JP4067432B2 - Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product - Google Patents

Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product Download PDF

Info

Publication number
JP4067432B2
JP4067432B2 JP2003066228A JP2003066228A JP4067432B2 JP 4067432 B2 JP4067432 B2 JP 4067432B2 JP 2003066228 A JP2003066228 A JP 2003066228A JP 2003066228 A JP2003066228 A JP 2003066228A JP 4067432 B2 JP4067432 B2 JP 4067432B2
Authority
JP
Japan
Prior art keywords
cold rolling
less
hot blow
hot
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003066228A
Other languages
Japanese (ja)
Other versions
JP2003342665A (en
Inventor
眞一 松田
峰生 浅野
鎮 横山
洋志 落合
晋拓 安永
俊哉 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sumitomo Light Metal Industries Ltd
Original Assignee
Honda Motor Co Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sumitomo Light Metal Industries Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003066228A priority Critical patent/JP4067432B2/en
Publication of JP2003342665A publication Critical patent/JP2003342665A/en
Application granted granted Critical
Publication of JP4067432B2 publication Critical patent/JP4067432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【技術分野】
本発明は,熱間ブロー成形が施されるAl−Mg系のアルミニウム合金板で,とくに自動車用車体パネルなど外観性が要求される部位に適する板材,及びこれを用いた熱間ブロー成形品に関する。
【0002】
【従来技術】
熱間ブロー成形は,金型や製造装置が冷間プレス成形よりも安価なこと,成形の自由度が大きいこと等から,多品種少量生産向きの技術として適している。
上記熱間ブロー成形用材料としては,10μm前後の微細再結晶粒であることが金属組織上必要とされる。その製法上の特徴は,微細粒を得るために,強冷間加工を行なってから最終の急速加熱焼鈍を実施することにある。冷間加工におけるひずみ量は最終焼なまし工程において形成される結晶粒径と相関があり,強加工を加えるほど結晶粒径は小さくなる。実生産上,強加工は圧延中の耳割れなどを誘発するため,適宜中間焼鈍が必要となるが,中間焼鈍を行った場合にも,その後最終焼鈍前の冷間圧延率を大きくする必要がある。
【0003】
他方,例えば自動車用車体パネルなどにおいては,外観品質の要素の中に,塗装後の外観が平滑であることが要求される。
冷間プレス用板材を用いて冷間プレス加工をした場合には,リジングマークと呼ばれる,主に,材料の異方性に起因するとされる欠陥が生じることは知られている。そして,従来の熱間ブロー成形品は,冷間プレスの場合のリジングマークと同様に塗装後の外観の平滑性が損なわれる欠陥が生じる現象が認められ,商品価値を大きく低下させる。熱間ブロー成形法は大変形を付与する塑性加工法であるが故,冷間プレスを行う場合には平滑性の低下が認められない材料であっても,熱間ブロー成形を行うことによって上記リジングマークと同様の欠陥が生じる場合があり,従来の熱間ブロー成形用材料は自動車用車体パネルなどの材料としては不適切である。
【0004】
なお,従来の熱間ブロー成形用材料又はその製造方法としては,例えば特許文献1〜5に記載の技術がある。
【0005】
【特許文献1】
特開昭60−238460号公報
【特許文献2】
特開昭60−238461号公報
【特許文献3】
特開昭62−96643号公報
【特許文献4】
特開平7−26342号公報
【特許文献5】
特開平7−305131号公報
【0006】
【解決しようとする課題】
本発明は,かかる従来の問題点に鑑みてなされたもので,適度な熱間ブロー成形性を有し,熱間ブロー成形時に生じる成形品外面の平滑性の低下が抑制され,塗装後の外観品質に優れる熱間ブロー成形用板材および熱間ブロー成形品の製造方法を提供しようとするものである。
【0007】
【課題の解決手段】
第1の発明は,重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施ことを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法にある(請求項1)。
【0008】
本発明の熱間ブロー成形用Al−Mg系アルミニウム合金板は,上記のごとく,特定の成分組成を有する合金を用い,上記特定の製造方法を採用することによって,熱間ブロー成形性の向上及び熱間ブロー成形時に生じる成形品外面の平滑性の低下の抑制を図ったものである。
以下にまず,本発明の熱間ブロー成形用Al−Mg系アルミニウム合金板(以下,適宜,本発明のアルミニウム合金板という)を構成する合金の含有成分の意義及び限定理由について説明する。
【0009】
Mg:3.5〜6.0%;
Mgは成形後の製品の強度を高め,また,熱間ブロー成形中に動的回復および再結晶を促進させて成形に伴って低下する加工性を補う。好ましい含有範囲は3.5〜6.0%で,3.5%未満では再結晶促進の効果が小さく,6.0%を超えて含有すると熱間圧延性を阻害する。
【0010】
Mn:0.5〜0.8%,Cr:0.05〜0.20%;
Mn,Crは,ブロー成形中において再結晶粒を安定させて良好な成形性および成形後の外観品質を与え,また,成形後の強度を高める。好ましい含有量は上記のごとくそれぞれ0.5〜0.8%および0.05〜0.20%の範囲である。両者が下限を切ると安定させる効果が薄れて結晶粒が粗大化し,成形性の低下や肌荒れによる外観品質の低下につながる。範囲を超えた場合,鋳塊中に粗大な晶出物を形成し,熱間ブロー成形性を阻害し,また,偏析した晶出物は成形後の外観品質を低下させる。また,MnとCrとは必ずしも両者が含有される必要はなく,少なくとも一方が含有されることによって上記効果が得られる。
【0011】
Si含有量0.10%以下,Fe含有量0.12%以下,Cu含有量0.10%以下;
本発明においては,不純物としてのFe,Siの含有量を上記の量に制限することが重要である。不純物のFe,Siは不溶性のAl−Fe−Si系化合物やMg2Si化合物を生成し,この化合物が結晶粒界に析出してキャビティを増加させ,熱間ブロー成形性を低下させたり,成形後の強度および伸びを低下させる。より好ましくはFe,Siともに0.05%以下に制限するのがよい。
また,Cuは熱間圧延性を阻害するため,0.10%以下に制限することが重要である。
【0012】
次に,本発明のアルミニウム合金板を製造するに当たっては,まず,鋳塊を均質化処理後に熱間圧延し,さらに冷間圧延率25%以上の冷間圧延を実施する。この場合の冷間圧延が25%未満の場合には,後述する中間焼鈍において所望の組織変化を得ることができないという問題がある。
【0013】
上記冷間圧延後には,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施す。この中間焼鈍は,不均一な熱間圧延組織を最終板で均一な組織とするための中間処理として必要である。そして,上記中間焼鈍中には,熱間圧延組織を再結晶させて組織改質を図る。なお,中間焼鈍を実施しなかった場合,最終板での組織に不均一さが残るため,ブロー成形後の平滑な外観が得られない。
【0014】
また,上記中間焼鈍における昇温速度が1℃/sec未満では,再び不均一な再結晶組織となって改質の役割が十分では無くなり,ブロー成形後に平滑な表面が得られない。また保持する温度が400℃未満では十分に再結晶が生じず,550℃を超えると融解のおそれがある。また,保持時間が5分を超える熱処理は,経済的な意義に乏しい。
【0015】
中間焼鈍後は,再び冷間圧延を実施して最終焼鈍による再結晶で均一な等方的な組織とし,ブロー成形後の平滑性に優れた材料とする。
上記中間焼鈍後の冷間圧延は,最終板厚まで25%以上50%未満の冷間圧延率で行う。このとき冷間圧延率が25%未満では後述する最終焼鈍で再結晶しないため,所期の平滑性が得られない。また,50%以上では経済的な意義に乏しいばかりでなく,最終焼鈍後の板で熱間ブロー成形した場合に,再び異方性を生じさせて外観の平滑性をかえって悪化させる場合がある。
【0016】
その後は,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施す。この最終焼鈍の昇温速度が1℃/sec未満では,再び不均一な再結晶組織となって,ブロー成形後に平滑な表面が得られない。また最終焼鈍時の保持温度が400℃未満では十分に再結晶が生じず,550℃を超えると融解のおそれがある。また,5分を超える熱処理は,経済的な意義に乏しい。
【0017】
第2の発明は重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施し熱間ブロー成形用Al−Mg系アルミニウム合金板を作製し,
該アルミニウム合金板に,400℃以上の温度域において熱間ブロー成形を施すことを特徴とする熱間ブロー成形品の製造方法にある(請求項6)。
【0018】
本発明の熱間ブロー成形品は,上述した第1発明にかかる優れたアルミニウム合金板を素材として用いている。そのため,これを400℃以上の温度に加熱して熱間ブロー成形を施しても,従来のリジングマークのような欠陥の発生を大幅に抑制することができる。そのため,本発明の熱間ブロー成形品は,非常に平滑性に優れたものとなり,外観要求の厳しい種々の製品に適用することができる。
【0019】
第3の発明は重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施し,
さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施し熱間ブロー成形用Al−Mg系アルミニウム合金板を作製し,
該アルミニウム合金板に,冷間塑性加工を施した後,400℃以上の温度域において熱間ブロー成形を施すことを特徴とする熱間ブロー成形品の製造方法にある(請求項9)。
【0020】
本発明の熱間ブロー成形品は,上記のごとく,冷間塑性加工を施した後に上記熱間ブロー成形を施すという,特殊な成形方法により作製したものである。そして,その素材となるアルミニウム合金板として,上述した第1の発明の熱間ブロー成形用Al−Mg系アルミニウム合金板に対して,さらに,上記最終焼鈍後の冷間圧延および仕上げ熱処理を加えたものを用いる。
これにより,冷間塑性加工後にこれに起因する欠陥を生じさせることなく,平滑な外観を容易に得ることができる。
そして,上記熱間ブロー成形品は,冷間塑性加工を施した後,熱間ブロー成形をしても優れた品質を維持できるので,単なる熱間ブロー成形のみを施した場合よりも自由度の高い形状設計が可能となり,製品の付加価値をさらに高めることができる。
【0021】
ここで,上記最終焼鈍後の冷間圧延の冷間圧延率が25%未満の場合には,熱間ブロー成形前の加熱時における粗大化抑制効果が十分ではなく,50%を超えると経済的な意義に乏しいばかりでなく,熱間ブロー成形前の再結晶で再び異方性を生じさせて外観の平滑性をかえって悪化させる場合がある。
【0022】
上記仕上げ熱処理の昇温速度が1℃/sec未満の場合には熱間ブロー成形前の加熱において再び不均一な再結晶組織となって,熱間ブロー成形後に平滑な表面が得られない。また,上記仕上げ熱処理の保持温度が270℃未満では熱間ブロー成形前の冷間加工性を保証することが難しく,400℃を超える場合には熱間ブロー成形前の加熱において再び不均一な再結晶組織を形成する場合がある。また,5分を超える熱処理は,経済的に意義が小さい。
その他の成分範囲の意義,限定理由および製造工程における条件の意義,限定理由については,上述した第1の発明の場合と同様である。
【0023】
【発明の実施の形態】
上記第1の発明における上記鋳塊は,常法に従って上述の組成を有するアルミニウム合金を溶解,鋳造して得ることができる。そして,この鋳塊の上記均質化処理は,例えば,450〜550℃の温度範囲で行うことが好ましい。均質化処理温度が450℃未満の場合には,鋳塊中の偏析を除去することができず,熱間加工性を低下させるという問題があり,一方,550℃を超える場合には,スラブの融解が生じるという問題がある。
【0024】
また,上記均質化処理後の熱間圧延開始温度は,例えば,250〜500℃が好ましく,より好ましくは400℃以下とするのがよい。熱間圧延開始温度が250℃未満の場合には,材料の変形抵抗が高く圧延パス数が増え,経済的にメリットがないという問題がある。一方,500℃を超える場合には,熱間圧延中の割れを誘発させるため望ましくなく,上記のごとく400℃以下とするのがより好ましい。
【0025】
また,本発明においては,上記熱間圧延を施した後に,バッチ炉において300℃〜500℃の温度範囲内に加熱して1時間〜10時間の保持を行う冷間圧延前中間焼鈍を施すことが好ましい(請求項2)。
この冷間圧延前中間焼鈍は必須工程ではないが,その後の冷間圧延における圧延荷重を低減しうるので追加することが好ましい。
【0026】
上記冷間圧延前中間焼鈍を追加する場合には,上記のごとくバッチ炉を用い,その加熱温度を300℃〜500℃の範囲とする。加熱温度が300℃未満の場合には,上記の圧延荷重低減効果が得られないという問題がある。一方,加熱温度が500℃を超えると,表層にMgが濃縮し,板表面に酸化Mg層が形成され,表面品質を著しく劣化させるという問題がある。
また,上記保持時間が1時間未満の場合には,上記の圧延荷重低減効果が得られない。一方,上記保持時間が10時間を超える場合には,加熱温度が500℃を超える場合と同様の不具合が生じやすい。さらに,10時間以上保持しても上記圧延荷重低減効果に変化がなく工業的なコストアップになるだけである。
【0027】
また,本発明においては,上記合金は,さらにBe:20〜80ppmを含有することが好ましい(請求項3)。この場合には,通常のAl−Mg系合金と同様,溶湯の酸化を防止し,酸化物の鋳塊への巻き込みよって生じる外観品質の異常を防止することができる。Beの含有量が20ppm未満の場合にはこのような酸化防止効果があまり得られず,一方,80ppmを超える場合には,効果が飽和する上,環境上望ましくないという不具合がある。
【0028】
また,上記最終焼鈍を施した後に,さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施すことが好ましい(請求項4)。この場合には,さらに効果的に,熱間ブロー成形性の向上及び熱間ブロー成形時に生じる成形品外面の平滑性の低下の抑制を図ることができる。そして,特に,熱間ブロー成形前に冷間加工を加えるような用途における熱間ブロー成形性向上に非常に有効である。
【0029】
上記最終焼鈍後の冷間圧延の冷間圧延率が25%未満の場合には,熱間ブロー成形前の加熱時における粗大化抑制効果が十分ではなく,50%を超えると経済的な意義に乏しいばかりでなく,熱間ブロー成形前の再結晶で再び異方性を生じさせて外観の平滑性をかえって悪化させる場合がある。
【0030】
上記仕上げ熱処理の昇温速度が1℃/sec未満の場合には熱間ブロー成形前の加熱において再び不均一な再結晶組織となって,熱間ブロー成形後に平滑な表面が得られない。また,上記仕上げ熱処理の保持温度が270℃未満では熱間ブロー成形前の冷間加工性を保証することが難しく,400℃を超える場合には熱間ブロー成形前の加熱において再び不均一な再結晶組織を形成する場合がある。また,5分を超える熱処理は,経済的に意義が小さい。
【0031】
また,上記アルミニウム合金板は自動車用車体パネル材であることが好ましい(請求項5)。
自動車用車体パネル材では,塗装後の鮮映性が要求される。鮮映性は,成形品の外観,特に平滑さに強く影響され,平らなほど鮮映性は高くなる。成形品の表面の平滑性は,熱間ブロー成形中に,素材が均一に変形することによって達成される。鮮映性の悪い成形品では,熱間ブロー成形中の不均一な変形が生じている。これは,ブロー成形前の板の金属組織の不均一性が原因である。これらの不均一性は,熱間圧延中に生じる不均一な再結晶組織や強冷間圧延が影響を及ぼしている。
この点において,上記優れた本発明のアルミニウム合金板を上記自動車用車体パネル材に適用することにより,上記金属組織の不均一性を防止して,優れた鮮鋭性を実現しうる自動車用車体パネルを得ることができる。
また,上記自動車用車体パネルとしては,例えば,ボンネットフード,トランクリッド,ルーフ,ドアなどのいわゆるアウター材,その他外観特性が問われる各種のインナー材等も含む。
【0032】
次に,上記第2,第3の発明においては,上記熱間ブロー成形用Al−Mg系アルミニウム合金板は,上記熱間圧延を施した後に,バッチ炉において300℃〜500℃の温度範囲内に加熱して1時間〜10時間の保持を行う冷間圧延前中間焼鈍を施してあることが好ましい(請求項7,請求項10)。この場合には,上述したごとく製造方法における熱間圧延後の冷間圧延の圧延荷重を低減させる効果が得られる。
【0033】
また,上記第2の発明においては,上記熱間ブロー成形用Al−Mg系アルミニウム合金板は,上記最終焼鈍を施した後に,さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施してあることが好ましい(請求項8)。
この場合には,さらに平滑性に優れた熱間ブロー成形品を得ることができる。
【0034】
また,上記第2,第3の発明においても,上記と同様の理由により,合金は,さらにBe:20〜80ppmを含有することが好ましい(請求項11)。
また,上記熱間ブロー成形品は自動車用車体パネルであることが好ましい(請求項12)。即ち,上記熱間ブロー成形品は,上述したごとく,冷間塑性加工を施した後,熱間ブロー成形をしても優れた品質を維持できるので,単なる熱間ブロー成形のみを施した場合よりも自由度の高い形状設計が可能となる。それ故,デザインが重視させる自動車用車体パネルに容易に対応することができる。
【0035】
【実施例】
(実施例1)
本例では,表1に示すごとく,本発明品としてのアルミニウム合金板を6種類(試料E11〜E16)と,成分範囲が本発明範囲から外れた比較品としてのアルミニウム合金板4種類(試料C11〜C14)を作製し,その特性を比較した。
【0036】
【表1】

Figure 0004067432
【0037】
まず表1中に示す合金成分のスラブを半連続鋳造により製作した。これらの合金を500℃に8時間保持する均質化処理を行い,面削後395℃に加熱して熱間圧延を施して3.9mmの熱間圧延板を得た。
次に,この熱間圧延板に対し,冷間圧延(冷間圧延率50%)→中間焼鈍(昇温速度10℃/sec,保持温度500℃,保持時間30秒)→冷間圧延(冷間圧延率33%)→最終焼鈍(昇温速度10℃/sec,保持温度500℃,保持時間30秒)を順次施して,1.3mm厚みのアルミニウム合金板を得た。
【0038】
次に,得られたアルミニウム合金板を350mm角の四角形状に切り出して試験片とし,実際に熱間ブロー成形を行った。具体的には,上記試験片を490℃に加熱して,250mmW×250mmL×65mmHの角筒形状に雌型により熱間ブロー成形した。底面中心部分の肉厚は0.85mmであり,肉厚減少率は約34.6%であった。
【0039】
次に,得られた角筒成形品の中心部分について引張試験による機械的性質を測定した。また同じく中心部から100mm角のテストピースを切り取り,酸洗後,一般自動車用塗装を実施し,塗膜の品質(鮮鋭性)をテンションメータで評価した。
【0040】
ここで,上記テンションメータの評価は,図1に示すごとく,撮影装置5を用いて行う。
撮影装置5は,テストピース1を覆うTP収納部51と,その側壁部に配設されたストロボ部52及びカメラ部53とよりなる。
【0041】
ストロボ部52は,筒状の入側導光部521を有し,その一端には光源となるストロボ522を配設し,他端にはストロボ522から発せられる光を後述する複数の線状光線に遮るスリット板523を配設してなる。
また,上記カメラ部52は,筒状の出側導光部531を介してフィルムをセットするカメラ532を有している。
【0042】
そして,撮影装置5は,出側導光部531に設けられたシャッター55を操作することにより,上記ストロボ522から光を発射させ,その光をスリット板523を通してテストピース1の表面に当て,これを反射させてカメラ532によってフィルムに撮影するよう構成されている。
【0043】
上記スリット板523は,図2に示すごとく,9〜20までの12段階の点数の領域に区画されている。各領域には,それぞれ複数の平行光線(スリット光)が得られるようにスリットが設けられており,スリットの間隔は,点数が高い領域のものほど狭くなるように設定されている。本例では,スリットSの幅寸法(太さ)は一律0.20mmとした。また,スリットSの間隔(ピッチ)は,表2に示すごとく設定した。
【0044】
【表2】
Figure 0004067432
【0045】
そして,テンションメータの評価は,上記テストピース1の載置位置に評価しようとするサンプルを載置して上記撮影装置5により撮影した写真を用いて行った。具体的には,写真に表れている複数のスリット光を各領域ごとに目視により観察し,隣り合うスリット光に重なりが見られるか否かを判断する。そして,スリット光に重なりが見られていない領域のうち最大の点数を評価値とした。
この評価方法は,自動車メーカ等において一般に用いられる評価方法である。
【0046】
これらの評価結果を表3に示す。表3における○は合格,×は不合格を示す。塗装後の品質についてはテンションメータ評価値が15以上となるものを合格とした。また,自動車用車体パネル材としては,耐デント性が必要とされるため,耐力110MPa以上を有するものを合格とした。また,ヘム加工などの後加工における加工性が必要なため,15%以上の伸びがあるものを合格とした。塗装後の鮮映性(テンションメータ評価値)については評価値が15以上となるものを合格とした。
【0047】
【表3】
Figure 0004067432
【0048】
表3より知られるごとく,本発明品である試料E11〜E16においては,耐力,伸び,テンションメータのいずれの評価も合格であった。
これに対し,比較例C11は,Mgの添加量が少ないため耐力が低く,またブロー成形中の結晶粒径が大きくなったため外観の肌あれが生じてテンションメータの評価が不合格であった。
比較例C12は,Mg添加量が高すぎたため,熱間加工中に板が割れたため評価不能であった。
比較例C13は,MnおよびCrが添加されておらず,ブロー成形中の結晶粒径が大きくなったため外観の肌あれが生じてテンションメータの評価が不合格であった。
比較例C14は,Fe,Siが多いため,ブロー成形中にキャビテーションが生じたため伸びが不合格となった。
【0049】
(実施例2)
本例では,Al−4.8%Mg−0.7%Mn−0.15%Cr−0.02%Si−0.02%Fe−0.01%Cu−50ppmBeの組成でスラブを半連続鋳造により製作した。このスラブを500℃の温度に8時間保持する均質化処理を施し,面削後395℃に加熱して熱間圧延板を作成し,引き続いて,表4中の工程に従ってそれぞれ1.3mmの板を作製した。表4中における工程E21,E22,E23は本発明の方法であり,工程C21〜C30は比較のために本発明と異なる工程を採用したものである。また,これらのうち,工程E23及びC29,C30は,バッチ炉による冷間圧延前中間焼鈍を熱間圧延後に実施したものである。
【0050】
【表4】
Figure 0004067432
【0051】
次に,得られた1.3mm厚みのアルミニウム合金板を350mm角の四角形状に切り出して試験片とし,実際に熱間ブロー成形を行った。具体的には,実施例1と同様に,上記試験片を490℃に加熱して,250mmW×250mmL×65mmHの角筒形状に雌型により熱間ブロー成形した。底面中心部分の肉厚は0.85mmであり,肉厚減少率は約34.6%であった。
【0052】
次に,実施例1と同様に,得られた角筒成形品の中心部分について引張試験による機械的性質を測定した。また同じく中心部から100mm角のテストピースを切り取り,酸洗後,一般自動車用塗装を実施し,塗膜の品質(鮮鋭性)をテンションメータで評価した。テンションメータでの評価方法は実施例1と同様である。
また,本例では,テンションメータによる評価に加え,ブロー成形品の表面評価を外観観察により行った。具体的には,冷間圧延前中間焼鈍後の板表面の酸化Mgに起因するまだら模様がその後の圧延で延ばされた筋状の汚れが有るか否かを目視により観察し,汚れが観察された場合を×,汚れがなく美麗な表面の場合を○とした。そして,このブロー成形品の表面評価と上記のテンションメータ評価とを総合して,総合判定を行った。評価結果を表5に示す。表5における○は合格,×は不合格を示す。
【0053】
【表5】
Figure 0004067432
【0054】
表5より知られるごとく,工程E21,E22により得られたアルミニウム合金板を熱間ブロー成形して得られた成形品については,満足できる外観が得られた。
一方,工程C21は中間焼鈍を省略したため,熱間圧延板の不均一組織を改良することができず,評価が劣った。
工程C22は中間焼鈍前の冷間圧延率が低かったため,中間焼鈍で再結晶せずに熱間圧延板の不均一組織を改良することができず,評価が劣った。
工程C23は最終焼鈍前の圧延率が高すぎたため,強いせん断組織を作る結果となり,最終焼鈍後の組織が代えって不均一になり,評価が劣った。
【0055】
工程C24,C25は中間もしくは最終焼鈍温度が低すぎたため再結晶せず,熱間圧延板の不均一組織を改良することができず,評価が劣った。
工程C26,C27は中間もしくは最終焼鈍の昇温速度が低すぎたため再結晶が不均一に発生して,熱間圧延板の不均一組織を改良することができず,評価が劣った。
工程C28は最終焼鈍前の冷間圧延率が低かったため最終焼鈍で再結晶せず,圧延板の不均一組織を改良することができず,評価が劣った。
【0056】
また,工程E23は,上記のごとく冷間圧延前中間焼鈍を実施したものであり,その後の冷間圧延(冷延1)において負荷が小さく容易に圧延を行うことができた。そして,得られたブロー成形品の表面は美麗であり,表面品質にも優れていた。
【0057】
一方,工程C29,C30は,冷間圧延前中間焼鈍を実施したものの,その加熱温度及び保持時間が本発明(請求項2)の範囲を超えるものである。いずれも,冷間圧延前中間焼鈍の後の冷間圧延(冷延1)の負荷は小さく容易に圧延を行うことができたが,冷間圧延前中間焼鈍を行った後の板表面に,酸化Mgによるまだら模様が発生しており,表面品質が劣っていた。
【0058】
(実施例3)
本例では,Al−4.8%Mg−0.7%Mn−0.15%Cr−0.02%Si−0.02%Fe−0.01%Cu−50ppmBeの組成でスラブを半連続鋳造により製作した。このスラブを500℃の温度に8時間保持する均質化処理を施し,面削後395℃に加熱して熱間圧延した。次に,得られた熱間圧延板に対し,冷間圧延(冷間圧延率50%)→中間焼鈍(昇温速度10℃/sec,保持温度500℃,保持時間30秒)→冷間圧延(冷間圧延率33%)→最終焼鈍(昇温速度10℃/sec,保持温度500℃,保持時間30秒)を順次施して,中間材としてのアルミニウム合金板を得た。
【0059】
そして,本例では,表6に示すごとく,上記中間材としてのアルミニウム合金板に対して,さらに冷間圧延と仕上げ熱処理を施し,その効果を評価した。なお,いずれの工程を選択しても最終板厚が1.3mmとなるように,上記熱間圧延板の厚みを調整した。
上記最終焼鈍後の冷間圧延としては,冷間圧延率を33%とした工程E31の他に,冷間圧延率を5%および65%に変更した比較工程C31,C32も行った。なお,いずれの工程においても,仕上げ熱処理は,昇温速度10℃/sec,保持温度350℃,保持時間5秒の条件で行った。
【0060】
【表6】
Figure 0004067432
【0061】
次に,得られたアルミニウム合金板を350mm角の四角形状に切り出して試験片とした。そして本例では,まずこの試験片に,R3の曲げを実施した後曲げ戻す冷間加工を施した。その後,実施例1と同様に,上記試験片を490℃に加熱して,250mmW×250mmL×65mmHの角筒形状に雌型により熱間ブロー成形した。
次に,得られた角筒成形品の中心部分から100mm角のテストピースを切り取り,酸洗後,一般自動車用塗装を実施し,塗膜の品質(鮮鋭性)をテンションメータで評価した。
評価方法は実施例1と同様である。評価結果を表7に示す。
【0062】
【表7】
Figure 0004067432
【0063】
工程E31のものは,良好な外観を呈した。
工程C31については,曲げ−曲げ戻しした折り目に沿って,畝状の欠陥が生じた。また,冷間加工度が少なかったため,曲げ加工を受けた部分で熱間ブロー成形温度への加熱中に不均一な再結晶(粗粒化)が発生したので評価不能と判定した。
工程C32は熱処理前の圧延率が高すぎたため,強いせん断組織を作る結果となり,熱間ブロー成形温度への加熱中にせん断に沿った不均一な再結晶が生じたため,評価が劣っている。
【0064】
本例の結果から,熱間ブロー成形前に冷間加工を施す用途に使用されるアルミニウム合金板としては,上記最終焼鈍後に,少なくとも,さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施すことが有効であることがわかる。
【図面の簡単な説明】
【図1】実施例1における,テンションメータ測定用の撮影装置を示す説明図。
【図2】実施例1における,スリット板のスリット配置を示す説明図。
【符号の説明】
1...テストピース,
5...撮影装置,
50...基台50,
51...TP収納部,
52...ストロボ部,
53...カメラ部53,[0001]
【Technical field】
TECHNICAL FIELD The present invention relates to an Al—Mg-based aluminum alloy plate subjected to hot blow molding, and particularly to a plate material suitable for a portion requiring appearance such as an automobile body panel, and a hot blow molded product using the plate material. .
[0002]
[Prior art]
Hot blow molding is suitable as a technique suitable for high-mix low-volume production because the mold and manufacturing equipment are cheaper than cold press molding and the degree of freedom in molding is large.
The hot blow molding material is required to have fine recrystallized grains of around 10 μm in terms of metal structure. The feature of the manufacturing method is that, in order to obtain fine grains, the final rapid heating annealing is performed after the strong cold working. The amount of strain in cold working correlates with the crystal grain size formed in the final annealing process, and the crystal grain size becomes smaller as hard working is added. In actual production, strong processing induces cracks during rolling, so intermediate annealing is necessary. However, even when intermediate annealing is performed, it is necessary to increase the cold rolling rate before final annealing. is there.
[0003]
On the other hand, for example, in an automobile body panel, the appearance after painting is required to be smooth as an element of appearance quality.
When cold pressing is performed using a plate material for cold pressing, it is known that a defect called a ridging mark, which is mainly caused by material anisotropy, occurs. In the conventional hot blow molded product, a phenomenon in which a defect that impairs the smoothness of the appearance after coating is observed as in the case of a ridging mark in the case of cold pressing, and the commercial value is greatly reduced. Since the hot blow molding method is a plastic working method that imparts large deformation, even if the material does not show a decrease in smoothness when performing cold pressing, the above-mentioned hot blow molding method can be used. Defects similar to ridging marks may occur, and conventional hot blow molding materials are inappropriate as materials for automobile body panels and the like.
[0004]
In addition, as a conventional hot blow molding material or its manufacturing method, there exist the technique of patent documents 1-5, for example.
[0005]
[Patent Document 1]
JP 60-238460 A
[Patent Document 2]
JP 60-238461 A
[Patent Document 3]
JP-A 62-96643
[Patent Document 4]
JP-A-7-26342
[Patent Document 5]
JP-A-7-305131
[0006]
[Problems to be solved]
  The present invention has been made in view of such conventional problems, has an appropriate hot blow moldability, suppresses the deterioration of the smoothness of the outer surface of the molded product that occurs during hot blow molding, and has an appearance after coating. High quality plate material for hot blow molding and hot blow molded productManufacturing methodIs to provide.
[0007]
[Means for solving problems]
  1st invention contains Mg: 3.5-6.0% in weight ratio, and Mn: 0.5-0.8% or Cr: 0.05-0.20% Contain 1 or 2 types, further Si content is 0.10% or less, Fe content is 0.12% or less, Cu content is 0.10% or less, the balance is Al and inevitable impurities From an alloyUsing ingot,
  TheThe ingot is hot-rolled after homogenization,
  Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
  An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
  Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
  After that, a final annealing is performed in which heating is performed within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and holding is performed within 5 minutes.YouAl-Mg-based aluminum alloy sheet for hot blow moldingManufacturing method(Claim 1).
[0008]
As described above, the Al—Mg-based aluminum alloy sheet for hot blow molding of the present invention uses an alloy having a specific component composition and adopts the above specific manufacturing method, thereby improving hot blow moldability and It is intended to suppress a decrease in smoothness of the outer surface of the molded product that occurs during hot blow molding.
First, the significance and reasons for limitation of the components of the alloy constituting the Al—Mg-based aluminum alloy plate for hot blow molding of the present invention (hereinafter referred to as the aluminum alloy plate of the present invention as appropriate) will be described.
[0009]
Mg: 3.5-6.0%;
Mg increases the strength of the product after molding, and promotes dynamic recovery and recrystallization during hot blow molding to compensate for workability that decreases with molding. The preferable content range is 3.5 to 6.0%, and if it is less than 3.5%, the effect of promoting recrystallization is small, and if it exceeds 6.0%, the hot rolling property is inhibited.
[0010]
Mn: 0.5 to 0.8%, Cr: 0.05 to 0.20%;
Mn and Cr stabilize the recrystallized grains during blow molding, give good moldability and appearance quality after molding, and increase the strength after molding. The preferred contents are in the range of 0.5 to 0.8% and 0.05 to 0.20%, respectively, as described above. If both of them fall below the lower limit, the stabilizing effect diminishes and the crystal grains become coarse, leading to deterioration in formability and appearance quality due to rough skin. When the range is exceeded, coarse crystals are formed in the ingot, impairing hot blow moldability, and segregated crystals deteriorate the appearance quality after forming. Further, Mn and Cr are not necessarily contained, and the above effect can be obtained by containing at least one of them.
[0011]
Si content 0.10% or less, Fe content 0.12% or less, Cu content 0.10% or less;
In the present invention, it is important to limit the contents of Fe and Si as impurities to the above amounts. Impurities Fe and Si are insoluble Al-Fe-Si compounds and Mg2A Si compound is generated, and this compound precipitates at the grain boundary to increase the cavity, thereby decreasing the hot blow moldability and decreasing the strength and elongation after molding. More preferably, both Fe and Si should be limited to 0.05% or less.
Moreover, since Cu inhibits hot rolling properties, it is important to limit it to 0.10% or less.
[0012]
Next, in producing the aluminum alloy sheet of the present invention, first, the ingot is hot-rolled after homogenization and further cold-rolled with a cold rolling rate of 25% or more. If the cold rolling in this case is less than 25%, there is a problem that a desired structural change cannot be obtained in the intermediate annealing described later.
[0013]
After the cold rolling, intermediate annealing is performed in which heating is performed within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and holding is performed within 5 minutes. This intermediate annealing is necessary as an intermediate treatment for making a non-uniform hot rolled structure uniform in the final plate. During the intermediate annealing, the hot rolling structure is recrystallized to improve the structure. If intermediate annealing is not performed, non-uniformity remains in the structure of the final plate, and a smooth appearance after blow molding cannot be obtained.
[0014]
Moreover, if the temperature increase rate in the said intermediate annealing is less than 1 degree-C / sec, it will become a non-uniform recrystallizing structure again, and the role of a modification | reformation will become insufficient, and a smooth surface will not be obtained after blow molding. Further, if the holding temperature is less than 400 ° C, recrystallization does not occur sufficiently, and if it exceeds 550 ° C, there is a possibility of melting. Also, heat treatment with a holding time exceeding 5 minutes is not economically significant.
[0015]
After the intermediate annealing, cold rolling is performed again to obtain a uniform isotropic structure by recrystallization by final annealing, and a material having excellent smoothness after blow molding.
The cold rolling after the intermediate annealing is performed at a cold rolling rate of 25% or more and less than 50% up to the final thickness. At this time, if the cold rolling rate is less than 25%, recrystallization does not occur in final annealing, which will be described later, and the desired smoothness cannot be obtained. Further, if it is 50% or more, not only is it not economically significant, but also when hot blow molding is performed on the plate after the final annealing, anisotropy may be caused again to deteriorate the smoothness of the appearance.
[0016]
Thereafter, final annealing is performed in which heating is performed within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and holding is performed within 5 minutes. If the rate of temperature increase in the final annealing is less than 1 ° C./sec, a non-uniform recrystallized structure is formed again, and a smooth surface cannot be obtained after blow molding. Further, if the holding temperature at the time of final annealing is less than 400 ° C., recrystallization does not occur sufficiently, and if it exceeds 550 ° C., there is a possibility of melting. Moreover, heat treatment exceeding 5 minutes is not economically significant.
[0017]
  The second invention is,In weight ratio, Mg: 3.5-6.0% and Mn: 0.5-0.8%, or Cr: 0.05-0.20% Furthermore, the alloy is controlled to have an Si content of 0.10% or less, an Fe content of 0.12% or less, and a Cu content of 0.10% or less, with the balance being Al and inevitable impurities.Using ingot,
  TheThe ingot is hot-rolled after homogenization,
  Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
  An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
  Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
  After that, a final annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a rate of temperature rise of 1 ° C./sec or more and held within 5 minutes.TheAl-Mg aluminum alloy plate for hot blow moldingMade,
Hot blow molding is performed on the aluminum alloy plate in a temperature range of 400 ° C. or higher.Hot blow molded products characterized byManufacturing method(Claim 6).
[0018]
The hot blow molded product of the present invention uses the excellent aluminum alloy plate according to the first invention described above as a material. Therefore, even if this is heated to a temperature of 400 ° C. or higher and subjected to hot blow molding, the occurrence of defects such as conventional ridging marks can be greatly suppressed. Therefore, the hot blow-molded product of the present invention has a very excellent smoothness and can be applied to various products with severe appearance requirements.
[0019]
  The third invention is,In weight ratio, Mg: 3.5-6.0% and Mn: 0.5-0.8%, or Cr: 0.05-0.20% Furthermore, the alloy is controlled to have an Si content of 0.10% or less, an Fe content of 0.12% or less, and a Cu content of 0.10% or less, with the balance being Al and inevitable impurities.Using ingot,
  TheThe ingot is hot-rolled after homogenization,
  Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
  An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
  Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
  Then, a final annealing is performed in which the heating rate is 1 ° C./sec or more and the heating is performed within a temperature range of 400 ° C. to 550 ° C., and the holding is performed within 5 minutes.
  Furthermore, cold rolling is performed at a cold rolling rate of 25% or more and less than 50%,
  After that, a finish heat treatment is performed by heating within a temperature range of 270 ° C. to 400 ° C. at a temperature rising rate of 1 ° C./sec or more and holding within 5 minutes.TheAl-Mg aluminum alloy plate for hot blow moldingMake
  The aluminum alloy sheet is subjected to cold plastic working and then hot blow-molded in a temperature range of 400 ° C. or higher.Hot blow molded products characterized byManufacturing method(Claim 9).
[0020]
As described above, the hot blow molded product of the present invention is manufactured by a special molding method in which the hot blow molding is performed after the cold plastic working. Then, as the aluminum alloy plate as the material, the cold-rolling and finishing heat treatment after the final annealing were further applied to the Al-Mg-based aluminum alloy plate for hot blow molding of the first invention described above. Use things.
As a result, a smooth appearance can be easily obtained without causing defects resulting from the cold plastic working.
The above hot blow-molded product can maintain excellent quality even after hot plastic molding after cold plastic forming, so it has a higher degree of freedom than when only hot blow molding is performed. High shape design is possible, and the added value of the product can be further increased.
[0021]
Here, when the cold rolling rate of the cold rolling after the final annealing is less than 25%, the effect of suppressing coarsening during heating before hot blow molding is not sufficient, and it is economical if it exceeds 50%. In addition to the lack of significance, there are cases where recrystallization before hot blow molding causes anisotropy again to deteriorate the smoothness of the appearance.
[0022]
When the heating rate of the finishing heat treatment is less than 1 ° C./sec, a non-uniform recrystallized structure is formed again in the heating before hot blow molding, and a smooth surface cannot be obtained after hot blow molding. Further, when the holding temperature of the finish heat treatment is less than 270 ° C., it is difficult to guarantee cold workability before hot blow molding, and when it exceeds 400 ° C., non-uniform re-execution is again caused by heating before hot blow molding. A crystal structure may be formed. Also, heat treatment exceeding 5 minutes is not economically significant.
The significance of other component ranges, the reasons for limitation, the significance of the conditions in the production process, and the reasons for limitation are the same as in the case of the first invention described above.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The ingot in the first invention can be obtained by melting and casting an aluminum alloy having the above composition according to a conventional method. And it is preferable to perform the said homogenization process of this ingot in the temperature range of 450-550 degreeC, for example. If the homogenization temperature is less than 450 ° C, segregation in the ingot cannot be removed, and there is a problem that the hot workability is reduced. On the other hand, if it exceeds 550 ° C, There is a problem that melting occurs.
[0024]
Further, the hot rolling start temperature after the homogenization treatment is preferably, for example, 250 to 500 ° C, and more preferably 400 ° C or less. When the hot rolling start temperature is less than 250 ° C., there is a problem that the deformation resistance of the material is high, the number of rolling passes is increased, and there is no economic advantage. On the other hand, when it exceeds 500 ° C., it is not desirable because it induces cracking during hot rolling, and it is more preferable that the temperature is 400 ° C. or less as described above.
[0025]
Moreover, in this invention, after performing the said hot rolling, it heats within the temperature range of 300 to 500 degreeC in a batch furnace, and performs the intermediate annealing before cold rolling which hold | maintains for 1 to 10 hours. (Claim 2).
This intermediate annealing before cold rolling is not an essential process, but is preferably added because it can reduce the rolling load in the subsequent cold rolling.
[0026]
When the intermediate annealing before cold rolling is added, the batch furnace is used as described above, and the heating temperature is set in the range of 300 ° C to 500 ° C. When the heating temperature is less than 300 ° C., there is a problem that the above rolling load reduction effect cannot be obtained. On the other hand, when the heating temperature exceeds 500 ° C., Mg is concentrated on the surface layer, and an Mg oxide layer is formed on the plate surface, which causes a problem that the surface quality is remarkably deteriorated.
Further, when the holding time is less than 1 hour, the above rolling load reduction effect cannot be obtained. On the other hand, when the holding time exceeds 10 hours, the same problem as when the heating temperature exceeds 500 ° C. is likely to occur. Furthermore, even if it is held for 10 hours or more, there is no change in the rolling load reduction effect, which only increases the industrial cost.
[0027]
In the present invention, it is preferable that the alloy further contains Be: 20 to 80 ppm. In this case, the oxidation of the molten metal can be prevented, and the appearance quality abnormality caused by the entanglement of the oxide into the ingot can be prevented as in the case of a normal Al—Mg alloy. When the content of Be is less than 20 ppm, such an antioxidant effect is not obtained so much. On the other hand, when it exceeds 80 ppm, the effect is saturated and the environment is not desirable.
[0028]
In addition, after the final annealing, cold rolling is further performed at a cold rolling rate of 25% or more and less than 50%, and then within a temperature range of 270 ° C. to 400 ° C. at a temperature rising rate of 1 ° C./sec or more. It is preferable to carry out a finish heat treatment for heating and holding within 5 minutes. In this case, it is possible to more effectively improve the hot blow moldability and suppress the deterioration of the smoothness of the outer surface of the molded product that occurs during the hot blow molding. In particular, it is very effective in improving hot blow moldability in applications where cold working is performed before hot blow molding.
[0029]
When the cold rolling ratio of the cold rolling after the final annealing is less than 25%, the effect of suppressing coarsening during heating before hot blow molding is not sufficient, and if it exceeds 50%, it is economically significant. In addition to being poor, there are cases where recrystallization before hot blow molding causes anisotropy again to deteriorate the smoothness of the appearance.
[0030]
When the heating rate of the finishing heat treatment is less than 1 ° C./sec, a non-uniform recrystallized structure is formed again in the heating before hot blow molding, and a smooth surface cannot be obtained after hot blow molding. Further, when the holding temperature of the finish heat treatment is less than 270 ° C., it is difficult to guarantee cold workability before hot blow molding, and when it exceeds 400 ° C., non-uniform re-execution is again caused by heating before hot blow molding. A crystal structure may be formed. Also, heat treatment exceeding 5 minutes is not economically significant.
[0031]
  Also, the aboveAluminum alloy plateIs preferably a vehicle body panel material.
  Car body panel materials require clearness after painting. The sharpness is strongly influenced by the appearance of the molded product, particularly the smoothness, and the flatter the higher the sharpness. The smoothness of the surface of the molded product is achieved by the uniform deformation of the material during hot blow molding. Molded products with poor clarity show uneven deformation during hot blow molding. This is due to the non-uniformity of the metal structure of the plate before blow molding. These non-uniformities are affected by the non-uniform recrystallization structure and strong cold rolling that occur during hot rolling.
  In this respect, the above-described excellent aluminum alloy plate of the present invention is applied to the above-mentioned automotive body panel material, thereby preventing the non-uniformity of the metal structure and realizing an excellent sharpness. Can be obtained.
  Examples of the vehicle body panel include so-called outer materials such as bonnet hoods, trunk lids, roofs, doors, and the like, and various inner materials whose appearance characteristics are required.
[0032]
Next, in the second and third inventions, the Al—Mg-based aluminum alloy sheet for hot blow forming is subjected to the hot rolling, and then is in a temperature range of 300 ° C. to 500 ° C. in a batch furnace. It is preferable that an intermediate annealing before cold rolling which is heated for 1 hour to 10 hours is performed (Claim 7 and Claim 10). In this case, as described above, an effect of reducing the rolling load of cold rolling after hot rolling in the manufacturing method can be obtained.
[0033]
In the second invention, the Al-Mg aluminum alloy sheet for hot blow molding is further subjected to cold rolling at a cold rolling rate of 25% or more and less than 50% after the final annealing. After that, it is preferable that a finishing heat treatment is performed in which heating is performed within a temperature range of 270 ° C. to 400 ° C. at a temperature rising rate of 1 ° C./sec or more and the holding is performed within 5 minutes (Claim 8).
In this case, it is possible to obtain a hot blow molded article having further excellent smoothness.
[0034]
In the second and third inventions as well, for the same reason as described above, the alloy preferably further contains Be: 20 to 80 ppm.
The hot blow-molded product is preferably a vehicle body panel. That is, as described above, the hot blow-molded product can maintain excellent quality even after hot plastic molding after cold plastic working, as compared with the case where only hot blow molding is performed. However, shape design with a high degree of freedom is possible. Therefore, it is possible to easily cope with the vehicle body panel for automobiles, which is important for design.
[0035]
【Example】
(Example 1)
In this example, as shown in Table 1, six types of aluminum alloy plates (samples E11 to E16) as the product of the present invention and four types of aluminum alloy plates (sample C11) as comparative products whose component ranges deviated from the scope of the present invention. To C14) and their characteristics were compared.
[0036]
[Table 1]
Figure 0004067432
[0037]
First, slabs having the alloy components shown in Table 1 were produced by semi-continuous casting. These alloys were homogenized by holding at 500 ° C. for 8 hours, and after surface chamfering, they were heated to 395 ° C. and hot rolled to obtain 3.9 mm hot rolled sheets.
Next, cold rolling (cold rolling rate 50%) → intermediate annealing (heating rate 10 ° C./sec, holding temperature 500 ° C., holding time 30 seconds) → cold rolling (cold rolling) The rolling ratio was 33%) → final annealing (temperature increase rate 10 ° C./sec, holding temperature 500 ° C., holding time 30 seconds) was sequentially performed to obtain an aluminum alloy plate having a thickness of 1.3 mm.
[0038]
Next, the obtained aluminum alloy plate was cut into a square shape of 350 mm square to obtain a test piece, and hot blow molding was actually performed. Specifically, the test piece was heated to 490 ° C. and hot blow molded into a rectangular tube shape of 250 mmW × 250 mmL × 65 mmH by a female die. The thickness of the bottom center portion was 0.85 mm, and the thickness reduction rate was about 34.6%.
[0039]
Next, the mechanical properties of the central part of the obtained rectangular tube molded product were measured by a tensile test. Similarly, a 100-mm square test piece was cut from the center, pickled, and applied to general automobiles, and the quality (sharpness) of the coating film was evaluated with a tension meter.
[0040]
Here, the evaluation of the tension meter is performed using a photographing device 5 as shown in FIG.
The photographing apparatus 5 includes a TP storage portion 51 that covers the test piece 1, a strobe portion 52 and a camera portion 53 that are disposed on the side wall portion thereof.
[0041]
The strobe unit 52 has a cylindrical entrance-side light guide unit 521, a strobe 522 serving as a light source is disposed at one end, and light emitted from the strobe 522 is disposed at the other end. A slit plate 523 is provided to block the screen.
The camera unit 52 has a camera 532 for setting a film via a cylindrical exit-side light guide unit 531.
[0042]
Then, the photographing device 5 operates the shutter 55 provided on the exit-side light guide unit 531 to emit light from the strobe 522 and strikes the light on the surface of the test piece 1 through the slit plate 523. Is reflected and photographed on a film by a camera 532.
[0043]
As shown in FIG. 2, the slit plate 523 is divided into 12-step score areas from 9 to 20. Each region is provided with a slit so that a plurality of parallel rays (slit light) can be obtained, and the interval between the slits is set to be narrower as the region has a higher score. In this example, the width dimension (thickness) of the slit S is uniformly 0.20 mm. The interval (pitch) of the slits S was set as shown in Table 2.
[0044]
[Table 2]
Figure 0004067432
[0045]
The tension meter was evaluated using a photograph taken by the photographing device 5 with the sample to be evaluated placed on the placement position of the test piece 1. Specifically, a plurality of slit lights appearing in the photograph are visually observed for each region, and it is determined whether or not there is an overlap between adjacent slit lights. Then, the maximum score among the areas where no overlap was observed in the slit light was used as the evaluation value.
This evaluation method is an evaluation method generally used in automobile manufacturers and the like.
[0046]
These evaluation results are shown in Table 3. In Table 3, ○ indicates pass and × indicates fail. Regarding the quality after painting, those having a tension meter evaluation value of 15 or more were regarded as acceptable. Moreover, since the dent resistance is required as a vehicle body panel material for automobiles, a material having a proof stress of 110 MPa or more was accepted. In addition, since workability in post-processing such as hem processing is required, a product having an elongation of 15% or more was accepted. With regard to the sharpness after painting (tension meter evaluation value), an evaluation value of 15 or more was accepted.
[0047]
[Table 3]
Figure 0004067432
[0048]
As is known from Table 3, the samples E11 to E16, which are the products of the present invention, passed all evaluations of proof stress, elongation, and tension meter.
On the other hand, Comparative Example C11 had a low yield strength due to the small amount of Mg added, and the crystal grain size during blow molding increased, resulting in a rough appearance and the evaluation of the tension meter failed.
In Comparative Example C12, since the amount of Mg added was too high, the plate was cracked during hot working and could not be evaluated.
In Comparative Example C13, Mn and Cr were not added, and the crystal grain size during blow molding was increased, so that the appearance of the skin was rough, and the tension meter was not evaluated.
In Comparative Example C14, since the amount of Fe and Si was large, cavitation occurred during blow molding, and the elongation failed.
[0049]
(Example 2)
In this example, the slab is semi-continuous with a composition of Al-4.8% Mg-0.7% Mn-0.15% Cr-0.02% Si-0.02% Fe-0.01% Cu-50ppmBe. Made by casting. The slab was homogenized by holding it at a temperature of 500 ° C. for 8 hours. After chamfering, it was heated to 395 ° C. to produce a hot rolled plate. Subsequently, a 1.3 mm plate was prepared according to the steps in Table 4. Was made. Steps E21, E22, and E23 in Table 4 are the methods of the present invention, and steps C21 to C30 employ steps different from the present invention for comparison. Of these, Steps E23, C29, and C30 are those in which intermediate annealing before cold rolling in a batch furnace is performed after hot rolling.
[0050]
[Table 4]
Figure 0004067432
[0051]
Next, the obtained aluminum alloy plate having a thickness of 1.3 mm was cut into a square shape of 350 mm square to obtain a test piece, and hot blow molding was actually performed. Specifically, in the same manner as in Example 1, the test piece was heated to 490 ° C. and hot blow-molded into a rectangular tube shape of 250 mmW × 250 mmL × 65 mmH with a female die. The thickness of the bottom center portion was 0.85 mm, and the thickness reduction rate was about 34.6%.
[0052]
Next, as in Example 1, the mechanical properties of the central part of the obtained rectangular tube molded product were measured by a tensile test. Similarly, a 100-mm square test piece was cut from the center, pickled, and applied to general automobiles, and the quality (sharpness) of the coating film was evaluated with a tension meter. The evaluation method using a tension meter is the same as that in the first embodiment.
In this example, in addition to the evaluation with a tension meter, the surface of the blow-molded product was evaluated by appearance observation. Specifically, it is visually observed whether the mottled pattern due to Mg oxide on the surface of the sheet after the intermediate annealing before cold rolling has streak-like dirt extended by subsequent rolling, and the dirt is observed. The case where it was done was marked as x, and the case where the surface was clean and beautiful was marked as ◯. Then, the surface evaluation of the blow molded product and the above tension meter evaluation were integrated to make a comprehensive determination. The evaluation results are shown in Table 5. In Table 5, ○ indicates pass and × indicates failure.
[0053]
[Table 5]
Figure 0004067432
[0054]
As is known from Table 5, a satisfactory appearance was obtained for the molded product obtained by hot blow molding the aluminum alloy plate obtained in steps E21 and E22.
On the other hand, since the intermediate annealing was omitted in the process C21, the uneven structure of the hot rolled sheet could not be improved, and the evaluation was inferior.
In the process C22, since the cold rolling rate before the intermediate annealing was low, the non-uniform structure of the hot rolled sheet could not be improved without recrystallization by the intermediate annealing, and the evaluation was inferior.
In the process C23, the rolling rate before the final annealing was too high, resulting in a strong shear structure. The structure after the final annealing was changed and became non-uniform, resulting in poor evaluation.
[0055]
Processes C24 and C25 were not recrystallized because the intermediate or final annealing temperature was too low, and the uneven structure of the hot-rolled sheet could not be improved, resulting in poor evaluation.
Processes C26 and C27 were inferior in evaluation because the rate of temperature increase during intermediate or final annealing was too low, and recrystallization occurred nonuniformly, and the heterogeneous structure of the hot-rolled sheet could not be improved.
In process C28, since the cold rolling rate before the final annealing was low, recrystallization did not occur in the final annealing, and the uneven structure of the rolled sheet could not be improved, resulting in poor evaluation.
[0056]
Moreover, process E23 implemented intermediate annealing before cold rolling as mentioned above, and was able to perform rolling easily with small load in subsequent cold rolling (cold rolling 1). The surface of the resulting blow-molded product was beautiful and excellent in surface quality.
[0057]
On the other hand, in steps C29 and C30, although the intermediate annealing before cold rolling was performed, the heating temperature and holding time exceed the range of the present invention (Claim 2). In both cases, the cold rolling (cold rolling 1) load after the intermediate annealing before cold rolling was small and could be easily rolled, but on the sheet surface after the intermediate annealing before cold rolling, A mottled pattern due to Mg oxide was generated, and the surface quality was poor.
[0058]
(Example 3)
In this example, the slab is semi-continuous with a composition of Al-4.8% Mg-0.7% Mn-0.15% Cr-0.02% Si-0.02% Fe-0.01% Cu-50ppmBe. Made by casting. The slab was subjected to a homogenization treatment for holding at a temperature of 500 ° C. for 8 hours, and after hot facing, heated to 395 ° C. and hot-rolled. Next, cold rolling (cold rolling rate: 50%) → intermediate annealing (heating rate: 10 ° C./sec, holding temperature: 500 ° C., holding time: 30 seconds) → cold rolling for the obtained hot rolled sheet (Cold rolling rate: 33%) → Final annealing (temperature increase rate: 10 ° C./sec, holding temperature: 500 ° C., holding time: 30 seconds) was sequentially performed to obtain an aluminum alloy sheet as an intermediate material.
[0059]
In this example, as shown in Table 6, the aluminum alloy plate as the intermediate material was further subjected to cold rolling and finish heat treatment, and the effects were evaluated. Note that the thickness of the hot-rolled sheet was adjusted so that the final sheet thickness was 1.3 mm regardless of which process was selected.
As the cold rolling after the final annealing, in addition to the step E31 in which the cold rolling rate was 33%, comparative steps C31 and C32 in which the cold rolling rate was changed to 5% and 65% were also performed. In each step, the finish heat treatment was performed under the conditions of a heating rate of 10 ° C./sec, a holding temperature of 350 ° C., and a holding time of 5 seconds.
[0060]
[Table 6]
Figure 0004067432
[0061]
Next, the obtained aluminum alloy plate was cut into a square shape of 350 mm square to obtain a test piece. In this example, the test piece was first subjected to cold working to bend and then bend R3. Thereafter, in the same manner as in Example 1, the test piece was heated to 490 ° C. and hot blow-molded into a rectangular tube shape of 250 mmW × 250 mmL × 65 mmH by a female die.
Next, a 100 mm square test piece was cut out from the central portion of the obtained rectangular tube molded product, pickled, and then applied to general automobiles, and the quality (sharpness) of the coating film was evaluated with a tension meter.
The evaluation method is the same as in Example 1. Table 7 shows the evaluation results.
[0062]
[Table 7]
Figure 0004067432
[0063]
The thing of the process E31 exhibited the favorable external appearance.
In step C31, a hook-like defect occurred along the crease that was bent and bent back. In addition, since the degree of cold work was small, non-evaluation was judged to be impossible because non-uniform recrystallization (coarse graining) occurred during heating to the hot blow molding temperature in the part subjected to bending.
Since the rolling rate before the heat treatment was too high in the process C32, the result was that a strong shear structure was formed, and the non-uniform recrystallization along the shear occurred during heating to the hot blow molding temperature, so the evaluation was poor.
[0064]
From the results of this example, the aluminum alloy sheet used for the application of cold working before hot blow molding is at least a cold rolling rate of 25% or more and less than 50% after the final annealing. It can be seen that it is effective to perform rolling and then finish heat treatment to heat within a temperature range of 270 ° C. to 400 ° C. at a temperature rising rate of 1 ° C./sec or more and hold within 5 minutes.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a photographing apparatus for measuring a tension meter in Embodiment 1. FIG.
2 is an explanatory diagram showing a slit arrangement of a slit plate in Example 1. FIG.
[Explanation of symbols]
1. . . Test piece,
5. . . Photographing device,
50. . . Base 50,
51. . . TP storage unit,
52. . . Strobe section,
53. . . Camera unit 53,

Claims (12)

重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施ことを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法
In weight ratio, Mg: 3.5-6.0% and Mn: 0.5-0.8%, or Cr: 0.05-0.20% Furthermore, the ingot is made of an alloy of which the Si content is 0.10% or less, the Fe content is 0.12% or less, the Cu content is 0.10% or less, and the balance is Al and inevitable impurities. Use
Hot rolled after homogenization the ingot,
Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
Thereafter, Al-Mg-based for hot blow molding, characterized in that to facilities for final annealing of heating and Hold within 5 minutes within a temperature range of 400 ° C. to 550 ° C. at a heating rate 1 ° C. / sec or higher A method for producing an aluminum alloy plate.
請求項1において,上記熱間圧延を施した後に,バッチ炉において300℃〜500℃の温度範囲内に加熱して1時間〜10時間の保持を行う冷間圧延前中間焼鈍を施すことを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法In Claim 1, after performing the said hot rolling, it heats within the temperature range of 300 to 500 degreeC in a batch furnace, and performs the intermediate annealing before cold rolling which hold | maintains for 1 to 10 hours. A method for producing an Al—Mg-based aluminum alloy plate for hot blow molding. 請求項1又は2において,上記合金は,さらにBe:20〜80ppmを含有することを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法3. The method for producing an Al—Mg-based aluminum alloy plate for hot blow molding according to claim 1, wherein the alloy further contains Be: 20 to 80 ppm. 請求項1〜3のいずれか1項において,上記最終焼鈍を施した後に,さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施ことを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法In any 1 paragraph of Claims 1-3, after giving the above-mentioned final annealing, it cold-rolls with a cold rolling rate of 25% or more and less than 50%, and then with a temperature increase rate of 1 ° C / sec or more method for producing a 270 ° C. to 400 ° C. hot blow molding Al-Mg series aluminum alloy sheet, characterized in that to facilities finish heat treatment for heating and hold within 5 minutes within a temperature range of. 請求項1〜4のいずれか1項において,上記アルミニウム合金板は自動車用車体パネル材であることを特徴とする熱間ブロー成形用Al−Mg系アルミニウム合金板の製造方法5. The method for producing an Al—Mg-based aluminum alloy plate for hot blow molding according to claim 1, wherein the aluminum alloy plate is an automobile body panel material. 重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施し熱間ブロー成形用Al−Mg系アルミニウム合金板を作製し,
該アルミニウム合金板に,400℃以上の温度域において熱間ブロー成形を施すことを特徴とする熱間ブロー成形品の製造方法
In weight ratio, Mg: 3.5-6.0% and Mn: 0.5-0.8%, or Cr: 0.05-0.20% Furthermore, the ingot is made of an alloy of which the Si content is 0.10% or less, the Fe content is 0.12% or less, the Cu content is 0.10% or less, and the balance is Al and inevitable impurities. Use
Hot rolled after homogenization the ingot,
Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
Then, prepare a hot blow molding Al-Mg series aluminum alloy plate is subjected to final annealing for holding within five minutes by heating to a temperature range of 400 ° C. to 550 ° C. at a heating rate 1 ° C. / sec or higher And
A method for producing a hot blow molded product , comprising subjecting the aluminum alloy plate to hot blow molding in a temperature range of 400 ° C. or higher .
請求項6において,上記熱間圧延を施した後に,バッチ炉において300℃〜500℃の温度範囲内に加熱して1時間〜10時間の保持を行う冷間圧延前中間焼鈍を施したことを特徴とする熱間ブロー成形品の製造方法In Claim 6, after performing the said hot rolling, it heated in the temperature range of 300 to 500 degreeC in a batch furnace, and performed the intermediate annealing before cold rolling which hold | maintains for 1 hour-10 hours. A method for producing a hot blow molded product. 請求項6又は7において,上記最終焼鈍を施した後に,さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施したことを特徴とする熱間ブロー成形品の製造方法In Claim 6 or 7, after performing the said last annealing, it cold-rolls with the cold rolling rate of 25% or more and less than 50%, and is 270 degreeC-400 degreeC after that with a temperature increase rate of 1 degree-C / sec or more. A method for producing a hot blow-molded product , characterized in that a finish heat treatment is performed in which the heat treatment is carried out within a temperature range of 5 minutes and held for 5 minutes or less. 重量比において,Mg:3.5〜6.0%を含有し,かつ,Mn:0.5〜0.8%,もしくはCr:0.05〜0.20%のうち1種或いは2種含有し,さらにSi含有量が0.10%以下,Fe含有量が0.12%以下,Cu含有量が0.10%以下に規制され,残部がAlおよび不可避的不純物からなる合金よりなる鋳塊を用い
鋳塊を均質化処理後に熱間圧延し,
さらに冷間圧延率25%以上の冷間圧延を実施し,
昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う中間焼鈍を施し,
該中間焼鈍後最終板厚まで25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で400℃〜550℃の温度範囲内に加熱して5分以内の保持を行う最終焼鈍を施し,
さらに25%以上50%未満の冷間圧延率で冷間圧延を行い,
その後,昇温速度1℃/sec以上で270℃〜400℃の温度範囲内に加熱して5分以内の保持を行う仕上熱処理を施し熱間ブロー成形用Al−Mg系アルミニウム合金板を作製し,
該アルミニウム合金板に,冷間塑性加工を施した後,400℃以上の温度域において熱間ブロー成形を施すことを特徴とする熱間ブロー成形品の製造方法
In weight ratio, Mg: 3.5-6.0% and Mn: 0.5-0.8%, or Cr: 0.05-0.20% Furthermore, the ingot is made of an alloy of which the Si content is 0.10% or less, the Fe content is 0.12% or less, the Cu content is 0.10% or less, and the balance is Al and inevitable impurities. Use
Hot rolled after homogenization the ingot,
Furthermore, cold rolling with a cold rolling rate of 25% or more was carried out,
An intermediate annealing is performed in which the temperature is raised within a temperature range of 400 ° C. to 550 ° C. at a temperature rising rate of 1 ° C./sec or more and held for 5 minutes or less.
Cold rolling at a cold rolling rate of 25% or more and less than 50% to the final sheet thickness after the intermediate annealing,
Then, a final annealing is performed in which the heating rate is 1 ° C./sec or more and the heating is performed within a temperature range of 400 ° C. to 550 ° C., and the holding is performed within 5 minutes.
Furthermore, cold rolling is performed at a cold rolling rate of 25% or more and less than 50%,
Then, prepare a heating rate 1 ° C. / sec or more at 270 ° C. to 400 ° C. hot blow molding Al-Mg series aluminum alloy sheet is subjected to finish heat treatment for holding within five minutes by heating in a temperature range of And
A method for producing a hot blow-molded product , wherein the aluminum alloy plate is subjected to cold plastic working and then subjected to hot blow molding in a temperature range of 400 ° C or higher .
請求項9において,上記熱間圧延を施した後に,バッチ炉において300℃〜500℃の温度範囲内に加熱して1時間〜10時間の保持を行う冷間圧延前中間焼鈍を施したことを特徴とする熱間ブロー成形品の製造方法In Claim 9, after performing the said hot rolling, it heated in the temperature range of 300 to 500 degreeC in a batch furnace, and performed the intermediate annealing before cold rolling which hold | maintains for 1 hour-10 hours. A method for producing a hot blow molded product. 請求項6〜10のいずれか1項において,上記合金は,さらにBe:20〜80ppmを含有することを特徴とする熱間ブロー成形品の製造方法The method for producing a hot blow molded article according to any one of claims 6 to 10, wherein the alloy further contains Be: 20 to 80 ppm. 請求項6〜11のいずれか1項において,上記熱間ブロー成形品は自動車用車体パネルであることを特徴とする熱間ブロー成形品の製造方法The method of manufacturing a hot blow molded product according to any one of claims 6 to 11, wherein the hot blow molded product is an automobile body panel.
JP2003066228A 2002-03-12 2003-03-12 Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product Expired - Fee Related JP4067432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066228A JP4067432B2 (en) 2002-03-12 2003-03-12 Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-66780 2002-03-12
JP2002066780 2002-03-12
JP2003066228A JP4067432B2 (en) 2002-03-12 2003-03-12 Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product

Publications (2)

Publication Number Publication Date
JP2003342665A JP2003342665A (en) 2003-12-03
JP4067432B2 true JP4067432B2 (en) 2008-03-26

Family

ID=29781762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066228A Expired - Fee Related JP4067432B2 (en) 2002-03-12 2003-03-12 Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product

Country Status (1)

Country Link
JP (1) JP4067432B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719456B2 (en) * 2004-08-03 2011-07-06 古河スカイ株式会社 Aluminum alloy sheet for high temperature blow molding
JP4996853B2 (en) * 2006-01-12 2012-08-08 古河スカイ株式会社 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
WO2007080938A1 (en) 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
CN109628803B (en) * 2018-11-30 2020-08-25 郑州明泰实业有限公司 Aluminum alloy checkered plate in 4017-H2X state and preparation method thereof
CN115011849A (en) * 2022-05-13 2022-09-06 天津忠旺铝业有限公司 5-series aluminum alloy plate rolling process

Also Published As

Publication number Publication date
JP2003342665A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
KR102498463B1 (en) Manufacturing method of 6XXX aluminum sheet
JP4308834B2 (en) Method for continuously producing cast aluminum sheets
KR101456684B1 (en) Aluminum composite material with almgsi core alloy layer
JP5406745B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
KR20150013925A (en) Aluminum alloy sheet for forming and process for manufacturing the same
WO2009123011A1 (en) Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
CN113166858B (en) Method for producing 6XXX aluminium sheets with high surface quality
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP4067432B2 (en) Method for producing Al-Mg aluminum alloy plate for hot blow molding and method for producing hot blow molded product
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2000282163A (en) Al-Mg-Si ALLOY SHEET EXCELLENT IN BULGE FORMABILITY AND BENDABILITY
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JP2004043938A (en) Method for manufacturing annealed aluminum alloy sheet superior in appearance
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP3749627B2 (en) Al alloy plate with excellent press formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees