JP4071255B2 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP4071255B2
JP4071255B2 JP2005268033A JP2005268033A JP4071255B2 JP 4071255 B2 JP4071255 B2 JP 4071255B2 JP 2005268033 A JP2005268033 A JP 2005268033A JP 2005268033 A JP2005268033 A JP 2005268033A JP 4071255 B2 JP4071255 B2 JP 4071255B2
Authority
JP
Japan
Prior art keywords
valve
fixed core
fuel injection
joint
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005268033A
Other languages
Japanese (ja)
Other versions
JP2006002780A (en
Inventor
篤 関根
清隆 小倉
竜弥 安藤
山門  誠
典幸 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2005268033A priority Critical patent/JP4071255B2/en
Publication of JP2006002780A publication Critical patent/JP2006002780A/en
Application granted granted Critical
Publication of JP4071255B2 publication Critical patent/JP4071255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、内燃機関用の電磁式燃料噴射弁に関する。   The present invention relates to an electromagnetic fuel injection valve for an internal combustion engine.

従来より、自動車等の内燃機関においては、エンジン制御ユニットからの電気信号により駆動する電磁式の燃料噴射弁が広く用いられている。   Conventionally, in an internal combustion engine such as an automobile, an electromagnetic fuel injection valve that is driven by an electric signal from an engine control unit has been widely used.

従来のこの種の電磁式燃料噴射弁には、例えば特開平10−339240号公報、特開平11−132127号公報に開示される中空筒形の固定コア(センターコア)の周りに電磁コイル、ヨークが配置され、電磁コイルを収納するヨークの下部には、弁体を有する可動子を内装したノズルボディが取付けられ、この可動子が戻しばねの力を受けて弁座側に付勢される構造をなしている。   This type of conventional electromagnetic fuel injection valve includes, for example, an electromagnetic coil and a yoke around a hollow cylindrical fixed core (center core) disclosed in JP-A-10-339240 and JP-A-11-132127. A nozzle body with a mover having a valve body is attached to the lower part of the yoke that houses the electromagnetic coil, and the mover is biased toward the valve seat by the force of a return spring. I am doing.

特開平10−339240号公報JP 10-339240 A 特開平11−132127号公報JP-A-11-132127

上記従来例では、閉弁時の跳ね返りによる2次噴射について考慮されていなかった。   In the above-described conventional example, secondary injection due to rebound when the valve is closed is not considered.

本発明の目的は、閉弁時の弁体の跳ね返りを抑制して燃料の2次噴射防止等の課題に応えることができる燃料噴射弁を提供することにある。     The objective of this invention is providing the fuel injection valve which can respond to subjects, such as prevention of the secondary injection of a fuel, by suppressing the rebound of the valve body at the time of valve closing.

上記目的を達成するために本発明では、電磁式燃料噴射弁において、燃料通路組立体の内部には、可動コアと弁体を結合してなる可動子と、この可動子を弁座側に付勢する戻しばねと、前記戻しばねのばね力を調整する部材とが組み込まれており、前記ノズルホルダーの前記固定コアと圧入嵌合する位置の外周に電磁コイルが配置され、その外側に筒形のヨークが配置され、前記ヨークは上端が前記固定コアのフランジに溶接結合され下端が前記ノズルホルダーの外周に圧入嵌合していることを特徴とする。   In order to achieve the above object, according to the present invention, in an electromagnetic fuel injection valve, in a fuel passage assembly, a mover formed by coupling a movable core and a valve body, and this mover is attached to the valve seat side. And a member for adjusting the spring force of the return spring is incorporated, and an electromagnetic coil is arranged on the outer periphery of the nozzle holder at a position where it is press-fitted and fitted, and a cylindrical shape is formed on the outer side thereof. The yoke is characterized in that the upper end of the yoke is welded to the flange of the fixed core and the lower end is press-fitted to the outer periphery of the nozzle holder.

また、弁体を有する可動子と、前記可動子に弁座側にばね荷重を与える戻しばねと、電磁コイルと、前記電磁コイルの励磁により前記可動子を開弁側に磁気吸引する磁気回路とを備えた電磁式燃料噴射弁において、
前記可動子は前記磁気回路の要素となる可動コアを有し、前記可動コアと前記弁体とがばね機能を有するジョイントを介して連結され、且つ前記可動子には板ばねが組み込まれ、前記戻しばねと前記板ばねの間に該可動子と独立して軸方向に可動な質量体が配置されていることを特徴とする。
A movable element having a valve body; a return spring that applies a spring load to the movable element on the valve seat side; an electromagnetic coil; and a magnetic circuit that magnetically attracts the movable element toward the valve opening side by excitation of the electromagnetic coil; In an electromagnetic fuel injection valve equipped with
The movable element has a movable core as an element of the magnetic circuit, the movable core and the valve body are connected via a joint having a spring function, and a leaf spring is incorporated in the movable element, A mass body movable in the axial direction independently of the movable element is disposed between the return spring and the leaf spring.

以上のように本発明によれば、閉弁時の弁体の跳ね返りを抑制して燃料の2次噴射が少ない燃料噴射弁を提供することができる。   As described above, according to the present invention, it is possible to provide a fuel injection valve that suppresses the rebound of the valve body when the valve is closed and reduces the secondary injection of fuel.

本発明の実施の形態を図面に示した実施例を参照して説明する。   Embodiments of the present invention will be described with reference to examples shown in the drawings.

図1は本発明の一実施例に係わる燃料噴射弁の縦断面図、図2及び図3はその一部を分解して示す縦断面図、図4は上記実施例に用いる弁体とオリフィスプレートの拡大断面図、図5から図9は本実施例に用いる部品を示し、図10が全体の分解斜視図である。   FIG. 1 is a longitudinal sectional view of a fuel injection valve according to one embodiment of the present invention, FIGS. 2 and 3 are longitudinal sectional views showing a part thereof exploded, and FIG. 4 is a valve body and an orifice plate used in the above embodiment. FIG. 5 to FIG. 9 show components used in this embodiment, and FIG. 10 is an exploded perspective view of the whole.

まず、本実施例の全体概要について説明する。   First, an overall outline of the present embodiment will be described.

図1の矢印に示すように、燃料噴射弁100は、開弁時に噴射弁本体の上部から燃料が流入し軸方向に流れて噴射弁下端に設けたオリフィス20より燃料が噴射される所謂トップフィード方式のものが例示されている。   As shown by the arrow in FIG. 1, the fuel injection valve 100 is a so-called top feed in which fuel flows in from the upper part of the injection valve main body and flows in the axial direction when the valve is opened, and is injected from an orifice 20 provided at the lower end of the injection valve. The system is illustrated.

噴射弁本体100の軸方向の燃料通路を構成する主な要素として、プレス加工(例えば、深絞り加工,押し出し加工などで、以下に述べる他の部品においてプレス加工がなされるものも同様である)した燃料導入パイプ40、上端にフランジ1aを有する中空筒形の固定コア1、管材により細長の筒状にプレス加工し下端側に弁座付きオリフィスプレート19を有するノズルホルダー(ノズルボディと称されることもある)18を備える。   As a main element constituting the fuel passage in the axial direction of the injection valve main body 100, press working (for example, the same applies to other parts described below by deep drawing and extrusion). Nozzle holder (referred to as a nozzle body) having a fuel-introducing fuel pipe 40, a hollow cylindrical fixed core 1 having a flange 1a at the upper end, and an orifice plate 19 with a valve seat on the lower end side, which is pressed into a long and narrow cylindrical shape by a pipe. 18).

燃料導入パイプ40は、図1,図2に示すように上端及び下端部にフランジ40a,40bが設けられ、下端側のフランジ40bが符号W6で示す箇所で固定コア1のフランジ1a上面に溶接されている。この溶接はフランジの円周方向に行われ、それによって固定コア1と燃料導入用のパイプ40とが、噴射弁本体の組立前に予め結合されている。   As shown in FIGS. 1 and 2, the fuel introduction pipe 40 is provided with flanges 40a and 40b at the upper and lower ends, and the flange 40b on the lower end side is welded to the upper surface of the flange 1a of the fixed core 1 at a position indicated by reference numeral W6. ing. This welding is performed in the circumferential direction of the flange, whereby the fixed core 1 and the fuel introduction pipe 40 are connected in advance before the assembly of the injection valve body.

ノズルホルダー18の上部内周と固定コア1の外周とは圧入嵌合し、さらに符号W1で示す箇所が全周にわたり溶接されることで、ノズルホルダー18と固定コア1とが結合されている。このようにして、パイプ40、固定コア1、ノズルホルダー18が一連に結合されて一つの燃料通路組立体が構成されている。   The upper inner periphery of the nozzle holder 18 and the outer periphery of the fixed core 1 are press-fitted and further welded over the entire periphery at a position indicated by reference numeral W1, whereby the nozzle holder 18 and the fixed core 1 are coupled. In this way, the pipe 40, the fixed core 1, and the nozzle holder 18 are connected in series to form one fuel passage assembly.

この燃料通路組立体の内部には、円筒形の可動コア14と細長の弁体(弁ロッドを含む)16を後述するジョイントパイプ15を介して結合してなる可動子5、この可動子5を弁座19a側に付勢する戻しばね7、戻しばね7のばね力を調整する部材(本例では横断面がCリング形状をなしたCリングパイプ)6等が組み込まれている。   In this fuel passage assembly, a movable element 5 formed by connecting a cylindrical movable core 14 and an elongated valve element (including a valve rod) 16 via a joint pipe 15 described later, and the movable element 5 are provided. A return spring 7 that is biased toward the valve seat 19a, a member that adjusts the spring force of the return spring 7 (in this example, a C-ring pipe whose cross section has a C-ring shape) 6 and the like are incorporated.

ノズルホルダー18のうちで、固定コア1と圧入嵌合する位置の外周に電磁コイル2が配置され、その外側に筒形のヨーク4が配置される。   In the nozzle holder 18, the electromagnetic coil 2 is arranged on the outer periphery of the position where the fixed core 1 is press-fitted and fitted, and the cylindrical yoke 4 is arranged on the outer side thereof.

ヨーク4は、プレス加工された筒形で(その形状の詳細は後述する)、その上端が電磁コイル2を収納できるように開口し、この上端縁が固定コア1のフランジ1aに符号W5に示す位置で全周にわたり溶接結合される。ヨーク4の下端部4cは、電磁コイルを収納する部分4aよりも細く絞られて、その下端部4cがノズルホルダー18の外周に圧入嵌合している。   The yoke 4 is a pressed cylinder (the details of the shape will be described later), and its upper end is opened so that the electromagnetic coil 2 can be accommodated, and this upper end edge is indicated by a symbol W5 on the flange 1a of the fixed core 1. It is welded over the entire circumference in position. The lower end portion 4c of the yoke 4 is narrowed more narrowly than the portion 4a for accommodating the electromagnetic coil, and the lower end portion 4c is press-fitted to the outer periphery of the nozzle holder 18.

この燃料噴射弁100は、電磁コイル2を通電させると、ヨーク4,固定コア1,可動コア14,ノズルホルダー18の一部が磁気回路を形成し、それによって、可動子5が戻しばね7の力に抗して吸引されることで、開弁動作が行われる。電磁コイル2の通電を止めると戻しばね7の力で可動子5が弁座19aに当接し、弁が閉じる。本例では、固定コア1の下端面が開弁動作時に可動子5を受け止めるストッパとしての役割をなしている。   In the fuel injection valve 100, when the electromagnetic coil 2 is energized, the yoke 4, the fixed core 1, the movable core 14, and a part of the nozzle holder 18 form a magnetic circuit. A valve opening operation is performed by suctioning against the force. When the energization of the electromagnetic coil 2 is stopped, the movable element 5 comes into contact with the valve seat 19a by the force of the return spring 7, and the valve is closed. In this example, the lower end surface of the fixed core 1 serves as a stopper for receiving the mover 5 during the valve opening operation.

ここで、上記した各部品についての特徴を説明する。   Here, the characteristics of each component described above will be described.

固定コア1は、磁性ステンレス鋼でありプレス加工及び切削により上端にフランジ1aを有する細長の中空円筒形に形成されている。   The fixed core 1 is made of magnetic stainless steel and is formed into an elongated hollow cylindrical shape having a flange 1a at the upper end by pressing and cutting.

フランジ1aには、電磁コイル2の端子29及びピン端子30を通すための窓1bが設けられている。   The flange 1a is provided with a window 1b through which the terminal 29 and the pin terminal 30 of the electromagnetic coil 2 are passed.

燃料導入パイプ40は、非磁性金属部材で成形され、プレス加工によりその下部が細く絞られており、この下部内周に断面がCの字状のCリングピン6が圧入されている。このピン6の圧入量の調整により戻しばね7の荷重が調整される。燃料導入パイプ40の上端部には燃料フィルタ31が装着されている。   The fuel introduction pipe 40 is formed of a non-magnetic metal member, and a lower portion thereof is narrowed by pressing, and a C-ring pin 6 having a C-shaped cross section is press-fitted into the inner periphery of the lower portion. The load of the return spring 7 is adjusted by adjusting the press-fit amount of the pin 6. A fuel filter 31 is attached to the upper end of the fuel introduction pipe 40.

ノズルホルダー18は、磁性材であるが、固定コア1の下端面が位置する周辺(本例では環状溝18dがある位置)には、高周波焼き入れにより非磁性或いは弱磁性化の処理がなされている(なお、以下では弱磁性処理も含めて非磁性処理と称する)。   The nozzle holder 18 is made of a magnetic material, but the periphery of the fixed core 1 where the lower end surface is located (the position where the annular groove 18d is located in this example) is subjected to non-magnetic or weak magnetic treatment by high-frequency quenching. (Hereinafter referred to as non-magnetic treatment including weak magnetic treatment).

上記非磁性処理がなされている位置は、固定コア1の下端面(磁気吸引面)が位置する付近、換言すればノズルホルダー4において、固定コア1の軸線に固定コア下端位置で垂直に交わる垂線が通る位置を中心にしてその上下方向に幅(図1の環状溝幅Hより幾分広めの幅)を持った領域である。この領域のノズルホルダー外周面には、断面が台形をなす環状溝18dが設けられている。   The position where the non-magnetic treatment is performed is the vicinity where the lower end surface (magnetic attraction surface) of the fixed core 1 is located, in other words, in the nozzle holder 4, a perpendicular line perpendicular to the axis of the fixed core 1 at the fixed core lower end position. This is a region having a width (a width slightly wider than the annular groove width H in FIG. 1) in the vertical direction centering on the position through which the An annular groove 18d having a trapezoidal cross section is provided on the outer peripheral surface of the nozzle holder in this region.

このように環状溝18dを設けたのは、可動子5を磁気吸引するための磁気回路に漏れ磁束が生じるのを上記非磁性処理と併せて極力防止するためである。すなわち、本例のノズルホルダー18における一部、〔固定コア1の下端面(磁気吸引面)の周辺〕には、非磁性処理を施してこの固定コア1下端面付近の磁気回路の磁束漏れを防止し、それにより固定コア1から可動コア14に集中的に磁束が流れるようにしている。しかし、非磁性処理を施したとしても完全に非磁性化することは困難であり、磁束の一部が非磁性処理部にも幾分流れるので、それを極力防止するために環状溝18dによりノズルホルダー18を薄肉化して磁気抵抗を高めている。   The reason why the annular groove 18d is provided in this manner is to prevent leakage magnetic flux from being generated in the magnetic circuit for magnetically attracting the mover 5 together with the non-magnetic treatment as much as possible. That is, a part of the nozzle holder 18 of this example, [the periphery of the lower end surface (magnetic attraction surface) of the fixed core 1], is subjected to nonmagnetic treatment to cause magnetic flux leakage of the magnetic circuit near the lower end surface of the fixed core 1. This prevents magnetic flux from flowing from the fixed core 1 to the movable core 14 in a concentrated manner. However, even if a non-magnetic treatment is performed, it is difficult to completely demagnetize, and a part of the magnetic flux also flows to the non-magnetic treatment part to some extent. The holder 18 is thinned to increase the magnetic resistance.

ノズルホルダー18は、固定コア1を圧入する部分および可動コア14を収納するホルダー上部18aの径をノズルホルダーの中で最も大きくし、可動コア14と弁体16の結合部が位置する中間部18bはテーパー状に形成され、さらにその下の弁体が位置するホルダー下部18cは細長に絞られていわゆるロングノズルタイプのノズルホルダー18が形成されている。   In the nozzle holder 18, the diameter of the portion into which the fixed core 1 is press-fitted and the upper portion 18a of the holder that accommodates the movable core 14 is the largest among the nozzle holders, and the intermediate portion 18b where the joint between the movable core 14 and the valve body 16 is located. Is formed in a tapered shape, and the lower part 18c of the holder in which the valve body located below is further narrowed to form a so-called long nozzle type nozzle holder 18.

ホルダー上部18aの外周には、上記した環状溝18dのほかに、その上に間隔を置いて環状溝18eが設けられている。この環状溝18eにおける符号W1がノズルホルダー18と固定コア1との溶接箇所で、この位置W1でノズルホルダー18が固定コア1の全周にわたり溶接されている。この溶接W1は、ノズルホルダー18と固定コア1の内周間をシールすることになり、噴射弁本体100を通過する燃料の漏れを防止する。   In addition to the above-described annular groove 18d, an annular groove 18e is provided on the outer periphery of the holder upper portion 18a with a space therebetween. Reference sign W1 in the annular groove 18e is a welded portion between the nozzle holder 18 and the fixed core 1, and the nozzle holder 18 is welded over the entire circumference of the fixed core 1 at this position W1. This weld W1 seals between the inner periphery of the nozzle holder 18 and the fixed core 1, and prevents leakage of fuel passing through the injection valve main body 100.

また、溶接位置W1を環状溝18eに設定することでノズルホルダー18の薄肉部に溶接を行なうことができ、溶接に必要とする熱エネルギーの省力化を図り、また、それにより溶接の熱により噴射弁本体の部品に熱変形が生じるのを防ぐことができる。   In addition, by setting the welding position W1 to the annular groove 18e, welding can be performed on the thin wall portion of the nozzle holder 18, thereby saving the heat energy required for welding and thereby injecting with the heat of welding. It is possible to prevent thermal deformation of the valve body parts.

ホルダー下部(いわゆるロングノズル部)18cの外周には、シール部材取付け用の溝18gが設けられ、この溝18gにシール部材42例えばテフロンシール(「テフロン」は登録商標)が装着されている。   A groove 18g for attaching a seal member is provided on the outer periphery of the holder lower portion (so-called long nozzle portion) 18c, and a seal member 42 such as a Teflon seal (“Teflon” is a registered trademark) is attached to the groove 18g.

このロングノズル部18cは、燃料噴射弁100を図11に示すように、エンジン105のシリンダヘッド106に直接設ける噴射方式において、吸気弁101,吸排気弁の駆動機構102,吸気管103等の実装密度が高い場合に、大径の噴射弁胴体部をこれらの部品やシリンダヘッド106から離した位置(干渉しない位置)に置くことができ、取り付けの自由度を高める利点がある。また、従来は燃料噴射弁100をシリンダヘッドに取付けた場合、大径のヨーク底部とシリンダヘッドの間にガスケットを配置してエンジンの燃焼ガス漏れを防いでいたが、本実施例では細身のロングノズル部外周に設けたシールリング42によりロングノズル部18c外周とその挿入穴(シリンダヘッド側)の内周間をシールしてエンジンの燃焼ガス漏れを防止するので、そのシール位置で燃焼受圧面積を小さくできるので、シール部材の小形簡易化,コスト低減を図ることができる。   As shown in FIG. 11, the long nozzle portion 18c is provided with an intake valve 101, an intake / exhaust valve drive mechanism 102, an intake pipe 103, and the like in an injection system in which the fuel injection valve 100 is directly provided on the cylinder head 106 of the engine 105. When the density is high, the large-diameter injection valve body can be placed at a position away from these components and the cylinder head 106 (a position that does not interfere), and there is an advantage of increasing the degree of freedom of attachment. Conventionally, when the fuel injection valve 100 is attached to the cylinder head, a gasket is disposed between the bottom of the large-diameter yoke and the cylinder head to prevent the combustion gas leakage of the engine. The seal ring 42 provided on the outer periphery of the nozzle portion seals the outer periphery of the long nozzle portion 18c and the inner periphery of its insertion hole (on the cylinder head side) to prevent engine combustion gas leakage. Since it can be made small, it is possible to simplify the size and cost of the seal member.

ノズルホルダー18の下端(先端)には、オリフィスプレート19と、燃料旋回子(以下、スワラーと称する)21とが設けられるが、これらの部材18,19,21は別部材により成形される。   An orifice plate 19 and a fuel swirler (hereinafter referred to as a swirler) 21 are provided at the lower end (tip) of the nozzle holder 18, and these members 18, 19, and 21 are formed by separate members.

オリフィスプレート19は、例えばステンレス系の円板状のチップにより形成され、その中央部に噴射孔(オリフィス)20が設けられ、それに続く上流部に弁座19aが形成されている。   The orifice plate 19 is formed of, for example, a stainless steel disk-like chip, and an injection hole (orifice) 20 is provided in the center thereof, and a valve seat 19a is formed in the upstream portion following the injection hole.

オリフィスプレート19は、ノズルホルダー18の下端内周18fに圧入により取付ける仕様としてある。   The orifice plate 19 is designed to be attached to the inner periphery 18f of the lower end of the nozzle holder 18 by press fitting.

一方、スワラー21は、ノズルホルダー18の下端内周に嵌合する仕様としてあり、焼結合金により形成されている。   On the other hand, the swirler 21 has a specification to be fitted to the inner periphery of the lower end of the nozzle holder 18 and is formed of a sintered alloy.

図9にスワラー21の詳細形状を示し、その(a)は上面図、(b)はそのC−C断面図、(c)は下面図である。   FIG. 9 shows the detailed shape of the swirler 21, wherein (a) is a top view, (b) is a CC cross-sectional view, and (c) is a bottom view.

スワラー21は、正三角形に近い形で頂点に代わりRを三方に設けた形状をなすチップで、その中央に可動子5の先端(弁体)を摺動案内するための中央孔(ガイド)25が設けられ、上面には、燃料を外周三辺21′に導くための案内溝24が環状溝24′を中心に外側に向けて放射状に形成されている。   The swirler 21 is a chip having a shape close to an equilateral triangle and provided with R on three sides instead of the apex, and a central hole (guide) 25 for slidingly guiding the tip (valve element) of the mover 5 at the center thereof. In the upper surface, guide grooves 24 for guiding fuel to the outer peripheral three sides 21 'are formed radially outwardly with the annular groove 24' as the center.

一方、スワラー21の下面には、その外周縁に環状の段差(流路)23が形成され、環状流路23と中央孔25との間に、燃料旋回形成用の通路溝26が複数、例えば6個配設されている。   On the other hand, an annular step (flow path) 23 is formed on the outer periphery of the lower surface of the swirler 21, and a plurality of passage grooves 26 for fuel swirl formation are provided between the annular flow path 23 and the central hole 25, for example, Six are arranged.

通路溝26は、スワラー21の外径側から内径にほゞ接線方向に向けて形成され、通路溝26から中央孔25の下端に向けて噴出する燃料に旋回力が生じるように設定してある。   The passage groove 26 is formed so as to be substantially tangential from the outer diameter side of the swirler 21 to the inner diameter, and is set so that a swirling force is generated in the fuel ejected from the passage groove 26 toward the lower end of the central hole 25. .

上記環状段差23を設ける理由は、燃料溜りとして必要なためである。また、スワラー21の外周には、三辺の面取り21′が形成されている。この面取り21′は、スワラー21をノズルホルダー18の先端に嵌合したときに、ノズルホルダー18の内周との間に燃料通路を確保すると共に、溝24,26等の加工時に基準としている役割をなす。スワラー21の外周に設けたR面はノズルホルダー18の先端内周に嵌まり合う。   The reason why the annular step 23 is provided is that it is necessary as a fuel reservoir. Further, a chamfer 21 ′ having three sides is formed on the outer periphery of the swirler 21. This chamfer 21 'secures a fuel passage between the swirler 21 and the inner periphery of the nozzle holder 18 when the swirler 21 is fitted to the tip of the nozzle holder 18, and serves as a reference when processing the grooves 24, 26, etc. Make. The R surface provided on the outer periphery of the swirler 21 fits into the inner periphery of the tip of the nozzle holder 18.

このスワラー21の形状を上記のようにRをつけたほぼ正三角形に近い形とした場合には、それ以上の多角辺のチップよりも燃料流量を充分に確保し得る利点がある。   When the shape of the swirler 21 is a shape close to a substantially equilateral triangle with an R as described above, there is an advantage that a fuel flow rate can be sufficiently secured as compared with a chip having more polygonal sides.

ノズルホルダー18の先端(燃料噴射側一端)にスワラー21とオリフィスプレート19を装着するための受け面18e付きの内周(段付き内周)18fが設けられる。スワラー21は、ノズルホルダー18の受け面18eに受け止められるようにしてノズルホルダー内周に嵌め込まれ、一方、オリフィスプレート19はスワラー21を押し付けるようにして前記内周に圧入,溶接されている。符号W4がその溶接位置でオリフィスプレート19の全周にかけて溶接されている。   An inner periphery (stepped inner periphery) 18 f with a receiving surface 18 e for mounting the swirler 21 and the orifice plate 19 is provided at the tip (one end of the fuel injection side) of the nozzle holder 18. The swirler 21 is fitted into the inner periphery of the nozzle holder so as to be received by the receiving surface 18e of the nozzle holder 18, while the orifice plate 19 is press-fitted and welded to the inner periphery so as to press the swirler 21. Reference numeral W4 is welded over the entire circumference of the orifice plate 19 at the welding position.

このようにスワラー21及びオリフィスプレート19を装着することで、スワラー21は、受け面18eとオリフィスプレート19の間に挾持される。   By mounting the swirler 21 and the orifice plate 19 in this way, the swirler 21 is held between the receiving surface 18 e and the orifice plate 19.

スワラー21の上面は、ノズルホルダー18に設けた受け面18eに圧接するために、燃料案内溝24を設けることで、スワラー上流側の燃料がこの溝24を介してスワラー21外周の燃料流路22に流れるようにしてある。   The upper surface of the swirler 21 is provided with a fuel guide groove 24 so as to be in pressure contact with the receiving surface 18 e provided on the nozzle holder 18, so that the fuel on the swirler upstream side passes through the groove 24 and the fuel flow path 22 on the outer periphery of the swirler 21. It is supposed to flow through.

図3に示すように可動子5における可動コア14と弁体16とがばね機能を有するジョイント15を介して連結される。可動子5には、可動コア14とジョイント15との間に板ばね(ダンパープレート)50が組み込まれている。   As shown in FIG. 3, the movable core 14 and the valve body 16 in the mover 5 are connected through a joint 15 having a spring function. A leaf spring (damper plate) 50 is incorporated in the mover 5 between the movable core 14 and the joint 15.

また、図1に示すように、固定コア1の燃料通路を構成する軸孔fから可動コア14に設けた軸孔にわたって可動子5と独立して軸方向に可動な質量体(重錘、可動マスなどと称されることもある)41が配置されている。この質量体41は、戻しばね7と板ばね50との間に位置する。したがって、戻しばね7のばね荷重は、質量体41,板ばね50を介して可動子5に加わるようにしてある。   Further, as shown in FIG. 1, a mass body (weight, movable) that is movable in the axial direction independently of the mover 5 from the shaft hole f constituting the fuel passage of the fixed core 1 to the shaft hole provided in the movable core 14. 41 (sometimes referred to as a mass or the like) 41 is arranged. The mass body 41 is located between the return spring 7 and the leaf spring 50. Therefore, the spring load of the return spring 7 is applied to the mover 5 via the mass body 41 and the leaf spring 50.

可動コア14は、図2,3に示すように質量体41の一部を導入するための上部軸孔14aと、この上部軸孔14aよりも径を大きくした下部軸孔14bとを有する。   2 and 3, the movable core 14 has an upper shaft hole 14a for introducing a part of the mass body 41 and a lower shaft hole 14b having a diameter larger than that of the upper shaft hole 14a.

ジョイント15は、上部筒部15aとそれよりも径を小さくした下部筒部15cとを一体に形成したカップ形のパイプよりなる。その上部筒部15aが可動コア14の下部軸孔14bに嵌合して、符号W2の位置で可動コア14と全周にわたり溶接され、これによりジョイント15と可動コア14とが結合される。   The joint 15 is composed of a cup-shaped pipe in which an upper cylindrical portion 15a and a lower cylindrical portion 15c having a diameter smaller than that are integrally formed. The upper cylindrical portion 15a is fitted into the lower shaft hole 14b of the movable core 14 and welded over the entire circumference with the movable core 14 at the position indicated by reference numeral W2, whereby the joint 15 and the movable core 14 are coupled.

可動コア14の上部軸孔14a・下部軸孔14b間の内径段差面14cとジョイント15の上部筒部15aの上端面との間に板ばね50が介在する。ジョイント15の下部筒部15cには可動子の弁体(弁ロッド)5の上部が符号W3に示す位置で全周にわたり溶接結合されている。   A leaf spring 50 is interposed between the inner diameter step surface 14 c between the upper shaft hole 14 a and the lower shaft hole 14 b of the movable core 14 and the upper end surface of the upper cylindrical portion 15 a of the joint 15. The upper part of the valve body (valve rod) 5 of the mover is welded to the lower cylindrical portion 15c of the joint 15 at the position indicated by the symbol W3 over the entire circumference.

ジョイント15の上部筒部15a・下部筒部15c間の段差15bは板ばねとしての機能を有している。   A step 15b between the upper cylindrical portion 15a and the lower cylindrical portion 15c of the joint 15 has a function as a leaf spring.

図6に示すように板ばね50は、環状でその内側の符号51で示す部分が打ち抜き個所となっており、この打ち抜きにより内側に向けて弾性片50aが複数突出形成され、これらの弾性片50aは周方向に等間隔に配設されている。   As shown in FIG. 6, the leaf spring 50 has an annular shape, and a portion indicated by reference numeral 51 on the inside thereof is a punched portion, and by this punching, a plurality of elastic pieces 50a are formed to protrude inward, and these elastic pieces 50a. Are arranged at equal intervals in the circumferential direction.

この板ばね50の弾性片50aによって、円筒形の可動質量体41の下端が受け止められている。   The lower end of the cylindrical movable mass body 41 is received by the elastic piece 50a of the leaf spring 50.

本実施例では、板ばね50が質量体(第1の質量体)41を受け、ジョイント15の板ばね部(段差部)15bが可動コア(第2の質量体)14を受けるので、質量体及びそれを受ける板ばね機能(ダンパー機能)が2重構造になる。   In the present embodiment, the leaf spring 50 receives the mass body (first mass body) 41, and the leaf spring portion (step portion) 15b of the joint 15 receives the movable core (second mass body) 14. Therefore, the mass body And the leaf spring function (damper function) which receives it becomes a double structure.

そして燃料噴射弁の閉弁動作時に戻しばね7のばね力により可動子5が弁座19aに衝突した時には、まずその衝撃をジョイント15の板ばね部15bで吸収し、さらに可動子5の跳ね返りの運動エネルギーを可動質量体9の慣性と板ばね50の弾性変形により吸収して、はね返りを防止する。特に本実施例の2重ダンパー構造によれば、戻しばね7のばね荷重が大きい筒内噴射方式の燃料噴射弁であってもその弁体の閉弁時の衝撃エネルギーを充分に減衰させて、跳ね返りに伴う2次噴射を有効に防止することができる。   When the movable element 5 collides with the valve seat 19a due to the spring force of the return spring 7 during the closing operation of the fuel injection valve, the impact is first absorbed by the leaf spring portion 15b of the joint 15, and the movable element 5 rebounds. The kinetic energy is absorbed by the inertia of the movable mass body 9 and the elastic deformation of the leaf spring 50 to prevent rebound. In particular, according to the double damper structure of the present embodiment, even when the return spring 7 is a cylinder injection type fuel injection valve having a large spring load, the impact energy when the valve body is closed is sufficiently attenuated, Secondary injection accompanying rebound can be effectively prevented.

図5に上記ジョイント15の構造を拡大して示す。このジョイント15は上記質量体41と共にその内部が燃料通路fとなり、段差部15dには燃料をノズルホルダー18側に通す穴15dが複数配設されている。   FIG. 5 shows an enlarged structure of the joint 15. The joint 15 together with the mass body 41 serves as a fuel passage f, and a plurality of holes 15d through which fuel flows to the nozzle holder 18 are provided in the step portion 15d.

可動コア14及び弁ロッド16の一部が可動側のガイド面となっている。また、ノズルホルダー18の上部筒部18aの内周が可動コア14を摺動案内させるガイド面となり、スワラー21の軸穴25の内周が弁ロッド16を摺動案内させるガイド面となっており、いわゆる2点支持ガイド方式を構成している。   A part of the movable core 14 and the valve rod 16 serves as a movable guide surface. The inner periphery of the upper cylindrical portion 18a of the nozzle holder 18 serves as a guide surface for slidingly guiding the movable core 14, and the inner periphery of the shaft hole 25 of the swirler 21 serves as a guide surface for slidingly guiding the valve rod 16. This constitutes a so-called two-point support guide system.

ヨーク4は、磁性ステンレス鋼をプレス加工したもので、電磁コイル2を収容する円筒状のコイル収容部4aと、その下に続くテーパー状の絞り部4bと、その下に続く円筒状のヨーク下部4cとを有する。   The yoke 4 is formed by press-working magnetic stainless steel, and includes a cylindrical coil housing portion 4a for housing the electromagnetic coil 2, a tapered throttle portion 4b continuing below, and a cylindrical yoke lower portion continuing below the cylindrical coil housing portion 4a. 4c.

ヨーク上端は開口して、この開口部を通して電磁コイル2は収納され、またコイル収容部4aとテーパー部4bとの内部境界の曲がり角4dで受け止められて位置決めされている。ヨーク下部4cの内周とノズルホルダー18の一部外周とが圧入嵌合し、電磁コイル2のボビン底面とテーパー部4bの内周とノズルホルダー18の外周とで囲まれる環状の隙間34が固定コア1,可動コア14,ノズルホルダー18,ヨーク4により形成される可動子吸引用の磁気回路の磁束漏れ防止のエアギャップになっている。   The upper end of the yoke is opened, and the electromagnetic coil 2 is accommodated through the opening, and is positioned by being received at a bend 4d at the inner boundary between the coil accommodating portion 4a and the tapered portion 4b. The inner periphery of the yoke lower portion 4c and a part of the outer periphery of the nozzle holder 18 are press-fitted, and an annular gap 34 surrounded by the bobbin bottom surface of the electromagnetic coil 2, the inner periphery of the tapered portion 4b, and the outer periphery of the nozzle holder 18 is fixed. An air gap for preventing magnetic flux leakage of a magnetic circuit for attracting the mover formed by the core 1, the movable core 14, the nozzle holder 18, and the yoke 4 is formed.

本実施例では、弁座19aと固定コア1の下端とで可動子5のストロークを規定する。   In the present embodiment, the stroke of the mover 5 is defined by the valve seat 19 a and the lower end of the fixed core 1.

そのため固定コア1の下端面と可動コア14の上面とは閉弁時に衝突するので、図7に示すように固定コア1の下端面と可動コア14の上面に硬質被膜処理たとえばクロムめっき処理60,61を施している。   Therefore, the lower end surface of the fixed core 1 and the upper surface of the movable core 14 collide when the valve is closed. Therefore, as shown in FIG. 61 is given.

固定コア1の下端部1bには、図7に示すようにノズルホルダ18への圧入のガイド曲面となるアール1cをつけてある(アール1cは、図7の符号L1で示す範囲で本例ではアール1cはR=12.5mm程度)。このように固定コア1の下端部1bをガイド曲面1cにより先細にすることで、固定コア下端部をテーパ状の先細形状に形成した場合に較べてスムーズな圧入を保証することができる。すなわち、テーパ状の先細の場合には、テーパラインとそれに交わるストレートラインとの間の交わるところが広角エッジになるために、圧入時にこの広角エッジの位置でノズルホルダーの圧入部にかじりが生じる可能性があるが、本例ではそのような問題は生じない。なお、固定コア1の下端面に施される硬質被膜処理60は固定コア1の下端側面にまで及ぶが、圧入に支障のないように(硬質被
膜処理の厚みを加えた固定コア下端部外径が固定コア1のストレート部の外径よりも小さくなるように)、固定コア1の下端面からガイド曲面1c(L1の範囲を超えない)にかけて硬質被膜が形成され、耐磨耗,耐衝撃が図られている。
As shown in FIG. 7, the lower end portion 1b of the fixed core 1 is provided with a radius 1c serving as a guide curved surface for press-fitting into the nozzle holder 18 (the radius 1c is within a range indicated by reference numeral L1 in FIG. 7 in this example). R 1c is about R = 12.5 mm). In this way, the lower end 1b of the fixed core 1 is tapered by the guide curved surface 1c, so that smooth press-fitting can be ensured as compared with the case where the fixed core lower end is formed in a tapered shape. That is, in the case of a tapered taper, the intersection between the taper line and the straight line that intersects with it becomes a wide-angle edge. However, this problem does not occur in this example. The hard coating treatment 60 applied to the lower end surface of the fixed core 1 extends to the lower end side surface of the fixed core 1, but the outer diameter of the lower end of the fixed core with the thickness of the hard coating treatment added does not hinder the press-fitting. Hard coating is formed from the lower end surface of the fixed core 1 to the guide curved surface 1c (which does not exceed the range of L1), and wear resistance and impact resistance are reduced. It is illustrated.

可動子5の弁体16は、図4に示すようにその先端が球面16aと円錐突起16bとを組合わせた形状をなし、これらの球面16aと円錐突起16bとは16cに示すように不連続部を有している。球面16aが弁座19aに閉弁時に着座する。弁座19aに接触する面を球面16aにすることで弁体が傾いても弁座と弁体間に隙間が生じることを防止する。円錐突起16bはオリフィス20のデッドボリュームを少なくして燃料の整流作用をなす機能を有する。   As shown in FIG. 4, the valve body 16 of the mover 5 has a tip formed by combining a spherical surface 16a and a conical protrusion 16b. The spherical surface 16a and the conical protrusion 16b are discontinuous as shown by 16c. Has a part. The spherical surface 16a is seated on the valve seat 19a when the valve is closed. By making the surface in contact with the valve seat 19a into the spherical surface 16a, it is possible to prevent a gap from being generated between the valve seat and the valve body even when the valve body is inclined. The conical protrusion 16b has a function of reducing the dead volume of the orifice 20 and performing a fuel rectifying action.

また、上記した不連続部16cを形成すると、円錐部と球面部を連続させた場合よりも研磨仕上げを容易に精密仕上げする利点がある。   Further, when the discontinuous portion 16c described above is formed, there is an advantage that the polishing finish can be easily and precisely finished as compared with the case where the conical portion and the spherical portion are continuous.

27はコネクタを有する樹脂モールドである。   Reference numeral 27 denotes a resin mold having a connector.

図2に示すように燃料導入パイプ40と固定コア1とは予め溶接されている。この状態で固定コア1の端面には、クロムめっき60が施される。   As shown in FIG. 2, the fuel introduction pipe 40 and the fixed core 1 are welded in advance. In this state, chromium plating 60 is applied to the end face of the fixed core 1.

また、ノズルホルダー18の先端にはスワラー21を挟んでオリフィスプレート19を圧入溶接しておき、これに予め組み立てた可動子5を挿入し(可動子5は組み立てた後にクロムめっき61が施されている)、このノズルホルダー18に固定コア1を圧入する。固定コア1の圧入代により可動子5のストローク量が決定される。この固定コア1の圧入量はセンサにより検出され、所定の圧入量になったときに圧入工程を終了する。次いで、ノズルホルダー18と固定コア1との溶接がなされる。   Further, the orifice plate 19 is press-fitted and welded to the tip of the nozzle holder 18 with the swirler 21 interposed therebetween, and the mover 5 assembled in advance is inserted into this (the mover 5 is subjected to chrome plating 61 after being assembled). The fixed core 1 is press-fitted into the nozzle holder 18. The stroke amount of the mover 5 is determined by the press-fitting allowance of the fixed core 1. The press-fitting amount of the fixed core 1 is detected by a sensor, and the press-fitting process is finished when the predetermined press-fitting amount is reached. Next, the nozzle holder 18 and the fixed core 1 are welded.

次いで、電磁コイル2がボビンを介して固定コア1の外周に挿入され、ヨーク4が軸方向からノズルホルダー18の上部筒部18aに圧入され(圧入部分はヨーク4の下端部4c)、ヨーク4の上端縁が固定コア1のフランジ1aに溶接される。   Next, the electromagnetic coil 2 is inserted into the outer periphery of the fixed core 1 through the bobbin, and the yoke 4 is press-fitted into the upper cylindrical portion 18a of the nozzle holder 18 from the axial direction (the press-fitted portion is the lower end portion 4c of the yoke 4). Is welded to the flange 1 a of the fixed core 1.

その後、電磁コイルのピン端子30は曲げられ樹脂モールド27が施される。最後の工程で質量体41,戻しばね7,ばね調整部材6、燃料フィルタ31、Оリング32、バックアップリング33が組み込まれる。   Thereafter, the pin terminal 30 of the electromagnetic coil is bent and the resin mold 27 is applied. In the last step, the mass body 41, the return spring 7, the spring adjustment member 6, the fuel filter 31, the O-ring 32, and the backup ring 33 are incorporated.

本実施例によれば、次のような効果が得られる。
(1)本実施例における燃料通路組立体は、燃料導入パイプ40と固定コア1とノズルホルダー18とを溶接により一体結合して構成される。このようにすれば、メインの磁気回路となるべき固定コア1についてのみ磁路確保のために比較的肉厚にし、燃料導入パイプ40については、磁路とならないので非磁性のパイプで薄肉細径にすることができ、また、ノズルホルダー18も薄肉化することができ、燃料通路組立体の各要素をそれぞれの必要性に応じて合理的な仕様に設定することができる。そして、上記した燃料通路組立体の各要素のプレス加工により安価に大量生産することができる。
(2)さらに、ノズルホルダー18が固定コア1に圧入嵌合しても、ヨーク4と固定コア1とは溶接W5により結合されるので、電磁弁駆動用の磁気ギャップ箇所をできるだけ少なくすることができる。さらに固定コア1の磁路部はそれに圧入溶接されたノズルホルダー18の分が加わり、それが環状溝18dの位置ではこの溝18dの存在と非磁性処理と環状空隙34との協働により、磁気回路の磁束漏れを極力なくして、磁束が固定コア1下端と可動コア14との間に集中的に流れ電磁弁の磁気吸引特性を向上させることができる。
(3)また、燃料噴射弁の閉弁時の衝撃及び弁体の跳ね返りを二重ダンパー構造により有効に防止するので2次噴射を今まで以上に有効に防止できる。
According to the present embodiment, the following effects can be obtained.
(1) The fuel passage assembly in the present embodiment is configured by integrally joining the fuel introduction pipe 40, the fixed core 1, and the nozzle holder 18 by welding. In this way, only the fixed core 1 to be the main magnetic circuit is made relatively thick to secure the magnetic path, and the fuel introduction pipe 40 is not a magnetic path. In addition, the nozzle holder 18 can also be thinned, and each element of the fuel passage assembly can be set to a reasonable specification according to the respective needs. Then, mass production can be performed at low cost by pressing each element of the fuel passage assembly described above.
(2) Further, even if the nozzle holder 18 is press-fitted into the fixed core 1, the yoke 4 and the fixed core 1 are joined by the weld W5, so that the magnetic gap for driving the electromagnetic valve can be reduced as much as possible. it can. Further, the magnetic path portion of the fixed core 1 is added with the portion of the nozzle holder 18 that is press-fitted and welded thereto. At the position of the annular groove 18d, the presence of the groove 18d, the nonmagnetic treatment, and the annular gap 34 cooperate with each other. The magnetic flux leakage of the circuit is minimized, and the magnetic flux flows intensively between the lower end of the fixed core 1 and the movable core 14, thereby improving the magnetic attraction characteristics of the electromagnetic valve.
(3) Since the double damper structure effectively prevents the impact and rebound of the valve body when the fuel injection valve is closed, the secondary injection can be prevented more effectively than before.

なお、上記実施例では、筒内噴射方式の燃料噴射弁を用いて本発明を例示したが、吸気通路に配置する燃料噴射弁にも適用できるものである。   In the above-described embodiment, the present invention is illustrated by using the fuel injection valve of the in-cylinder injection method. However, the present invention can also be applied to the fuel injection valve disposed in the intake passage.

特開平10−339240号公報、特開平11−132127号公報に開示される従来の電磁式燃料噴射弁には、例えばように、部品点数の削減や組立性を向上させるために、複合磁性材料で形成した1本のパイプを磁性化し、その中間部のみを誘導加熱などにより非磁性化することで、磁性の燃料コネクタ部、非磁性の中間パイプ部及び磁性のバルブボディ部を一体形成したものが提案されている。   In the conventional electromagnetic fuel injection valves disclosed in JP-A-10-339240 and JP-A-11-132127, for example, a composite magnetic material is used in order to reduce the number of parts and improve the assemblability. One formed pipe is magnetized, and only the middle part is made non-magnetic by induction heating or the like, so that a magnetic fuel connector part, a non-magnetic intermediate pipe part and a magnetic valve body part are integrally formed. Proposed.

このタイプでは、燃料コネクタ部内に円筒状の固定鉄心を圧入し、バルブボディ部に弁体付きの可動コアを内装している。また、パイプの中間外周部に電磁コイルを配置し、電磁コイルの外側にヨークを配置している。電磁コイルを通電すると、ヨーク、燃料コネクタ部、固定コア、可動コア、バルブボディ部、ヨークに磁気回路が形成され、可動コアが固定コア側に磁気吸引されるようにしてある。非磁性部は燃料コネクタ部とバルブボディ部との間の磁束の短絡を防止する役割を果たしている。   In this type, a cylindrical fixed iron core is press-fitted into the fuel connector portion, and a movable core with a valve body is provided in the valve body portion. Moreover, the electromagnetic coil is arrange | positioned at the intermediate | middle outer peripheral part of the pipe, and the yoke is arrange | positioned on the outer side of the electromagnetic coil. When the electromagnetic coil is energized, a magnetic circuit is formed in the yoke, the fuel connector portion, the fixed core, the movable core, the valve body portion, and the yoke, and the movable core is magnetically attracted to the fixed core side. The nonmagnetic part plays a role of preventing a short circuit of magnetic flux between the fuel connector part and the valve body part.

近年においては、ガソリンエンジンにおいても燃料を内燃機関のシリンダ内に直接噴射させる燃料噴射弁が実用化されている。   In recent years, fuel injection valves that directly inject fuel into a cylinder of an internal combustion engine have been put to practical use in gasoline engines.

直接噴射式の燃料噴射弁においては、ヨーク下部に設けるノズルボディを細身で長めにしたいわゆるロングノズルタイプのインジェクタも提案されている。このロングノズルインジェクタは、シリンダヘッドに取付ける場合に、シリンダヘッド付近に吸気弁,吸気管等の部品が密集している場合に、スペースのとらない細身のノズルボディだけをシリンダヘッド上に位置させ、ヨークやコネクタモールド等の大径の胴体部分は他の部品やシリンダヘッドと干渉しないように離して設置できるので、取り付けの自由度が高い利点がある。   In a direct injection type fuel injection valve, a so-called long nozzle type injector in which a nozzle body provided at a lower portion of a yoke is slender and long has been proposed. When this long nozzle injector is attached to the cylinder head, if the intake valve, intake pipe, etc. are densely packed near the cylinder head, only the thin nozzle body that does not take up space is positioned on the cylinder head. Since a large-diameter body portion such as a yoke or a connector mold can be set apart so as not to interfere with other parts or the cylinder head, there is an advantage that the degree of freedom of attachment is high.

本実施例の目的は、燃料噴射弁の本体を上記した直接筒内噴射方式などに適するように、小形細径化を図りつつ、低コストにして充分な磁気回路を確保し、性能の優れた電磁式燃料噴射弁を提供することにある。   The purpose of this embodiment is to ensure a sufficient magnetic circuit at a low cost while reducing the size and diameter so that the main body of the fuel injection valve is suitable for the direct in-cylinder injection method described above, and has excellent performance. The object is to provide an electromagnetic fuel injection valve.

以下、実施態様を列挙する。
実施態様1:
電磁式燃料噴射弁において、噴射弁本体の軸方向の燃料通路を構成する主な要素としてプレス加工した燃料導入パイプ、上端にフランジを有する中空筒形の固定コア、管材により細長の筒状にプレス加工し下端側に弁座付きオリフィスプレートを有するノズルホルダーを備え、前記燃料導入パイプが前記固定コアのフランジ上面に溶接により結合され、且つ前記ノズルホルダーの上部内周と前記固定コアの外周とが圧入嵌合及び溶接により結合されて一つの燃料通路組立体が構成され、
この燃料通路組立体の内部には、可動コアと弁体を結合してなる可動子と、この可動子を弁座側に付勢する戻しばねと、前記戻しばねのばね力を調整する部材とが組み込まれており、
前記ノズルホルダーの前記固定コアと圧入嵌合する位置の外周に電磁コイルが配置され、その外側に筒形のヨークが配置され、前記ヨークは上端が前記固定コアのフランジに溶接結合され下端が前記ノズルホルダーの外周に圧入嵌合していることを特徴とする電磁式燃料噴射弁。
実施態様2:
電磁式燃料噴射弁において、フランジを有する中空筒形の固定コア、下端側に弁座付きオリフィスプレートを有し内部に弁体と可動コアを結合した可動子を収納するノズルホルダーを備え、
前記ノズルホルダーの上部内周と前記固定コアの外周とが圧入嵌合及び溶接により結合され、
前記ノズルホルダーの前記固定コアと圧入嵌合する位置の外周に電磁コイルが配置され、その外側に筒形のヨークが配置され、前記ヨークは上端が前記固定コアのフランジに溶接結合され下端が前記ノズルホルダーの外周と圧入嵌合していることを特徴とする電磁式燃料噴射弁。
実施態様3:
前記ノズルホルダーは磁性部材でその一部すなわち前記固定コアの下端周辺に位置する部分の外周に環状溝が設けられ、この環状溝のある領域は、非磁性化或いは弱磁性化処理されている実施態様1又は2記載の電磁式燃料噴射弁。
実施態様4:
前記燃料導入パイプは非磁性部材、前記固定コアは磁性部材であり、前記ノズルホルダーは磁性部材でその一部すなわち前記固定コアの下端周辺に位置する部分が非磁性化或いは弱磁性化処理されており、前記燃料導入パイプ及び前記ノズルホルダーは、前記固定コアよりも薄肉にしている実施態様1記載の電磁式燃料噴射弁。
実施態様5:
前記ヨークは、前記電磁コイルを収容する円筒状のコイル収容部と、その下に続くテーパー状の絞り部と、その下に続く円筒状のヨーク下部とを有し、前記電磁コイルは前記コイル収容部と前記テーパー部との内部境界の曲がり角で受け止められて位置決めされており、前記ヨーク下部の内周が前記ノズルホルダーの一部外周に圧入嵌合し、前記電磁コイルのボビン底面と前記テーパー部の内周と前記ノズルホルダーの外周とで囲まれる環状の隙間が前記固定コア,前記可動子,前記ノズルホルダー,前記ヨークにより形成される可動子吸引用の磁気回路の磁束漏れ防止の環状エアギャップになっている実施態様1から4のいずれかに記載の電磁式燃料噴射弁。
実施態様6:
前記弁座と前記固定コアの下端とで前記可動子のストロークを規定し、前記固定コアの下端外周には、前記圧入のガイド曲面となるアールをつけてあり、前記固定コアの下端面から前記ガイド曲面にかけて硬質被膜が形成されている実施態様1から5のいずれかに記載の電磁式燃料噴射弁。
実施態様7:
前記ノズルホルダーにおける前記固定コアが圧入されている位置の外周に環状溝を設けて、この環状溝の位置で前記ノズルホルダーと前記固定コアとを溶接している実施態様1から6のいずれかに記載の電磁式燃料噴射弁。
実施態様8:
前記ノズルホルダーは、前記固定コアと圧入される部分及び前記可動コアを収納する部分がノズルホルダーの中で最も径を大きくし、それより下方の弁体収納部が細く絞られて下方に延び、この細長の弁体収納部の外周にシールリングが装着されている実施態様1ないし7のいずれかに記載の電磁式燃料噴射弁。
The embodiments are listed below.
Embodiment 1:
In an electromagnetic fuel injection valve, a fuel introduction pipe that has been press-processed as the main elements constituting the axial fuel passage of the injection valve body, a hollow cylindrical fixed core having a flange at the upper end, and a tubular material that is pressed into an elongated cylinder A nozzle holder having an orifice plate with a valve seat on the lower end side, the fuel introduction pipe is joined to the upper surface of the flange of the fixed core by welding, and the upper inner periphery of the nozzle holder and the outer periphery of the fixed core are press-fitted Combined by fitting and welding to form one fuel passage assembly,
Inside the fuel passage assembly, there is a mover formed by coupling a movable core and a valve body, a return spring that urges the mover toward the valve seat, and a member that adjusts the spring force of the return spring. Is built in,
An electromagnetic coil is disposed on the outer periphery of the nozzle holder at a position where it is press-fitted to the fixed core, a cylindrical yoke is disposed on the outer side thereof, the upper end of the yoke is welded to the flange of the fixed core, and the lower end is An electromagnetic fuel injection valve characterized by being press-fitted into the outer periphery of a nozzle holder.
Embodiment 2:
In an electromagnetic fuel injection valve, a hollow cylindrical fixed core having a flange, an orifice plate with a valve seat on the lower end side, and a nozzle holder for housing a mover in which a valve body and a movable core are coupled to each other,
The upper inner periphery of the nozzle holder and the outer periphery of the fixed core are joined by press fitting and welding,
An electromagnetic coil is disposed on the outer periphery of the nozzle holder at a position where it is press-fitted to the fixed core, a cylindrical yoke is disposed on the outer side thereof, the upper end of the yoke is welded to the flange of the fixed core, and the lower end is An electromagnetic fuel injection valve characterized by being press-fitted into the outer periphery of a nozzle holder.
Embodiment 3:
The nozzle holder is a magnetic member, and an annular groove is provided on the outer periphery of a part thereof, that is, a portion located around the lower end of the fixed core, and the region having the annular groove is subjected to demagnetization or weakening treatment. The electromagnetic fuel injection valve according to aspect 1 or 2.
Embodiment 4:
The fuel introduction pipe is a non-magnetic member, the fixed core is a magnetic member, and the nozzle holder is a magnetic member, that is, a part located around the lower end of the fixed core is demagnetized or weakened. The electromagnetic fuel injection valve according to embodiment 1, wherein the fuel introduction pipe and the nozzle holder are thinner than the fixed core.
Embodiment 5:
The yoke has a cylindrical coil housing portion that houses the electromagnetic coil, a tapered throttle portion that follows the cylindrical coil housing portion, and a cylindrical yoke lower portion that follows the cylindrical coil housing portion, and the electromagnetic coil includes the coil housing portion. The inner periphery of the lower portion of the yoke is press-fitted into a part of the outer periphery of the nozzle holder, and the bottom surface of the bobbin of the electromagnetic coil and the tapered portion are positioned at the corner of the inner boundary between the tapered portion and the tapered portion. An annular gap surrounded by the inner periphery of the nozzle holder and the outer periphery of the nozzle holder is an annular air gap for preventing magnetic flux leakage of the magnetic circuit for attracting the mover formed by the fixed core, the mover, the nozzle holder, and the yoke. The electromagnetic fuel injection valve according to any one of the first to fourth embodiments.
Embodiment 6:
The valve seat and the lower end of the fixed core define the stroke of the mover, and the outer periphery of the lower end of the fixed core is rounded as a guide curved surface of the press-fit, and the lower end surface of the fixed core The electromagnetic fuel injection valve according to any one of embodiments 1 to 5, wherein a hard coating is formed over the guide curved surface.
Embodiment 7:
The annular groove is provided in the outer periphery of the position where the fixed core in the nozzle holder is press-fitted, and the nozzle holder and the fixed core are welded at the position of the annular groove. The described electromagnetic fuel injection valve.
Embodiment 8:
In the nozzle holder, the portion that is press-fitted with the fixed core and the portion that houses the movable core have the largest diameter among the nozzle holders, and the valve body storage portion below it is narrowed down and extends downward, The electromagnetic fuel injection valve according to any one of Embodiments 1 to 7, wherein a seal ring is mounted on the outer periphery of the elongated valve body storage portion.

以上のように本実施例によれば、燃料噴射弁の本体を上記した直接筒内噴射方式などに適するように、小形細径化を図りつつ、低コストにして充分な磁気回路を確保し、性能の優れた電磁式燃料噴射弁を提供することができる。   As described above, according to this embodiment, the main body of the fuel injection valve is suitable for the above-described direct in-cylinder injection method, etc., while ensuring a sufficient magnetic circuit at a low cost while reducing the size and diameter. An electromagnetic fuel injection valve having excellent performance can be provided.

本発明の一実施例に係わる燃料噴射弁の縦断面。The longitudinal section of the fuel injection valve concerning one example of the present invention. 上記燃料噴射弁の一部を分解して示す縦断面図。The longitudinal cross-sectional view which decomposes | disassembles and shows a part of said fuel injection valve. 上記燃料噴射弁の可動子の縦断面図。The longitudinal cross-sectional view of the needle | mover of the said fuel injection valve. 上記実施例に用いる弁体とオリフィスプレートの拡大断面図。The expanded sectional view of the valve body and orifice plate which are used for the said Example. 上記実施例に用いるジョイントパイプの上面図及びA-A断面図。The top view and AA sectional drawing of the joint pipe used for the said Example. 上記実施例に用いるオリフィスプレートの上面図及びB-B断面図。The top view and BB sectional drawing of an orifice plate used for the said Example. 上記実施例に用いる可動コアと固定コアの部分拡大断面図。The partial expanded sectional view of the movable core and fixed core used for the said Example. 上記実施例に用いるヨークの縦断面図。The longitudinal cross-sectional view of the yoke used for the said Example. 上記実施例に用いるスワラーの上面図、C−C断面図、下面図。The top view, CC sectional drawing, and bottom view of a swirler used for the said Example. 上記実施例の分解斜視図。The exploded perspective view of the said Example. 上記実施例に係る燃料噴射弁の実装状態を示す説明図。Explanatory drawing which shows the mounting state of the fuel injection valve which concerns on the said Example.

符号の説明Explanation of symbols

1…固定コア、2…電磁コイル、3…コイル用樹脂モールド(ボビン及び被覆)、4…ヨーク、5…可動子、7…戻しばね、14…可動コア、15…ジョイント、16…弁体、18…ノズルホルダー、19…オリフィスプレート、41…質量体、50…板ばね(ダンパープレート)。 DESCRIPTION OF SYMBOLS 1 ... Fixed core, 2 ... Electromagnetic coil, 3 ... Resin mold for coils (bobbin and coating), 4 ... Yoke, 5 ... Movable element, 7 ... Return spring, 14 ... Movable core, 15 ... Joint, 16 ... Valve body, 18 ... Nozzle holder, 19 ... Orifice plate, 41 ... Mass body, 50 ... Leaf spring (damper plate).

Claims (2)

弁体を有する可動子と、前記可動子に弁座側にばね荷重を与える戻しばねと、電磁コイルと、前記電磁コイルの励磁により前記可動子を開弁側に磁気吸引する磁気回路とを備えた電磁式燃料噴射弁において、
前記可動子は前記磁気回路の要素となる可動コアを有し、前記可動コアと前記弁体とがばね機能を有するジョイントを介して連結され、且つ前記可動子には板ばねが組み込まれ、前記戻しばねと前記板ばねの間に該可動子と独立して軸方向に可動な質量体が配置されており、
前記可動コアは、前記質量体を導入するための上部軸孔と、この上部軸孔よりも径を大きくした下部軸孔とを有し、前記ジョイントは上部筒部とそれよりも径を小さくした下部筒部とを一体に形成したパイプよりなり、
前記上部筒部が前記下部軸孔に嵌合して、前記可動コアと前記ジョイントとが溶接結合され、且つ前記可動コアの前記上部軸孔・下部軸孔間の内径段差面と前記ジョイントの上部筒部の上端面との間に前記板ばねが介在し、
前記ジョイントの下部筒部には前記可動子の弁ロッドの上部が溶接結合され、前記ジョイントの上部筒部・下部筒部間の段差が前記ばね機能を有していることを特徴とする電磁式燃料噴射弁。
A movable element having a valve body; a return spring that applies a spring load to the movable element on the valve seat side; an electromagnetic coil; and a magnetic circuit that magnetically attracts the movable element toward the valve opening side by excitation of the electromagnetic coil. In the electromagnetic fuel injection valve
The movable element has a movable core as an element of the magnetic circuit, the movable core and the valve body are connected via a joint having a spring function, and a leaf spring is incorporated in the movable element, A mass body movable in the axial direction independently of the mover is disposed between the return spring and the leaf spring ,
The movable core has an upper shaft hole for introducing the mass body and a lower shaft hole having a diameter larger than that of the upper shaft hole, and the joint has a diameter smaller than that of the upper cylindrical portion. It consists of a pipe that is integrally formed with the lower cylinder,
The upper cylindrical portion is fitted into the lower shaft hole, the movable core and the joint are welded, and an inner diameter step surface between the upper shaft hole and the lower shaft hole of the movable core and the upper portion of the joint The leaf spring is interposed between the upper end surface of the cylindrical portion,
The upper part of the valve rod of the mover is welded to the lower cylindrical part of the joint, and the step between the upper cylindrical part and the lower cylindrical part of the joint has the spring function. Fuel injection valve.
前記ジョイントに燃料を通す孔が設けられている請求項1に記載の電磁式燃料噴射弁。   The electromagnetic fuel injection valve according to claim 1, wherein a hole through which fuel passes is provided in the joint.
JP2005268033A 2005-09-15 2005-09-15 Electromagnetic fuel injection valve Expired - Fee Related JP4071255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268033A JP4071255B2 (en) 2005-09-15 2005-09-15 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268033A JP4071255B2 (en) 2005-09-15 2005-09-15 Electromagnetic fuel injection valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000356774A Division JP3734702B2 (en) 2000-10-17 2000-10-17 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2006002780A JP2006002780A (en) 2006-01-05
JP4071255B2 true JP4071255B2 (en) 2008-04-02

Family

ID=35771345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268033A Expired - Fee Related JP4071255B2 (en) 2005-09-15 2005-09-15 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP4071255B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000797B4 (en) 2007-03-26 2014-05-22 Denso Corporation Solenoid valve and fuel injector with the same
WO2010053770A1 (en) 2008-10-29 2010-05-14 G.W. Lisk Company, Inc. Adjustable doser valve
JP5966780B2 (en) * 2011-09-30 2016-08-10 株式会社Gsユアサ Battery pack
JP6137296B2 (en) * 2015-12-22 2017-05-31 株式会社デンソー Fuel injection valve
WO2018049850A1 (en) * 2016-09-13 2018-03-22 天纳克(苏州)排放系统有限公司 Nozzle assembly

Also Published As

Publication number Publication date
JP2006002780A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP3734702B2 (en) Electromagnetic fuel injection valve
JP4790441B2 (en) Electromagnetic fuel injection valve and method of assembling the same
JP4935882B2 (en) Fuel injection valve
JP4160595B2 (en) Electromagnetic fuel injection valve
US6783109B2 (en) Electromagnetic fuel injection valve
JP2007016774A (en) Fuel injection valve and its manufacturing method
JP5152024B2 (en) Fuel injection valve
JP4071255B2 (en) Electromagnetic fuel injection valve
JP5063789B2 (en) Electromagnetic fuel injection valve and method of assembling the same
JP2010261396A (en) Fuel injection valve
JP4453745B2 (en) Fuel injection valve
US20060060680A1 (en) Fuel injector with a deep-drawn thin shell connector member and method of connecting components
JP2005036696A (en) Electromagnetic drive type fuel injection valve
JP3819741B2 (en) Electromagnetic fuel injection valve
JP4160594B2 (en) Electromagnetic fuel injection valve
JP4138778B2 (en) Fuel injection valve
JP2005009421A (en) Solenoid operated fuel injection valve
JP2010159677A (en) Fuel injection valve
JP4285701B2 (en) Fuel injection valve
JP2006083808A (en) Solenoid-operated fuel injection valve
JP2003269640A (en) Solenoid valve
JP2003106237A (en) Method of manufacturing electromagnetic fuel injection valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees