
  • the in-vehicle device temperature control device further includes a control device that controls at least the opening of the first throttle so that the in-vehicle device is heated or cooled by the heat exchange unit based on the temperature of the in-vehicle device.
  • a complicated configuration becomes unnecessary and simplification is possible.
  • a complicated configuration such as a three-way valve, a solenoid valve, or a three-way branch pipe is required to achieve both heating and cooling of in-vehicle devices. No configuration is required.
  • FIG. 1 is a schematic diagram illustrating an in-vehicle device temperature control apparatus according to the first embodiment of the present disclosure. It is a Mollier diagram at the time of the cooling control mode driving
  • the vehicle disclosed in this disclosure is not limited to a hybrid vehicle, but may be an ordinary gasoline vehicle, but it is equipped with a refrigeration cycle consisting of a cooling cycle and equipped with in-vehicle equipment such as a battery whose temperature needs to be adjusted. Is a requirement.
  • a hybrid vehicle having a battery 5 that supplies running energy, a motor generator (MG) 2 that drives wheels by the electric power of the battery 5, and an engine 3 will be described as an example.
  • the battery 5 may be used as an example of an in-vehicle device mounted on the vehicle.
  • a hybrid ECU (hybrid electronic unit) 1 is a function for performing drive switching control as to which driving force is transmitted to driving wheels among a motor generator 2 and an engine 3, and an in-vehicle power storage device.
  • a function of controlling charging / discharging of the battery (secondary battery) 5 is provided.
  • the battery 5 is stored in the battery pack 21 as a plurality of battery cells.
  • the battery 5 supplies power consumed by the compressor (electric compressor) 11 of the vehicle air conditioner 100 (vehicle cooling cycle device) through the power line 11P.
  • a charging device for charging the battery 5 is provided.
  • the charging device includes a power stand that is connected to a table lamp or a commercial power source (household power source) as a power supply source, and the battery 5 is charged by connecting the power supply source to the outlet. be able to.
  • the charging device charges the battery 5 made up of the secondary battery with the electric power generated by the motor generator 2 during regenerative braking when the vehicle goes down the hill.
  • the vehicle air conditioner 100 is configured to control an air conditioning unit that air-conditions the passenger compartment by the air conditioner ECU 7.
  • the vehicle air conditioner 100 is configured as a so-called auto air conditioner system.
  • the vehicle air conditioner 100 controls the refrigerant flow in the refrigeration cycle 8 to air-condition the vehicle interior.
  • the air conditioning unit (not shown) is disposed in front of the vehicle interior of the vehicle and includes a known air conditioning case through which the blown air passes.
  • a known air conditioning case through which the blown air passes.
  • an air intake is formed on one side, and a plurality of air outlets through which air toward the passenger compartment passes is formed on the other side.
  • the air conditioning case has a ventilation path through which the blown air passes between the air intake and the air outlet.
  • a blower is provided on the upstream side (one side) of the air conditioning case.
  • the blower air conditioner blower
  • the blower includes an inside / outside air switching mechanism (also referred to as an inside / outside air switching door) and a blower.
  • the inside / outside air switching door is driven by an actuator such as a servo motor, and constitutes a suction port switching means for changing the opening degree between the inside air suction port and the outside air suction port which are air intake ports.
  • the blower is a centrifugal blower that is rotationally driven by a blower motor controlled by a blower drive circuit (not shown) to generate an air flow toward the vehicle interior in the air conditioning case.
  • the blower has a function of changing the amount of air-conditioning air blown out from each air outlet, which will be described later, toward the vehicle interior.
  • the air-conditioning case is provided with an evaporator 10 that forms an air-conditioning heat exchanger for heating or cooling the air blown from the blower to produce conditioned air.
  • the evaporator 10 functions as a cooling heat exchanger that uses refrigerant to adjust (cool) the temperature of the conditioned air that passes through the air conditioning case and travels toward the vehicle interior.
  • a heater core (not shown) or an electric heater as a heating heat exchanger that heats the air passing through the ventilation passage by exchanging heat with the engine cooling water of the engine 3 is provided on the air downstream side of the evaporator 10. ing.
  • the cooling water circuit through which the engine cooling water circulates is a circuit that circulates the engine cooling water heated by the water jacket of the engine 3 by an electric water pump.
  • This circuit is provided with a radiator (not shown), a thermostat (not shown), and a heater core.
  • An air mix door for adjusting the temperature in the passenger compartment is provided on the upstream side of the heater core.
  • the air mix door is driven by an actuator such as a servo motor.
  • an air mix door changes the blowing temperature of the conditioned air blown from each blower outlet toward the vehicle interior.
  • the air mix door functions as an air mix means for adjusting the air volume ratio between the air passing through the evaporator 10 and the air passing through the heater core or the like.
  • the evaporator 10 is a component of the refrigeration cycle 8 composed of a cooling cycle. Further, the direct current output of the battery 5 is converted into three-phase alternating current by an inverter (not shown).
  • the refrigeration cycle 8 includes a compressor 11 that is driven by an electric motor to which the three-phase alternating current is input and sucks and compresses the refrigerant and then discharges the refrigerant.
  • the refrigeration cycle 8 has a condenser 12 that condenses and liquefies the refrigerant discharged from the compressor 11, a subcool modulator 15 that gas-liquid separates the liquid refrigerant that has flowed from the condenser 12, and the subcool modulator 15 that has flowed in.
  • a first throttle 16 and a second throttle 17 for adiabatic expansion of the liquid refrigerant, and an evaporator 10 for evaporating and evaporating the gas-liquid two-phase refrigerant flowing from the second throttle 17 are included.
  • the subcool modulator 15 may be used as an example of a liquid storage mechanism that is arranged on the downstream side of the refrigerant flow of the condenser 12 and separates the refrigerant into gas and liquid.
  • the battery 5 is charged by the electric power of the motor generator (MG) 2 or by a generator (not shown) driven by the engine 3.
  • the condenser 12 is disposed in a place where it is easy to receive traveling wind generated when the hybrid vehicle travels.
  • the condenser 12 performs outdoor heat exchange between refrigerant flowing inside and outside air or traveling wind blown by an outdoor fan (not shown). It constitutes a heat exchanger.
  • the most downstream side of the air conditioning case is formed with a defroster opening, a face opening, and a foot opening, respectively, which constitute the outlet switching unit.
  • a blower outlet switching door is rotatably mounted inside each blower outlet.
  • the air outlet switching door is driven by an actuator such as a servo motor, and can switch the air outlet mode to any of the well-known face mode, bi-level mode, foot mode, foot defroster mode, or defroster mode.
  • the air conditioner ECU 7 receives a communication signal output from the engine ECU, a switch signal from each switch on an operation panel provided on the front surface of the vehicle interior, and a sensor signal from each sensor.
  • the air conditioner ECU 7 makes a drive request for the engine 3 (engine-on request). Further, stop control of the engine 3 is performed.
  • the air conditioner ECU 7 is connected with a post-evaporation temperature sensor or the like as post-evaporation temperature detection means for detecting the air temperature immediately after passing through the evaporator 10 (post-evaporator temperature TE). Is omitted.
  • sensor signals from various sensors are read to calculate a target blowing temperature TAO.
  • control value etc. of actuators such as an air mix door, are computed from this target blowing temperature TAO and the signal from the said various sensors.
  • the air conditioner ECU 7 performs a process for determining the blower voltage. Also, the outlet mode is determined. Furthermore, a compressor rotation speed determination process is performed. In addition, a process for determining the number of operating electric heaters and a required water temperature determination process are performed as necessary.
  • the refrigeration cycle (cooling cycle) of the vehicle air conditioner 100 includes a compressor 11, a condenser 12, a subcool modulator 15, which is an example of a liquid storage mechanism, a first throttle 16, and a battery temperature control heat exchanger in the order of refrigerant flow.
  • the auxiliary heat exchanger 20a, the second throttle 17 and the evaporator 10 are arranged.
  • the auxiliary heat exchanger 20a may be used as an example of a heat exchange unit in which the refrigerant exchanges heat with the in-vehicle device to heat or cool the in-vehicle device.
  • Signals of the battery temperature sensor 22 and the heat exchange unit temperature sensor 23 arranged in the battery pack 21 are taken into the battery control device 25, and the opening degree of the first throttle 16 is controlled based on the calculation conditions.
  • An electric expansion valve with a fully open function is used for the first throttle 16, and the opening degree can be arbitrarily changed based on a signal from the battery control device 25.
  • the battery control device 25 may be used as an example of a control device that controls at least the opening of the first diaphragm 16.
  • the air conditioner ECU 7 may be used as an example of the control device.
  • the auxiliary heat exchanger 20a is arranged in the air passage in the case 27 in the battery pack 21 and exchanges heat between the air constituting the heat exchange fluid blown by the battery temperature adjusting blower 26 and the refrigerant of the cooling cycle.
  • the opening degree of the first throttle 16 is made smaller than that of the second throttle 17 so that the temperature of the auxiliary heat exchanger 20a becomes the cooling target temperature.
  • the first throttle 16 is operated in the “heating control mode”. Specifically, the opening degree of the first throttle 16 is made larger than that of the second throttle 17 so that the temperature of the auxiliary heat exchanger 20a becomes the heating target temperature.
  • the opening degree of the second throttle 17 is the same as the control of the conventional vehicle air conditioner 100. That is, the opening degree of the second throttle 17 is controlled so that the superheat (SH) at the outlet of the evaporator 10 is within a predetermined range.
  • the second diaphragm 17 uses an electric expansion valve or a mechanical expansion valve (super heat expansion valve).
  • the refrigerant that has been compressed and stored by the compressor 11 is cooled by running air or forced air cooling by an electric fan in a condenser 12 disposed in front of a radiator in front of the vehicle, and the gaseous refrigerant is liquefied.
  • the liquefied refrigerant is sent to the evaporator 10 of the indoor air conditioner unit.
  • the evaporator 10 is composed of the mechanical expansion valve (super heat expansion valve) forming the second throttle 17, and the interior of the vehicle is cooled by evaporating the liquefied refrigerant.
  • FIG. 2 shows a Mollier diagram (ph diagram) during this “cooling control mode” operation.
  • the ph diagram pressure-specific enthalpy diagram
  • the ph diagram has pressure on the vertical axis and specific enthalpy on the horizontal axis, and the vertical axis is scaled in logarithm of pressure for practical convenience.
  • the on-vehicle equipment temperature control device for adjusting the temperature (cooling and heating) of the battery 5 as an example of the on-vehicle equipment using this cooling cycle includes a large number of electromagnetic valves, three-way branch valves (three-way valves), and the like.
  • the first throttle 16 and the auxiliary heat exchanger 20 a that can exchange heat with the battery 5 to a normal cooling cycle. (Heating) is also possible. Therefore, since the configuration is simple and the cost is low, it can be used for a vehicle that does not have a heat pump or a hot gas pipe, so that it can be applied to many vehicles.
  • auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is disposed downstream of the subcool modulator 15 (liquid storage mechanism), heating at the subcool portion is possible during heating, and the specific enthalpy is shown in FIG. Since it expands like EX of FIG. 3, the efficiency of a refrigerating cycle improves.
  • the opening degree of the second throttle 17 is the same as the control of the normal vehicle air conditioner. Since the superheat (SH) at the outlet of the evaporator 10 is controlled to be within a predetermined range, there is no significant change from the normal cooling refrigeration cycle, and the heat exchanger function with the battery 5 can be added.
  • SH superheat
  • the battery 5 may be deteriorated.
  • the battery temperature is optimally 40 ° C. or lower, and the battery 5 rapidly deteriorates at higher temperatures. If the configuration of the first embodiment is used, the refrigerant of the auxiliary heat exchanger 20a that can exchange heat with the battery 5 by the first throttle 16 even when the high-pressure refrigerant temperature is too high due to the air-conditioning operation conditions of the vehicle air conditioner 100. The temperature can be optimized and the high temperature deterioration of the battery 5 can be prevented.
  • the refrigerant temperature of the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is too low when the battery 5 is cooled, condensation may occur on the surface of the battery 5. Although high insulation is required in the battery pack 21, if condensation occurs on the surface of the battery 5, an electrical short circuit may occur due to moisture.
  • the refrigerant temperature of the evaporator 10 is low due to the air conditioning operation conditions of the vehicle air conditioner 100, the refrigerant temperature of the auxiliary heat exchanger 20 a that can exchange heat with the battery 5 by the first throttle 16. Can be optimized, and condensation on the surface of the battery 5 can be prevented. Furthermore, the cooling cycle can be used for heating as well as cooling.
  • the refrigerant compressed by the compressor 11 of FIG. 1 is supplied to the condenser 12, the heat of the refrigerant is radiated by the condenser 12, and the refrigerant is guided to the evaporator 10 to cool the conditioned air through the evaporator 10.
  • the vehicle air conditioner 100 using the cooling cycle is provided in the in-vehicle equipment temperature control device.
  • the second diaphragm 17 and the evaporator 10 are arranged in order.
  • the auxiliary heat exchanger 20a capable of exchanging heat with the in-vehicle device (battery 5) is heated or cooled via the heat exchange fluid (air).
  • the battery control device 25 is provided with a control unit that controls the opening degree of the first diaphragm 16.
  • a complicated configuration becomes unnecessary and simplification is possible.
  • heating by subcooling increases the range of specific enthalpies, making it possible to increase the efficiency of the refrigeration cycle.
  • a complicated configuration such as a three-way valve and a number of electromagnetic valves is required in order to achieve both heating and cooling of the battery 5, but in the first embodiment, those configurations are unnecessary. is there.
  • the opening of the first throttle 16 is controlled to be smaller than the opening of the second throttle 17.
  • the opening of the first throttle 16 is controlled to be larger than the opening of the second throttle 17.
  • the in-vehicle device (battery 5) when the temperature of the in-vehicle device (battery 5) is relatively high, the low-temperature and low-pressure refrigerant is supplied to the heat exchanging part that can exchange heat with the in-vehicle device (battery 5), and the in-vehicle device (battery 5).
  • the temperature of the in-vehicle device (battery 5) is low, the high-temperature and high-pressure refrigerant is supplied to the heat exchange section that can exchange heat with the in-vehicle device (battery 5), and the in-vehicle device (battery 5) is Can be heated.
  • the battery 5 is not controlled within a narrow optimum temperature range, but is heated or cooled to such an extent that the function of the battery 5 is not significantly hindered, so that the performance of the vehicle air conditioner 100 operated simultaneously is not deteriorated. To be.
  • the condenser 12 portion and the subcool modulator 15 are used as a subcool type condenser in which a gas-liquid separator is disposed between the condenser portion and the supercooling portion, and the enthalpy of the liquid refrigerant itself is increased by further cooling the liquid refrigerant. It is done.
  • An auxiliary heat exchanger 20a that can exchange heat with the battery 5 is disposed downstream of the subcool condenser.
  • the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is arranged in the downstream of the subcool type condenser, when the auxiliary heat exchanger 20a is heated or cooled, the subcool portion of the refrigerant Heating or cooling is possible, and the specific enthalpy is increased, so that the efficiency of the refrigeration cycle is improved.
  • the battery 5, which is an example of the in-vehicle device, includes the secondary battery 5 that generates vehicle travel energy and supplies the energy for driving the compressor 11, and therefore manages the temperature of the secondary battery 5 with a simple configuration.
  • the charge / discharge characteristics of the secondary battery can be kept good and the charge / discharge efficiency can be improved. Thereby, the efficiency of the whole vehicle equipment temperature control apparatus containing the vehicle air conditioner 100 with the compressor 11 improves. Therefore, even if the temperature of the secondary battery 5 is adjusted using the refrigerant of the vehicle air conditioner 100, the performance or efficiency of the entire vehicle air conditioner 100 including the battery 5 is hardly deteriorated.
  • the opening of the first throttle 16 is controlled to be smaller than the opening of the second throttle 17.
  • the control device (7, 25) so that the opening degree of the first throttle 16 becomes larger than the opening degree of the second throttle 17. Is in control.
  • the low-temperature and low-pressure refrigerant can be supplied to the heat exchanging part capable of exchanging heat with the in-vehicle device to cool the in-vehicle device, and the temperature of the in-vehicle device is too low.
  • the high-temperature and high-pressure refrigerant is supplied to the heat exchanging portion that can exchange heat with the in-vehicle device, and the in-vehicle device can be heated.
  • the condenser 12 and the subcooling modulator 15 are a subcooling type condenser in which a gas-liquid separator is disposed between the condensing unit and the supercooling unit, and the specific enthalpy of the liquid refrigerant itself is increased by further cooling the liquid refrigerant. Consists of.
  • An auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is arranged downstream of the subcool condenser.
  • the heat exchanging part is arranged downstream of the subcool type condenser, when the heat exchanging part is heated, the refrigerant can be heated in the subcool part, and the enthalpy is expanded, so that the refrigeration cycle Increases efficiency.
  • the in-vehicle device includes the secondary battery 5 that generates energy for driving the compressor.
  • the temperature of the secondary battery can be managed with a simple configuration, the charge / discharge characteristics of the secondary battery can be kept good, and the efficiency can be improved.
  • the efficiency of the whole vehicle equipment temperature control apparatus containing the vehicle air conditioner with a compressor improves. Thereby, even if the temperature of the secondary battery is adjusted by using the refrigerant of the vehicle air conditioner, it contributes to improving the performance or efficiency of the entire vehicle air conditioner including the secondary battery.
  • FIG. 4 shows an outline of the first throttle 16 composed of a bleed-type electromagnetic valve having a bleed port 31 and an electromagnetic valve part (also referred to as a valve part) 32 used as the first throttle 16 in the second embodiment of the present disclosure.
  • the other structure of 2nd Embodiment is the same as 1st Embodiment.
  • an electric expansion valve is used for the first throttle 16, and the control is performed so that the refrigerant temperature of the auxiliary heat exchanger 20a that can exchange heat with the battery 5 becomes the target temperature by the control signal. Then, as shown in FIG. 4, a bleed type solenoid valve having a bleed port 31 (fixed hole) in the first throttle 16 is used. When the temperature of the battery 5 exceeds the optimum operating temperature range and cooling is required, the valve portion 32 is closed and a fixed throttle related to the hole diameter of the bleed port 31 is set.
  • bleed-type solenoid valves of this type can be used.
  • a bleed-type proportional solenoid valve disclosed in Japanese Patent Laid-Open No. 2002-286152 can be employed.
  • the control may be simplified by using an on / off valve instead of a proportional solenoid valve.
  • the first throttle 16 has a valve part 32 that can be fully closed or fully opened, and a bleed port 31 formed in a flow path parallel to the valve part 32. And even if the valve part 32 is fully closed, a refrigerant
  • a fixed throttle by the bleed port 31 is configured with the valve portion 32 fully closed. Further, when the battery 5 is heated, the valve portion 32 is controlled to be fully opened.
  • the first throttle has a valve part that can be fully closed or fully opened and a bleed port arranged in a flow path parallel to the valve part, and has a constant opening area even when the valve part is fully closed. Since the refrigerant flows from the bleed port, the first throttle can be configured with a simple configuration, and the on-vehicle equipment can be cooled and heated. (Third embodiment)
  • a third embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described.
  • either the “cooling control mode” or the “heating control mode” is determined based on the temperature of the battery 5, and the temperature of the auxiliary exchanger 20 that can exchange heat with the battery 5 is the target temperature.
  • only superheat control (evacuation superheat control) on the outlet side of the evaporator 10 is controlled.
  • FIG. 6 shows a Mollier diagram during the cooling control mode operation in the configuration of FIG. Moreover, the Mollier diagram at the time of heating control mode driving
  • the evaporative outlet superheat (SH) control is executed so that the first throttle 16 is in the superheated state on the evaporator outlet side.
  • the second diaphragm 17 is fully opened.
  • the battery temperature detection method in the third embodiment is the same as that in the first and second embodiments, but the feedback control of the detection result is only superheat control on the outlet side of the evaporator 10 (eva outlet superheat control). Therefore, overall control is simplified.
  • a thermistor 41 (FIG. 5) that detects the evaporator fin temperature mounted for conventional air conditioning and the refrigerant temperature on the outlet side of the evaporator 10
  • the superheat state is detected using the refrigerant temperature sensor 42 that detects the above. Note that other means may be used as long as the superheat state can be detected.
  • the opening degree of the first throttle 16 is controlled so that the refrigerant on the outlet side of the evaporator 10 is in a predetermined superheat state, and the opening degree of the second throttle 17 is set. Is substantially fully open.
  • the opening of the first throttle 16 is substantially fully opened and the opening of the second throttle 17 is controlled so that the refrigerant on the outlet side of the evaporator 10 has a predetermined amount. Control to be in superheat state.
  • the low-temperature and low-pressure refrigerant is supplied to the heat exchange section that can exchange heat with the battery 5, and the battery 5 can be cooled.
  • a high-temperature and high-pressure refrigerant is supplied to the heat exchange unit that can exchange heat with the battery 5, and the battery 5 can be heated.
  • the refrigerant temperature sensor 42 that detects the refrigerant outlet temperature To of the refrigerant on the outlet side of the evaporator 10 and the fin that detects the fin temperature Tf of the evaporator 10.
  • the first throttle 16 or the second throttle 17 is controlled so that the deviation between the refrigerant outlet temperature To and the fin temperature Tf falls within a predetermined range.
  • the superheat state relating to the deviation between the refrigerant outlet temperature To and the fin temperature Tf can be controlled by utilizing the existing fin temperature sensor 41.
  • the opening of the first throttle 16 is controlled so that the refrigerant on the outlet side in the evaporator 10 enters a predetermined superheat state, and the second throttle The opening degree of 17 is substantially fully open.
  • the opening of the first throttle 16 is substantially fully opened and the opening of the second throttle 17 is controlled to evaporate.
  • the control device (7, 25) controls the outlet side refrigerant in the vessel 10 to be in a predetermined superheat state.
  • the low-temperature and low-pressure refrigerant is supplied to the heat exchanging part that can exchange heat with the in-vehicle device to cool the in-vehicle device more reliably.
  • a high-temperature and high-pressure refrigerant is supplied to the heat exchange unit, so that the in-vehicle device can be heated more reliably.
  • a refrigerant temperature sensor 42 that detects the refrigerant outlet temperature To of the refrigerant on the outlet side of the evaporator 10 and a fin that detects the fin temperature Tf of the evaporator 10. And a temperature sensor 41.
  • the first throttle 16 or the second throttle 17 is controlled by the control device (7, 25) so that the deviation between the refrigerant outlet temperature To and the fin temperature Tf falls within a predetermined range.
  • the superheat state related to the deviation between the refrigerant outlet temperature and the fin temperature can be controlled by utilizing the existing fin temperature sensor.
  • the subcool modulator 15 is used as an example of the high-pressure side liquid storage mechanism, but a receiver 51 may be used as shown in FIG. As described above, even when the receiver 51 is used as an example of the liquid storage mechanism, the opening degree of the first throttle 16 is controlled using the cool cycle so that the battery 5 is heated or cooled as in the first embodiment. be able to.
  • the refrigerant compressed by the compressor 11 is supplied to the condenser 12, and the heat of the refrigerant is radiated by the condenser 12. Furthermore, the vehicle air conditioner 100 using the cooling cycle which guide
  • the first throttle 16, the auxiliary heat exchanger 20 a that can exchange heat with the battery 5, and the second throttle are further downstream of the receiver 51, which is an example of a high-pressure side liquid storage mechanism that is arranged downstream of the refrigerant flow of the condenser 12. 17,
  • the evaporator 10 is arrange
  • the battery control device includes a controller that controls the opening degree of the first throttle 16 so that the battery 5 is heated or cooled based on the temperature of the battery 5 through the air serving as a heat exchange fluid in the auxiliary heat exchanger 20a. 25.
  • FIG. 9 shows a Mollier diagram (ph diagram) during the “cooling control mode” operation in the fourth embodiment.
  • FIG. 10 shows a Mollier diagram (ph diagram) at the time of the “heating control mode” operation in the fourth embodiment. According to this, a complicated configuration is not necessary, and further simplification is possible.
  • a fifth embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described.
  • an auxiliary heat exchanger 20 a capable of exchanging heat with the battery 5, which is an example of an in-vehicle device, is provided in a closed space wider than that of the first embodiment.
  • the door member 61 which shields the heat exchange fluid (air) which passes the auxiliary heat exchanger 20a is provided.
  • this door member 61 rotates 180 degrees from the state of FIG. 11 and covers the right surface of the auxiliary heat exchanger 20a, it is possible to flow the heat exchange fluid (air) bypassing the auxiliary heat exchanger 20a.
  • the rotation of the door member 61 is controlled by an actuator similarly to the air mix door of the vehicle air conditioner 100.
  • the battery 5 is heated or cooled via the heat exchange fluid that passes through the auxiliary heat exchanger 20a, but the door member 61 that shields the heat exchange fluid that passes through the auxiliary heat exchanger 20a.
  • the heat exchange state between the auxiliary heat exchanger 20a and the heat exchange fluid can be controlled by flowing the heat exchange fluid bypassing the auxiliary heat exchanger 20a.
  • the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 which is an example of the vehicle-mounted device, the bypass passage 72 where the refrigerant bypasses the first throttle 16, the bypass valve 71 which can open and close the bypass passage 72, A control device (battery control device 25) that opens and closes the bypass passage 72 by controlling the bypass valve 71 is provided.
  • a bypass valve 710 and a bypass passage 720 may be provided so that the refrigerant bypasses only the auxiliary heat exchanger 20a.
  • bypass passage 720 that bypasses the auxiliary heat exchanger 20a that can exchange heat with the battery 5 and the bypass valve 710 that can open and close the bypass passage 720 are provided.
  • a bypass passage 72 through which the refrigerant bypasses the auxiliary heat exchanger 20a and the first throttle 16 and a bypass valve 71 capable of opening and closing the bypass passage 72 are provided.
  • a control device battery control device 25 for controlling the bypass valve 71 (710) to open and close the bypass passage 72 (720) is provided.
  • the cooling liquid is preferably cooling water such as antifreeze liquid (LLC), but may be other liquid medium such as oil.
  • the coolant is circulated between the battery 5 in the battery pack 21 and the coolant-coolant refrigerant heat exchanger 20b by the cooling pump 62.
  • the coolant is used as an example of a heat exchange fluid.
  • the temperature of the battery 5 can be quickly adjusted using a coolant having a large heat capacity and good cooling performance. Therefore, energy for cooling or heating is obtained from the vehicle air conditioner 100 side, and the temperature of the battery 5 can be adjusted by setting the time for deteriorating the performance of the vehicle air conditioner 100 as a short time.
  • the heat exchanging part capable of exchanging heat with the battery 5 includes the coolant-to-refrigerant heat exchanger 20b that exchanges heat between the coolant that cools the battery 5 and the refrigerant. Based on the temperature of the battery 5, the battery 5 is heated or cooled via the coolant in the coolant-to-refrigerant heat exchanger 20b.
  • the temperature of the battery pack can be adjusted with the performance degradation time of the vehicle air conditioner as a short time.
  • the battery 5 that is an example of the in-vehicle device in the battery pack 21 is directly cooled by the refrigerant. Therefore, the space in which the refrigerant in the battery pack 21 flows, that is, the duct 28 is used as an example of a heat exchanging portion that can exchange heat with the in-vehicle device (battery 5).
  • the temperature of the battery pack can be adjusted using the refrigerant directly in the duct 28 that can exchange heat with the battery 5 without using an auxiliary heat exchanger in the middle.
  • the refrigerant has the duct 28 that directly exchanges heat with the battery 5. Based on the temperature of the battery 5, the battery 5 is heated or cooled by the refrigerant in the duct 28. According to this, since the refrigerant itself becomes a heat exchange fluid and a heat exchanger is unnecessary, the structure can be simplified or reduced in weight.
  • the present disclosure is not limited to the above-described embodiment, and can be modified or expanded as follows.
  • the battery temperature detecting means not only a sensor that directly detects the temperature of the battery, but also means that can indirectly detect the battery temperature may be used.
  • the temperature inside the battery pack or the temperature of the fluid that regulates the temperature of the battery may be used.
  • the temperature of a secondary battery such as a lithium ion battery is controlled.
  • the in-vehicle device may be a device other than the battery.
  • an electric device such as an inverter or an in-vehicle charger, an intercooler, or the like may be used.
  • the secondary battery is not limited to lithium ion, and may be another battery such as a nickel metal hydride battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

An onboard device temperature adjusting apparatus includes a vehicle air-conditioning apparatus (100) using a cooling cycle including a compressor (11), a condenser (12), and an evaporator (10). A high-pressure side reservoir mechanism (15, 51) comprising a sub-cool modulator (15) or a receiver (51) is disposed downstream of the flow of refrigerant in the condenser (12). Further downstream of the reservoir mechanism (15, 51), a first choke (16) for squeezing the flow of refrigerant, a heat exchange unit (20) for exchanging heat with an onboard device (5) in which the refrigerant flows, a second choke (17) for squeezing the flow of refrigerant, and the evaporator (10) are arranged in sequence. The opening angle of the first choke (16) is controlled by a control device (7, 25) on the basis of the temperature of a battery as the onboard device (5) such that the onboard device (5) can be heated or cooled via a heat exchange fluid in the heat exchange unit (20). Thus, heating and warming of an automobile component such as the battery can be both achieved by using a highly efficient refrigeration cycle, whereby an onboard device temperature adjusting apparatus having a simple configuration can be provided at low cost.

Description

車載機器温調装置In-vehicle equipment temperature controller 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年4月16日に出願された日本特許出願2012-093000を基にしている。 This application is based on Japanese Patent Application No. 2012-093000 filed on Apr. 16, 2012, the disclosure of which is incorporated herein by reference.
 本開示は、車両用空調装置の冷却サイクルを用いて自動車構成部品等の車載機器の加熱および冷却に適用される車載機器温調装置に関し、特には、電気自動車やハイブリッド車などの電動車両の電池、モータ、インバータなどの自動車構成部品の加熱および冷却に適用される車載機器温調装置に関する。 The present disclosure relates to an in-vehicle device temperature control device applied to heating and cooling an in-vehicle device such as an automobile component using a cooling cycle of a vehicle air conditioner, and in particular, a battery for an electric vehicle such as an electric vehicle or a hybrid vehicle. The present invention relates to an on-vehicle equipment temperature control device applied to heating and cooling of automobile components such as a motor and an inverter.
 電気自動車やハイブリッド車などの電動車両では、2次電池などの蓄電装置に蓄えた電気エネルギーを、インバータを介してモータに供給し、該モータを駆動させて走行する。これら電池やインバータ、モータなどの電子機器は走行中など車両使用時に自己発熱し、高温になると十分な機能を得られないだけでなく、機器の劣化や破損を招いてしまうため、一定温度以下を維持するための冷却手段が必要となる。 In an electric vehicle such as an electric vehicle or a hybrid vehicle, electric energy stored in a power storage device such as a secondary battery is supplied to a motor via an inverter, and the motor is driven to run. These electronic devices such as batteries, inverters, and motors generate heat when they are in use, such as when they are traveling, and not only do not have sufficient functions at high temperatures, but also cause deterioration and damage to the devices. A cooling means is required to maintain.
 一方、特に電池の場合は、高温時だけでなく冬季など低温時にも入出力特性が悪化し、走行のための十分な電力が得られない、あるいは充電・回生ができない等の問題が生じる。そのため、十分な性能を引き出すためには、冷却のみならず加熱手段も必要となる。 On the other hand, especially in the case of batteries, the input / output characteristics deteriorate not only at high temperatures but also at low temperatures such as in winter, resulting in problems such as inability to obtain sufficient power for running or charging / regeneration. Therefore, in order to draw out sufficient performance, not only cooling but also heating means are required.
 電池が最適に作動する温度は、一般的に10℃~40℃とされ、高温側では40℃を超えてしまうと電池の劣化が進み、特に、60℃以上では破損の恐れがある。低温側では10℃を下回ると電池の入出力特性が大幅に低下し、加速できない、回生できない、充電できない等の場合がある。 The temperature at which the battery operates optimally is generally 10 ° C. to 40 ° C., and if it exceeds 40 ° C. on the high temperature side, the battery will deteriorate, particularly at 60 ° C. or higher. If the temperature is lower than 10 ° C. on the low temperature side, the input / output characteristics of the battery are significantly reduced, and there are cases where the battery cannot be accelerated, cannot be regenerated, or cannot be charged.
 また、これらの機器の温度調節(温調とも言う)のためにエネルギーが必要となるが、例えば走行中に機器の温調に多くのエネルギーを費やしてしまうと、走行に使用できるエネルギーが減少し航続可能距離が低下してしまうおそれがある。また、駐車中や充電中など外部電源で機器を温調する場合でも、効率の悪い温調手段を用いると、電気代の増大を招いてしまう場合がある。そのため、冷却および加熱を両立でき、かつ高効率で構成の簡単な車載機器温調装置が求められている。 In addition, energy is required to adjust the temperature (also called temperature control) of these devices. For example, if a large amount of energy is spent adjusting the temperature of the device during traveling, the energy that can be used for traveling decreases. The cruising range may be reduced. Moreover, even when the temperature of the device is controlled by an external power source such as during parking or charging, using an inefficient temperature control means may increase the electricity bill. Therefore, there is a demand for an on-vehicle equipment temperature control device that can achieve both cooling and heating, and has a high efficiency and a simple configuration.
 従来、特許文献1に記載のバッテリ冷却装置が知られている。この装置は、車両の運転状態に左右されるバッテリの充放電時の発熱、外気温度等による環境変化による温度変化等に対して、バッテリを効果的に冷却することのできるバッテリ冷却装置を提供している。そのために、バッテリの一部又は全部が露出する冷却通路に、冷媒バイパス通路を介して空調装置の冷凍サイクルから供給される冷媒によって冷却される蒸発器を配すると共に、送風機によって冷却通路内の空気を循環させ、バッテリを効果的に冷却している。空調に用いる冷凍サイクルの低圧側冷媒(吸熱側)を分岐し、空調のクーラの原理で電池などの機器を冷却している。 Conventionally, a battery cooling device described in Patent Document 1 is known. This device provides a battery cooling device capable of effectively cooling a battery against heat generation at the time of charging / discharging of the battery that depends on the driving state of the vehicle, temperature changes due to environmental changes due to outside air temperature, and the like. ing. For this purpose, an evaporator cooled by the refrigerant supplied from the refrigeration cycle of the air conditioner via the refrigerant bypass passage is arranged in the cooling passage where a part or all of the battery is exposed, and the air in the cooling passage is blown by the blower. Circulating the battery effectively cools the battery. The refrigerant of the low-pressure side (endothermic side) of the refrigeration cycle used for air conditioning is branched, and devices such as batteries are cooled by the principle of the air conditioner cooler.
特開2002-313441号公報JP 2002-31441 A
 本願の発明者の検討によると、上記特許文献1の技術では、冷却はできるものの加熱ができないため、電気ヒータなど別の加熱手段を備える必要がありコスト増となるおそれがある。また、電気ヒータなどの加熱手段は効率が低いため、特に加熱時には機器温調のために多大なエネルギーが必要となる場合がある。 According to the examination of the inventors of the present application, the technique of the above-mentioned Patent Document 1 can be cooled but cannot be heated, so it is necessary to provide another heating means such as an electric heater, which may increase the cost. In addition, since heating means such as an electric heater is low in efficiency, a large amount of energy may be required for adjusting the temperature of the apparatus, particularly during heating.
 電気ヒータの代わりにヒートポンプサイクルを用いることも考えられる。しかし、空調装置用にヒートポンプを搭載した車両には適用できるが、冷凍サイクルをクーラ(冷房)にしか使用しない車には適用できない場合がある。 It is also possible to use a heat pump cycle instead of an electric heater. However, although it can be applied to a vehicle equipped with a heat pump for an air conditioner, it may not be applicable to a vehicle that uses a refrigeration cycle only for a cooler (cooling).
 更に、放熱器(凝縮器)をバイパスして高温のホットガスを送る技術を活用することも考えられる。しかし、配管の分岐等で構成が複雑となるおそれがある。 Furthermore, it is conceivable to use a technology that bypasses the radiator (condenser) to send hot hot gas. However, the configuration may be complicated due to branching of the piping.
 本開示の目的は、高効率な冷凍サイクルを用いて電池などの自動車構成部品の冷却および暖機が両立でき、かつ簡素な構成で低コストとなる車載機器温調装置を提供することを目的としている。 An object of the present disclosure is to provide an on-vehicle equipment temperature control device that can achieve both cooling and warm-up of automobile components such as a battery by using a highly efficient refrigeration cycle, and has a simple configuration and low cost. Yes.
 本開示の一態様によれば、車載機器温調装置は、車載機器と、空調風を冷却する車両用冷却サイクル装置とを備える。車両用冷却サイクル装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒の熱を放熱する凝縮器と、凝縮器の冷媒流れ下流側に配置される液溜め機構と、液溜め機構の冷媒流れ下流側に配置されて冷媒の流れを絞る第1絞りと、第1絞りの冷媒流れ下流側に配置されて冷媒が車載機器と熱交換することで車載機器が加熱もしくは冷却される熱交換部と、熱交換部の冷媒流れ下流側に配置されて冷媒の流れを絞る第2絞りと、第2絞りの冷媒流れ下流側に配置されて冷媒が流通して空調風を冷却する蒸発器と、を有している。車載機器温調装置はさらに、車載機器の温度に基づき熱交換部にて車載機器が加熱または冷却されるように、少なくとも第1絞りの開度を制御する制御装置をさらに備えている。 According to one aspect of the present disclosure, the in-vehicle device temperature control device includes the in-vehicle device and a vehicle cooling cycle device that cools the conditioned air. The vehicle cooling cycle device includes a compressor that compresses and discharges the refrigerant, a condenser that dissipates heat of the refrigerant discharged from the compressor, a liquid storage mechanism that is disposed downstream of the refrigerant flow of the condenser, A first throttle that is arranged on the downstream side of the refrigerant flow of the liquid reservoir mechanism to restrict the flow of the refrigerant, and an on-vehicle device that is arranged on the downstream side of the refrigerant flow of the first throttle and heat-exchanges with the on-vehicle device to heat or cool the on-vehicle device. Heat exchanger, a second throttle that is arranged downstream of the refrigerant flow in the heat exchanger and restricts the flow of the refrigerant, and a refrigerant that is arranged downstream of the refrigerant flow in the second throttle to cool the conditioned air An evaporator. The in-vehicle device temperature control device further includes a control device that controls at least the opening of the first throttle so that the in-vehicle device is heated or cooled by the heat exchange unit based on the temperature of the in-vehicle device.
 これによれば、複雑な構成が不要となり、簡素化が可能となる。ちなみに、ヒートポンプやホットガスを用いた場合では、車載機器の加熱と冷却を両立させるために3方弁や電磁弁、3方分岐配管部など複雑な構成が必要となるが、本開示ではそれらの構成が不要である。 According to this, a complicated configuration becomes unnecessary and simplification is possible. Incidentally, in the case of using a heat pump or hot gas, a complicated configuration such as a three-way valve, a solenoid valve, or a three-way branch pipe is required to achieve both heating and cooling of in-vehicle devices. No configuration is required.
図1は本開示の第1実施形態における車載機器温調装置を示す模式図である。FIG. 1 is a schematic diagram illustrating an in-vehicle device temperature control apparatus according to the first embodiment of the present disclosure. 第1実施形態の車載機器温調装置における冷却制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the cooling control mode driving | operation in the vehicle equipment temperature control apparatus of 1st Embodiment. 第1実施形態の車載機器温調装置における加熱制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the heating control mode driving | operation in the vehicle equipment temperature control apparatus of 1st Embodiment. 本開示の第2実施形態における車載機器温調装置に用いられる第1絞りを示す概略図である。It is the schematic which shows the 1st aperture_diaphragm | restriction used for the vehicle equipment temperature control apparatus in 2nd Embodiment of this indication. 本開示の第3実施形態における車載機器温調装置を示す模式図である。It is a schematic diagram which shows the vehicle equipment temperature control apparatus in 3rd Embodiment of this indication. 第3実施形態の車載機器温調装置における冷却制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the cooling control mode driving | operation in the vehicle equipment temperature control apparatus of 3rd Embodiment. 第3実施形態の車載機器温調装置における加熱制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the heating control mode driving | operation in the vehicle equipment temperature control apparatus of 3rd Embodiment. 本開示の第4実施形態における車載機器温調装置を示す模式図である。It is a schematic diagram which shows the vehicle equipment temperature control apparatus in 4th Embodiment of this indication. 第4実施形態の車載機器温調装置における冷却制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the cooling control mode driving | operation in the vehicle equipment temperature control apparatus of 4th Embodiment. 第4実施形態の車載機器温調装置における加熱制御モード運転時のモリエル線図である。It is a Mollier diagram at the time of the heating control mode driving | operation in the vehicle equipment temperature control apparatus of 4th Embodiment. 本開示の第5実施形態における車載機器温調装置に用いられる補助熱交換器とドア部材を示す模式図である。It is a schematic diagram which shows the auxiliary heat exchanger and door member which are used for the vehicle equipment temperature control apparatus in 5th Embodiment of this indication. 本開示の第6実施形態における車載機器温調装置を示す模式図である。It is a schematic diagram which shows the vehicle equipment temperature control apparatus in 6th Embodiment of this indication. 本開示の第7実施形態における車載機器温調装置を示す模式図である。It is a schematic diagram which shows the vehicle equipment temperature control apparatus in 7th Embodiment of this indication. 本開示の第8実施形態における車載機器温調装置を示す模式図である。It is a schematic diagram which shows the vehicle equipment temperature control apparatus in 8th Embodiment of this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 以下、本開示の第1実施形態について図1ないし図3を用いて詳細に説明する。この開示の車両はハイブリッド車に限らず、通常のガソリン車でも良いが、冷却サイクルから成る冷凍サイクルを搭載しており、かつ温度を調整する必要のある電池等の車載機器を搭載していることが要件となる。
Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described in detail with reference to FIGS. 1 to 3. The vehicle disclosed in this disclosure is not limited to a hybrid vehicle, but may be an ordinary gasoline vehicle, but it is equipped with a refrigeration cycle consisting of a cooling cycle and equipped with in-vehicle equipment such as a battery whose temperature needs to be adjusted. Is a requirement.
 この第1実施形態では、走行エネルギーを供給する電池5と該電池5の電力によって車輪を駆動する電動発電機(MG)2と、エンジン3とを有するハイブリッド車を一例にとって説明する。電池5は車両に搭載される車載機器の一例として用いられてもよい。 In the first embodiment, a hybrid vehicle having a battery 5 that supplies running energy, a motor generator (MG) 2 that drives wheels by the electric power of the battery 5, and an engine 3 will be described as an example. The battery 5 may be used as an example of an in-vehicle device mounted on the vehicle.
 図1において、ハイブリッドECU(ハイブリッド電子ユニット)1は、電動発電機2およびエンジン3のうち、いずれの駆動力を駆動輪に伝達するかの駆動切替え制御を行う機能、および車載用蓄電装置である電池(二次電池)5の充放電を制御する機能を備えている。 In FIG. 1, a hybrid ECU (hybrid electronic unit) 1 is a function for performing drive switching control as to which driving force is transmitted to driving wheels among a motor generator 2 and an engine 3, and an in-vehicle power storage device. A function of controlling charging / discharging of the battery (secondary battery) 5 is provided.
 また、上記電池5は電池パック21内に複数の電池セルとして収納されている。この電池5は、車両用空調装置100(車両用冷却サイクル装置)の圧縮機(電動圧縮機)11にて消費される電力を電力線11Pにて供給する。 The battery 5 is stored in the battery pack 21 as a plurality of battery cells. The battery 5 supplies power consumed by the compressor (electric compressor) 11 of the vehicle air conditioner 100 (vehicle cooling cycle device) through the power line 11P.
 また、電池5を充電するための図示しない充電装置を備えている。また、充電装置は、電力供給源としての電気スタンドや商業用電源(家庭用電源)に接続されるコンセントを備えており、このコンセントに電源供給源を接続することにより、電池5の充電を行うことができる。更に、車両が坂道を下るときの回生制動時に電動発電機2が発生する電力で、充電装置が二次電池からなる電池5を充電する。 Also, a charging device (not shown) for charging the battery 5 is provided. In addition, the charging device includes a power stand that is connected to a table lamp or a commercial power source (household power source) as a power supply source, and the battery 5 is charged by connecting the power supply source to the outlet. be able to. Furthermore, the charging device charges the battery 5 made up of the secondary battery with the electric power generated by the motor generator 2 during regenerative braking when the vehicle goes down the hill.
 次に、図1の車両用空調装置100に関して説明する。車両用空調装置100は、車室内を空調する空調ユニットをエアコンECU7によって制御するように構成されている。図1では、代表的にエアコンECU7が圧縮機11に制御信号11sを供給している状態のみ図示している。車両用空調装置100は、いわゆるオートエアコンシステムとして構成されている。車両用空調装置100は、冷凍サイクル8の冷媒流れを制御して、車室内を空調する。 Next, the vehicle air conditioner 100 of FIG. 1 will be described. The vehicle air conditioner 100 is configured to control an air conditioning unit that air-conditions the passenger compartment by the air conditioner ECU 7. In FIG. 1, only the state in which the air conditioner ECU 7 typically supplies the control signal 11s to the compressor 11 is illustrated. The vehicle air conditioner 100 is configured as a so-called auto air conditioner system. The vehicle air conditioner 100 controls the refrigerant flow in the refrigeration cycle 8 to air-condition the vehicle interior.
 図示しない空調ユニットは、車両の車室内前方に配置され、内部を送風空気が通過する周知の空調ケースを備えている。空調ケースは、一方側に空気取入口が形成され、他方側に車室内に向かう空気が通過する複数の吹出口が形成される。空調ケースは、空気取入口と吹出口との間に送風空気が通過する通風路を有する。空調ケースの上流側(一方側)には、送風機が設けられている。 The air conditioning unit (not shown) is disposed in front of the vehicle interior of the vehicle and includes a known air conditioning case through which the blown air passes. In the air conditioning case, an air intake is formed on one side, and a plurality of air outlets through which air toward the passenger compartment passes is formed on the other side. The air conditioning case has a ventilation path through which the blown air passes between the air intake and the air outlet. A blower is provided on the upstream side (one side) of the air conditioning case.
 送風機(空調用送風機)は、内外気切替え機構(内外気切替ドアとも言う)およびブロワ含む。この内外気切替えドアは、サーボモータ等のアクチュエータによって駆動され、空気取入口である内気吸込口と外気吸込口との開度を変更する吸込口切替手段を構成している。 The blower (air conditioner blower) includes an inside / outside air switching mechanism (also referred to as an inside / outside air switching door) and a blower. The inside / outside air switching door is driven by an actuator such as a servo motor, and constitutes a suction port switching means for changing the opening degree between the inside air suction port and the outside air suction port which are air intake ports.
 ブロワは、ブロワ駆動回路(図示せず)によって制御されるブロワモータにより回転駆動されて、空調ケース内において、車室内に向かう空気流を発生させる遠心式送風機である。ブロワは、後述する各吹出口から車室内に向けてそれぞれ吹き出される空調風の吹出風量を変更する機能を有する。空調ケースには、送風機から送風された空気を加熱または冷却して空調風とするための空調用熱交換器を成す蒸発器10が設けられている。 The blower is a centrifugal blower that is rotationally driven by a blower motor controlled by a blower drive circuit (not shown) to generate an air flow toward the vehicle interior in the air conditioning case. The blower has a function of changing the amount of air-conditioning air blown out from each air outlet, which will be described later, toward the vehicle interior. The air-conditioning case is provided with an evaporator 10 that forms an air-conditioning heat exchanger for heating or cooling the air blown from the blower to produce conditioned air.
 蒸発器10は、冷媒を使用して空調ケースを通過して車室内に向かう空調風の温度を調整する(冷却する)冷却用熱交換器として機能する。また、蒸発器10の空気下流側には、通風路を通過する空気を、エンジン3のエンジン冷却水と熱交換して加熱する暖房用熱交換器としての図示しないヒータコア、または電気ヒータが設けられている。 The evaporator 10 functions as a cooling heat exchanger that uses refrigerant to adjust (cool) the temperature of the conditioned air that passes through the air conditioning case and travels toward the vehicle interior. A heater core (not shown) or an electric heater as a heating heat exchanger that heats the air passing through the ventilation passage by exchanging heat with the engine cooling water of the engine 3 is provided on the air downstream side of the evaporator 10. ing.
 エンジン冷却水が循環する冷却水回路は、電動ウォータポンプによって、エンジン3のウォータジャケットで暖められたエンジン冷却水を循環させる回路である。この回路には、ラジエータ(図示せず)、サーモスタット(図示せず)およびヒータコアが設けられている。 The cooling water circuit through which the engine cooling water circulates is a circuit that circulates the engine cooling water heated by the water jacket of the engine 3 by an electric water pump. This circuit is provided with a radiator (not shown), a thermostat (not shown), and a heater core.
 ヒータコアの空気上流側には、車室内の温度調節を行うためのエアミックスドアが設けられている。エアミックスドアは、サーボモータ等のアクチュエータにより駆動される。また、エアミックスドアは、各吹出口から車室内に向けて、それぞれ吹出される空調風の吹出温度を変更する。換言すると、エアミックスドアは、蒸発器10を通過する空気と、ヒータコア等の通過する空気との風量比率を調整するエアミックス手段として機能する。 An air mix door for adjusting the temperature in the passenger compartment is provided on the upstream side of the heater core. The air mix door is driven by an actuator such as a servo motor. Moreover, an air mix door changes the blowing temperature of the conditioned air blown from each blower outlet toward the vehicle interior. In other words, the air mix door functions as an air mix means for adjusting the air volume ratio between the air passing through the evaporator 10 and the air passing through the heater core or the like.
 蒸発器10は、冷却サイクルから成る冷凍サイクル8の一構成部品を成すものである。また、電池5の直流出力は、図示しないインバータで三相交流に変換される。この三相交流が入力される電動機により駆動されて、冷媒を吸入圧縮してから吐出する圧縮機11を上記冷凍サイクル8に含んでいる。 The evaporator 10 is a component of the refrigeration cycle 8 composed of a cooling cycle. Further, the direct current output of the battery 5 is converted into three-phase alternating current by an inverter (not shown). The refrigeration cycle 8 includes a compressor 11 that is driven by an electric motor to which the three-phase alternating current is input and sucks and compresses the refrigerant and then discharges the refrigerant.
 また、冷凍サイクル8は、圧縮機11より吐出された冷媒を凝縮液化させる凝縮器12と、この凝縮器12より流入した液冷媒を気液分離するサブクールモジュレータ15と、このサブクールモジュレータ15より流入した液冷媒を断熱膨張させる第1絞り16および第2絞り17と、第2絞り17より流入した気液二相状態の冷媒を蒸発気化させる蒸発器10とを含んでいる。サブクールモジュレータ15は凝縮器12の冷媒流れ下流側に配置されて冷媒を気液分離する液溜め機構の一例として用いられてもよい。 Further, the refrigeration cycle 8 has a condenser 12 that condenses and liquefies the refrigerant discharged from the compressor 11, a subcool modulator 15 that gas-liquid separates the liquid refrigerant that has flowed from the condenser 12, and the subcool modulator 15 that has flowed in. A first throttle 16 and a second throttle 17 for adiabatic expansion of the liquid refrigerant, and an evaporator 10 for evaporating and evaporating the gas-liquid two-phase refrigerant flowing from the second throttle 17 are included. The subcool modulator 15 may be used as an example of a liquid storage mechanism that is arranged on the downstream side of the refrigerant flow of the condenser 12 and separates the refrigerant into gas and liquid.
 圧縮機11が回転して、蒸発器10による空気冷却作用が行われ、圧縮機11の回転が停止(オフ)した時に、圧縮機11による冷媒の吐出が無くなり、蒸発器10による空気冷却作用が停止される。また、電池5は電動発電機(MG)2の電力でもエンジン3で駆動される図示しない発電機でも充電される。 When the compressor 11 rotates and the air cooling action by the evaporator 10 is performed and the rotation of the compressor 11 is stopped (off), the refrigerant discharge by the compressor 11 is stopped, and the air cooling action by the evaporator 10 is performed. Stopped. The battery 5 is charged by the electric power of the motor generator (MG) 2 or by a generator (not shown) driven by the engine 3.
 また、凝縮器12は、ハイブリッド車が走行する際に生じる走行風を受け易い場所に配設され、内部を流れる冷媒と、図示しない室外ファンにより送風される外気または走行風とを熱交換する室外熱交換器を構成している。 In addition, the condenser 12 is disposed in a place where it is easy to receive traveling wind generated when the hybrid vehicle travels. The condenser 12 performs outdoor heat exchange between refrigerant flowing inside and outside air or traveling wind blown by an outdoor fan (not shown). It constitutes a heat exchanger.
 空調ケースの最も下流側には、吹出口切替部を構成する、それぞれ、デフロスタ開口部、フェイス開口部およびフット開口部が形成されている。各吹出口の内側には、吹出口切替ドアが回動自在に取り付けられている。吹出口切替ドアは、サーボモータ等のアクチュエータによりそれぞれ駆動されて、吹出口モードを周知のフェイスモード、バイレベルモード、フットモード、フットデフロスタモードまたはデフロスタモードのいずれに切り替えることが可能である。 The most downstream side of the air conditioning case is formed with a defroster opening, a face opening, and a foot opening, respectively, which constitute the outlet switching unit. A blower outlet switching door is rotatably mounted inside each blower outlet. The air outlet switching door is driven by an actuator such as a servo motor, and can switch the air outlet mode to any of the well-known face mode, bi-level mode, foot mode, foot defroster mode, or defroster mode.
 次に、車両用空調装置100の電気的構成に関して説明する。図1のエンジン3の始動および停止を司る図示しないイグニッションスイッチがオン操作(ON)されるとIG信号が出る。IG信号が出された時に、車両に搭載された車載電源である電池5から直流電源がエアコンECU7、ハイブリッドECU1、および電池制御装置25等に供給され、演算処理や制御処理を開始する。 Next, the electrical configuration of the vehicle air conditioner 100 will be described. When an ignition switch (not shown) for starting and stopping the engine 3 in FIG. 1 is turned on (ON), an IG signal is output. When the IG signal is issued, DC power is supplied from the battery 5 which is an in-vehicle power source mounted on the vehicle to the air conditioner ECU 7, the hybrid ECU 1, the battery control device 25 and the like, and arithmetic processing and control processing are started.
 エアコンECU7には、エンジンECUから出力される通信信号、車室内前面に設けられた操作パネル上の各スイッチからのスイッチ信号、および各センサからのセンサ信号が入力される。エアコンECU7は、エンジン3の駆動要求(エンジンオン要求)を行う。また、エンジン3の停止制御を行う。また、エアコンECU7には、蒸発器10を通過した直後の空気温度(蒸発器後温度TE)を検出するエバ後温度検出手段としてのエバ後温度センサ等が接続されているが、図1では図示を省略している。 The air conditioner ECU 7 receives a communication signal output from the engine ECU, a switch signal from each switch on an operation panel provided on the front surface of the vehicle interior, and a sensor signal from each sensor. The air conditioner ECU 7 makes a drive request for the engine 3 (engine-on request). Further, stop control of the engine 3 is performed. The air conditioner ECU 7 is connected with a post-evaporation temperature sensor or the like as post-evaporation temperature detection means for detecting the air temperature immediately after passing through the evaporator 10 (post-evaporator temperature TE). Is omitted.
 次に、エアコンECU7による概略制御を説明する。イグニッションスイッチがオンされて、エアコンECU7に直流電源が供給されると、初期化(イニシャライズ)し、各種操作スイッチからのスイッチ信号を読込む。 Next, schematic control by the air conditioner ECU 7 will be described. When the ignition switch is turned on and DC power is supplied to the air conditioner ECU 7, it is initialized and reads switch signals from various operation switches.
 次に、各種センサからのセンサ信号を読込み、目標吹出温度TAOを演算する。そして、この目標吹出温度TAOおよび上記各種センサからの信号により、エアミックスドア等のアクチュエータの制御値等を算出する。 Next, sensor signals from various sensors are read to calculate a target blowing temperature TAO. And the control value etc. of actuators, such as an air mix door, are computed from this target blowing temperature TAO and the signal from the said various sensors.
 また、エアコンECU7は、ブロワ電圧を決定する処理を実施する。また、吹出口モード決定する。更に、圧縮機回転数決定処理を実施する。その他、必要に応じて、電気ヒータの作動本数を決定する処理および要求水温決定処理等を実施する。 In addition, the air conditioner ECU 7 performs a process for determining the blower voltage. Also, the outlet mode is determined. Furthermore, a compressor rotation speed determination process is performed. In addition, a process for determining the number of operating electric heaters and a required water temperature determination process are performed as necessary.
 車両用空調装置100の冷凍サイクル(冷却サイクル)は、冷媒流れの順に圧縮機11、凝縮器12、液溜め機構の一例であるサブクールモジュレータ15、第1絞り16、電池温調用熱交換器を成す補助熱交換器20a、第2絞り17、蒸発器10が配置されている。補助熱交換器20aは、冷媒が車載機器と熱交換して車載機器が加熱もしくは冷却される熱交換部の一例として用いられてもよい。 The refrigeration cycle (cooling cycle) of the vehicle air conditioner 100 includes a compressor 11, a condenser 12, a subcool modulator 15, which is an example of a liquid storage mechanism, a first throttle 16, and a battery temperature control heat exchanger in the order of refrigerant flow. The auxiliary heat exchanger 20a, the second throttle 17 and the evaporator 10 are arranged. The auxiliary heat exchanger 20a may be used as an example of a heat exchange unit in which the refrigerant exchanges heat with the in-vehicle device to heat or cool the in-vehicle device.
 電池パック21内に配置される電池温度センサ22、熱交換部温度センサ23の信号が電池制御装置25に取り込まれ、算出条件に基づいて第1絞り16の開度が制御される。第1絞り16には全開機能付電気式膨張弁を用いており、電池制御装置25からの信号に基づいて任意に開度が変更できる。電池制御装置25は、少なくとも第1絞り16の開度を制御する制御装置の一例として用いてもよい。代わりに、エアコンECU7を当該制御装置の一例として用いてもよい。 Signals of the battery temperature sensor 22 and the heat exchange unit temperature sensor 23 arranged in the battery pack 21 are taken into the battery control device 25, and the opening degree of the first throttle 16 is controlled based on the calculation conditions. An electric expansion valve with a fully open function is used for the first throttle 16, and the opening degree can be arbitrarily changed based on a signal from the battery control device 25. The battery control device 25 may be used as an example of a control device that controls at least the opening of the first diaphragm 16. Instead, the air conditioner ECU 7 may be used as an example of the control device.
 補助熱交換器20aは、電池パック内21におけるケース27内の送風路に配置され、電池温調用ブロワ26にて送風された熱交換流体を成す空気と冷却サイクルの冷媒とを熱交換させる。 The auxiliary heat exchanger 20a is arranged in the air passage in the case 27 in the battery pack 21 and exchanges heat between the air constituting the heat exchange fluid blown by the battery temperature adjusting blower 26 and the refrigerant of the cooling cycle.
 電池パック21内に配置された電池温度センサ22の検出結果に基づき、電池温度が最適作動範囲温度を上回った場合(例えば40℃以上)には、冷却が必要と判断して「冷却制御モード」で運転を開始する。具体的には、補助熱交換器20aの温度を冷却目標温度となるように第1絞り16の開度を第2絞り17よりも小さくする。 Based on the detection result of the battery temperature sensor 22 disposed in the battery pack 21, when the battery temperature exceeds the optimum operating range temperature (for example, 40 ° C. or more), it is determined that cooling is necessary and “cooling control mode” To start driving. Specifically, the opening degree of the first throttle 16 is made smaller than that of the second throttle 17 so that the temperature of the auxiliary heat exchanger 20a becomes the cooling target temperature.
 電池パック21内に配置された電池温度センサ22の検出結果に基づき、
電池温度が
最適作動範囲温度を下回った場合(例えば10℃以下)には、加熱が必要と判断して「加熱制御モード」で第1絞り16を運転する。具体的には、補助熱交換器20aの温度を加熱目標温度となるように、第1絞り16の開度を第2絞り17より大きくする。
Based on the detection result of the battery temperature sensor 22 arranged in the battery pack 21,
When the battery temperature falls below the optimum operating range temperature (for example, 10 ° C. or less), it is determined that heating is necessary, and the first throttle 16 is operated in the “heating control mode”. Specifically, the opening degree of the first throttle 16 is made larger than that of the second throttle 17 so that the temperature of the auxiliary heat exchanger 20a becomes the heating target temperature.
 冷却制御モードおよび加熱モードの両モードとも、第2絞り17の開度は従来の車両用空調装置100の制御と同様である。つまり、第2絞り17の開度は、蒸発器10の出口のスーパーヒート(SH)が所定範囲内となるように制御される。 In both the cooling control mode and the heating mode, the opening degree of the second throttle 17 is the same as the control of the conventional vehicle air conditioner 100. That is, the opening degree of the second throttle 17 is controlled so that the superheat (SH) at the outlet of the evaporator 10 is within a predetermined range.
 第2絞り17は、電気式膨張弁または機械式膨張弁(スーパーヒートエキスパンションバルブ)を用いる。圧縮機11で圧縮されて蓄熱された冷媒は、車両前方のラジエーター前などに配置された凝縮器12で走行風や電動ファンによる強制空冷で冷却され、ガス状の冷媒が液化される。液化された冷媒は、室内エアコンユニットの蒸発器10に送られる。蒸発器10には第2絞り17を成す上記機械式膨張弁(スーパーヒートエキスパンションバルブ)から構成されており、ここで液化された冷媒が気化されることにより、車室内を冷房する。 The second diaphragm 17 uses an electric expansion valve or a mechanical expansion valve (super heat expansion valve). The refrigerant that has been compressed and stored by the compressor 11 is cooled by running air or forced air cooling by an electric fan in a condenser 12 disposed in front of a radiator in front of the vehicle, and the gaseous refrigerant is liquefied. The liquefied refrigerant is sent to the evaporator 10 of the indoor air conditioner unit. The evaporator 10 is composed of the mechanical expansion valve (super heat expansion valve) forming the second throttle 17, and the interior of the vehicle is cooled by evaporating the liquefied refrigerant.
 冷房のために空調風と熱交換を終えた冷媒は、圧縮機11に返送され、一部の余剰の冷媒は液溜め機構の一例となるサブクールモジュレータ15に蓄えられて再液化および内部の乾燥剤による冷媒の除湿が行われる。 
 この「冷却制御モード」運転時のモリエル線図(p-h線図)を図2に示す。p-h線図(圧力-比エンタルピー線図)は,縦軸に圧力、横軸に比エンタルピーをとり、実用上の便利さから縦軸は圧力の対数で目盛られている。
The refrigerant that has exchanged heat with the conditioned air for cooling is returned to the compressor 11, and a part of the surplus refrigerant is stored in a subcool modulator 15 as an example of a liquid storage mechanism for reliquefaction and an internal desiccant. The refrigerant is dehumidified by.
FIG. 2 shows a Mollier diagram (ph diagram) during this “cooling control mode” operation. The ph diagram (pressure-specific enthalpy diagram) has pressure on the vertical axis and specific enthalpy on the horizontal axis, and the vertical axis is scaled in logarithm of pressure for practical convenience.
 「加熱制御モード」運転時のモリエル線図(p-h線図)を図3に示す。このように、この冷却サイクルを用いた車載機器の一例となる電池5の温度調節(冷却および暖房)を行う車載機器温調装置は、多数の電磁弁や3方分岐弁(3方弁)などの複雑な回路構成を必要とすることなく、通常の冷却サイクルに、第1絞り16と、電池5と熱交換可能な補助熱交換器20aを付加するだけで、電池5の冷却だけでなく加熱(暖房)もできる。故に、構成が簡素で低コストとなるのはもちろん、ヒートポンプやホットガス配管を持たない車両にも使用できるため、多くの車両への適用が可能となる。 The Mollier diagram (ph diagram) during the “heating control mode” operation is shown in FIG. As described above, the on-vehicle equipment temperature control device for adjusting the temperature (cooling and heating) of the battery 5 as an example of the on-vehicle equipment using this cooling cycle includes a large number of electromagnetic valves, three-way branch valves (three-way valves), and the like. In addition to cooling the battery 5, it is possible to heat not only by cooling the battery 5, but by adding the first throttle 16 and the auxiliary heat exchanger 20 a that can exchange heat with the battery 5 to a normal cooling cycle. (Heating) is also possible. Therefore, since the configuration is simple and the cost is low, it can be used for a vehicle that does not have a heat pump or a hot gas pipe, so that it can be applied to many vehicles.
 サブクールモジュレータ15(液溜め機構)の後流に、電池5と熱交換可能な補助熱交換器20aを配置しているため、加熱時はサブクール部での加熱が可能となり、比エンタルピが図2および図3のEXのように拡大するため、冷凍サイクルの効率が向上する。 Since the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is disposed downstream of the subcool modulator 15 (liquid storage mechanism), heating at the subcool portion is possible during heating, and the specific enthalpy is shown in FIG. Since it expands like EX of FIG. 3, the efficiency of a refrigerating cycle improves.
 第2絞り17の開度は、上述したように、通常の車両用空調装置の制御と同様である。蒸発器10出口のスーパーヒート(SH)が所定範囲となるように制御しているため、通常の冷房用冷凍サイクルから大きな変更が無く、電池5との熱交換器能を追加できる。 As described above, the opening degree of the second throttle 17 is the same as the control of the normal vehicle air conditioner. Since the superheat (SH) at the outlet of the evaporator 10 is controlled to be within a predetermined range, there is no significant change from the normal cooling refrigeration cycle, and the heat exchanger function with the battery 5 can be added.
 電池5の加熱時に電池5と熱交換可能な補助熱交換器20aの冷媒温度が高すぎる場合、電池5の劣化を招く恐れがある。一般に、電池温度は40℃以下が最適とされ、それ以上の温度では急激に電池5が劣化する。この第1実施形態の構成を用いれば、車両用空調装置100の空調運転条件によって高圧の冷媒温度が高すぎる場合でも、第1絞り16によって電池5と熱交換可能な補助熱交換器20aの冷媒温度を適正化でき、電池5の高温劣化を防止できる。 If the refrigerant temperature of the auxiliary heat exchanger 20a that can exchange heat with the battery 5 is too high when the battery 5 is heated, the battery 5 may be deteriorated. In general, the battery temperature is optimally 40 ° C. or lower, and the battery 5 rapidly deteriorates at higher temperatures. If the configuration of the first embodiment is used, the refrigerant of the auxiliary heat exchanger 20a that can exchange heat with the battery 5 by the first throttle 16 even when the high-pressure refrigerant temperature is too high due to the air-conditioning operation conditions of the vehicle air conditioner 100. The temperature can be optimized and the high temperature deterioration of the battery 5 can be prevented.
 電池5の冷却時に電池5と熱交換可能な補助熱交換器20aの冷媒温度が低すぎる場合、電池5の表面に結露が生じる場合がある。電池パック21内は高い絶縁性が求められるが、電池5の表面に結露が生じると、水分により電気短絡が生じる可能性がある。 If the refrigerant temperature of the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is too low when the battery 5 is cooled, condensation may occur on the surface of the battery 5. Although high insulation is required in the battery pack 21, if condensation occurs on the surface of the battery 5, an electrical short circuit may occur due to moisture.
 しかし、上記構成を用いれば、車両用空調装置100の空調運転条件によって、蒸発器10の冷媒温度が低い場合でも、第1絞り16によって電池5と熱交換可能な補助熱交換器20aの冷媒温度を適正化でき、電池5表面への結露を防止できる。更に、冷却サイクルを用いて、冷却だけでなく加熱もできる。 However, if the above configuration is used, even if the refrigerant temperature of the evaporator 10 is low due to the air conditioning operation conditions of the vehicle air conditioner 100, the refrigerant temperature of the auxiliary heat exchanger 20 a that can exchange heat with the battery 5 by the first throttle 16. Can be optimized, and condensation on the surface of the battery 5 can be prevented. Furthermore, the cooling cycle can be used for heating as well as cooling.
 次に、第1実施形態の作動について説明する。図1の圧縮機11で圧縮された冷媒を凝縮器12に供給して、冷媒の熱を凝縮器12で放熱し、更に蒸発器10に冷媒を導いて蒸発器10を介して空調風を冷却する冷却サイクルを用いた車両用空調装置100を車載機器温調装置内に有している。 Next, the operation of the first embodiment will be described. The refrigerant compressed by the compressor 11 of FIG. 1 is supplied to the condenser 12, the heat of the refrigerant is radiated by the condenser 12, and the refrigerant is guided to the evaporator 10 to cool the conditioned air through the evaporator 10. The vehicle air conditioner 100 using the cooling cycle is provided in the in-vehicle equipment temperature control device.
 そして、凝縮器12の冷媒流れ下流側に配置される高圧側の液溜め機構の一例のサブクールモジュレータ15のさらに下流側に、第1絞り16、冷媒が流れる熱交換部(補助熱交換器20a)、第2絞り17、蒸発器10が順番に配置されている。 The first throttle 16 and the heat exchange section (auxiliary heat exchanger 20a) through which the refrigerant flows further downstream of the subcool modulator 15 as an example of the high-pressure side liquid storage mechanism disposed on the downstream side of the refrigerant flow of the condenser 12. The second diaphragm 17 and the evaporator 10 are arranged in order.
 車載機器の一例となる電池5の温度に基づき、車載機器(電池5)と熱交換可能な補助熱交換器20aで熱交換流体(空気)を介して電池5が加熱または冷却されるように第1絞り16の開度を制御する制御部を電池制御装置25内に備えている。 Based on the temperature of the battery 5 as an example of the in-vehicle device, the auxiliary heat exchanger 20a capable of exchanging heat with the in-vehicle device (battery 5) is heated or cooled via the heat exchange fluid (air). The battery control device 25 is provided with a control unit that controls the opening degree of the first diaphragm 16.
 これによれば、複雑な構成が不要となり、簡素化が可能となる。またサブクールで加熱することにより比エンタルピの幅が広がり、冷凍サイクルの高効率化が可能となる。ちなみに、ヒートポンプやホットガスでは、電池5の加熱と冷却を両立させるために3方弁や多数の電磁弁等、複雑な構成が必要となるが、この第1実施形態ではそれらの構成が不要である。 According to this, a complicated configuration becomes unnecessary and simplification is possible. In addition, heating by subcooling increases the range of specific enthalpies, making it possible to increase the efficiency of the refrigeration cycle. Incidentally, in the heat pump and the hot gas, a complicated configuration such as a three-way valve and a number of electromagnetic valves is required in order to achieve both heating and cooling of the battery 5, but in the first embodiment, those configurations are unnecessary. is there.
 更に、車載機器(電池5)の温度が第1所定値(40℃)以上の場合は、第1絞り16の開度が第2絞り17の開度よりも小さくなるよう制御される。一方、車載機器(電池5)の温度が第2所定値(10℃)以下の場合は、第1絞り16の開度が第2絞り17の開度よりも大きくなるよう制御される。 Furthermore, when the temperature of the in-vehicle device (battery 5) is equal to or higher than the first predetermined value (40 ° C.), the opening of the first throttle 16 is controlled to be smaller than the opening of the second throttle 17. On the other hand, when the temperature of the in-vehicle device (battery 5) is equal to or lower than the second predetermined value (10 ° C.), the opening of the first throttle 16 is controlled to be larger than the opening of the second throttle 17.
 これによれば、車載機器(電池5)の温度が比較的高い場合に、車載機器(電池5)と熱交換可能な熱交換部に低温低圧の冷媒が供給されて、車載機器(電池5)を冷却することができ、車載機器(電池5)の温度が低い場合は、車載機器(電池5)と熱交換可能な熱交換部に高温高圧の冷媒が供給されて車載機器(電池5)を加熱することができる。 According to this, when the temperature of the in-vehicle device (battery 5) is relatively high, the low-temperature and low-pressure refrigerant is supplied to the heat exchanging part that can exchange heat with the in-vehicle device (battery 5), and the in-vehicle device (battery 5). When the temperature of the in-vehicle device (battery 5) is low, the high-temperature and high-pressure refrigerant is supplied to the heat exchange section that can exchange heat with the in-vehicle device (battery 5), and the in-vehicle device (battery 5) is Can be heated.
 なお、電池5は、狭い範囲の最適温度域に制御されるのでなく、電池5としても機能が著しく阻害されない程度に加熱または冷却され、同時に運転される車両用空調装置100の性能が低下しないようにされる。 Note that the battery 5 is not controlled within a narrow optimum temperature range, but is heated or cooled to such an extent that the function of the battery 5 is not significantly hindered, so that the performance of the vehicle air conditioner 100 operated simultaneously is not deteriorated. To be.
 凝縮器12部分とサブクールモジュレータ15は、凝縮部と過冷却部との間に気液分離器が配置され液冷媒を更に冷やすことで液冷媒自体が持つエンタルピを増大させるサブクール式の凝縮器として用いられる。そして、サブクール式の凝縮器の後流に、電池5と熱交換可能な補助熱交換器20aを配置している。 The condenser 12 portion and the subcool modulator 15 are used as a subcool type condenser in which a gas-liquid separator is disposed between the condenser portion and the supercooling portion, and the enthalpy of the liquid refrigerant itself is increased by further cooling the liquid refrigerant. It is done. An auxiliary heat exchanger 20a that can exchange heat with the battery 5 is disposed downstream of the subcool condenser.
 これによれば、サブクール式の凝縮器の後流に電池5と熱交換可能な補助熱交換器20aを配置しているから、補助熱交換器20aを加熱または冷却する場合に、冷媒のサブクール部での加熱または冷却が可能となり、比エンタルピが拡大するため冷凍サイクルの効率が向上する。 According to this, since the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is arranged in the downstream of the subcool type condenser, when the auxiliary heat exchanger 20a is heated or cooled, the subcool portion of the refrigerant Heating or cooling is possible, and the specific enthalpy is increased, so that the efficiency of the refrigeration cycle is improved.
 車載機器の一例を成す電池5は、車両走行エネルギーを発生し、かつ圧縮機11を駆動するエネルギーを供給する二次電池5から成るから、二次電池5の温度を簡単な構成で管理することができ、二次電池の充放電特性を良好に保ち充放電効率を良くすることができる。これにより、圧縮機11を持つ車両用空調装置100を含んだ車載機器温調装置全体の効率が良くなる。従って、車両用空調装置100の冷媒を活用して二次電池5を温度調節しても、電池5を含む車両用空調装置100全体の性能または効率を悪化させることが少ない。 The battery 5, which is an example of the in-vehicle device, includes the secondary battery 5 that generates vehicle travel energy and supplies the energy for driving the compressor 11, and therefore manages the temperature of the secondary battery 5 with a simple configuration. The charge / discharge characteristics of the secondary battery can be kept good and the charge / discharge efficiency can be improved. Thereby, the efficiency of the whole vehicle equipment temperature control apparatus containing the vehicle air conditioner 100 with the compressor 11 improves. Therefore, even if the temperature of the secondary battery 5 is adjusted using the refrigerant of the vehicle air conditioner 100, the performance or efficiency of the entire vehicle air conditioner 100 including the battery 5 is hardly deteriorated.
 以下に、第1実施形態における作用効果をまとめて記載する。電池5の温度が第1所定値以上の場合は、第1絞り16の開度が第2絞り17の開度よりも小さくなるよう制御されている。また、電池5の温度が第1所定値より低温の第2所定値以下の場合は、第1絞り16の開度が第2絞り17の開度よりも大きくなるよう制御装置(7、25)が制御している。 Hereinafter, the operational effects of the first embodiment will be described together. When the temperature of the battery 5 is equal to or higher than the first predetermined value, the opening of the first throttle 16 is controlled to be smaller than the opening of the second throttle 17. In addition, when the temperature of the battery 5 is equal to or lower than the second predetermined value lower than the first predetermined value, the control device (7, 25) so that the opening degree of the first throttle 16 becomes larger than the opening degree of the second throttle 17. Is in control.
 これによれば、車載機器の温度が高すぎる場合は、車載機器と熱交換可能な熱交換部に低温低圧の冷媒が供給されて車載機器を冷却することができ、車載機器の温度が低すぎる場合は、車載機器と熱交換可能な熱交換部に高温高圧の冷媒が供給されて車載機器を加熱することができる。 According to this, when the temperature of the in-vehicle device is too high, the low-temperature and low-pressure refrigerant can be supplied to the heat exchanging part capable of exchanging heat with the in-vehicle device to cool the in-vehicle device, and the temperature of the in-vehicle device is too low. In this case, the high-temperature and high-pressure refrigerant is supplied to the heat exchanging portion that can exchange heat with the in-vehicle device, and the in-vehicle device can be heated.
 更に、凝縮器12とサブクールモジュレータ15は、凝縮部と過冷却部との間に気液分離器が配置され液冷媒を更に冷やすことで液冷媒自体が持つ比エンタルピを増大させるサブクール式の凝縮器からなる。そして、サブクール式の凝縮器の後流に電池5と熱交換可能な補助熱交換器20aを配置している。 Further, the condenser 12 and the subcooling modulator 15 are a subcooling type condenser in which a gas-liquid separator is disposed between the condensing unit and the supercooling unit, and the specific enthalpy of the liquid refrigerant itself is increased by further cooling the liquid refrigerant. Consists of. An auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 is arranged downstream of the subcool condenser.
 これによれば、サブクール式の凝縮器の後流に熱交換部を配置しているから、熱交換部を加熱する場合は冷媒のサブクール部での加熱が可能となり、エンタルピが拡大するため冷凍サイクルの効率が向上する。 According to this, since the heat exchanging part is arranged downstream of the subcool type condenser, when the heat exchanging part is heated, the refrigerant can be heated in the subcool part, and the enthalpy is expanded, so that the refrigeration cycle Increases efficiency.
 次に、車載機器は、圧縮機を駆動するエネルギーを発生する二次電池5から成る。これによれば、二次電池の温度を簡単な構成で管理することができ、二次電池の充放電特性を良好に保ち効率を良くすることができる。また、圧縮機を持つ車両用空調装置を含んだ車載機器温調装置全体の効率が良くなる。これにより、車両用空調装置の冷媒を活用して二次電池を温度調節しても、二次電池を含めた車両用空調装置全体の性能向上または効率向上に寄与する。
(第2実施形態)
 次に、本開示の第2実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。図4は、本開示の第2実施形態において第1絞り16として使用するブリードポート31と電磁弁部(弁部とも言う)32とを有するブリード型電磁弁から成る第1絞り16の概略を示している。なお、第2実施形態のその他の構成は、第1実施形態と同一である。
Next, the in-vehicle device includes the secondary battery 5 that generates energy for driving the compressor. According to this, the temperature of the secondary battery can be managed with a simple configuration, the charge / discharge characteristics of the secondary battery can be kept good, and the efficiency can be improved. Moreover, the efficiency of the whole vehicle equipment temperature control apparatus containing the vehicle air conditioner with a compressor improves. Thereby, even if the temperature of the secondary battery is adjusted by using the refrigerant of the vehicle air conditioner, it contributes to improving the performance or efficiency of the entire vehicle air conditioner including the secondary battery.
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof will be omitted, and different configurations and features will be described. FIG. 4 shows an outline of the first throttle 16 composed of a bleed-type electromagnetic valve having a bleed port 31 and an electromagnetic valve part (also referred to as a valve part) 32 used as the first throttle 16 in the second embodiment of the present disclosure. ing. In addition, the other structure of 2nd Embodiment is the same as 1st Embodiment.
 第1実施形態では、第1絞り16に電気式膨張弁を用い、制御信号により電池5と熱交換可能な補助熱交換器20aの冷媒温度が目標温度となるよう制御したが、第2実施形態では、図4のように、第1絞り16にブリードポート31(固定穴)を持ったブリード型電磁弁を用いている。電池5の温度が最適作動温度範囲を上回り冷却が必要となった場合は、弁部32を閉状態として、ブリードポート31の穴径に関連する固定絞りとする。 In the first embodiment, an electric expansion valve is used for the first throttle 16, and the control is performed so that the refrigerant temperature of the auxiliary heat exchanger 20a that can exchange heat with the battery 5 becomes the target temperature by the control signal. Then, as shown in FIG. 4, a bleed type solenoid valve having a bleed port 31 (fixed hole) in the first throttle 16 is used. When the temperature of the battery 5 exceeds the optimum operating temperature range and cooling is required, the valve portion 32 is closed and a fixed throttle related to the hole diameter of the bleed port 31 is set.
 また、電池5の温度が最適作動温度範囲を下回り、加熱が必要となった場合は、電磁弁部32を全開状態とする。このようにすることで、第1絞り16の構成が簡素になる上、制御ロジックも簡素になるため、機器のコストダウンや制御適合工数が削減できる。 Further, when the temperature of the battery 5 falls below the optimum operating temperature range and heating is necessary, the electromagnetic valve part 32 is fully opened. By doing in this way, since the structure of the 1st aperture_diaphragm | restriction 16 becomes simple and a control logic also becomes simple, the cost reduction of an apparatus and the control adaptation man-hour can be reduced.
 なお、この種のブリード型電磁弁は種々のものを使用できるが、例えば、特開2002-286152号公報に開示されたブリード型比例電磁弁を採用することができる。なお、比例電磁弁でなく、オンオフ弁として使用し、制御を簡素化しても良い。 Various types of bleed-type solenoid valves of this type can be used. For example, a bleed-type proportional solenoid valve disclosed in Japanese Patent Laid-Open No. 2002-286152 can be employed. Note that the control may be simplified by using an on / off valve instead of a proportional solenoid valve.
 第2実施形態の作用効果を以下に説明する。第2実施形態においては、第1絞り16は、全閉または全開が可能な弁部32と該弁部32と並列の流路に形成されたブリードポート31とを有している。そして、弁部32が全閉時でも一定の開口面積を持つブリードポート31から冷媒が流れるようにしている。その上で、電池5を冷却する場合は、弁部32を全閉としてブリードポート31による固定絞りが構成される。また、電池5を加熱する場合は弁部32が全開となるよう制御される。 The effects of the second embodiment will be described below. In the second embodiment, the first throttle 16 has a valve part 32 that can be fully closed or fully opened, and a bleed port 31 formed in a flow path parallel to the valve part 32. And even if the valve part 32 is fully closed, a refrigerant | coolant flows from the bleed port 31 with a fixed opening area. In addition, when the battery 5 is cooled, a fixed throttle by the bleed port 31 is configured with the valve portion 32 fully closed. Further, when the battery 5 is heated, the valve portion 32 is controlled to be fully opened.
 これによれば、第1絞りは全閉または全開が可能な弁部と該弁部と並列の流路に配置されたブリードポートとを有し、弁部が全閉時でも一定の開口面積を持つブリードポートから冷媒が流れるようにしたから、簡単な構成で第1絞りを構成し、車載機器の冷却および加熱を行うことができる。
(第3実施形態)
 次に、本開示の第3実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。第1および第2実施形態では、電池5の温度により「冷却制御モード」および「加熱制御モード」のうちいずれかを判定して、電池5と熱交換可能な補助交換器20の温度が目標温度となるように、第1絞り16を制御していたが、この第3実施形態では、蒸発器10の出口側のスーパーヒート制御(エバ出口スーパーヒート制御)のみを制御する。
According to this, the first throttle has a valve part that can be fully closed or fully opened and a bleed port arranged in a flow path parallel to the valve part, and has a constant opening area even when the valve part is fully closed. Since the refrigerant flows from the bleed port, the first throttle can be configured with a simple configuration, and the on-vehicle equipment can be cooled and heated.
(Third embodiment)
Next, a third embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In the first and second embodiments, either the “cooling control mode” or the “heating control mode” is determined based on the temperature of the battery 5, and the temperature of the auxiliary exchanger 20 that can exchange heat with the battery 5 is the target temperature. However, in the third embodiment, only superheat control (evacuation superheat control) on the outlet side of the evaporator 10 is controlled.
 図5の構成における冷却制御モード運転時のモリエル線図を図6に示す。また、加熱制御モード運転時のモリエル線図を図7に示す。「冷却制御モード」と判定された場合は、図6のように、第1絞り16を蒸発器出口側がスーパーヒート状態と成るようにエバ出口スーパーヒート(SH)制御を実行する。同時に、第2絞り17は、全開状態とする。 FIG. 6 shows a Mollier diagram during the cooling control mode operation in the configuration of FIG. Moreover, the Mollier diagram at the time of heating control mode driving | operation is shown in FIG. When it is determined as the “cooling control mode”, as shown in FIG. 6, the evaporative outlet superheat (SH) control is executed so that the first throttle 16 is in the superheated state on the evaporator outlet side. At the same time, the second diaphragm 17 is fully opened.
 一方、「加熱制御モード」と判定された場合は、図7のように、第1絞り16を全開状態とし、第2絞り17を蒸蒸発器出口側が所定のスーパーヒート状態と成るようにエバ出口スーパーヒート(SH)制御を実行する。 On the other hand, when it is determined as the “heating control mode”, as shown in FIG. 7, the first throttle 16 is fully opened, and the second throttle 17 is placed in the evaporator outlet so that the vaporizer outlet side is in a predetermined superheat state. Superheat (SH) control is executed.
 この第3実施形態における電池温度検出方法は、第1および第2実施形態と同様であるが、検出結果のフィードバック制御が、蒸発器10の出口側のスーパーヒート制御(エバ出口スーパーヒート制御)のみとなるため、全体の制御が簡素となる。 The battery temperature detection method in the third embodiment is the same as that in the first and second embodiments, but the feedback control of the detection result is only superheat control on the outlet side of the evaporator 10 (eva outlet superheat control). Therefore, overall control is simplified.
 蒸発器10の出口側がスーパーヒート状態と成るように制御するために、一例として従来の空調用に装着されている蒸発器フィン温度を検出するサーミスタ41(図5)と蒸発器出口側の冷媒温度を検出する冷媒温度センサ42を用いてスーパーヒート状態を検出している。なお、スーパーヒート状態が検出できれば他の手段を用いることも可能である。 In order to control the outlet side of the evaporator 10 to be in a superheat state, as an example, a thermistor 41 (FIG. 5) that detects the evaporator fin temperature mounted for conventional air conditioning and the refrigerant temperature on the outlet side of the evaporator 10 The superheat state is detected using the refrigerant temperature sensor 42 that detects the above. Note that other means may be used as long as the superheat state can be detected.
 第3実施形態の作動を以下に説明する。電池5の温度が比較的高い場合は、第1絞り16の開度を制御して蒸発器10の出口側の冷媒が所定のスーパーヒート状態になるようにするとともに、第2絞り17の開度を実質的に全開とする。 The operation of the third embodiment will be described below. When the temperature of the battery 5 is relatively high, the opening degree of the first throttle 16 is controlled so that the refrigerant on the outlet side of the evaporator 10 is in a predetermined superheat state, and the opening degree of the second throttle 17 is set. Is substantially fully open.
 一方、電池5の温度が比較的低い場合は、第1絞り16の開度を実質的に全開とするとともに第2絞り17の開度を制御して蒸発器10の出口側の冷媒が所定のスーパーヒート状態になるように制御する。 On the other hand, when the temperature of the battery 5 is relatively low, the opening of the first throttle 16 is substantially fully opened and the opening of the second throttle 17 is controlled so that the refrigerant on the outlet side of the evaporator 10 has a predetermined amount. Control to be in superheat state.
 これによれば、電池5の温度が比較的高い場合は、電池5と熱交換可能な熱交換部に低温低圧の冷媒が供給され、電池5を冷却できる。また、電池5の温度が低い場合は、電池5と熱交換可能な熱交換部に高温高圧の冷媒が供給され、電池5を加熱することができる。 According to this, when the temperature of the battery 5 is relatively high, the low-temperature and low-pressure refrigerant is supplied to the heat exchange section that can exchange heat with the battery 5, and the battery 5 can be cooled. In addition, when the temperature of the battery 5 is low, a high-temperature and high-pressure refrigerant is supplied to the heat exchange unit that can exchange heat with the battery 5, and the battery 5 can be heated.
 そして、冷媒が所定のスーパーヒート状態になるように制御するために、蒸発器10の出口側の冷媒の冷媒出口温度Toを検出する冷媒温度センサ42と蒸発器10のフィン温度Tfを検出するフィン温度センサ41とを用いて、冷媒出口温度Toとフィン温度Tfとの偏差が所定の範囲内に成るように、第1絞り16または第2絞り17を制御する。これによれば、既存のフィン温度センサ41を活用して冷媒出口温度Toとフィン温度Tfとの偏差に関係するスーパーヒート状態を制御することができる。 In order to control the refrigerant to be in a predetermined superheat state, the refrigerant temperature sensor 42 that detects the refrigerant outlet temperature To of the refrigerant on the outlet side of the evaporator 10 and the fin that detects the fin temperature Tf of the evaporator 10. Using the temperature sensor 41, the first throttle 16 or the second throttle 17 is controlled so that the deviation between the refrigerant outlet temperature To and the fin temperature Tf falls within a predetermined range. According to this, the superheat state relating to the deviation between the refrigerant outlet temperature To and the fin temperature Tf can be controlled by utilizing the existing fin temperature sensor 41.
 第3実施形態の作用効果を以下に説明する。第3実施形態の作用効果をまとめると以下の通りである。電池5の温度が第1所定値以上の場合は、第1絞り16の開度を制御して蒸発器10における出口側の冷媒が所定のスーパーヒート状態になるように制御するとともに、第2絞り17の開度を実質的に全開としている。 The effects of the third embodiment will be described below. The effects of the third embodiment are summarized as follows. When the temperature of the battery 5 is equal to or higher than the first predetermined value, the opening of the first throttle 16 is controlled so that the refrigerant on the outlet side in the evaporator 10 enters a predetermined superheat state, and the second throttle The opening degree of 17 is substantially fully open.
 一方、電池5の温度が第1所定値よりも低い第2所定値以下の場合は、第1絞り16の開度を実質的に全開とするとともに第2絞り17の開度を制御して蒸発器10における出口側の冷媒が所定のスーパーヒート状態になるように制御装置(7、25)が制御している。 On the other hand, when the temperature of the battery 5 is equal to or lower than the second predetermined value lower than the first predetermined value, the opening of the first throttle 16 is substantially fully opened and the opening of the second throttle 17 is controlled to evaporate. The control device (7, 25) controls the outlet side refrigerant in the vessel 10 to be in a predetermined superheat state.
 これによれば、車載機器の温度が高い場合は、車載機器と熱交換可能な熱交換部に低温低圧の冷媒が供給されて車載機器をより確実に冷却でき、車載機器温度が低い場合は、熱交換部に高温高圧の冷媒が供給され車載機器をより確実に加熱することができる。 According to this, when the temperature of the in-vehicle device is high, the low-temperature and low-pressure refrigerant is supplied to the heat exchanging part that can exchange heat with the in-vehicle device to cool the in-vehicle device more reliably. A high-temperature and high-pressure refrigerant is supplied to the heat exchange unit, so that the in-vehicle device can be heated more reliably.
 また、冷媒が所定のスーパーヒート状態になるように制御するために、蒸発器10の出口側の冷媒の冷媒出口温度Toを検出する冷媒温度センサ42と蒸発器10のフィン温度Tfを検出するフィン温度センサ41とを備えている。そして、冷媒出口温度Toとフィン温度Tfとの偏差が所定の範囲内に成るように、第1絞り16または第2絞り17を制御装置(7、25)にて制御している。これによれば、既存のフィン温度センサを活用して冷媒出口温度とフィン温度との偏差に関係するスーパーヒート状態を制御することができる。
(第4実施形態)
 次に、本開示の第4実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。上記第1実施形態では高圧側の液溜め機構の一例としてサブクールモジュレータ15を用いたが、図8に示すようにレシーバ51を用いても良い。このように液溜め機構の一例としてレシーバ51を用いても、クールサイクルを利用して第1実施形態と同様に、電池5が加熱または冷却されるように第1絞り16の開度を制御することができる。
Further, in order to control the refrigerant to be in a predetermined superheat state, a refrigerant temperature sensor 42 that detects the refrigerant outlet temperature To of the refrigerant on the outlet side of the evaporator 10 and a fin that detects the fin temperature Tf of the evaporator 10. And a temperature sensor 41. The first throttle 16 or the second throttle 17 is controlled by the control device (7, 25) so that the deviation between the refrigerant outlet temperature To and the fin temperature Tf falls within a predetermined range. According to this, the superheat state related to the deviation between the refrigerant outlet temperature and the fin temperature can be controlled by utilizing the existing fin temperature sensor.
(Fourth embodiment)
Next, a fourth embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In the first embodiment, the subcool modulator 15 is used as an example of the high-pressure side liquid storage mechanism, but a receiver 51 may be used as shown in FIG. As described above, even when the receiver 51 is used as an example of the liquid storage mechanism, the opening degree of the first throttle 16 is controlled using the cool cycle so that the battery 5 is heated or cooled as in the first embodiment. be able to.
 この第4実施形態では、図8において、圧縮機11で圧縮された冷媒を凝縮器12に供給して、冷媒の熱を凝縮器12で放熱している。更に蒸発器10に冷媒を導いて蒸発器10を介して空調風を冷却する冷却サイクルを用いた車両用空調装置100を構成している。 In the fourth embodiment, in FIG. 8, the refrigerant compressed by the compressor 11 is supplied to the condenser 12, and the heat of the refrigerant is radiated by the condenser 12. Furthermore, the vehicle air conditioner 100 using the cooling cycle which guide | induces a refrigerant | coolant to the evaporator 10 and cools an air-conditioning wind via the evaporator 10 is comprised.
 凝縮器12の冷媒流れ下流側に配置される高圧側の液溜め機構の一例のレシーバ51のさらに下流側に、第1絞り16、電池5と熱交換可能な補助熱交換器20a、第2絞り17、蒸発器10が順番に配置されている。そして、電池5の温度に基づき、補助熱交換器20aで熱交換流体となる空気を介して電池5が加熱または冷却されるように第1絞り16の開度を制御する制御部を電池制御装置25内に備えている。 The first throttle 16, the auxiliary heat exchanger 20 a that can exchange heat with the battery 5, and the second throttle are further downstream of the receiver 51, which is an example of a high-pressure side liquid storage mechanism that is arranged downstream of the refrigerant flow of the condenser 12. 17, The evaporator 10 is arrange | positioned in order. The battery control device includes a controller that controls the opening degree of the first throttle 16 so that the battery 5 is heated or cooled based on the temperature of the battery 5 through the air serving as a heat exchange fluid in the auxiliary heat exchanger 20a. 25.
 第4実施形態における「冷却制御モード」運転時のモリエル線図(p-h線図)を図9に示す。また、第4実施形態における「加熱制御モード」運転時のモリエル線図(p-h線図)を図10に示す。これによれば、複雑な構成が不要となり、一層の簡素化が可能となる。
(第5実施形態)
 次に、本開示の第5実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。図11において、第1実施形態よりも広い閉鎖空間内に車載機器の一例となる電池5と熱交換可能な補助熱交換器20aが設けられている。
FIG. 9 shows a Mollier diagram (ph diagram) during the “cooling control mode” operation in the fourth embodiment. Further, FIG. 10 shows a Mollier diagram (ph diagram) at the time of the “heating control mode” operation in the fourth embodiment. According to this, a complicated configuration is not necessary, and further simplification is possible.
(Fifth embodiment)
Next, a fifth embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In FIG. 11, an auxiliary heat exchanger 20 a capable of exchanging heat with the battery 5, which is an example of an in-vehicle device, is provided in a closed space wider than that of the first embodiment.
 そして、補助熱交換器20aを通過する熱交換流体(空気)を遮蔽するドア部材61を備えている。このドア部材61が図11の状態から180度回転して補助熱交換器20aの右側の表面を覆うことにより、補助熱交換器20aを迂回して熱交換流体(空気)を流すことが可能となる。ドア部材61は、車両用空調装置100のエアミックスドアと同様にアクチュエータで回転が制御される。 And the door member 61 which shields the heat exchange fluid (air) which passes the auxiliary heat exchanger 20a is provided. When this door member 61 rotates 180 degrees from the state of FIG. 11 and covers the right surface of the auxiliary heat exchanger 20a, it is possible to flow the heat exchange fluid (air) bypassing the auxiliary heat exchanger 20a. Become. The rotation of the door member 61 is controlled by an actuator similarly to the air mix door of the vehicle air conditioner 100.
 以上の構成により、補助熱交換器20aを通過する熱交換流体を介して電池5が加熱または冷却されるようにしているが、補助熱交換器20aを通過する熱交換流体を遮蔽するドア部材61を備え、補助熱交換器20aを迂回して熱交換流体を流すことにより、補助熱交換器20aと熱交換流体との間の熱交換状態を制御することができる。
(第6実施形態)
 次に、本開示の第6実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。図12において、車載機器の一例である電池5と熱交換可能な補助熱交換器20aと第1絞り16を冷媒がバイパスするバイパス通路72と、バイパス通路72を開閉可能なバイパス弁71と、該バイパス弁71を制御することでバイパス通路72を開閉する制御装置(電池制御装置25)とを設けている。なお、図12の破線のように、補助熱交換器20aのみを冷媒がバイパスするようにバイパス弁710およびバイパス通路720を設けても良い。
With the above configuration, the battery 5 is heated or cooled via the heat exchange fluid that passes through the auxiliary heat exchanger 20a, but the door member 61 that shields the heat exchange fluid that passes through the auxiliary heat exchanger 20a. The heat exchange state between the auxiliary heat exchanger 20a and the heat exchange fluid can be controlled by flowing the heat exchange fluid bypassing the auxiliary heat exchanger 20a.
(Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In FIG. 12, the auxiliary heat exchanger 20a capable of exchanging heat with the battery 5 which is an example of the vehicle-mounted device, the bypass passage 72 where the refrigerant bypasses the first throttle 16, the bypass valve 71 which can open and close the bypass passage 72, A control device (battery control device 25) that opens and closes the bypass passage 72 by controlling the bypass valve 71 is provided. Note that, as indicated by a broken line in FIG. 12, a bypass valve 710 and a bypass passage 720 may be provided so that the refrigerant bypasses only the auxiliary heat exchanger 20a.
 上記構成によれば、電池5と熱交換可能な補助熱交換器20aを冷媒がバイパスするバイパス通路720、バイパス通路720を開閉可能なバイパス弁710がもうけられている。または補助熱交換器20aと第1絞り16とを冷媒がバイパスするバイパス通路72、バイパス通路72を開閉可能なバイパス弁71が設けられている。更に、該バイパス弁71(710)を制御してバイパス通路72(720)を開閉する制御装置(電池制御装置25)を備えている。これにより、補助熱交換器20aに冷媒を通過させる必要の無いときにバイパス弁71(710)を制御して、該バイパス通路72(720)に冷媒を流して、冷媒の流通抵抗を削減することができる。
(第7実施形態)
 次に、本開示の第7実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。第1実施形態では、電池パック内の電池の温調を送風によって実施する例を示したが、図13に示すように、冷却液と冷媒との間で熱交換する冷却液冷媒間熱交換器(チラー)を熱交換部の一例として用いてもよく、熱交換された冷却液にて電池5を温調する構成としても良い。冷却液は不凍液(LLC)等の冷却水が望ましいが、オイルなど他の液体媒体でも良い。冷却液は、冷却ポンプ62によって、電池パック21内の電池5と冷却液冷媒間熱交換器20bとの間を循環する。この場合、冷却液が熱交換流体の一例として用いられる。
According to the above configuration, the bypass passage 720 that bypasses the auxiliary heat exchanger 20a that can exchange heat with the battery 5 and the bypass valve 710 that can open and close the bypass passage 720 are provided. Alternatively, a bypass passage 72 through which the refrigerant bypasses the auxiliary heat exchanger 20a and the first throttle 16 and a bypass valve 71 capable of opening and closing the bypass passage 72 are provided. Further, a control device (battery control device 25) for controlling the bypass valve 71 (710) to open and close the bypass passage 72 (720) is provided. Thereby, when the refrigerant does not need to pass through the auxiliary heat exchanger 20a, the bypass valve 71 (710) is controlled to flow the refrigerant through the bypass passage 72 (720), thereby reducing the refrigerant flow resistance. Can do.
(Seventh embodiment)
Next, a seventh embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In the first embodiment, an example is shown in which the temperature of the battery in the battery pack is controlled by air blowing. However, as shown in FIG. 13, the coolant-to-refrigerant heat exchanger that performs heat exchange between the coolant and the coolant (Chiller) may be used as an example of the heat exchange unit, and the battery 5 may be temperature-controlled with the heat exchanged coolant. The cooling liquid is preferably cooling water such as antifreeze liquid (LLC), but may be other liquid medium such as oil. The coolant is circulated between the battery 5 in the battery pack 21 and the coolant-coolant refrigerant heat exchanger 20b by the cooling pump 62. In this case, the coolant is used as an example of a heat exchange fluid.
 上記構成によれば、電池5を、熱容量が大きく冷却性能の良い冷却液を用いて速やかに温度調整が可能である。従って、車両用空調装置100側から冷却または加熱のためのエネルギーを得て、車両用空調装置100の性能を悪化させる時間を短時間として、電池5の温度を調整することができる。 According to the above configuration, the temperature of the battery 5 can be quickly adjusted using a coolant having a large heat capacity and good cooling performance. Therefore, energy for cooling or heating is obtained from the vehicle air conditioner 100 side, and the temperature of the battery 5 can be adjusted by setting the time for deteriorating the performance of the vehicle air conditioner 100 as a short time.
 第7実施形態の作用効果を以下に説明する。第7実施形態によれば、電池5と熱交換可能な熱交換部は、電池5を冷却する冷却液と冷媒とを熱交換する冷却液冷媒間熱交換器20bからなる。そして、電池5の温度に基づき冷却液冷媒間熱交換器20bで冷却液を介して電池5が加熱または冷却される。 The operational effects of the seventh embodiment will be described below. According to the seventh embodiment, the heat exchanging part capable of exchanging heat with the battery 5 includes the coolant-to-refrigerant heat exchanger 20b that exchanges heat between the coolant that cools the battery 5 and the refrigerant. Based on the temperature of the battery 5, the battery 5 is heated or cooled via the coolant in the coolant-to-refrigerant heat exchanger 20b.
 これによれば、車載機器を、熱容量が大きく冷却性能の良い冷却液を用いて速やかに温度調整が可能である。従って、車両用空調装置の性能低下時間を短時間として電池パックの温度を調整することができる。
(第8実施形態)
 次に、本開示の第8実施形態について説明する。上述した実施形態と異なる特徴部分を説明する。図14においては、電池パック21内の車載機器の一例である電池5を直接冷媒で冷却している。従って、電池パック21内の冷媒が流れる空間すなわちダクト28は、車載機器(電池5)と熱交換可能な熱交換部の一例として用いられる。
According to this, it is possible to quickly adjust the temperature of the in-vehicle device using the coolant having a large heat capacity and good cooling performance. Therefore, the temperature of the battery pack can be adjusted with the performance degradation time of the vehicle air conditioner as a short time.
(Eighth embodiment)
Next, an eighth embodiment of the present disclosure will be described. Features different from the above-described embodiment will be described. In FIG. 14, the battery 5 that is an example of the in-vehicle device in the battery pack 21 is directly cooled by the refrigerant. Therefore, the space in which the refrigerant in the battery pack 21 flows, that is, the duct 28 is used as an example of a heat exchanging portion that can exchange heat with the in-vehicle device (battery 5).
 この構成によれば、電池パックを、途中の補助熱交換器を介さず、電池5と熱交換可能なダクト28において直接冷媒を用いて温度調整が可能である。 According to this configuration, the temperature of the battery pack can be adjusted using the refrigerant directly in the duct 28 that can exchange heat with the battery 5 without using an auxiliary heat exchanger in the middle.
 第8実施形態の作用効果を以下に説明する。第8実施形態によれば、冷媒が直接的に電池5と熱交換するダクト28を有する。そして、電池5の温度に基づき、ダクト28で冷媒によって電池5が加熱または冷却される。これによれば、冷媒自体が熱交換流体と成り、熱交換器が不要となるため、構造の簡素化または軽量化を図ることができる。 The operational effects of the eighth embodiment will be described below. According to the eighth embodiment, the refrigerant has the duct 28 that directly exchanges heat with the battery 5. Based on the temperature of the battery 5, the battery 5 is heated or cooled by the refrigerant in the duct 28. According to this, since the refrigerant itself becomes a heat exchange fluid and a heat exchanger is unnecessary, the structure can be simplified or reduced in weight.
 本開示は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。電池温度検出手段は、電池の温度を直接検出するセンサだけでなく、電池温度が間接的に検出できる手段を用いても良い。例えば、電池パック内部材温度や、電池を温調する流体の温度等でも良い。 The present disclosure is not limited to the above-described embodiment, and can be modified or expanded as follows. As the battery temperature detecting means, not only a sensor that directly detects the temperature of the battery, but also means that can indirectly detect the battery temperature may be used. For example, the temperature inside the battery pack or the temperature of the fluid that regulates the temperature of the battery may be used.
 また、これまでの実施例ではリチウムイオン電池などの二次電池を温調する例を示したが、車載機器は、電池以外の他の機器でも良い。例えばインバータや車載充電器などの電気機器や、インタークーラ等でも良い。また、二次電池もリチウムイオンに限定せず、ニッケル水素電池など他の電池でも良い。 In the above embodiments, the temperature of a secondary battery such as a lithium ion battery is controlled. However, the in-vehicle device may be a device other than the battery. For example, an electric device such as an inverter or an in-vehicle charger, an intercooler, or the like may be used. Further, the secondary battery is not limited to lithium ion, and may be another battery such as a nickel metal hydride battery.

Claims (12)

  1.  車載機器(5)と、
     空調風を冷却する車両用冷却サイクル装置(100)と、を備え、
     前記車両用冷却サイクル装置(100)は、
      冷媒を圧縮して吐出する圧縮機(11)と、
      前記圧縮機(11)から吐出された前記冷媒の熱を放熱する凝縮器(12)と、
      前記凝縮器(12)の前記冷媒流れ下流側に配置される液溜め機構(15、51)と、
      前記液溜め機構(15、51)の前記冷媒流れ下流側に配置されて、前記冷媒の流れを絞る第1絞り(16)と、
      前記第1絞り(16)の前記冷媒流れ下流側に配置されて、前記冷媒が前記車載機器(5)と熱交換する熱交換部(20a、20b、28)と、
      前記熱交換部(20a、20b、28)の前記冷媒流れ下流側に配置されて、前記冷媒の流れを絞る第2絞り(17)と、
      前記第2絞り(17)の前記冷媒流れ下流側に配置されて、前記冷媒が流通して前記空調風を冷却する蒸発器(10)と、を有し、
     前記車載機器(5)の温度に基づき前記熱交換部(20a、20b、28)にて前記車載機器(5)が加熱または冷却されるように、少なくとも前記第1絞り(16)の開度を制御する制御装置(7、25)をさらに備えた車載機器温調装置。
    In-vehicle device (5),
    A vehicle cooling cycle device (100) for cooling the conditioned air,
    The vehicle cooling cycle device (100) includes:
    A compressor (11) for compressing and discharging the refrigerant;
    A condenser (12) that dissipates heat of the refrigerant discharged from the compressor (11);
    A liquid storage mechanism (15, 51) disposed downstream of the refrigerant flow of the condenser (12);
    A first throttle (16) that is arranged downstream of the refrigerant flow of the liquid reservoir mechanism (15, 51) and throttles the flow of the refrigerant;
    A heat exchanging portion (20a, 20b, 28) which is disposed on the downstream side of the refrigerant flow of the first throttle (16) and exchanges heat between the refrigerant and the in-vehicle device (5);
    A second throttle (17) that is disposed downstream of the refrigerant flow of the heat exchange section (20a, 20b, 28) and throttles the flow of the refrigerant;
    An evaporator (10) disposed on the downstream side of the refrigerant flow of the second throttle (17) and configured to circulate the refrigerant and cool the conditioned air;
    Based on the temperature of the in-vehicle device (5), at least the opening of the first throttle (16) is set so that the in-vehicle device (5) is heated or cooled by the heat exchange unit (20a, 20b, 28). On-vehicle equipment temperature control device further provided with a control device (7, 25) for control.
  2.  前記車載機器(5)の温度が第1所定値以上の場合は、前記制御装置(7、25)は前記第1絞り(16)の開度が前記第2絞り(17)の開度よりも小さくなるよう制御し、
     前記車載機器(5)の温度が前記第1所定値より低温の第2所定値以下の場合は、前記制御装置(7、25)は前記第1絞り(16)の開度が前記第2絞り(17)の開度よりも大きくなるよう制御する請求項1に記載の車載機器温調装置。
    When the temperature of the in-vehicle device (5) is equal to or higher than a first predetermined value, the control device (7, 25) indicates that the opening of the first throttle (16) is larger than the opening of the second throttle (17). Control to become smaller,
    When the temperature of the in-vehicle device (5) is equal to or lower than a second predetermined value lower than the first predetermined value, the control device (7, 25) has an opening degree of the first throttle (16) set to the second throttle. The in-vehicle device temperature control device according to claim 1, wherein the temperature control device is controlled so as to be larger than the opening degree of (17).
  3.  前記車載機器(5)の温度が第1所定値以上の場合は、前記制御装置(7、25)は前記第1絞り(16)の開度を前記蒸発器(10)における出口側の前記冷媒が所定のスーパーヒート状態になるように制御するとともに、前記第2絞り(17)の開度を実質的に全開とし、
     前記車載機器(5)の温度が前記第2所定値以下の場合は、前記制御装置(7、25)は前記第1絞り(16)の開度を実質的に全開とするとともに前記第2絞り(17)の開度を前記蒸発器(10)における出口側の前記冷媒が前記所定のスーパーヒート状態になるように制御する請求項2に記載の車載機器温調装置。
    When the temperature of the in-vehicle device (5) is equal to or higher than a first predetermined value, the control device (7, 25) sets the opening of the first throttle (16) to the refrigerant on the outlet side in the evaporator (10). Is controlled to be in a predetermined superheat state, and the opening of the second throttle (17) is substantially fully opened,
    When the temperature of the in-vehicle device (5) is equal to or lower than the second predetermined value, the control device (7, 25) opens the first throttle (16) substantially fully and opens the second throttle. The in-vehicle device temperature control device according to claim 2, wherein the opening degree of (17) is controlled so that the refrigerant on the outlet side in the evaporator (10) is in the predetermined superheat state.
  4.  前記蒸発器(10)の出口側の冷媒の冷媒出口温度(To)を検出する冷媒温度センサ(42)と、
     前記蒸発器(10)のフィン温度(Tf)を検出するフィン温度センサ(41)とをさらに備えて、
     前記冷媒が前記所定のスーパーヒート状態になるように制御するために、前記冷媒出口温度(To)と前記フィン温度(Tf)との偏差が所定の範囲内に成るように、前記制御装置(7、25)は前記第1絞り(16)の開度または前記第2絞り(17)の開度を制御する請求項3に記載の車載機器温調装置。
    A refrigerant temperature sensor (42) for detecting a refrigerant outlet temperature (To) of the refrigerant on the outlet side of the evaporator (10);
    A fin temperature sensor (41) for detecting the fin temperature (Tf) of the evaporator (10);
    In order to control the refrigerant to be in the predetermined superheat state, the control device (7) so that the deviation between the refrigerant outlet temperature (To) and the fin temperature (Tf) is within a predetermined range. 25) The on-vehicle equipment temperature control device according to claim 3, wherein the opening of the first throttle (16) or the opening of the second throttle (17) is controlled.
  5.  更に、前記熱交換部(20a、20b、28)、または、前記熱交換部(20a、20b、28)と前記第1絞り(16)とを冷媒がバイパスするバイパス通路(72,720)と、
     前記バイパス通路(72,720)を開閉可能なバイパス弁(71、710)と、
     前記バイパス弁(71、710)を制御することで前記バイパス通路(72,720)を開閉する前記制御装置(25)と、を備える請求項1ないし4のいずれか一項に記載の車載機器温調装置。
    Further, the heat exchange section (20a, 20b, 28) or a bypass passage (72, 720) in which a refrigerant bypasses the heat exchange section (20a, 20b, 28) and the first throttle (16),
    A bypass valve (71, 710) capable of opening and closing the bypass passage (72, 720);
    The in-vehicle device temperature according to any one of claims 1 to 4, further comprising: the control device (25) that opens and closes the bypass passage (72, 720) by controlling the bypass valve (71, 710). Preparation device.
  6.  前記凝縮器(12)と前記液溜め機構(15)が凝縮部と過冷却部との間に気液分離器が配置され液冷媒を更に冷やすことで液冷媒自体が持つ比エンタルピを増大させるサブクール式の凝縮器となるように、前記液溜め機構(15)はサブクールモジュレータを含み、
     前記熱交換部(20a、20b、28)は、前記サブクール式の凝縮器の前記冷媒流れ下流側に配置されている請求項1ないし5のいずれか一項に記載の車載機器温調装置。
    Subcooler in which the condenser (12) and the liquid reservoir mechanism (15) have a gas-liquid separator disposed between the condenser part and the supercooling part to further cool the liquid refrigerant, thereby increasing the specific enthalpy of the liquid refrigerant itself. The reservoir mechanism (15) includes a subcool modulator to provide a condenser of the type
    The on-vehicle equipment temperature control device according to any one of claims 1 to 5, wherein the heat exchange unit (20a, 20b, 28) is disposed on the downstream side of the refrigerant flow of the subcool condenser.
  7.  前記液溜め機構(51)はレシーバを含む請求項1ないし5のいずれか一項に記載の車載機器温調装置。 The in-vehicle device temperature control device according to any one of claims 1 to 5, wherein the liquid storage mechanism (51) includes a receiver.
  8.  前記第1絞り(16)は全閉または全開が可能な弁部(32)と該弁部(32)と並列の流路に形成されたブリードポート(31)とを有し、
     前記弁部(32)が全閉時でも一定の開口面積を持つ前記ブリードポート(31)から前記冷媒が流れ、
     前記車載機器(5)を冷却する場合は、前記弁部(32)を全閉として前記ブリードポート(31)が固定絞りとして機能し、
     前記車載機器(5)を加熱する場合は、前記弁部(32)が全開となる請求項1ないし7のいずれか一項に記載の車載機器温調装置。
    The first throttle (16) has a valve part (32) that can be fully closed or fully opened, and a bleed port (31) formed in a flow path parallel to the valve part (32),
    The refrigerant flows from the bleed port (31) having a constant opening area even when the valve part (32) is fully closed,
    When cooling the in-vehicle device (5), the valve part (32) is fully closed and the bleed port (31) functions as a fixed throttle,
    When heating the said vehicle equipment (5), the said vehicle part temperature control apparatus as described in any one of Claim 1 thru | or 7 by which the said valve part (32) becomes a full open.
  9.  前記熱交換部(20a)は、熱交換流体を介して前記車載装置(5)と熱交換可能な補助熱交換器を含み、
     該補助熱交換器を通過する熱交換流体を遮蔽することで前記補助熱交換器(20a)を迂回して前記熱交換流体を流すことが可能なドア部材(61)をさらに備える請求項1ないし8のいずれか一項に記載の車載機器温調装置。
    The heat exchange part (20a) includes an auxiliary heat exchanger capable of exchanging heat with the in-vehicle device (5) through a heat exchange fluid,
    The door member (61) further capable of flowing the heat exchange fluid bypassing the auxiliary heat exchanger (20a) by shielding the heat exchange fluid passing through the auxiliary heat exchanger. The in-vehicle device temperature control device according to any one of claims 8 to 9.
  10.  前記熱交換部(20b)は、前記車載機器(5)を冷却する冷却液と前記冷媒とを熱交換する冷却液冷媒間熱交換器を含み、
     前記冷却液冷媒間熱交換器(20b)によって、前記車載機器(5)は、該車載機器(5)の温度に基づき前記冷却液を介して加熱または冷却される請求項1ないし9のいずれか一項に記載の車載機器温調装置。
    The heat exchange section (20b) includes a coolant-to-coolant refrigerant heat exchanger that exchanges heat between the coolant that cools the in-vehicle device (5) and the refrigerant.
    The vehicle-mounted device (5) is heated or cooled via the coolant based on the temperature of the vehicle-mounted device (5) by the coolant-to-coolant refrigerant heat exchanger (20b). The in-vehicle device temperature control device according to one item.
  11.  前記熱交換部(28)は、前記冷媒が直接的に前記車載機器(5)と熱交換するダクトを含み、
     前記車載機器(5)は、前記熱交換部(28)において、前記冷媒によって該車載機器(5)の温度に基づき加熱または冷却される請求項1ないし8のいずれか一項に記載の車載機器温調装置。
    The heat exchange part (28) includes a duct in which the refrigerant directly exchanges heat with the in-vehicle device (5),
    The in-vehicle device (5) according to any one of claims 1 to 8, wherein the in-vehicle device (5) is heated or cooled by the refrigerant based on a temperature of the in-vehicle device (5) in the heat exchange unit (28). Temperature control device.
  12.  前記車載機器は、前記圧縮機を駆動するエネルギーを供給する二次電池を含む請求項1ないし11のいずれか一項に記載の車載機器温調装置。 The vehicle-mounted device temperature control device according to any one of claims 1 to 11, wherein the vehicle-mounted device includes a secondary battery that supplies energy for driving the compressor.
PCT/JP2013/002337 2012-04-16 2013-04-04 Onboard device temperature adjusting apparatus WO2013157214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-093000 2012-04-16
JP2012093000A JP2013220712A (en) 2012-04-16 2012-04-16 Onboard device temperature-adjusting apparatus

Publications (1)

Publication Number Publication Date
WO2013157214A1 true WO2013157214A1 (en) 2013-10-24

Family

ID=49383187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002337 WO2013157214A1 (en) 2012-04-16 2013-04-04 Onboard device temperature adjusting apparatus

Country Status (2)

Country Link
JP (1) JP2013220712A (en)
WO (1) WO2013157214A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523264A (en) * 2015-03-24 2015-08-19 Daimler Ag Thermal management system for a vehicle, in particular a commercial vehicle
CN107512149A (en) * 2017-08-22 2017-12-26 英格索兰(中国)工业设备制造有限公司 The vehicle heat pump air-conditioning system of integrated battery heat management function
JP2018124021A (en) * 2017-02-02 2018-08-09 株式会社デンソー Heat exchange model and temperature adjustment device
CN113492672A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Electric vehicle device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201434B2 (en) 2012-07-18 2017-09-27 株式会社デンソー Refrigeration cycle equipment
CN105119026B (en) * 2015-08-21 2018-01-05 东莞市联洲知识产权运营管理有限公司 A kind of electric automobile heat-pump air-conditioning and battery pack thermal management system
JP6734106B2 (en) * 2016-04-26 2020-08-05 株式会社Soken Vehicle heat exchanger
CN107356022B (en) * 2016-05-10 2021-02-23 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
CN108202607A (en) * 2016-12-20 2018-06-26 比亚迪股份有限公司 For the battery heating device of electric vehicle and with its electric vehicle
CN106885392B (en) * 2017-02-28 2019-04-09 重庆长安汽车股份有限公司 Cold-heat pump association system and its refrigerating and heating method in a kind of hybrid vehicle
JP2019034587A (en) * 2017-08-10 2019-03-07 株式会社デンソー Air conditioner
JP7163799B2 (en) * 2019-01-31 2022-11-01 株式会社デンソー refrigeration cycle equipment
JP7275876B2 (en) * 2019-06-07 2023-05-18 株式会社デンソー refrigeration cycle equipment
DE102021201795A1 (en) * 2021-02-25 2022-08-25 Siemens Mobility GmbH Cooling device for a vehicle battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237254A (en) * 1988-07-28 1990-02-07 Nippon Denso Co Ltd Refrigerating plant
JP2004218858A (en) * 2003-01-09 2004-08-05 Denso Corp Refrigeration cycle controlling device
JP2005102414A (en) * 2003-09-25 2005-04-14 Denso Corp Motor driving device for electric compressors
JP2006170537A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
JP2008101885A (en) * 2006-10-20 2008-05-01 Yurikai Co Ltd Simultaneous heating/cooling heat pump circuit
JP2011110961A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Cooling system for vehicle
JP2011173543A (en) * 2010-02-25 2011-09-08 Sanyo Electric Co Ltd Battery cooling/heating device
JP2011214826A (en) * 2010-03-31 2011-10-27 Denso Corp Evaporator unit
JP2012017038A (en) * 2010-07-08 2012-01-26 Denso Corp Refrigerating cycle device for vehicle
JP2013061099A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Heat exchange apparatus and method for controlling heat exchange apparatus
JP2013075650A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Vehicle temperature control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053022A (en) * 1996-01-22 1998-02-24 Denso Corp Air-conditioning device for vehicle
JP3484871B2 (en) * 1996-04-24 2004-01-06 株式会社デンソー Vehicle air conditioner
JP4006782B2 (en) * 1997-07-01 2007-11-14 株式会社デンソー Air conditioner having a cooler for heat generating equipment
CN102112817B (en) * 2008-10-29 2014-04-30 三菱电机株式会社 Air conditioner
JP2010260450A (en) * 2009-05-07 2010-11-18 Nippon Soken Inc Air conditioner for vehicle
WO2011022290A1 (en) * 2009-08-17 2011-02-24 Johnson Controls Technology Company Heat-pump chiller with improved heat recovery features

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237254A (en) * 1988-07-28 1990-02-07 Nippon Denso Co Ltd Refrigerating plant
JP2004218858A (en) * 2003-01-09 2004-08-05 Denso Corp Refrigeration cycle controlling device
JP2005102414A (en) * 2003-09-25 2005-04-14 Denso Corp Motor driving device for electric compressors
JP2006170537A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
JP2008101885A (en) * 2006-10-20 2008-05-01 Yurikai Co Ltd Simultaneous heating/cooling heat pump circuit
JP2011110961A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Cooling system for vehicle
JP2011173543A (en) * 2010-02-25 2011-09-08 Sanyo Electric Co Ltd Battery cooling/heating device
JP2011214826A (en) * 2010-03-31 2011-10-27 Denso Corp Evaporator unit
JP2012017038A (en) * 2010-07-08 2012-01-26 Denso Corp Refrigerating cycle device for vehicle
JP2013061099A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Heat exchange apparatus and method for controlling heat exchange apparatus
JP2013075650A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Vehicle temperature control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523264A (en) * 2015-03-24 2015-08-19 Daimler Ag Thermal management system for a vehicle, in particular a commercial vehicle
JP2018124021A (en) * 2017-02-02 2018-08-09 株式会社デンソー Heat exchange model and temperature adjustment device
CN107512149A (en) * 2017-08-22 2017-12-26 英格索兰(中国)工业设备制造有限公司 The vehicle heat pump air-conditioning system of integrated battery heat management function
CN113492672A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Electric vehicle device
CN113492672B (en) * 2020-03-18 2023-09-19 本田技研工业株式会社 electric vehicle device

Also Published As

Publication number Publication date
JP2013220712A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2013157214A1 (en) Onboard device temperature adjusting apparatus
CN109895593B (en) Heat pump system for vehicle
KR102277718B1 (en) Heat flow management device and method for operating a heat flow management device
JP5949522B2 (en) Temperature control device
JP7185469B2 (en) vehicle thermal management system
US10099531B2 (en) Device for air conditioning a drive train and a passenger compartment of a vehicle
JP5860361B2 (en) Thermal management system for electric vehicles
US9786964B2 (en) Refrigeration cycle device for auxiliary heating or cooling
WO2013136693A1 (en) Refrigeration cycle device
JP5868988B2 (en) Thermal adjustment device for drivetrain and vehicle passenger compartment
WO2014027504A1 (en) Heat management system for electric vehicle and control method therefor
JP2012081955A (en) Refrigerant cycle of air conditioning device of automobile
JP6075058B2 (en) Refrigeration cycle equipment
WO2013039047A1 (en) Automobile temperature regulation system
JP2018151117A (en) Battery cooling system
JP2014037182A (en) Thermal management system for electric vehicle
WO2020110509A1 (en) Vehicle air conditioner
WO2021177057A1 (en) Vehicle air conditioner
WO2014024376A1 (en) Refrigeration cycling device
JP2013184596A (en) Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
JP2019104393A (en) Vehicular heating device
WO2021192762A1 (en) Vehicle air conditioning device
KR20180138053A (en) Heat Pump For a Vehicle
WO2021187005A1 (en) Vehicle air conditioner
WO2021192761A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778676

Country of ref document: EP

Kind code of ref document: A1