JP4072048B2 - Surface coating tool - Google Patents

Surface coating tool Download PDF

Info

Publication number
JP4072048B2
JP4072048B2 JP2002350590A JP2002350590A JP4072048B2 JP 4072048 B2 JP4072048 B2 JP 4072048B2 JP 2002350590 A JP2002350590 A JP 2002350590A JP 2002350590 A JP2002350590 A JP 2002350590A JP 4072048 B2 JP4072048 B2 JP 4072048B2
Authority
JP
Japan
Prior art keywords
carbide
surface coating
base material
weight
coating processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002350590A
Other languages
Japanese (ja)
Other versions
JP2004181565A (en
Inventor
直也 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2002350590A priority Critical patent/JP4072048B2/en
Publication of JP2004181565A publication Critical patent/JP2004181565A/en
Application granted granted Critical
Publication of JP4072048B2 publication Critical patent/JP4072048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、一般に、表面被覆加工用工具に関するものであり、より特定的には、集積回路や各種電子部品を実装するプリント回路用基板などの溝加工、切り抜き加工や穴明け加工などに用いられる表面被覆加工用工具に関するものである。
【0002】
【従来の技術】
近年、プリント基板穴明け用の極小径ドリル(以下、マイクロドリルと称す)に代表される電子機器類への加工用工具や、マイクロマシン製作時に用いる部品加工用工具などの、微細加工用途の工具の必要性が高まっている。
【0003】
これらの超微細加工方法としては、レーザー加工や電解加工といった被削材との非接触加工による加工方法と、切削加工、超音波加工、ワイヤ放電加工といった被削材に対して直接工具を接触させ、塑性変形を起こす加工方法がある。後者の方法による超微細加工時に用いる工具の工具材料としては現在、超硬合金またはサーメットが一般的に用いられており、それらの合金は、高硬度の硬質相(WCやTiC)と、これらを結合する結合相(鉄系金属:主としてコバルトやニッケルが用いられている)から構成されている。
【0004】
上記従来の超硬合金やサーメットを基材に用いた工具に対し、合金の靭性を高めるための開発と同時に、昨今、市場では被削材の難削化が進んだこと、および加工能率を高めるためにより加工条件が過酷なものとなったことで、工具の耐摩耗性の改善が求められるようになってきた。
【0005】
この様な要求に対して、従来、基材表面にTiやZrの炭化物、窒化物、炭窒化物などの化合物からなる被覆層を形成し、耐摩耗性を改善することが一般的に行われており、また、ダイヤモンドからなる被覆層を形成する技術がある(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開平4−275812号(第1−4図参照)
【0007】
【発明が解決しようとする課題】
しかし、上記の様な被覆層を有する表面被覆加工用工具では、以下の様な問題点があり、市場のニーズに対応すべく、更なる改善が求められている。
(1)被覆層の硬度不足により、被覆層が使用初期に大きく摩耗して工具寿命を延長できない。
(2)基材との密着強度不足により、使用初期に被覆層が剥離することで、基材が大きく摩耗して工具寿命を延長できない。
(3)被覆層を形成したことで、切りくずや切り粉と工具との接触抵抗が高くなり、加工品質が劣化する。
【0008】
【課題を解決するための手段】
本発明者は、目的達成のために研究を重ねた結果、高硬度かつ基材との密着力に優れ、かつ被削材との接触抵抗が低い被覆層を表面に備えた表面被覆加工用工具を発明した。本発明の表面被覆加工用工具に適した基材としては、硬度及び靭性、被削材との反応性の面から考えて、超硬合金及びサーメットが望ましい。
【0009】
具体的には、現在工業的に広く用いられている超硬合金及びサーメットを基材とし、この基材に非晶質カーボンを被覆した場合に、該基材合金の結合相が六方最密格子(hcp)を含まない状態とすることにより、高硬度かつ被覆層との密着力に優れ、かつ被削材との接触抵抗が低い表面被覆加工用工具が得られることを発見した。
【0010】
現在、表面被覆加工用工具材料として工業的に広く用いられている超硬合金及びサーメットは、一般的に原料粉末を粉砕混合し、それをプレス成形し、焼結してから砥石等で目的形状・目的寸法精度まで加工する。この加工段階を行う前は結合相は面心立方格子(fcc)の結晶構造となっているが、加工時点で一部、結晶構造が六方最密格子(hcp)に変化することが広く知られている。
【0011】
本発明者は、この加工済みの基材を真空中で焼鈍し、hcp構造の結合相を再度fcc構造に変化させることで、基材中の結合相の結晶構造を全てfcc構造とした上で、この基材に非晶質カーボン被覆層を形成した場合に、非常に高い基材との密着強度が得られることを発見した。
【0012】
上記の具体的な超硬合金及びサーメットとしては、下記が望ましい。
(1)▲1▼炭化タングステンおよび▲2▼鉄系金属の1種以上からなる結合相:1〜30重量%、残部が不可避不純物からなる超硬合金
【0013】
(2)▲1▼炭化タングステンおよび▲2▼鉄系金属の1種以上からなる結合相:1〜30重量%、▲3▼Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、残部が不可避不純物からなる超硬合金
【0014】
(3)▲1▼炭化タングステンおよび▲2▼鉄系金属の1種以上からなる結合相:1〜30重量%、▲3▼Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、▲4▼周期律表 IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜50重量%、残部が不可避不純物からなる超硬合金
【0015】
(4)▲1▼炭化タングステンおよび▲2▼鉄系金属の1種以上からなる結合相:1〜30重量%、▲3▼周期律表 IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜50重量%、残部が不可避不純物からなる超硬合金
【0016】
(5)▲1▼鉄系金属の1種以上からなる結合相:1〜30重量%、▲2▼周期律表 IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を70〜99重量%、残部が不可避不純物からなるサーメット
【0017】
(6)▲1▼鉄系金属の1種以上からなる結合相:1〜30重量%、▲2▼周期律表 IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜50重量%、▲3▼Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、残部が不可避不純物からなるサーメット
【0018】
上記超硬合金およびサーメットの組成範囲は、一般的に工業的に製造されている範囲を記述して限定したが、この範囲を逸脱しても本発明の効果は現れる。もちろん本発明は超硬合金およびサーメット以外の、例えばステライト合金等の鉄系金属を結合相とした硬質材料に対しても有効である。
【0019】
また、その使用用途によって、非晶質カーボンの表面に化学蒸着法や物理蒸着法でさらに被覆層を形成する場合があるが、この場合でも本発明の効果は失われない。本発明の表面被覆加工用工具としては、一般的な工具の用途の他、プリント基板加工用のドリルやルーターカッター等を含む微細加工用途の工具に使用すれば、より優れた効果がある。
【0020】
基材の結晶構造がfccのみとなり、かつ被覆層が非晶質カーボンであった場合、何故、被覆層と基材との密着強度が高くなるのかは明らかではないが、例えば被覆層形成初期の核発生頻度が、hcp構造の結合相の上では低くなるのではないかと考えられる。
【0021】
また形成する非晶質カーボン層は、グラファイトを原料とした水素を含まない雰囲気下の物理的蒸着法により形成された被覆層、または実質的に炭素のみから形成された被覆層が、性能上望ましいことが判った。
【0022】
非晶質カーボン層は硬質炭素膜、ダイヤモンドライクカーボン膜、DLC膜、a-C:H、i-カーボン膜などと呼ばれるものであるが、優れた耐摩耗性を示すべく、ダイヤモンドに匹敵する高い硬度を得るために、本発明の非晶質カーボン層はグラファイトを原料とした水素を含まない雰囲気下の物理的蒸着法により形成されるのが望ましい。
【0023】
また、この非晶質カーボン層は故意に反応ガスを入れなければ、成膜中に不可避的に含まれる不純物を除いて炭素原子のみから構成されることとなり、水素を含む非晶質カーボン層よりダイヤモンド構造に近い構造をとるので硬度が高くなる。また同時に、耐酸化特性もダイヤモンドと同等の約600℃近くにまで改善される。
【0024】
グラファイトを出発原料とした物理的蒸着法の中でも、一般に工業的に用いられる、例えば陰極アークイオンプレーティング法、レーザーアブレーション法やスパッタリング法であれば、成膜速度も早く、ダイヤモンド膜で問題となっていた製造コストにも問題はなくなる。
【0025】
被膜の密着力、膜硬度の点で、陰極アークイオンプレーティング法による成膜が最も好ましい。この陰極アークイオンプレーティング法は、原料のイオン化率が高いため、主にカーボンイオンが基材に照射されることにより非晶質カーボン膜が形成され、sp3結合の比率が高く緻密な膜が得られて硬度が高くなるため、工具として使用した場合、その寿命を大きく向上させることができる。
【0026】
陰極アークイオンプレーティング法により形成した非晶質カーボン層の表面には、マクロパーティクルと呼ばれる硬質粒子が存在するが、このマクロパーティクルは、その密度が小さいほど接触抵抗が小さくなり、切りくず排出性も改善されるために望ましい。その密度は3×105個/mm2以下、より好ましくは、1.5×105個/mm2以下であることが望ましい。マクロパーティクルの密度が3×105個/mm2よりも大きいと、被削材がこのマクロパーティクルに溶着して接触抵抗を上げるために好ましくない。
【0027】
このマクロパーティクルの密度を小さくし、非晶質カーボン層の表面粗度をよくするために、グラファイト原料からの粒状飛散物を防止するような、例えば低エネルギーによる成膜や磁場によるフィルターを用いる方法も提案できる。
【0028】
接触抵抗の点からは、非晶質カーボン層の表面粗さは、できるだけ平滑であることが望ましく、JIS規格Raの表示で0.05μm以下であることが望ましい。また非晶質カーボン膜硬度は、耐摩耗性確保のため、ヌープ硬度で20GPa以上、さらに好ましくは25GPa以上であることが望ましい。
【0029】
前記非晶質カーボン層の層厚は0.01μm以下の場合は、耐摩耗性向上の効果が低く、また3.0μm以上としても大きな耐摩耗性の改善は認められないため、経済的ではない。また、非晶質カーボン層を形成後、この非晶質カーボン層の表面を平滑化する等の被覆後の後処理を実施しても、本発明の効果は失われない。
【0030】
本発明の表面被覆加工用工具はその耐摩耗性と耐溶着性から、特にプリント基板の微細加工用のマイクロドリルやルーターとして用いるのが最も適当である。また、アルミニウムチタン、マグネシウム、銅およびその合金など非鉄材に使用することも可能であり、本発明の表面被覆加工用工具は非常に高硬度であることから、非鉄材だけではなく、ステンレス鋼など鋼や鋳物などの加工にも用いることができる。
【0031】
本発明の表面被覆加工用工具はドリル、エンドミル、エンドミル加工用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯きり工具、リーマーおよびタップなどの用途に使用することができる。
【0032】
【発明の実施の形態】
次に、本発明の表面被覆加工用工具の効果について、実施例により具体的に説明する。ただし、非晶質カーボンの成膜方法は、ここで用いた製法に限られるものではなく、グラファイトを用いたPVD法で成膜されたものであれば、いずれの方法であってもよい。以下に実施例を示す。
【0033】
(実施例1)
<表1>に示した原料粉末の組成A〜Kで湿式混合を10Hr行なった後、1ton/cmの圧力にてプレス成形し、真空中で4.0℃/minの昇温速度で<表1>に記載した温度まで昇温し、真空中でその温度で60分間保持してから、同じく真空中で冷却した。
【0034】
【表1】

Figure 0004072048
【0035】
この合金をダイヤモンド砥石を用いて加工し、直径0.2mmのマイクロドリルを製造した。これらをX線回折法を用いて結合相の結晶構造を調査したところ、hcp結晶構造の存在が認められた。この加工済みのマイクロドリルを真空中で2.0℃/minの昇温速度で昇温し、真空中で800℃にて120分保持してから真空中で室温まで冷却した。この焼鈍処理を行ったマイクロドリルについてX線回折法を用いて結合相の結晶構造を調査したところ、hcp結晶構造の存在が消失していることを確認した。
【0036】
この焼鈍済みマイクロドリルについて、公知の真空アーク放電によるイオンプレーティング法を用いて、その表面に0.2μmの非晶質カーボン層を形成し、本発明マイクロドリルA〜Kを製造した。なお非晶質カーボン層を形成後、再度X線回折法を用いて基材の結合相の結晶構造を調査したところ、hcp結晶構造の存在が消失した状態であることを確認した。
【0037】
比較のため、800℃での焼鈍を実施せずに、その表面に同様の方法で0.2μmの非晶質カーボン層を形成した比較用マイクロドリルA〜Kを準備した。これらの比較マイクロドリルは非晶質カーボン層を形成後、再度X線回折法を用いて基材の結合相の結晶構造を調査したところ、hcp結晶構造が存在していることを確認した。
【0038】
さらに比較のために、本発明マイクロドリルAと同一の製造方法で製造し、非晶質カーボン層の層厚のみを3.5μmに変更した本発明ドリルL、および本発明マイクロドリルAと同一の製造方法で製造し、非晶質カーボン層の層厚のみを0.007μmに変更した本発明ドリルMも準備した。
【0039】
これらのマイクロドリルに対して、
被削材 :リジット基板(厚み0.4mm)
回転速度:150,000 r.p.m
送り :15μm/rev.
の条件で、穴明け加工を行なったところ、本発明マイクロドリルは10,000穴目加工を行ったが刃先摩耗量は極めて小さく、加工穴品質も優れていた。但し、ドリルMの刃先摩耗量は幾分大き目であった。これに対し、比較マイクロドリルは全てが2,000穴目加工終了時点で非晶質カーボン層が大きく剥離して母材が露出し、露出した刃先の摩耗が大きく、寿命となっていた。また被削材の溶着も認められたのに対して、本発明マイクロドリルおよび比較マイクロドリルLはいずれも非晶質カーボン層の剥離は認められず、被削材溶着も少ないことも確認できた。
【0040】
【発明の効果】
本発明の表面被覆加工用工具は、従来の製法で製造した工具と比べて優れた耐摩耗性、耐被削材溶着性を示し、従来ではなしえなかった様な微小な加工、例えば微細な穴明け加工においても、長期に渡り、良好な寸法精度の穴明け加工を行なうことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to a surface coating processing tool, and more specifically, is used for groove processing, cutting processing, drilling processing, and the like of a printed circuit board on which an integrated circuit and various electronic components are mounted. The present invention relates to a surface coating processing tool.
[0002]
[Prior art]
In recent years, tools for micromachining applications, such as machining tools for electronic devices such as micro drills for drilling printed circuit boards (hereinafter referred to as micro drills) and parts machining tools used in micromachine production, have been developed. There is a growing need.
[0003]
These ultra-fine machining methods include machining methods by non-contact machining such as laser machining and electrolytic machining, and direct tool contact with the machining material such as cutting, ultrasonic machining, and wire electric discharge machining. There is a processing method that causes plastic deformation. Currently, cemented carbides or cermets are generally used as tool materials for tools used in ultrafine machining by the latter method, and these alloys are composed of a hard hard phase (WC or TiC) and these. It is composed of bonded phases (iron-based metal: mainly cobalt and nickel are used).
[0004]
In addition to the development to increase the toughness of the above-mentioned conventional cemented carbides and cermets as the base material, at the same time, the market has become increasingly difficult to cut the work material and increase the machining efficiency. For this reason, since the processing conditions have become severe, improvement in wear resistance of the tool has been demanded.
[0005]
In response to such demands, conventionally, it has been generally performed to improve wear resistance by forming a coating layer made of a compound of Ti, Zr carbide, nitride, carbonitride, etc. on the surface of the substrate. In addition, there is a technique for forming a coating layer made of diamond (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
JP-A-4-275812 (see Fig. 1-4)
[0007]
[Problems to be solved by the invention]
However, the surface coating processing tool having the coating layer as described above has the following problems, and further improvements are required to meet market needs.
(1) insufficient hardness of the coating layer, does not come tool life prolongation coating layer by increasing wear use early.
(2) Due to insufficient adhesion strength with the base material, the coating layer peels off in the initial stage of use, so that the base material is greatly worn and the tool life cannot be extended .
(3) By forming the coating layer, the contact resistance between chips and chips and the tool is increased, and the processing quality is deteriorated.
[0008]
[Means for Solving the Problems]
As a result of repeated researches to achieve the object, the present inventor has a surface coating processing tool having a coating layer on the surface that has high hardness, excellent adhesion to the substrate, and low contact resistance with the work material. Was invented. As the base material suitable for the surface coating processing tool of the present invention, cemented carbide and cermet are desirable in view of hardness and toughness and reactivity with the work material.
[0009]
Specifically, when a cemented carbide and cermet that are widely used in industry today are used as a base material, and this base material is coated with amorphous carbon, the binding phase of the base material alloy is a hexagonal close-packed lattice. It was discovered that a surface coating tool having high hardness, excellent adhesion to the coating layer, and low contact resistance with the work material can be obtained by not containing (hcp).
[0010]
Currently, cemented carbides and cermets, which are widely used industrially as tool materials for surface coating, are generally pulverized and mixed with raw material powder, press-molded, sintered, and then shaped with a grindstone.・ Process to the desired dimensional accuracy. Before this processing step, the binder phase has a face-centered cubic lattice (fcc) crystal structure, but it is widely known that the crystal structure partially changes to a hexagonal close-packed lattice (hcp) at the time of processing. ing.
[0011]
The inventor annealed the processed base material in a vacuum and changed the hcp structure binder phase to the fcc structure again, so that the crystal structure of the binder phase in the base material is changed to the fcc structure. It has been found that when an amorphous carbon coating layer is formed on this substrate, a very high adhesion strength with the substrate can be obtained.
[0012]
As the above concrete cemented carbide and cermet, the following is desirable.
(1) Bonded phase composed of one or more of (1) tungsten carbide and (2) iron-based metal: 1 to 30% by weight, the balance being inevitable impurities Cemented carbide
(2) Bond phase consisting of one or more of (1) tungsten carbide and (2) iron-based metal: 1 to 30% by weight, (3) Cr and / or Cr carbide and / or V and / or V carbide, balance Cemented carbide consisting of inevitable impurities [0014]
(3) Bond phase consisting of one or more of (1) tungsten carbide and (2) iron-based metal: 1 to 30% by weight, (3) Cr and / or Cr carbide and / or V and / or V carbide, 4 ▼ Periodic Table IVa, Va, VIa Group of transition metals and one or more compounds selected from carbon, nitrogen, oxygen or boron, or one or more of solid solution phase, 0.1 to 50% by weight, the balance Cemented carbide made of inevitable impurities [0015]
(4) Bond phase consisting of one or more of (1) tungsten carbide and (2) iron-based metal: 1 to 30% by weight, (3) Periodic table IVa, Va, VIa group transition metals and carbon, nitrogen, oxygen Alternatively, a cemented carbide comprising one or more compounds selected from boron or a solid solution phase of 0.1 to 50% by weight and the balance of inevitable impurities.
(5) (1) A binder phase composed of one or more of iron-based metals: 1 to 30% by weight, (2) Periodic table selected from group IVa, Va, VIa transition metals and carbon, nitrogen, oxygen or boron A cermet comprising 70 to 99% by weight of one or more compounds or a solid solution phase with one or more, and the balance consisting of inevitable impurities.
(6) (1) A binder phase composed of one or more of iron-based metals: 1 to 30% by weight, (2) Periodic table selected from group IVa, Va, VIa transition metals and carbon, nitrogen, oxygen or boron 0.1 to 50% by weight of one or more compounds or solid solution phase with one or more, (3) cermet consisting of Cr and / or Cr carbide and / or V and / or V carbide, the balance consisting of inevitable impurities 0018
The composition range of the cemented carbide and cermet is limited by describing the range that is generally produced industrially, but the effects of the present invention can be achieved even if the range is deviated from this range. Of course, the present invention is also effective for hard materials other than cemented carbides and cermets, for example, iron-based metals such as stellite alloys.
[0019]
Further, depending on the use application, a coating layer may be further formed on the surface of amorphous carbon by chemical vapor deposition or physical vapor deposition, but the effect of the present invention is not lost even in this case. The surface coating processing tool of the present invention has a more excellent effect when used for a tool for fine processing including a drill or a router cutter for processing a printed circuit board in addition to general tool usage.
[0020]
When the substrate crystal structure is only fcc and the coating layer is amorphous carbon, it is not clear why the adhesion strength between the coating layer and the substrate is high. It is considered that the nucleation frequency is likely to be lower on the bonded phase having the hcp structure.
[0021]
The amorphous carbon layer to be formed is desirably a coating layer formed by a physical vapor deposition method using graphite as a raw material in a hydrogen-free atmosphere or a coating layer formed substantially of carbon. I found out.
[0022]
The amorphous carbon layer is called a hard carbon film, diamond-like carbon film, DLC film, aC: H, i-carbon film, etc., but it is comparable to diamond in order to show excellent wear resistance. In order to obtain hardness, the amorphous carbon layer of the present invention is preferably formed by physical vapor deposition under an atmosphere containing no hydrogen, using graphite as a raw material.
[0023]
In addition, this amorphous carbon layer is composed of only carbon atoms except for impurities inevitably included during film formation unless a reaction gas is intentionally added. Since the structure is close to a diamond structure, the hardness is increased. At the same time, the oxidation resistance is improved to about 600 ° C, which is equivalent to diamond.
[0024]
Among physical vapor deposition methods using graphite as a starting material, the film deposition rate is fast and is a problem with diamond films, for example, cathodic arc ion plating, laser ablation, and sputtering, which are generally used industrially. There is no problem with the manufacturing cost.
[0025]
The film formation by the cathodic arc ion plating method is most preferable from the viewpoint of the adhesion of the film and the film hardness. In this cathodic arc ion plating method, since the ionization rate of the raw material is high, an amorphous carbon film is formed mainly by irradiating the substrate with carbon ions, and a dense film with a high sp3 bond ratio is obtained. Therefore, when used as a tool, its life can be greatly improved.
[0026]
Hard particles called macro particles exist on the surface of the amorphous carbon layer formed by the cathodic arc ion plating method. The smaller the density of these macro particles, the smaller the contact resistance and the chip discharge property. Is also desirable to improve. The density is preferably 3 × 10 5 pieces / mm 2 or less, more preferably 1.5 × 10 5 pieces / mm 2 or less. When the density of the macro particles is larger than 3 × 10 5 particles / mm 2 , the work material is welded to the macro particles to increase the contact resistance, which is not preferable.
[0027]
In order to reduce the density of the macro particles and improve the surface roughness of the amorphous carbon layer, a method using, for example, low energy film formation or a magnetic field filter, which prevents particulate scattering from the graphite raw material, is used. Can also be proposed.
[0028]
From the viewpoint of contact resistance, the surface roughness of the amorphous carbon layer is desirably as smooth as possible, and is desirably 0.05 μm or less in terms of JIS standard Ra. The hardness of the amorphous carbon film is preferably 20 GPa or more, more preferably 25 GPa or more in Knoop hardness in order to ensure wear resistance.
[0029]
When the thickness of the amorphous carbon layer is 0.01 μm or less, the effect of improving the wear resistance is low, and even when the thickness is 3.0 μm or more, no significant improvement in wear resistance is observed, which is not economical. . Further, the effect of the present invention is not lost even if post-coating post-treatment such as smoothing the surface of the amorphous carbon layer after forming the amorphous carbon layer.
[0030]
The surface coating tool of the present invention is most suitable for use as a microdrill or router for microfabrication of printed circuit boards because of its wear resistance and welding resistance. It can also be used for non-ferrous materials such as aluminum titanium, magnesium, copper and alloys thereof, and since the surface coating processing tool of the present invention is very hard, not only non-ferrous materials but also stainless steel, etc. It can also be used for processing steel and castings.
[0031]
The surface coating processing tool of the present invention is used for applications such as drills, end mills, end milling insertable inserts, milling cutting inserts, turning inserts, metal saws, tooth cutting tools, reamers and taps. can do.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Next, the effect of the surface coating processing tool of the present invention will be specifically described with reference to examples. However, the amorphous carbon film forming method is not limited to the manufacturing method used here, and any method may be used as long as the film is formed by the PVD method using graphite. Examples are shown below.
[0033]
Example 1
After performing 10Hr wet mixing in the composition A~K of the raw material powder shown in <Table 1>, and press-molded at a pressure of 1 ton / cm 2, in a vacuum 4.0 at a heating rate of ° C. / min < The temperature was raised to the temperature described in Table 1>, held at that temperature in vacuum for 60 minutes, and then cooled in the same vacuum.
[0034]
[Table 1]
Figure 0004072048
[0035]
This alloy was processed using a diamond grindstone to produce a micro drill having a diameter of 0.2 mm. When the crystal structure of the binder phase was investigated using an X-ray diffraction method, the presence of the hcp crystal structure was recognized. The processed micro drill was heated at a heating rate of 2.0 ° C./min in vacuum, held at 800 ° C. for 120 minutes in vacuum, and then cooled to room temperature in vacuum. When the crystal structure of the binder phase was investigated using the X-ray diffraction method for the annealed micro drill, it was confirmed that the presence of the hcp crystal structure disappeared.
[0036]
About this annealed micro drill, using the ion plating method by a well-known vacuum arc discharge, the 0.2 micrometer amorphous carbon layer was formed in the surface, and this invention micro drill AK was manufactured. In addition, after forming an amorphous carbon layer, when the crystal structure of the binder phase of the base material was examined again using the X-ray diffraction method, it was confirmed that the presence of the hcp crystal structure disappeared.
[0037]
For comparison, comparative micro drills A to K in which a 0.2 μm amorphous carbon layer was formed on the surface by the same method without performing annealing at 800 ° C. were prepared. When these comparative micro drills formed an amorphous carbon layer and then examined the crystal structure of the binder phase of the base material again using the X-ray diffraction method, it was confirmed that the hcp crystal structure was present.
[0038]
Further, for comparison, the drill L of the present invention manufactured by the same manufacturing method as the micro drill A of the present invention, and only the thickness of the amorphous carbon layer is changed to 3.5 μm, and the same as the micro drill A of the present invention are the same. The drill M of the present invention, which was manufactured by the manufacturing method and in which only the thickness of the amorphous carbon layer was changed to 0.007 μm, was also prepared.
[0039]
For these micro drills,
Work material: Rigid substrate (thickness 0.4mm)
Rotational speed: 150,000 r. p. m
Feed: 15 μm / rev.
When drilling was performed under the above conditions, the micro drill of the present invention performed 10,000 holes, but the amount of wear on the blade edge was extremely small and the quality of the drilled holes was excellent. However, the amount of wear of the cutting edge of the drill M was somewhat large. On the other hand, all of the comparative micro drills had a long life because the amorphous carbon layer was largely peeled off when the 2,000th hole was finished and the base material was exposed, and the wear of the exposed blade edge was large. In addition, while welding of the work material was also observed, neither the micro drill of the present invention nor the comparative micro drill L showed any separation of the amorphous carbon layer, and it was confirmed that there was little work material welding. .
[0040]
【The invention's effect】
The surface coating processing tool of the present invention exhibits superior wear resistance and work material weldability compared to a tool manufactured by a conventional manufacturing method. Also in the drilling process, it is possible to perform the drilling process with good dimensional accuracy for a long time.

Claims (9)

硬質相と結合相からなる硬質材料を基材とし、前記基材の表面の少なくとも一部に非晶質カーボン膜が形成された表面被覆加工用工具であって、
前記基材の結合相の結晶構造は、面心立方格子(fcc)からなって、六方最密格子(hcp)を含まず、
前記非晶質カーボン膜は、焼結された基材を目的形状・目的寸法精度にまで加工した後に焼鈍を経てから物理的蒸着法で形成されてなることを特徴とする表面被覆加工用工具。
A surface coating processing tool in which a hard material composed of a hard phase and a binder phase is used as a base material, and an amorphous carbon film is formed on at least a part of the surface of the base material,
The crystal structure of the binder phase of the substrate is composed of a face-centered cubic lattice (fcc ) and does not include a hexagonal close-packed lattice (hcp) ,
The surface coating processing tool, wherein the amorphous carbon film is formed by physical vapor deposition after annealing the sintered base material to a target shape and target dimensional accuracy .
前記基材が、(1)炭化タングステンおよび(2)鉄系金属の1種以上からなる結合相:1〜30重量%、残部が不可避不純物からなる組成の超硬合金であることを特徴とする請求項1に記載の表面被覆加工用工具。The base material is a cemented carbide having a composition consisting of (1) tungsten carbide and (2) one or more of iron-based metals: 1 to 30% by weight, and the balance consisting of inevitable impurities. The surface coating processing tool according to claim 1. 前記基材が、(1)炭化タングステンおよび(2)鉄系金属の1種以上からなる結合相:1〜30重量%、(3)Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、残部が不可避不純物からなる組成の超硬合金であることを特徴とする請求項1に記載の表面被覆加工用工具。The base material comprises (1) tungsten carbide and (2) one or more types of iron-based metal binder phase: 1 to 30% by weight, (3) Cr and / or Cr carbide and / or V and / or V carbide The surface coating processing tool according to claim 1, wherein the balance is a cemented carbide having a composition composed of inevitable impurities. 前記基材が、(1)炭化タングステンおよび(2)鉄系金属の1種以上からなる結合相:1〜30重量%、(3)Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、(4)周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜50重量%、残部が不可避不純物からなる組成の超硬合金であることを特徴とする請求項1に記載の表面被覆加工用工具。The base material comprises (1) tungsten carbide and (2) one or more types of iron-based metal binder phase: 1 to 30% by weight, (3) Cr and / or Cr carbide and / or V and / or V carbide (4) 0.1 to 50% by weight of one or more compounds or solid solution phases of a periodic table IVa, Va, VIa group transition metal and one or more selected from carbon, nitrogen, oxygen or boron, The surface coating processing tool according to claim 1, wherein the balance is a cemented carbide having a composition composed of inevitable impurities. 前記基材が、(1)炭化タングステンおよび(2)鉄系金属の1種以上からなる結合相:1〜30重量%、(3)周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜50重量%、残部が不可避不純物からなる組成の超硬合金であることを特徴とする請求項1に記載の表面被覆加工用工具。 (1) Tungsten carbide and (2) a binder phase composed of one or more of iron-based metals: 1 to 30% by weight, (3) Group IVa, Va, VIa group transition metal and carbon, nitrogen A cemented carbide having a composition of 0.1 to 50% by weight of at least one compound selected from oxygen or boron and a solid solution phase selected from oxygen or boron, and the balance of inevitable impurities. Item 1. The surface coating processing tool according to Item 1. 前記基材が、(1)鉄系金属の1種以上からなる結合相:1〜30重量%、(2)周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を70〜99重量%、残部が不可避不純物からなるサーメット合金であることを特徴とする請求項1に記載の表面被覆加工用工具。The base material is (1) a binder phase composed of one or more of iron-based metals: 1 to 30% by weight, (2) selected from group IVa, Va, VIa transition metal and carbon, nitrogen, oxygen or boron in the periodic table 2. The surface coating processing tool according to claim 1, wherein the cermet alloy is composed of 70 to 99% by weight of one or more of the compound or solid solution phase and one or more of the solid solution phase, and the balance is inevitable impurities. 前記基材が、(1)鉄系金属の1種以上からなる結合相:1〜30重量%、(2)周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素あるいは硼素から選択される1種以上との化合物または固溶体相の、1種以上を0.1〜95重量%、(3)Crおよび/またはCr炭化物および/またはVおよび/またはV炭化物、残部が不可避不純物からなるサーメット合金であることを特徴とする請求項1に記載の表面被覆加工用工具。The base material is (1) a binder phase composed of one or more of iron-based metals: 1 to 30% by weight, (2) selected from group IVa, Va, VIa transition metal and carbon, nitrogen, oxygen or boron in the periodic table 0.1 to 95% by weight of one or more of the compound or solid solution phase with one or more of the above, (3) Cr and / or Cr carbide and / or V and / or V carbide, the balance consisting of inevitable impurities The surface coating processing tool according to claim 1, wherein the tool is a cermet alloy. 前記非晶質カーボン層の層厚が、0.01〜3.0μmであることを特徴とする請求項1〜7のいずれかに記載された表面被覆加工用工具。The layer thickness of the amorphous carbon layer, the surface coating processing tool according to any one of claims 1 to 7, characterized in that a 0.01 to 3.0 m. 硬質相と結合相からなる硬質材料の基材を焼結により得る工程と、  Obtaining a hard material base material comprising a hard phase and a binder phase by sintering;
この基材を目的形状・目的寸法精度にまで加工する工程と、  A process of processing this base material to a target shape and target dimensional accuracy;
加工後の基材に焼鈍を施し、結合相の六方最密格子(hcp)構造を面心立方格子(fcc)構造に変態させて、fcc構造からなる結合相とする工程と、  Annealing the processed substrate and transforming the hexagonal close-packed lattice (hcp) structure of the binder phase into a face-centered cubic lattice (fcc) structure to form a binder phase comprising an fcc structure;
この焼鈍後の基材表面の少なくとも一部に非晶質カーボン膜を物理的蒸着法にて形成す  An amorphous carbon film is formed on at least a part of the surface of the substrate after annealing by physical vapor deposition. る工程とを含むことを特徴とする表面被覆加工用工具の製造方法。The manufacturing method of the tool for surface coating processing characterized by including the process to include.
JP2002350590A 2002-12-03 2002-12-03 Surface coating tool Expired - Fee Related JP4072048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350590A JP4072048B2 (en) 2002-12-03 2002-12-03 Surface coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350590A JP4072048B2 (en) 2002-12-03 2002-12-03 Surface coating tool

Publications (2)

Publication Number Publication Date
JP2004181565A JP2004181565A (en) 2004-07-02
JP4072048B2 true JP4072048B2 (en) 2008-04-02

Family

ID=32752752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350590A Expired - Fee Related JP4072048B2 (en) 2002-12-03 2002-12-03 Surface coating tool

Country Status (1)

Country Link
JP (1) JP4072048B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702304B2 (en) 2007-02-22 2011-06-15 トヨタ自動車株式会社 Fuel cell separator, fuel cell separator manufacturing method, and fuel cell

Also Published As

Publication number Publication date
JP2004181565A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
US6929851B1 (en) Coated substrate
JP4975194B2 (en) Cutting tools
JP5542925B2 (en) Cutting tools
JP4854359B2 (en) Surface coated cutting tool
JP2009012139A (en) Surface coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high speed cutting
JP2013129915A (en) Cemented carbide body and application thereof
JP4072048B2 (en) Surface coating tool
JP4844880B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4069749B2 (en) Cutting tool for roughing
JP4145629B2 (en) Micro drill
JP2003205404A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP4543373B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP2004114190A (en) Fine machining tool
JP2004114202A (en) Fine machining tool
JP2004042170A (en) Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition
JP4824232B2 (en) Substrate processing method
JP2004249380A (en) Surface-coated ti group cermet cutting tool and its manufacturing method
JP2009095916A (en) Surface-coated cutting tool
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP2008006573A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
JP2003225809A (en) Surface coated cemented carbide cutting tool superior in wear resistance in high speed cutting of hard-to-cut material
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4072048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees