JP4065154B2 - 漏水汲み出し量の制御装置 - Google Patents

漏水汲み出し量の制御装置 Download PDF

Info

Publication number
JP4065154B2
JP4065154B2 JP2002196202A JP2002196202A JP4065154B2 JP 4065154 B2 JP4065154 B2 JP 4065154B2 JP 2002196202 A JP2002196202 A JP 2002196202A JP 2002196202 A JP2002196202 A JP 2002196202A JP 4065154 B2 JP4065154 B2 JP 4065154B2
Authority
JP
Japan
Prior art keywords
leakage
flow rate
water
amount
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002196202A
Other languages
English (en)
Other versions
JP2004037315A (ja
Inventor
宏行 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002196202A priority Critical patent/JP4065154B2/ja
Publication of JP2004037315A publication Critical patent/JP2004037315A/ja
Application granted granted Critical
Publication of JP4065154B2 publication Critical patent/JP4065154B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海底トンネル等の地下構造物のように海底や海岸近傍にあって、地下水に海水を含む漏水がある場合における漏水汲み出し量の制御装置の技術分野に属するものである。
【0002】
【従来技術】
こんにち、地下水面や海面より低い位置にトンネルやボックスカルバート等の地下構造物を築造することが頻繁に行われ、このような地下構造物では、漏出した水の自然排水ができない場合があり、このときには地下構造物の水没を避けるため漏出した水を動力を使って地上に排出することが要求される。この様な地下構造物における漏水の要因には地下水の存在があげられるが、当該地下水の供給量は、梅雨や台風による集中的な大雨や逆に渇水等の自然環境(特に雨量)に左右されることもあって、緩慢ではあるが変化する。ところが、構造物の内部に漏出したこのような水の排出能力については漏水流量に対応させることが効率上好ましいだけでなく、漏水状態を把握することもメンテナンスの管理上、また、構造物の保安上の理由から要求される。そのためには、漏水流量を定期的に測定することが必要になり、このようなことは海水が漏水中に混入する海底や海岸に近い位置に築造した地下構造物についても同じことがいえる。
そしてこのような漏水流量の測定には、例えば三角ぜき(または四角ぜき)法というものが従来から採用されている。この方法は、一般的に広く用いられる流量測定法であって、流水をせき止めることができる三角ぜきを適宜位置に形成し、該三角ぜきにせき止められ、これを乗り越えてくる流水の深さから単位時間当たり(例えば1時間とか1日当たり)の漏水流量を算出するという直接的な測定手法である。ところが該三角ぜき法は、せき止め部位からの漏水がないよう粘土等のシール材を用いてしっかりとした目止めを素早く形成する必要がある一方で、測定後においては、排水のため設けられた貯留槽に前記シール材が流れ込まないよう使用ずみのシール材を完全に除去する必要に迫られ、測定作業が面倒、かつ、煩雑になり、しかも長時間を要するという問題がある。さらに三角ぜき法は、測定者個人が微妙な貯留水量を実測するものであるため、測定値に公正を期すため複数の測定者が必要で、作業能率が低いという問題もある。
【0003】
そこで本発明の発明者は、特開2001−141545号公報に示されるように、陸上側から漏洩する地下水量は自然環境等により変化するのに対し、海底から漏洩する海水量は殆ど変化がないと共に海水成分も略一定であると予測し、この予測に基づいて、地下水に海水を含んだ漏水(以下「海水含有漏水」という)中の海水由来成分である特定イオン(例えばナトリウムイオン)の濃度と漏水流量とが一次の関係になるのではないかという推論をした。そしてこれを立証するため、実際に、地下構造物から漏洩する海水含有漏水について、特定イオンの濃度とそのときの漏水流量とを測定してみたところ、該特定イオンの濃度と漏水流量とは、推論どおり一次の関係式に近似できることを見出し、これにより、該一次の関係式をあらかじめ求めておけば、以降は、海水含有漏水中の特定イオンの濃度を測定し、その測定値を一次の関係式に代入することで海水含有漏水の流量を簡単に算出できる手法を開発し、これにより、三角ぜき法によるような面倒な測定をすることなく、能率の良い流量算出ができるようになった。
【0004】
【発明が解決しようとする課題】
ところが前記開発した漏水流量を算出する手法は、該算出をするにあたり、漏水中の特定イオンの濃度を測定する必要があるが、そのような濃度測定法としては、イオンクロマトグラフィーを用いた手法やイオン選択性電極を用いた手法がある。ところが前者の場合、現場での測定はできず、現場で汲み上げた漏水を実験室まで運び込んでの濃度測定となって面倒、かつ、煩雑であるだけでなく、装置自体も大きく、またコスト高になるという問題がある。一方、後者のものは、現場の漏水にイオン選択性電極を浸漬することにより簡単な濃度測定が可能となるが、該イオン選択性電極を用いて濃度測定する場合、イオン選択性電極は良く洗浄したものを用いて測定するのが原則であるが、漏水位置が複数あり、これらを纏めて測定しようとする場合、いちいち洗浄するのが面倒であるばかりでなく、洗浄不良により測定値の正確度が損なわれるという問題がある。一方、イオン選択性電極を測定現場に据え置いて漏水に浸漬し続けたままとし、測定値を人手を用いることなく随時入力できるようにすることも提唱されるが、イオン選択性電極を長期間浸漬し続けたままにすると、イオン選択性電極に、例えばカルシウムイオン等のアルカリ土類金属イオンが累積的に付着することになって測定値が不安定化し、場合によっては突然、異常な測定値が観測されることがあることもあって信頼性に欠け、これを回避するには、イオン選択性電極を定期的に洗浄する等して付着しているイオンを除去する作業が必要になるという問題があり、ここにも本発明の解決すべき課題がある。
さらにまた、海水含有漏水のある地下構造物では、該漏水をポンプによって汲み出す必要があるが、漏水流量の継続的な把握が難しく、このためポンプの駆動効率が低いという問題もあり、これらに本発明が解決せんとする課題がある。
【0005】
【課題を解決するための手段】
本発明は、上記のような実情に鑑み、これらの課題を解決することを目的として創作されたものであって、地下水に海水を含む漏水を地下構造物に設けた漏水貯留槽から汲み出すための定容量型の第一、第二のポンプ手段と、該第一、第二のポンプ手段の汲み出し量の制御をする制御手段とを備えて漏水汲み出しの制御装置を構成するにあたり、前記制御手段には、あらかじめ設定された複数の漏水のある任意の測定位置に据え置かれた電気伝導率測定用の電極に接続され、該電極で測定された電気伝導率の各測定値を入力する入力手段と、あらかじめ測定された漏水の流量と電気伝導率とのあいだから求められた関数式に前記入力した電気伝導率の測定値を当てはめて得た漏水流量を合算して漏水総流量を算出し、該漏水総流量に基づいてポンプ手段の汲み出し量を決定する決定手段とを備え、該汲み出し量決定手段は、前記算出された漏水総流量が、あらかじめ設定される第一設定総流量以下であるか否かの判断をし、漏水総流量が第一設定総流量以下であると判断された場合に、
前記漏水貯留槽に設けた貯留漏水量センサーで測定される測定貯留量が、あらかじめ設定される第一設定貯留量以下であるか否かの判断をし、第一設定貯留量以下であると判断された場合には、貯留漏水が少なく、かつ、漏水流量も少ないとして第一、第二ポンプは共に停止制御され、前記測定貯留量が第一設定貯留量より大きいと判断された場合には、さらに該測定貯留量が、前記第一設定貯留量よりも大きい値として設定される第二設定貯留量以下であるか否かの判断をし、該第二設定貯留量以下であると判断された場合には、漏水流量は通常範囲で、かつ、貯留漏水も通常量であるとして第一ポンプのみを駆動して通常状態の汲み上げ制御をし、測定貯留量が第二設定貯留量よりも大きいと判断された場合には、漏水流量は通常範囲であるが貯留漏水量が多いとして第一、第二ポンプをそれぞれ駆動して早期の汲み上げ制御をし、これに対し、漏水総流量が第一設定総流量より大きいと判断された場合に、該漏水総流量が、第一設定総流量よりも大きい値としてあらかじめ設定される第二設定総流量以下であるか否かの判断がなされ、第二設定総流量以下であると判断された場合には、前記測定貯留量が、前記第一設定貯留量以下であるか否かの判断がなされ、該第一設定貯留量以下であると判断された場合には、漏水流量はかなり多いものの貯留漏水量は少ないとして第一ポンプのみの駆動制御をするが、測定貯留量が第一設定貯留量よりも多いと判断された場合には、貯留漏水量は通常であるが漏水流量はかなり多いとして第一、第二ポンプをそれぞれ駆動制御するように設定されていることを特徴とする漏水汲み出し量の制御装置である。
そしてこのように構成することにより、地下構造物からのポンプ手段による漏水汲み出しを、漏水流量に応じてできることになってポンプ手段の駆動効率が向上する。
【0006】
【発明の実施の形態】
前述したように、地下構造物において漏出する海水含有漏水は、自然環境等により変化する地下水と海底から漏洩するほぼ一定量の海水との単純な希釈律に支配されているとの予測のとおり、海水含有漏水中の特定海水由来成分の濃度と該漏水の流量とは一次の関係式に近似できることを見出したが、さらに海水由来成分が生物代謝されず、また化学変化もしなければ、海水含有漏水中の海水由来成分の濃度はそのまま漏水の電気伝導率に置き換えられるのではないかという推論をし、そこでこれを立証するため、海水含有漏水中の海水由来成分の濃度と、該漏水の電気伝導率との関係を調べたところ、これらは一次関数の関係になっていることを見出し、本発明を完成するに至った。
つまり、地下構造物における海水含有漏水の流量と海水由来成分の濃度とが一次の関係にあることは既に前記公開公報に記載されるように確認しており、このことに、海水含有漏水の海水由来成分の濃度と電気伝導率とが一次の関係にあることを勘案することで、海水含有漏水の流量、海水由来成分の濃度、そして電気伝導率とが相互に一次の関係にあり、このことから、海水含有漏水の流量と電気伝導率との関係をあらかじめ求めて関数化しておけば、以降は、イオンの付着に影響されることがない電気伝導率電極を用いて海水含有漏水の電気伝導率を測定し、その測定値を前記求めた関数に代入することにより確実で安定した海水含有漏水の流量を算出することができることを確認し、本発明が完成したものである。
そしてこの場合においてあらかじめ求められる海水含有漏水の流量と電気伝導率との関係は、海水含有漏水の流量と特定海水由来成分の濃度とのあいだにある一次の関係を、該特定海水由来成分の濃度と電気伝導率とのあいだにある一次の関係に基づいて補正して間接的に得たものに限定されず、海水含有漏水の流量と電気伝導率とを測定して両者のあいだにある関係を直接的に求めてもよいことは勿論である。
【0007】
ところで本発明を実施するにあたり、海水含有漏水中の地下水分の流量はもちろんのこと、海水分の流量についても、海底や海岸と測定位置とのあいだの地盤や漏水経路等に影響されるため各測定位置に固有なものであり、この結果、任意の位置での漏水流量と電気伝導率との関係は、該任意の位置に固有なもので、これを他の全ての位置の関数として用いることができるというものではなく、個々の測定位置においてあらかじめ漏水の流量と電気伝導率との関係についてそれぞれ関数化しておくことが必要となる。この関数化のためには、対応する測定値について統計学上の処理をすることが精度向上のためには好ましく、その場合に、例えば通常知られた最小二乗法等の計算法を用いることができる。
因みに、地下水中にもナトリウムイオン等の各種の地下水由来成分を含有することから、例えば海水含有漏水のナトリウムイオン濃度と電気伝導率との関係は、測定位置によって変動することになるが、地下水由来成分が微量で海水由来成分に対して無視できるような場合には、海水を純水で希釈して得たナトリウムイオン濃度と電気伝導率とのあいだの関係式を、海水含有漏水のナトリウムイオン濃度と電気伝導率とのあいだの関係式として採用することができる。
【0008】
【実施例】
次に、本発明の実施例について図面を用いて説明する。図1は既存の海底トンネルの概略縦断面図であって、該海底トンネルは、本坑1および作業坑2を有し、そのうちの本坑1は、トンネルの中間に向かうほど深くなるこう配変更点を有する略V字形の傾斜状態で築造されている。これに対して作業抗2は、前記本坑1の最深位置をこう配変更点として坑口に至るほど深くなるよう傾斜した略逆V字形に築造され、そして各坑口側の地上位置においてたて坑3、4が築造されている。
【0009】
そして前記本坑1の(a)〜(e)位置ならびに作業坑2の(f)〜(i)位置について、漏水の流量(m−1:メートルの3乗 日のマイナス1乗)を三角ぜき法にて測定すると共に、その漏水中の電気伝導率(mS cm−1:ミリジーメンス センチメートルのマイナス1乗)およびナトリウムイオン濃度(μg mL−1:マイクログラム ミリリットルのマイナス1乗)を測定した。図2に電気伝導率とナトリウムイオン濃度との測定値をプロットしたものを、また図3〜図9に前記各位置(a)〜(g)における電気伝導率と漏水流量との測定値をプロットしたものを示す。これらプロットされたグラフ図を観察したときに、図2において、漏水中の電気伝導率とナトリウムイオン濃度との関係が一次関数に極めて合致していることが確認され、そこで最小二乗法により一次関数を求め、これを線引きした。そしてこの一次関数とプロット値との相関係数(r)の二乗値を算出したところ、「r=0.9938」となって「1」に極めて近似し、漏水中の電気伝導率とナトリウムイオン濃度とが高い一次関数の関係にあることが確認された。因みに、電気伝導率と海水由来成分の濃度とのあいだの一次の関係は、ナトリウムイオンとのあいだだけでなく、カリウムイオン、マグネシウムイオン、カルシウムイオン、塩化物イオン、硫酸イオンについてもあることを別途確認している。
【0010】
このように漏水の流量、海水由来成分であるナトリウムイオン濃度、そして電気伝導率が相互に一次の関係にあることが確認され、そこであらかじめ漏水の流量とナトリウムイオン濃度との測定値データが複数ある場合には、これら測定値データ(または漏水の流量とナトリウムイオン濃度との関係式)を、前記電気伝導率とナトリウムイオン濃度との一次の関係式で補正することで漏水の流量と電気伝導率との関係が間接的に求められる。また、漏水の流量と電気伝導率との測定値データが複数あれば、これらから対応する漏水の流量と電気伝導率との関係を直接的に求めることができる。そして、図3〜図9のものは、測定位置(a)〜(g)における漏水の流量と電気伝導率の測定値データからこれらの関係式(測定位置(h)および(i)は図示を省略する)を求め、線引きしたものであるが、これら関係式は、漏水の流量とナトリウムイオン濃度との測定値データを、前記電気伝導率とナトリウムイオン濃度との関係式で補正して得た関係式と殆ど一致することを確認しており、このことから、何れの手法で求めたものであっても本発明の関係式として用いてよいことが確認される。
【0011】
次に、図10に、一方のたて坑3の漏水汲み出しの制御装置を兼ねた漏水流量算出装置を示す(他方のたて坑4の漏水汲み出し制御も同様に実施できるので、その詳細については省略する)が、該算出装置5は、キーボード等の入力手段6、ディスプレイ表示部7を備えた制御部(パーソナルコンピューター等)8から構成され、該制御部8には、算出(演算)手段9、登録(記憶)手段10ならびに漏水の汲み出し量を決定する決定手段11を備えていると共に、該制御部8には、前記各対応する漏水位置(c)〜(g)の漏水にそれぞれ浸漬するよう据え置き配設された電気伝導率測定用の各電極(センサー:通常は白金電極により構成されている)12、前記一方のたて坑3の漏水貯留槽3aに貯留された漏水を汲み上げるポンプ部13、該漏水貯留槽3aに設けられた貯留漏水量検知センサー14がそれぞれ接続され、前記各電極12からそれぞれ入力した測定値に基づいて漏水流量を算出し、該算出した漏水流量の合算となる漏水総流量Xと貯留漏水量センサー14で測定される測定貯留量Yに基づいてポンプ部13の汲み上げ量を制御するように構成されている。
【0012】
まず、前記制御部8では、適宜設定された各漏水位置ごとの漏水の流量と電気伝導率との測定値が入力手段6を介して入力され、該入力した測定値に基づいて漏水位置毎の漏水の流量と電気伝導率との一次の関係式を算出手段5で各演算をし、該各一次の関係式が登録手段10に登録される設定になっている。そして制御部8は、各漏水位置に配した電極12から入力した測定値を前記登録される一次の関係式に代入し、これに基づいて各対応位置の漏水流量の算出をし、これらをディスプレイ表示部7に表示すると共に、ポンプ部13の汲み上げ量制御をするようになっている。
【0013】
ここにおいて前記汲み上げ量制御は、算出された漏水流量から漏水貯留槽3aに流れ込む漏水の漏水総流量Xを演算し、該演算された漏水総流量Xに基づいてポンプ部13の汲み上げ制御をするが、その制御例を図11のフローチャート図に基づいて説明する。ここでポンプ部13は、定容量型の第一、第二のポンプ15、16が並設され、各別に貯留漏水を汲み出すことができるものであるとして説明する。前述した制御部8は、対応ソフトを起動することでシステムスタートをし、データ読み込み等初期設定がなされることになるが、このものではまず、前述した各測定位置での漏水の電気伝導率の測定値に基づいて算出された漏水流量から漏水総流量Xを算出する。そしてこの漏水総流量Xが、あらかじめ設定される第一設定総流量A以下であるか否か(X≦A?)の判断がなされる。そして漏水総流量Xが第一設定総流量A以下であると判断された場合に、さらに貯留漏水量センサー14で測定される測定貯留量Yが、あらかじめ設定される第一設定貯留量R以下であるか否か(Y≦R?)の判断がなされ、第一設定貯留量R以下であると判断された場合には、貯留漏水が少なく、かつ、漏水流量も少ないとして第一、第二ポンプ15、16は共に停止制御されて、リターンする。これに対し、前記測定貯留量Yが第一設定貯留量Rより大きい(Y>R)と判断された場合、さらに該測定貯留量Yが、前記第一設定貯留量Rよりも大きい値として設定される第二設定貯留量S(R<S)以下であるか否か(Y≦S?)の判断がなされ、該第二設定貯留量S以下であると判断された場合には、漏水流量は通常範囲で、かつ、貯留漏水も通常量であるとして第一ポンプ15のみを駆動して通常状態の汲み上げ制御をする。これに対して、測定貯留量Yが第二設定貯留量Sよりも大きい(Y>S)と判断された場合には、漏水流量は通常範囲であるが貯留漏水量が多いとして第一、第二ポンプ15、16をそれぞれ駆動して早期の汲み上げをするように制御され、リターンする。
【0014】
これに対し、漏水総流量Xが第一設定総流量Aより大きい(A<X)と判断された場合、さらに該漏水総流量Xが、第一設定総流量Aよりも大きい値としてあらかじめ設定される第二設定総流量B(A<B)以下であるか否か(X≦B?)の判断がなされる。そして第二設定総流量B以下であると判断された場合には、さらに前記測定貯留量Yが、前記第一設定貯留量R以下であるか否か(Y≦R?)の判断がなされ、該第一設定貯留量R以下であると判断された場合、漏水流量はかなり多いものの貯留漏水量は少ないとして第一ポンプ15のみの駆動制御をするが、測定貯留量Yが第一設定貯留量Rよりも多い(R<Y)と判断された場合には、貯留漏水量は通常であるが漏水流量はかなり多いとして第一、第二ポンプ15、16をそれぞれ駆動制御するようにし、このようにして大量の漏水に対応する汲み上げ量制御がなされる。
【0015】
一方、本実施の形態では、漏水総流量Xが第二設定総流量Bよりも大きいと判断される場合、これは異常漏水であると判断し、第一、第二ポンプ15、16の駆動制御をすると共に、その旨をディスプレイ表示し、あるいはブザー音を発したりして報知する制御がなされ、このようにして異常漏水に対応する制御が実行されるようになっている。因みに、このような異常漏水に対しては、別途配設した非常用のポンプを駆動する等して大量の漏水汲み出しをするように制御できることは言うまでもない。
【0016】
このように、本発明が実施された形態のものは、地下構造物における漏水流量を、継続的に海水含有漏水に浸漬してもほとんど影響されることがない電気伝導率測定用の電極を測定現場に据え付けて連続的に得られる電気伝導率の測定値を入力し、これに基づいて漏水流量を算出し、この算出結果に基づいて漏水汲み出し量の決定(前期実施の形態では第一、第二ポンプ15、16の駆動−停止制御)がなされ、その制御ができることとなって、地下構造物における漏水汲み出し管理が確実、かつ、容易になる。因みに、前述したような漏水の汲み出し制御は、複数台のポンプ設置に限らず、汲み出し容量可変型のポンプを用いても実施できることは言うまでもない。
【0017】
そのうえこの実施の形態のものでは、連続的な漏水流量の入力に基づいての漏水汲み出し制御が人手を要することなくできるので、作業の大幅な効率アップが計れ、しかもこのものは算出された複数位置での漏水流量に基づいての漏水汲み出し制御が実施できるため、その精度が向上することになる。
【0018】
さらにまた、本発明の漏水量算出装置としては、前述したようなものでなく、持ち運び可能なハンディタイプのものとしても提供することができる。図12にその概略図を示すが、この算出装置17は、記憶部を備えたマイクロコンピューターを制御部18として有し、記憶部には、前記各測定位置(a)〜(i)での漏水量と電気伝導率との関係式が入力されている。さらに制御部18には、前記各測定位置を選択切換できる切換え操作具19を備え、かつ、電気伝導率を測定するための電極20が接続されている。そして操作員が算出装置17を持って適宜の測定位置に赴き、該測定位置の選択をした状態で電極20を漏水に直接浸漬して電気伝導率を測定すると、該測定値が制御部18に入力され、この測定値を前記関係式に代入することで漏水流量が算出される。この算出された漏水流量は、ディスプレイ部21に表示することもでき、また漏水流量値あるいは電気伝導率の測定値を登録しておいて、別途備えたパーソナルコンピューターに入力することも勿論できることは言うまでもない。
【図面の簡単な説明】
【図1】海底トンネルの概略縦断面図である。
【図2】漏水のナトリウムイオン濃度と電気伝導率との関係を示すグラフ図である。
【図3】測定位置(a)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図4】測定位置(b)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図5】測定位置(c)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図6】測定位置(d)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図7】測定位置(e)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図8】測定位置(f)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図9】測定位置(g)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図10】漏水汲み上げ装置の概略を示す断面図である。
【図11】漏水汲み上げ制御例を示すフローチャート図である。
【図12】ハンディタイプの漏水流量算出装置を示す概略斜視図である。
【符号の説明】
5 漏水流量算出装置
8 制御部
9 算出手段
11 決定手段
12 電気伝導率測定用の電極
13 ポンプ部
14 貯留漏水量検知センサー
15 第一ポンプ
16 第二ポンプ
17 漏水量算出装置
20 電気伝導率測定用電極

Claims (1)

  1. 地下水に海水を含む漏水を地下構造物に設けた漏水貯留槽から汲み出すための定容量型の第一、第二のポンプ手段と、該第一、第二のポンプ手段の汲み出し量の制御をする制御手段とを備えて漏水汲み出しの制御装置を構成するにあたり、前記制御手段には、あらかじめ設定された複数の漏水のある任意の測定位置に据え置かれた電気伝導率測定用の電極に接続され、該電極で測定された電気伝導率の各測定値を入力する入力手段と、あらかじめ測定された漏水の流量と電気伝導率とのあいだから求められた関数式に前記入力した電気伝導率の測定値を当てはめて得た漏水流量を合算して漏水総流量を算出し、該漏水総流量に基づいてポンプ手段の汲み出し量を決定する決定手段とを備え、該汲み出し量決定手段は、前記算出された漏水総流量が、あらかじめ設定される第一設定総流量以下であるか否かの判断をし、漏水総流量が第一設定総流量以下であると判断された場合に、
    前記漏水貯留槽に設けた貯留漏水量センサーで測定される測定貯留量が、あらかじめ設定される第一設定貯留量以下であるか否かの判断をし、第一設定貯留量以下であると判断された場合には、貯留漏水が少なく、かつ、漏水流量も少ないとして第一、第二ポンプは共に停止制御され、前記測定貯留量が第一設定貯留量より大きいと判断された場合には、さらに該測定貯留量が、前記第一設定貯留量よりも大きい値として設定される第二設定貯留量以下であるか否かの判断をし、該第二設定貯留量以下であると判断された場合には、漏水流量は通常範囲で、かつ、貯留漏水も通常量であるとして第一ポンプのみを駆動して通常状態の汲み上げ制御をし、測定貯留量が第二設定貯留量よりも大きいと判断された場合には、漏水流量は通常範囲であるが貯留漏水量が多いとして第一、第二ポンプをそれぞれ駆動して早期の汲み上げ制御をし、これに対し、漏水総流量が第一設定総流量より大きいと判断された場合に、該漏水総流量が、第一設定総流量よりも大きい値としてあらかじめ設定される第二設定総流量以下であるか否かの判断がなされ、第二設定総流量以下であると判断された場合には、前記測定貯留量が、前記第一設定貯留量以下であるか否かの判断がなされ、該第一設定貯留量以下であると判断された場合には、漏水流量はかなり多いものの貯留漏水量は少ないとして第一ポンプのみの駆動制御をするが、測定貯留量が第一設定貯留量よりも多いと判断された場合には、貯留漏水量は通常であるが漏水流量はかなり多いとして第一、第二ポンプをそれぞれ駆動制御するように設定されていることを特徴とする漏水汲み出し量の制御装置。
JP2002196202A 2002-07-04 2002-07-04 漏水汲み出し量の制御装置 Expired - Fee Related JP4065154B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196202A JP4065154B2 (ja) 2002-07-04 2002-07-04 漏水汲み出し量の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196202A JP4065154B2 (ja) 2002-07-04 2002-07-04 漏水汲み出し量の制御装置

Publications (2)

Publication Number Publication Date
JP2004037315A JP2004037315A (ja) 2004-02-05
JP4065154B2 true JP4065154B2 (ja) 2008-03-19

Family

ID=31704362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196202A Expired - Fee Related JP4065154B2 (ja) 2002-07-04 2002-07-04 漏水汲み出し量の制御装置

Country Status (1)

Country Link
JP (1) JP4065154B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43400E1 (en) 2000-09-20 2012-05-22 Electro Scientific Industries, Inc. Laser segmented cutting, multi-step cutting, or both

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843791B2 (ja) * 2006-09-22 2011-12-21 国立大学法人 鹿児島大学 成分分析評価装置、河川流量比測定システム、成分分析評価方法、河川流量比測定方法、及びプログラム
JP5005611B2 (ja) * 2008-05-16 2012-08-22 公益財団法人鉄道総合技術研究所 地下構造物の被覆物質異常判断装置および被覆物質異常判断方法
US9945942B2 (en) * 2015-03-24 2018-04-17 Utilis Israel Ltd. System and method of underground water detection
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
CN111458086B (zh) * 2020-04-01 2021-12-07 井浩 一种装配式箱涵接缝防水质量快速检测方法
CN112630467B (zh) * 2020-11-24 2022-06-14 贵州大学 碱性物质中和测量酸性水体流量的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43400E1 (en) 2000-09-20 2012-05-22 Electro Scientific Industries, Inc. Laser segmented cutting, multi-step cutting, or both
USRE43487E1 (en) 2000-09-20 2012-06-26 Electro Scientific Industries, Inc. Laser segmented cutting
USRE43605E1 (en) 2000-09-20 2012-08-28 Electro Scientific Industries, Inc. Laser segmented cutting, multi-step cutting, or both

Also Published As

Publication number Publication date
JP2004037315A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5746155B2 (ja) 設備に組み込まれた電動モータ駆動式の遠心ポンプ装置の特性値、特にパラメータを決定する方法
JP4065154B2 (ja) 漏水汲み出し量の制御装置
US11987962B2 (en) Non-powered seawater pumping system for reducing seawater intrusion, and apparatus and method for optimal design of well in the same system
US4969111A (en) Oil permeameter and method of measuring hydraulic conductivity
UA47461C2 (uk) Пристрій і спосіб для виявлення витоку
JP2007278843A (ja) 地下埋設鋼構造物の腐食診断装置及び腐食診断方法
JP2024020627A (ja) 地下ダム止水壁の透水性評価方法
CN206945497U (zh) 一种自动钻孔注水试验仪
CN112832756A (zh) 一种地下水环境质量评价方法
CN111398132B (zh) 配合抽水泵使用的渗透系数原位智能测量装置
JP4065163B2 (ja) 地下水に海水を含有する漏水中の地下水分の最大流量の予測方法および予測装置
JP3880327B2 (ja) 地下構造物の安定度の判定方法および判定装置
CN111487175B (zh) 渗透系数原位测量系统中的探头测量装置用的稳流结构
JP2019100755A (ja) 腐食量推定装置とその方法
US11906419B2 (en) Corrosiveness prediction device and method
CN103995976B (zh) 一种基于渗透系数模型的回灌井堵塞预测诊断方法
JP3647695B2 (ja) 地下水に海水を含む漏水の流量測定方法および流量測定装置
JP3552594B2 (ja) トンネル掘削における水分飽和度の計測方法
JP5944730B2 (ja) 地盤の残留飽和度の施工管理方法
JP5005611B2 (ja) 地下構造物の被覆物質異常判断装置および被覆物質異常判断方法
Zhang et al. Applicability of WEPP sediment transport equation to steep slopes
JP4041033B2 (ja) 海底トンネル内の鋼材の劣化予測方法
KR20100004144A (ko) 암반 대수층의 중금속 오염물질의 종분산지수 산출방법
CN108625374A (zh) 一种均质土坝与穿坝涵管接触冲刷防渗注浆施工方法及注浆效果检测方法
JP7466883B1 (ja) 降雨型地滑りモニタリング・早期警報方法とシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees