JP4064188B2 - Biodegradable false twisted spun yarn and woven / knitted fabric - Google Patents

Biodegradable false twisted spun yarn and woven / knitted fabric Download PDF

Info

Publication number
JP4064188B2
JP4064188B2 JP2002253856A JP2002253856A JP4064188B2 JP 4064188 B2 JP4064188 B2 JP 4064188B2 JP 2002253856 A JP2002253856 A JP 2002253856A JP 2002253856 A JP2002253856 A JP 2002253856A JP 4064188 B2 JP4064188 B2 JP 4064188B2
Authority
JP
Japan
Prior art keywords
fiber
biodegradable
false
spun yarn
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002253856A
Other languages
Japanese (ja)
Other versions
JP2004091962A (en
Inventor
武史 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNITIKA TEXTILES CO., LTD.
Original Assignee
UNITIKA TEXTILES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNITIKA TEXTILES CO., LTD. filed Critical UNITIKA TEXTILES CO., LTD.
Priority to JP2002253856A priority Critical patent/JP4064188B2/en
Publication of JP2004091962A publication Critical patent/JP2004091962A/en
Application granted granted Critical
Publication of JP4064188B2 publication Critical patent/JP4064188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バインダー繊維が生分解性を有し、かつ少なくとも脂肪族ポリエステル系重合体あるいは脂肪族ポリエステルアミド系共重合体からなる生分解性短繊維を含有する生分解性仮撚紡績糸、及び該生分解性仮撚紡績糸から構成される織編物に関するものである。
【0002】
【従来の技術】
衣料としての価値を決定付ける要素は種々存在するが、大別して耐磨耗性,寸法安定性,ウォッシュアンドウエアなどの機能性と風合い,仕立て映えなどの質感に分けられる。
合成繊維は天然繊維並に比べ前者では優れるものの、後者で決定的に劣るとされる。しかし時代のニーズに答えるべく様々な態様で差別化を計ってきた。その手法は(1)ポリマー改良、添加剤付与などの原糸製造の工夫(2)高次仮撚技術を駆使する糸加工の工夫(3)整理・染色条件の工夫、以上3技術に代表され、それらの高度複合化により、「新合繊」なる名称で、天然繊維の質感を凌駕するほどの価値を備えるまでに成長した。
【0003】
しかしこの「新合繊」は高い質感を追求すればそれだけ高次加工が必要となり、天然繊維のそれと同格以上に仕上げると、かえってコスト高になる問題が生じ、用途が高級ゾーンに限られるなど問題もあった。また近年、志向の多様化が進み、本来の素材(天然繊維)感への回帰や更なる機能充実の動きもみられ、その対応方法も様々である。中でも、天然繊維本来の質感と合成繊維の高い機能性を併せ持つ商品に注目が集まり、これが近年の志向の中心であり、長短繊維複合化技術が対応方法の主流となっている。
長短繊維複合化技術には交織,交撚,配列等があり、用途に応じてあらゆる組合せが考えられ、「新合繊」世代の次をになう技術と位置付けられている。
【0004】
従来から、衣料に求められる質感はナチュラル感,ソフト感,ふくらみ感など「柔」の部分を基礎として、用途に応じストレッチ感,張り腰感,清涼感など「剛」の部分が加わるという構図が大勢であったが、先に述べた志向の多様化の中では、「柔」「剛」の各要件が絡み合うケースや、「柔」「剛」のいずれかの要素を従来よりも強調するケースが現れ、前記の長短繊維複合化技術だけではカバーしきれない部分が出始めてきた。例えば天然繊維のナチュラル感と合成繊維の清涼感をベースとし、目的に応じた要素が加わるといった場合や、再生繊維・天然繊維のナチュラル感を、再生繊維・天然繊維を使用して更に強調するといった場合である。
【0005】
前者は、清涼感を付与させた天然繊維の加工糸を用いることで解決が図られている。例えば、特公昭57−8218号公報では、二成分以上の混紡糸を仮撚して、繊維束を構成する単繊維を相互に接着させる無撚紡績糸の製造方法が開示されている。この発明では構成繊維の選定及び仮撚温度の規定により、再生繊維・天然繊維のソフト感,ナチュラル感と合成繊維の適度な曲げ強さ,ドライ感を併せ持つ無撚紡績糸が得られるが、バインダー成分に芳香族ポリエステル共重合体やポリカプラミドを使用しているため仮撚温度が高く、天然繊維の黄変あるいは毛羽の焼失による風合い低下などの問題があった。また特公昭48−41784号公報では、バインダー成分に融点差のあるポリマーが配された芯鞘型複合繊維を用い、低融点成分のみを融解させることで、ソフト感,ドライ感を併せ持つ仮撚紡績糸の製造方法が開示されているが、この発明も前記特公昭57−8218号公報と同様の問題がある。
【0006】
このように、バインダー成分を含有する紡績糸を仮撚することで、天然繊維のナチュラル感と合成繊維の清涼感を同時に表現する技術思想は、古くから知られている。
また、バインダー成分についてはその後低融点のものが開発され、特開昭60−181331号公報では融点150℃以下のバインダー成分からなる接着紡績糸が開示されているが、仮撚方式でなく、単に接着のみに留まることから、ソフト感,嵩高性に欠ける。また特開平8−246240号公報,特開平9−310227号公報では、シンジオタクチックポリプロピレンを主体とする鞘成分を有する複合繊維をバインダーとすることで、ソフト感の向上が図られているが、いずれの発明も近年ますます高まる環境問題への対応、すなわち環境保護の観点から生分解性材料へ代替が求められているが、その対応がとれないなど課題を残している。
【0007】
一方後者の、再生繊維・天然繊維のナチュラル感を、再生繊維・天然繊維を使用して更に強調するといった場合は、例えば特公昭48−41784号公報や特開昭50−155号公報に開示されているような、融着された無撚紡績糸を織編物にした後、バインダー成分を除去することでソフト感,ふくらみ感を向上させる技術思想が対処方法の一つに挙げられる。しかしこれらも前記と同じく溶融接着温度が高く、加えて接着成分の除去に高濃度の酸を使用するなど、主体となる再生繊維・天然繊維を傷める危険があるなど課題を残している。
【0008】
【発明が解決しようとする課題】
本発明は、この様な現状に鑑みて行われたものであり、従来の新合繊や長短繊維複合化技術では表現できなかった天然繊維のナチュラル感,ソフト感及び合成繊維の清涼感,ドライ感、さらには生分解性も同時に併せ持ち、その他の繊維と交撚,交織,配列などを施すことで種々の表情,感覚を展開できる仮撚紡績糸及び織編物を提供することに技術的課題がある。
さらに本発明では、この仮撚紡績糸を用い、再生繊維・天然繊維の特性を損なうことなく、その特性をより一層表現できる織編物を提供することにも技術的課題がある。
【0009】
【発明が解決するための手段】
本発明者は、仮撚紡績糸のバインダー成分における溶融温度,溶剤可溶性及び生分解性能並びに該仮撚紡績糸を使用した織編物の表情,差別化可能性について鋭意検討した結果、本発明に到達した。
すなわち、本発明は次の(1)〜()を要旨とするものである。
(1)再生繊維又は天然繊維の少なくとも一方を含む短繊維とバインダー繊維とを混合比率5:95〜30:70で混紡又は複重層した繊維束を仮撚してなる、該短繊維が相互に融着された仮撚紡績糸であって、バインダー繊維が、芯部が高融点の生分解性熱可塑性重合体からなり、鞘部が該重合体より低融点の生分解性熱可塑性重合体からなり、かつ両生分解性熱可塑性重合体が脂肪族ポリエステル系重合体又は脂肪族ポリエステルアミド系共重合体からなる生分解性複合短繊維であることを特徴とする生分解性仮撚紡績糸
部を構成する生分解性熱可塑性重合体が、結晶融解開始温度が180℃以上でステレオコンプレックスを形成しているポリ乳酸系重合体であり、鞘部を構成する生分解性熱可塑性重合体が、芯部を構成する重合体の融点よりも低い融点を有し、両重合体の融点差が30℃以上であることを特徴とする()記載の生分解性仮撚紡績糸
)(1)又は(2)に記載の生分解性仮撚紡績糸を、少なくともその構成の一部とすることを特徴とする織編物。
)()記載の織編物からバインダー繊維を溶解除去したことを特徴とする嵩高性織編物
【0010】
【発明の実施の形態】
以下、本発明を詳説する。
本発明に使用される再生繊維又は天然繊維は、生分解性を有するものであれば、特に限定されない。例えば再生繊維の場合は、ビスコースレーヨン,キュプラ,溶剤紡糸セルロース繊維などが挙げられ、天然繊維の場合は、綿,羊毛,絹などが挙げられる。繊維形態は短繊維であり、目的に応じこれらの繊維を複数混合して使用することもできる。混合方法及び混合比率は特に限定されず、例えば混打綿工程でそれぞれの繊維を混ぜ合わせ、梳綿,練条,粗紡を経る方法、もしくはそれぞれの繊維を単独でカード工程まで紡績したのち、練条工程にてスライバーで合せる方法、又はそれぞれの繊維を単独に練条した複数のスライバーを引き揃えて粗紡する方法、あるいはそれぞれの繊維の粗糸を用意し、後述する融着仮撚工程で合せる方法などがある。さらに杢感を表現したい場合などは光沢や染着性能の異なる繊維を使用する。ビスコースレーヨンと羊毛のように染着性能の異なる組合せ以外にも、繊維製造時に着色剤を混用して製造した原着綿あるいは異型断面繊維,艶消剤の含有量が異なる繊維などを適当量混ぜることで染色後に光沢や色相の異なる杢感を表現できる。
【0011】
このように用途,目的に応じて複数又は単独で使用されることに何ら制限を受けない。またステープルの太さ及び長さは任意に選択可能であり、前記再生繊維又は天然繊維が長繊維にあっては、機械的に所定の長さに切断して使用するが、実用性を考慮すると単繊維繊度1〜3dTex,平均繊維長30〜50mmが好ましい範囲である。3dTexより太くなれば、紡績糸としての繊維構成本数が減少してしまい、ドラフト斑や糸切れを多発させ、実用性のある紡績糸の作製が困難となりやすい。また平均繊維長が50mmより長くなれば、紡績ドラフト時における繊維のコントロールが困難となり、斑やネップの発生や、紡績糸表面から突出した繊維、いわゆる毛羽も長くなり、紡績糸の糸質を低下させるとともに、織編物の外観を著しく損ねる結果となりやすい。また30mm未満は均斉度の低下を招き好ましくない。
他方、切断前にスタッフイングボックスを用いる機械捲縮付与、あるいは加熱処理による捲縮付与なども目的に応じて任意に行うこともできる。
【0012】
以上、本発明に使用される再生繊維又は天然繊維は目的に応じ選択は任意であるが、採算性,操業性などの生産面並びに実用性,用途汎用性から総合的に判断すると、溶剤紡糸セルロース繊維「リヨセル」(レンチング社製)もしくは「テンセル」(テンセル社製)又は綿のいずれか単独が最も望ましい。
【0013】
次にバインダー繊維について説明する。
本発明に使用するバインダー繊維は生分解性を有し、かつ少なくとも熱可塑性の脂肪族ポリエステル系重合体あるいは脂肪族ポリエステルアミド系共重合体からなる短繊維で、該脂肪族ポリエステル系重合体には、ポリ脂肪族ヒドロキシカルボン酸、並びに脂肪族多価アルコールと脂肪族ジカルボン酸の重縮合体が挙げられる。
【0014】
ポリ脂肪族ヒドロキシカルボン酸の例では、ポリグリコール酸やポリ乳酸のようなポリ(α−ヒドロキシ酸)、またはこれらを主たる繰り返し単位とする共重合体が挙げられる。その他、ポリ(ε−カプロラクトン)、ポリ(β−プロピオラクトン)のようなポリ(ω−ヒドロキシアルカノエート)も挙げられる。ポリ−3−ヒドロキシプロピオネート、ポリ−3−ヒドロキシブチレート、ポリ−3−ヒドロキシカプロネート、ポリ−3−ヒドロキシヘプタノエート、ポリ−3−ヒドロキシコクタノエートのようなポリ(β−ヒドロキシアルカノエート)や、これらの繰り返し単位とポリ−3−ヒドロキシバリレートやポリ−4−ヒドロキシブチレートの繰り返し単位との共重合体等も挙げられる。
【0015】
他方、脂肪族多価アルコールと脂肪族ジカルボン酸の重縮合体の例では、グリコールとジカルボン酸の縮重合体からなるポリアルキレンアルカノエートがあり、具体的にはポリエチレンノキサレート、ポリエチレンサクシネート、ポリエチレンアジペート、ポリエチレンアゼレート、ポリエチレンオキサレート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンセバケート、ポリヘキサメチレンセバケート、ポリネオペンチルオキサレート等が挙げられる。またこれらを主たる繰り返し単位とするポリアルキレンアルカノエート共重合体も挙げられる。
【0016】
本発明においては、生分解性,融点及び実用性などの点から、上記の重合体の中で特にポリ乳酸系重合体を好適に用いることができる。脂肪族ポリエステル系重合体がポリ乳酸系重合体である場合は、光学異性体の存在からポリD−乳酸,ポリL−乳酸,D−乳酸とL−乳酸の共重合体との他に、D及びL−乳酸の内少なくとも一方と後述の脂肪族ヒドロキシカルボン酸との共重合体が挙げられる。
【0017】
乳酸と脂肪族ヒドロキシカルボン酸との共重合体を製造する際のヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。これらの内、特にヒドロキシカプロン酸またはグリコール酸を用いることが低コストの面から望ましい。
【0018】
脂肪族ポリエステル系重合体の物性は後述の融着仮撚工程に支障がなければ特に限定するものではないが、紡糸工程、製編織工程及び染色加工工程を考慮すると、融点150℃以上、引張強力3.5cN/dTex以上及び伸度20〜60%の範囲であることが望ましい。
【0019】
さらに本発明における接着成分は、上述した脂肪族ポリエステル系重合体と、ポリカプラミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカナミド(ナイロン11)、ポリラウロラクタミド(ナイロン12)のような脂肪族ポリアミド系重合体との重縮合体である脂肪族ポリエステルアミド系共重合体からなる短繊維も、好適に用いられる。
【0020】
一方、本発明におけるバインダー繊維は上述した以外に、繊維断面が上述した重合体の内から選択された融点を20〜110℃異にする二種の重合体から構成された芯鞘構造を有し、芯部が高融点の生分解性熱可塑性重合体からなり、かつ鞘部が該重合体より低融点の生分解性熱可塑性重合体からなる構造を有する芯鞘複合短繊維であることが望ましい。これはバインダー繊維を全て溶融させるのではなく、鞘部だけを融解させ、芯部の繊維形態を保持させることで、本発明の生分解性仮撚紡績糸を使用した織編物に適度な清涼感,ドライ感並びにナチュラル感,ソフト感,嵩高性,柔軟性を具備させることができる。勿論上述した脂肪族ポリエステル系重合体又は脂肪族ポリエステルアミド系共重合体の少なくとも一方をバインダー繊維に含める場合も、バインダー繊維全てを溶融させるのではなく、表面だけが融着に関わるよう仮撚温度を設定するのが重要である。バインダー繊維全てを溶融させると、生分解性仮撚紡績糸の曲げ剛性が大きすぎて、硬くゴワゴワした風合いになりやすい。
この芯鞘複合短繊維において、前記両重合体の融点差が20℃未満であると、融着仮撚工程における温度設定がシビアになり実用にそぐわない。また融点差が110℃を超えると両重合体の融点差が余りにも大きいため、両重合体を用いて複合紡糸をする際、紡糸ノズルパツク内において紡糸温度の制御が困難となるため好ましくない。したがって本発明においては、前記融点差を20℃以上さらに好ましくは30℃以上にすることが望ましい。また、一定の耐熱性を具備しなければ、衣服としての実用性が喪失するので、前記鞘部の熱可塑性重合体の融点は好ましくは150℃以上が望ましい。この複合短繊維においては、複合比すなわち芯部の重合体に対する鞘部の重合体の重量比を1/5〜5/1とするのが望ましい。芯部の重合体1に対し鞘部の重合体の比が5を超えると該短繊維の強度低下が発生、あるいは溶融部分が多すぎて織編物の風合いが硬くなる。一方、芯部の重合体成分5に対し鞘部の重合体の比が1未満であると、この短繊維を用い繊維間を十分に融着させることができず、強度低下を生じるため好ましくない。したがって本発明においては、前記複合比を1/5〜5/1好ましくは1/2〜2/1がよい。
【0021】
次に前記複合短繊維における望ましい態様について言及する。
該複合短繊維の芯部を構成する成分が、結晶融解開始温度が180℃以上でステレオコンプレックスを形成しているポリ乳酸系重合体からなり、鞘部を構成する成分が、芯部を構成する成分の融点よりも低い融点を有し、その融点差が30℃以上であるのが望ましい。
【0022】
まずポリ乳酸ステレオコンプレックスについて説明する。
ポリ乳酸ステレオコンプレックスとは、ポリL−乳酸は左巻きらせん構造を有するのに対し、光学異性体のポリD−乳酸は右巻きらせん構造を有するところから、これらを混合すると、二成分間に立体特異的な結合が生じ、ポリL−乳酸あるいはポリD−乳酸それぞれ単独の場合に形成される結晶構造よりも緊密かつ強固な結晶構造を形成する。この結晶構造をステレオコンプレックスという。このステレオコンプレックスの形成により、ポリ乳酸系重合体の融点が高くなり、熱収縮率も低くなる。
【0023】
ポリ乳酸ステレオコンプレックスを得るには、ポリL−乳酸とポリD−乳酸を個々に溶融した後溶液混合する方法、ポリL−乳酸ペレットとポリD−乳酸ペレットを混合後溶融する方法などがあるが、いずれの方法であっても構わない。
混合比率はD/L=40/60〜60/40が望ましく、最も望ましいのは当量である。この混合比率を外れると立体特異的な結合であるステレオコンプレックスの形成を阻害し、結晶融解開始温度が180℃以上とすることが難しくなる。
【0024】
該ポリ乳酸ステレオコンプレックスは、前記バインダー繊維の芯部を構成するが、その結晶融解開始温度は180℃以上であり、鞘部を構成する成分との融点差は30℃以上であるのが望ましい。結晶融解開始温度とは、高温結晶融解相の融解開始温度のことで、これは高温融解結晶相の吸熱ピークの開始(onset)温度を指し、低温側吸熱ピークのDSC曲線の傾きが最大の点で引いた接線と低温側のベースラインを高温側へ延長した直線とが交差する点の温度をいう。
本発明の生分解性仮撚紡績糸を使用した織編物に適度な清涼感,ドライ感並びにナチュラル感,ソフト感,嵩高性,柔軟性を具備させるためには、鞘部だけを融解させ、芯部の繊維形態を保持させるのが望ましく、芯・鞘部の融点が接近するとそれだけ仮撚温度の設定がシビアになり実用にそぐわなくなる。そのため、芯・鞘部の融点差は30℃以上であるのが望ましい。また芯部を構成するポリ乳酸ステレオコンプレックスの結晶融解開始温度は180℃未満であると、鞘部を構成する成分は融点がその分だけ低くなり、後に生分解性仮撚紡績糸を使用した織編物にアイロンを掛けるなど、日常行われる熱処理に耐えられなくなる危険がある。
【0025】
以上詳説したバインダー繊維は、いずれも生分解性の短繊維で、単独もしくは上述した重合体の混合、あるいは他の生分解性バインダー繊維と混合して、本発明に供される。そして例えば次のような方法により効率良く製造することができる。重合体を複数の紡糸孔が穿設された紡糸口金から溶融紡出し、紡出長繊維群を冷却した後引き取り、集束して10万dTex程度を超える未延伸トウとし、得られた未延伸トウを例えば複数段熱ローラ延伸装置を用い延伸して延伸トウとし、所定長に切断して短繊維とする。このとき繊度・繊維長は任意に選択可能であるが、後に再生繊維又は天然繊維と共に仮撚するので、均斉度の関係上、繊度1〜3dTex,繊維長30〜50mmが望ましい。
溶融紡出に際しての紡糸温度は、用いる重合体の融点や重合度によるが、通常は120〜300℃とするのが望ましい。紡糸温度が120℃未満であると重合体の溶融押出しが困難となり、一方、紡糸温度が300℃を超えると重合体の熱分解が著しくなって高強度の繊維を得ることができず、いずれも好ましくない。未延伸長繊維糸条に延伸を施すに際しての全延伸倍率は、目的とする短繊維の強度水準によるが、通常は2.0〜4.0倍とし、これにより引張強力3.5cN/dTex以上,伸度20〜60%以上の短繊維を得ることができる。
【0026】
該短繊維の断面形状は、何ら限定されるものでなく、丸型,楕円型,菱型,三角型,T字型,井型など任意の形状でよい。特に三角型や井型のように形状に鋭角部分を有する場合は、融着形態が点接着に近くなり、本発明の生分解性仮撚紡績糸の曲げ剛性が低下し、織編物のナチュラル感,ソフト感,嵩高性,柔軟性が向上する。
さらに点接着の効果を促進するには、かかる短繊維に切断する前にスタッフイングボックスを用いる機械捲縮付与、あるいは加熱処理による捲縮付与などを施すのも好ましい態様である。
また該短繊維には、必要に応じて、例えば艶消剤,顔料,光安定剤,熱安定剤,酸化防止剤等の各種添加剤を本発明の効果を損なわない範囲内で添加することができる。
【0027】
本発明の生分解性仮撚紡績糸は、再生繊維又は天然繊維を含む短繊維と前記バインダー繊維とを混紡もしくは複重層形態にし、融着仮撚することで得られる。
混紡糸及び複重層糸は、公知法で作製される。それぞれを例示すると、混紡糸は既に述べた混打綿工程や練条工程などを経て作製され、前記再生繊維,天然繊維及びバインダー繊維の混合比率は目的に応じて適宜決定される。複重層糸は、複数本のスライバーを粗紡機のドラフト域の中に並べて供給し、少なくとも一本のスライバーを芯にして、他のスライバーを捲き付けて粗糸とする。各スライバーは、目的に応じて、前記再生繊維,天然繊維及びバインダー繊維の任意の混合比率で構成される。
本発明の生分解性仮撚紡績糸におけるバインダー繊維とそれ以外の短繊維との混合比率は、5:95〜30:70とするのが好ましい。バインダー繊維の混合比率が5%未満であると、熱融着の効果が少なく、織編物にした際、繊維抜けによるピリングが発生しやすくなる。またバインダー繊維の混合比率が30%を超えると熱融着が進行しすぎて織編物の風合いが硬くなる
【0028】
以上述べたバインダー繊維を含む混紡糸あるいは複重層糸は、粗糸又は精紡糸の形態にした後融着仮撚される。ただしこの場合は、粗糸を15〜25倍ドラフトし、連続して仮撚する、いわゆる「無撚紡績糸」の製法が望ましい。精紡糸を融着仮撚した場合、織編物に張り腰感,ドライ感を与えるもののナチュラル感,嵩高性にやや欠けることがある。これは精紡糸が施撚されている(通常、撚係数3.0〜4.2の範囲で施撚。K=T/N1/2 ただし、T:撚回数/2.54cm,N:綿番手,K:撚係数)ため、初めから繊維(ステープル)間の空隙が少なく、融着することでさらに空隙が減少するためである。
【0029】
一方、融着仮撚の方法であるが、加撚−加熱−解撚を連続して行う公知法を用いる。一例を示すと、粗糸をドラフト装置に供給した後、仮撚施撚体によって加撚されながらヒータ(非接触)によって融着固定され、デリベリローラを経て巻取ローラによってパッケージに巻き取られる。
該仮撚施撚体はスピンドルピンの他、フリクションディスク,ベルトニップ,流体旋回装置など、前記混紡糸あるいは複重層糸に旋回力を付与できる仮撚施撚体であれば特に限定されるものではないが、風綿による品質及び効率低下を考慮すれば、流体旋回装置が好ましい。さらにこの融着仮撚工程で付加的効果をねらうことができる。例えば、斑効果を得るには、間歇的に加撚操作を施して、加撚集束部と逆撚集束部とを交互に形成させるとよい。
【0030】
このようにして得られた本発明の生分解性仮撚紡績糸を用い織編物とする。製織編工程は公知法を用い、サイジングをするのが望ましい。織機は特に限定されないが、汎用性を考慮してレピア織機が望ましい。
本発明の生分解性仮撚紡績糸のみ使用した織編物は、適度な清涼感,ドライ感並びにナチュラル感,ソフト感,嵩高性,柔軟性を具備しているが、他の糸と複合することで、より高い効果を奏することができる。
複合方法は用途・目的に応じ任意に行えばよい。具体的には、交撚,交織編,配列などがあり、ストレッチを発現したい場合は潜在捲縮糸を、ピーチ感には極細糸を、シャンブレー調ならカチオン可染糸を複合させればよい。織編組織も特に限定されない。
【0031】
以上、製織編された生機は公知の染色加工を施される。例えば、精練後、分散染料にてバインダー繊維を染め、還元洗浄の後再生繊維・天然繊維をアルカリの存在下の反応染料で染める。
【0032】
一方、再生繊維・天然繊維の特性を損なうことなく、その特性をより一層表現するには、接着成分を染色加工工程中にアルカリ溶液などで除去する。これによりナチュラル感,ソフト感,ふくらみ感が一層助長された嵩高性織編物が得られる。
【0033】
【作用】
本発明の生分解性仮撚紡績糸は、再生繊維又は天然繊維の少なくとも一方を含有する短繊維とバインダー繊維とを混紡又は複重層形態にして得られる繊維束を仮撚することで、該短繊維が相互に融着された構造を呈するが、バインダー繊維が少なくとも脂肪族ポリエステル系重合体あるいは脂肪族ポリエステルアミド系共重合体を含有する生分解性短繊維であることから、生分解性を有する作用を奏する。また該バインダー繊維を全て溶融させるのではなく、繊維形態を保持させることで、生分解性仮撚紡績糸にナチュラル感,ソフト感,嵩高性,柔軟性を持たせる作用を奏する。特にバインダー繊維が、芯鞘複合短繊維であって、芯部が高融点の生分解性熱可塑性重合体からなり、鞘部が該重合体より低融点の生分解性熱可塑性重合体からなる生分解性複合短繊維が望ましく、さらに前記作用を一層反映させる態様として、前記芯鞘複合短繊維において、芯部を構成する成分が、結晶融解開始温度が180℃以上でステレオコンプレックスを形成しているポリ乳酸系重合体からなり、鞘部を構成する成分が、芯部を構成する成分の融点よりも低い融点を有し、その融点差が30℃以上である生分解性仮撚紡績糸が挙げられる。
【0034】
さらに本発明の生分解性仮撚紡績糸のみ使用した織編物は、適度な清涼感,ドライ感並びにナチュラル感,ソフト感,嵩高性,柔軟性を発現する作用を奏するが、他の糸と複合することで、より高い作用を奏することができる。また生分解性仮撚紡績糸に含まれるバインダー繊維を除去すれば、ナチュラル感,ソフト感が本来の素材よりも増し嵩高性を増幅させる作用を奏する。
【0035】
【実施例】
次に、実施例に基づき本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
融点(℃):パーキンエルマ社製示差走査型熱量計DSC−2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。
結晶融解開始温度(℃):パーキンエルマ社製示差走査型熱量計DSC−2型を用い、昇温速度10℃/分、250℃で5分ホールドし、降温速度10℃/分で20℃まで降温し、再び昇温速度10℃/分で280℃まで昇温させたときのDSC曲線で吸熱ピークの開始(onset)する温度を結晶融解開始温度とした。
【0037】
(実施例
融点140℃,ガラス転移温度59℃,光学純度95%,メルトフローレート値18g/10分,結晶化温度132℃のポリL−乳酸を鞘成分とし、融点172℃,ガラス転移温度60℃,光学純度が99%,メルトフローレート値25g/10分,結晶化温度136℃のポリL−乳酸に平均粒径1μmのタルクを10重量%添加したマスターチップ組成物を芯成分し、単軸のエクストルーダー型溶融押出し機二台を備えた複合紡糸装置を用い、直径0.4mm,孔数180個の紡糸孔を有する紡糸口金より紡糸温度210℃,単孔吐出量1.0g/分,芯/鞘複合比(重量比)=1/1で溶融紡出し、空気冷却装置にて冷却、油剤付与をしながら紡糸速度1100m/分で巻取って未延伸糸を得た。得られた未延伸糸をリワインドして、22万dTexの未延伸糸トウを形成した。次いで、一般的に用いられている二段延伸が可能の多段熱延伸装置を用い、該未延伸糸トウを延伸した。延伸に際しては、第1ローラー温度を65℃、第2ローラー温度を95℃、温浴バス温度を80℃、全延伸倍率を2.3として繊度2.0dTex,平均繊維長37mmのポリ乳酸芯鞘バインダー繊維を得た。
一方、再生繊維として、溶剤紡糸セルロース繊維「リヨセル」(レンチング社製)繊度1.5dTex,平均繊維長40mmの短繊維を用意し、再生繊維成分/ポリ乳酸成分の混合比(重量比)を92/8で混打綿機を用いて混綿し、得られた混合綿をローラーカード機で開繊してウエブとし、練条・粗紡を経て粗糸を得た。
得られた粗糸に23倍のドラフトを与え、仮撚施撚体にエアジェット旋回ノズルを使用し、ノズルエア圧4.4Kg,糸速80m/分,ヒータ温度147℃(非接触)の条件で融着仮撚し、パッケージに捲取った。得られた本発明の生分解性仮撚紡績糸は60番手であり、断面及び側面を光学顕微鏡で観察したところ、バインダー繊維の鞘成分のみ溶融し、芯部の繊維形態は保持されていた。
【0038】
(実施例
芯部に、それぞれの光学純度が99%のポリL−及びポリD−乳酸とを当量に混合し作製された結晶融解開始温度206℃,融点218℃のポリ乳酸ステレオコンプレックスを、鞘部には、融点170℃、ガラス転移点66℃、融解熱42J/g、光学純度99%(L体主体:乳酸モノマー重合時のL、D体仕込み割合により決定される。)で、メルトフローレート値21g/10分のポリ乳酸を使用し、孔数560個の丸断面芯鞘複合紡糸口金にて、芯/鞘複合比(溶融容積比)=1/1,紡糸温度240℃,紡糸速度900m/分で溶融紡糸し、未延伸糸を得た。次いで、該未延伸糸を温度60℃,倍率4.15で延伸後、切断し、繊度1.8dTex,平均繊維長35mmのポリ乳酸芯鞘バインダー繊維を得た。
そして、混打綿機を用いて混綿し、得られた混打綿に対しローラーカード機を用い開繊してウエブとし、練条工程を経てポリ乳酸スライバーを得た。
一方、公知の紡績工程を経て綿コーマスライバーを用意し、粗紡機において、芯部をなすスライバー(ポリ乳酸バインダー繊維)をフライヤーヘッドから見て外側に供給し、巻き付けスライバー(綿コーマ糸)をフライヤーヘッドから見て内側に供給して複重層粗糸を紡出した。なお綿コーマスライバーとポリ乳酸スライバーの質量比は、85:15である。
次に、該複重層粗糸に20倍のドラフトを与え、仮撚施撚体にエアジェット旋回ノズルを使用し、ノズルエア圧4.0Kg,糸速80m/分,ヒータ温度160℃(非接触)の条件で融着仮撚し、パッケージに捲取った。
このようにして、60番手生分解性仮撚紡績糸を得た。
【0039】
(実施例
実施例の60番手生分解性仮撚紡績糸を経緯に用い、レピア織機にて模紗織物を作製し、90℃×30分の精練後、ポリ乳酸染色として110℃×60分の分散染料染色を行ない、70℃×20分の還元洗浄を経て、55℃×60分にて反応染料で綿成分を染めて、織編物を得た。
得られた織編物は、清涼感,ドライ感に加えナチュラル感,ソフト感にも優れ、模紗織の通気性との相乗効果で、夏服用として最適であった。またピリング防止に優れ、ゴワゴワせず仕立て映えのよい織編物であった。
【0040】
(実施例
実施例の60番手生分解性仮撚紡績糸を経糸に用い、サイドバイサイド型潜在捲縮ポリ乳酸フィラメント110dTex24fを緯糸に用い、フランス綾織物を作製し、実施例と同様の染色加工を施して織編物を得た。
得られた織編物は適度な清涼感,ドライ感並びにナチュラル感,ソフト感を具備するだけでなく、ストレッチ,反発感,張り腰感も併せ持つ織編物であった
【0042】
【発明の効果】
本発明の生分解性仮撚紡績糸は、再生繊維又は天然繊維の少なくとも一方を含む短繊維とバインダー繊維とを混紡又は複重層形態にして得られる繊維束を仮撚することで、該短繊維が相互に融着される構造を呈するが、バインダー繊維が生分解性短繊維であることから、生分解性を有し、該バインダー繊維を全て溶融させるのではなく、繊維形態を保持させることで、生分解性仮撚紡績糸にナチュラル感,ソフト感,嵩高性,柔軟性を持たせる効果を奏する。
特にバインダー繊維が、芯鞘複合短繊維であって、芯部が高融点の生分解性熱可塑性重合体からなり、鞘部が該重合体より低融点の生分解性熱可塑性重合体からなる生分解性複合短繊維が望ましく、さらに前記効果を一層反映させる態様として、前記芯鞘複合短繊維において、芯部を構成する成分が、結晶融解開始温度が180℃以上でステレオコンプレックスを形成しているポリ乳酸系重合体からなり、鞘部を構成する成分が、芯部を構成する成分の融点よりも低い融点を有し、その融点差が30℃以上である生分解性仮撚紡績糸が挙げられる。
【0043】
さらに本発明の生分解性仮撚紡績糸のみ使用した織編物は、適度な清涼感,ドライ感並びにナチュラル感,ソフト感,嵩高性,柔軟性を発現する効果を奏するが、他の糸と複合することで、より高い効果を奏する。また生分解性仮撚紡績糸に含まれるバインダー繊維を除去すれば、ナチュラル感,ソフト感が本来の素材よりも増した嵩高性織編物が得られる効果を奏する。
以上の如く本発明の生分解性仮撚紡績糸は用途・目的に応じ様々な態様が列挙でき、厚地・薄地を問わず、極めて汎用性のある新規な衣料素材である。そして再生繊維又は天然繊維が相互に融着されていることから、ピリング防止に優れ、適度な曲げ剛性を有することから、ナチュラルな肌触りを保持しつつ、ゴワゴワせず、洗濯後も型崩れしない仕立て映えの良好な衣料素材を提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a biodegradable false-twisted spun yarn in which the binder fiber is biodegradable and contains at least a biodegradable short fiber composed of an aliphatic polyester polymer or an aliphatic polyester amide copolymer, and The present invention relates to a woven or knitted fabric composed of the biodegradable false twist spun yarn.
[0002]
[Prior art]
There are various factors that determine the value of clothing, but it can be broadly divided into wear resistance, dimensional stability, functionality such as wash and wear, texture, and texture such as tailoring.
Synthetic fibers are superior to natural fibers as compared to natural fibers, but the latter is decisively inferior. However, it has been differentiated in various ways to meet the needs of the times. The technique is represented by (1) Ingenuity of raw yarn manufacturing such as polymer improvement and addition of additives, (2) Ingenuity of yarn processing using high-order false twisting technology, (3) Ingenuity of arrangement and dyeing conditions, and the above three techniques As a result of these advanced composites, it has grown to a value of “new synthetic fiber”, which has a value that surpasses the texture of natural fibers.
[0003]
However, if this new synthetic fiber is pursued with a high texture, it will require more advanced processing, and if it is finished to the same level or higher than that of natural fibers, there will be a problem of higher costs, and there are problems such as the use being limited to high-grade zones. there were. Also, in recent years, the diversification of orientation has progressed, and there has been a return to the original material (natural fiber) feeling and further functional enhancement, and there are various ways of dealing with it. In particular, attention has been focused on products that combine the natural texture of natural fibers and the high functionality of synthetic fibers, which has been the focus of recent years, and long / short fiber composite technology has become the mainstream of handling methods.
Long and short fiber composite technology includes union, untwisting, arrangement, etc. All combinations are considered according to the application, and it is positioned as the next technology of the “new synthetic fiber” generation.
[0004]
Traditionally, the texture required for clothing is based on the “soft” part such as natural, soft, and swelled, and the “strength” part such as stretch, tension, and coolness is added according to the application. There were many, but in the diversification of orientation mentioned above, cases where the requirements of “soft” and “go” are intertwined, and cases where one of the elements of “soft” and “go” is emphasized than before A part that cannot be covered only by the above-mentioned long and short fiber composite technology has started to appear. For example, based on the natural feeling of natural fibers and the refreshing feeling of synthetic fibers, when elements are added according to the purpose, or the natural feeling of regenerated fibers / natural fibers is further enhanced using regenerated fibers / natural fibers. Is the case.
[0005]
The former is solved by using a processed yarn of natural fibers with a refreshing feeling. For example, Japanese Examined Patent Publication No. 57-8218 discloses a method for producing untwisted spun yarn by false twisting a blended yarn of two or more components and adhering single fibers constituting a fiber bundle to each other. According to the present invention, the selection of the constituent fibers and the provision of the false twisting temperature can provide a twisted spun yarn having both soft feeling of regenerated fiber / natural fiber, natural feeling and appropriate bending strength of synthetic fiber, and dry feeling. Since an aromatic polyester copolymer or polycapramide is used as a component, the false twisting temperature is high, and there are problems such as yellowing of natural fibers or reduction in texture due to burning of fluff. Also, in Japanese Examined Patent Publication No. 48-41784, false twist spinning that has both soft feeling and dry feeling by using a core-sheath type composite fiber in which a polymer having a melting point difference is arranged in a binder component and melting only a low melting point component. Although a method for producing a yarn is disclosed, this invention also has the same problem as the above-mentioned Japanese Patent Publication No. 57-8218.
[0006]
Thus, the technical idea of expressing the natural feeling of natural fibers and the refreshing feeling of synthetic fibers simultaneously by false twisting the spun yarn containing the binder component has been known for a long time.
Further, a binder component having a low melting point was later developed, and JP-A-60-181331 discloses an adhesive spun yarn comprising a binder component having a melting point of 150 ° C. or lower. Since it is only bonded, it lacks softness and bulkiness. Moreover, in JP-A-8-246240 and JP-A-9-310227, improvement of soft feeling is achieved by using a composite fiber having a sheath component mainly composed of syndiotactic polypropylene as a binder. Both inventions are required to cope with environmental problems that have been increasing in recent years, that is, replacement with biodegradable materials from the viewpoint of environmental protection, but there are still problems such as failure to respond.
[0007]
On the other hand, in the latter case, when the natural feeling of the regenerated fiber / natural fiber is further emphasized by using the regenerated fiber / natural fiber, it is disclosed in, for example, Japanese Patent Publication No. 48-41784 and Japanese Patent Application Laid-Open No. 50-155. One of the countermeasures is a technical idea of improving the soft feeling and the swelling feeling by removing the binder component after the fused untwisted spun yarn is made into a woven or knitted fabric. However, these also have problems such as a high melt bonding temperature as mentioned above and a risk of damaging the main recycled fibers and natural fibers, such as using a high concentration of acid to remove the adhesive components.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such a current situation, and has a natural feeling of natural fibers, a soft feeling and a refreshing feeling of synthetic fibers, and a dry feeling, which cannot be expressed by conventional new synthetic fibers and long and short fiber composite technologies. Furthermore, there is a technical problem in providing false twisted spun yarn and woven or knitted fabric that have both biodegradability and can develop various expressions and senses by applying twisting, weaving, and arraying with other fibers. .
Furthermore, in the present invention, there is also a technical problem in providing a woven or knitted fabric that can express the characteristics of the false-twisted spun yarn without damaging the characteristics of the regenerated fiber / natural fiber.
[0009]
[Means for Solving the Invention]
  As a result of intensive studies on the melting temperature, solvent solubility and biodegradability in the binder component of false twisted spun yarn, the expression of the woven or knitted fabric using the false twist spun yarn, and the possibility of differentiation, the inventor has reached the present invention. did.
  That is, the present invention provides the following (1) to (4).
(1) a short fiber containing at least one of regenerated fiber or natural fiber;,With binder fiberMixing ratio 5: 95-30: 70Blended or multi-layereddidFalse twist the fiber bundleBecomeFalse twisted yarn in which the short fibers are fused to each otherBecauseBinder fiberThe core portion is made of a biodegradable thermoplastic polymer having a high melting point, and the sheath portion is made of a biodegradable thermoplastic polymer having a melting point lower than that of the polymer;AndAmphoteric degradable thermoplastic polymerA biodegradable false-twisted spun yarn characterized by being a biodegradable composite staple fiber made of an aliphatic polyester polymer or an aliphatic polyesteramide copolymer.
(2)corePartsBiodegradable thermoplastic polymerIs a polylactic acid polymer having a stereocomplex with a crystal melting start temperature of 180 ° C. or higherAndMake up the sheathBiodegradable thermoplastic polymerHas a melting point lower than the melting point of the polymer constituting the core,Both polymersThe melting point difference is 30 ° C. or more (1) Biodegradable false twisted spun yarn.
(3) (1) or (2A knitted or knitted fabric characterized in that the biodegradable false-twisted spun yarn described in (1) is at least a part of its configuration.
(4) (3) Woven and knitted fabricsFrom baBulky woven or knitted fabric characterized by dissolving and removing inder fibers.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The regenerated fiber or natural fiber used in the present invention is not particularly limited as long as it has biodegradability. For example, in the case of recycled fiber, viscose rayon, cupra, solvent-spun cellulose fiber and the like are mentioned, and in the case of natural fiber, cotton, wool, silk and the like are mentioned. The fiber form is a short fiber, and a plurality of these fibers can be mixed and used according to the purpose. The mixing method and the mixing ratio are not particularly limited. For example, the respective fibers are mixed in the blended cotton process, and a method in which each fiber is subjected to carding, kneading, roving, or each fiber is spun up to the card process, and then kneaded. A method of combining with a sliver in the strip process, a method of aligning and roving a plurality of slivers obtained by independently kneading each fiber, or preparing a roving of each fiber, and combining them in a fusion false twisting process described later There are methods. In addition, if you want to express a feeling of dullness, use fibers with different gloss and dyeing performance. In addition to combinations with different dyeing performance such as viscose rayon and wool, appropriate amounts of raw cotton or atypical cross-section fibers manufactured by mixing colorants at the time of fiber manufacture, and fibers with different matting agent contents By mixing, you can express the sensation of different luster and hue after dyeing.
[0011]
As described above, there are no restrictions on the use of a plurality or a single unit depending on the application and purpose. The thickness and length of the staple can be arbitrarily selected, and when the regenerated fiber or natural fiber is a long fiber, it is mechanically cut into a predetermined length. A single fiber fineness of 1 to 3 dTex and an average fiber length of 30 to 50 mm are preferable ranges. If it is thicker than 3dTex, the number of fibers constituting the spun yarn is reduced, draft spots and yarn breakage occur frequently, and it becomes difficult to produce a practical spun yarn. Also, if the average fiber length is longer than 50 mm, it becomes difficult to control the fiber during spinning draft, the occurrence of spots and neps, the fibers protruding from the surface of the spun yarn, so-called fluff, and the yarn quality of the spun yarn are reduced. As a result, the appearance of the woven or knitted fabric tends to be significantly impaired. On the other hand, if it is less than 30 mm, the uniformity is lowered, which is not preferable.
On the other hand, mechanical crimping using a stuffing box before cutting, or crimping by heat treatment can be arbitrarily performed depending on the purpose.
[0012]
As described above, the regenerated fiber or natural fiber used in the present invention can be selected depending on the purpose. However, the solvent-spun cellulose is considered comprehensively from the viewpoint of production such as profitability and operability, practicality and versatility. The fiber “Lyocell” (manufactured by Lenzing) or “Tencel” (manufactured by Tencel) or cotton alone is most desirable.
[0013]
Next, the binder fiber will be described.
The binder fiber used in the present invention is a short fiber having a biodegradable and at least thermoplastic aliphatic polyester polymer or aliphatic polyesteramide copolymer, and the aliphatic polyester polymer includes , Polyaliphatic hydroxycarboxylic acids, and polycondensates of aliphatic polyhydric alcohols and aliphatic dicarboxylic acids.
[0014]
Examples of the polyaliphatic hydroxycarboxylic acid include poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, and copolymers having these as main repeating units. Other examples include poly (ω-hydroxyalkanoates) such as poly (ε-caprolactone) and poly (β-propiolactone). Poly (β-, such as poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycapronate, poly-3-hydroxyheptanoate, poly-3-hydroxycocanoate Hydroxyalkanoates) and copolymers of these repeating units with repeating units of poly-3-hydroxyvalerate or poly-4-hydroxybutyrate.
[0015]
On the other hand, in the example of the polycondensate of aliphatic polyhydric alcohol and aliphatic dicarboxylic acid, there is a polyalkylene alkanoate composed of a condensation polymer of glycol and dicarboxylic acid, specifically, polyethylene noxalate, polyethylene succinate, Examples include polyethylene adipate, polyethylene azelate, polyethylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate, polyhexamethylene sebacate, polyneopentyl oxalate and the like. Moreover, the polyalkylene alkanoate copolymer which makes these the main repeating units is also mentioned.
[0016]
In the present invention, a polylactic acid-based polymer can be particularly preferably used among the above-mentioned polymers from the viewpoints of biodegradability, melting point and practicality. When the aliphatic polyester-based polymer is a polylactic acid-based polymer, in addition to poly-D-lactic acid, poly-L-lactic acid, a copolymer of D-lactic acid and L-lactic acid due to the presence of optical isomers, D And a copolymer of at least one of L-lactic acid and an aliphatic hydroxycarboxylic acid described later.
[0017]
Examples of the hydroxycarboxylic acid in producing a copolymer of lactic acid and aliphatic hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, and the like. Can be mentioned. Of these, use of hydroxycaproic acid or glycolic acid is desirable from the viewpoint of low cost.
[0018]
The physical properties of the aliphatic polyester polymer are not particularly limited as long as the fusion false twisting process described below is not hindered. However, considering the spinning process, the weaving process and the dyeing process, the melting point is 150 ° C. or higher, and the tensile strength is It is desirable that it is in the range of 3.5 cN / dTex or more and elongation of 20 to 60%.
[0019]
Further, the adhesive component in the present invention includes the above-described aliphatic polyester polymer, polycoupleramide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyundecanamide. Short fibers made of an aliphatic polyesteramide copolymer that is a polycondensate with an aliphatic polyamide polymer such as (nylon 11) and polylaurolactam (nylon 12) are also preferably used.
[0020]
On the other hand, the binder fiber in the present invention has a core-sheath structure composed of two kinds of polymers having different melting points of 20 to 110 ° C. selected from the above-mentioned polymers, in addition to the above-mentioned binder fiber. It is desirable that the core is a core-sheath composite short fiber having a structure made of a biodegradable thermoplastic polymer having a high melting point and a sheath made of a biodegradable thermoplastic polymer having a melting point lower than that of the polymer. . This does not melt all the binder fibers, but melts only the sheath part and maintains the fiber form of the core part, so that a moderate cooling feeling can be applied to the woven or knitted fabric using the biodegradable false twisted yarn of the present invention. , Dryness, naturalness, softness, bulkiness and flexibility. Of course, when at least one of the above-mentioned aliphatic polyester polymer or aliphatic polyester amide copolymer is included in the binder fiber, not all the binder fiber is melted but only the surface is involved in the fusing temperature. It is important to set When all the binder fibers are melted, the bending degradability of the biodegradable false-twisted spun yarn is too large, and it tends to be hard and harsh.
In this core-sheath composite short fiber, if the difference between the melting points of the two polymers is less than 20 ° C., the temperature setting in the fusion false twisting process becomes severe and unsuitable for practical use. On the other hand, if the difference in melting point exceeds 110 ° C., the difference in melting point between the two polymers is too large. Therefore, when performing composite spinning using both polymers, it becomes difficult to control the spinning temperature in the spinning nozzle pack. Accordingly, in the present invention, the melting point difference is desirably 20 ° C. or higher, more preferably 30 ° C. or higher. In addition, since practicality as clothes is lost unless certain heat resistance is provided, the melting point of the thermoplastic polymer in the sheath is preferably 150 ° C. or higher. In this composite short fiber, it is desirable that the composite ratio, that is, the weight ratio of the polymer in the sheath to the polymer in the core is 1/5 to 5/1. When the ratio of the polymer in the sheath portion to the polymer 1 in the core portion exceeds 5, the strength of the short fibers is reduced, or the melted portion is too much and the texture of the woven or knitted fabric becomes hard. On the other hand, if the ratio of the polymer in the sheath portion to the polymer component 5 in the core portion is less than 1, it is not preferable because the short fibers cannot be sufficiently fused between the fibers and the strength is reduced. . Therefore, in the present invention, the composite ratio is 1/5 to 5/1, preferably 1/2 to 2/1.
[0021]
Next, the desirable aspect in the said composite short fiber is mentioned.
The component constituting the core of the composite short fiber is composed of a polylactic acid polymer forming a stereocomplex with a crystal melting start temperature of 180 ° C. or higher, and the component constituting the sheath constitutes the core. It is desirable that the melting point is lower than the melting point of the components, and the difference in melting point is 30 ° C. or more.
[0022]
First, the polylactic acid stereocomplex will be described.
Polylactic acid stereocomplex means that poly L-lactic acid has a left-handed helical structure, whereas the optical isomer poly-D-lactic acid has a right-handed helical structure. Bonding occurs, and a crystal structure closer and stronger than the crystal structure formed when poly L-lactic acid or poly D-lactic acid is used alone is formed. This crystal structure is called a stereo complex. By forming this stereocomplex, the melting point of the polylactic acid polymer is increased and the heat shrinkage rate is also decreased.
[0023]
To obtain a polylactic acid stereocomplex, there are a method in which poly L-lactic acid and poly D-lactic acid are individually melted and then mixed in a solution, and a method in which poly L-lactic acid pellets and poly D-lactic acid pellets are mixed and then melted. Any method may be used.
The mixing ratio is preferably D / L = 40/60 to 60/40, most preferably equivalent. If this mixing ratio is deviated, formation of a stereocomplex that is a stereospecific bond is inhibited, and it becomes difficult to set the crystal melting start temperature to 180 ° C. or higher.
[0024]
The polylactic acid stereocomplex constitutes the core part of the binder fiber, and its crystal melting start temperature is preferably 180 ° C. or higher, and the melting point difference from the component constituting the sheath part is preferably 30 ° C. or higher. The crystal melting start temperature is the melting start temperature of the high-temperature crystal melt phase, which means the onset temperature of the endothermic peak of the high-temperature melt crystal phase, and the DSC curve slope of the low-temperature endothermic peak is the maximum. The temperature at the point where the tangent line drawn in step 1 intersects with the straight line extending from the low-temperature base line to the high-temperature side.
In order to make the woven or knitted fabric using the biodegradable false-twisted spun yarn of the present invention have an appropriate refreshing feeling, dry feeling, natural feeling, soft feeling, bulkiness and flexibility, only the sheath portion is melted and the core is made. It is desirable to keep the fiber form of the part, and when the melting point of the core / sheath part approaches, the false twisting temperature setting becomes so severe that it becomes unpractical. Therefore, the difference in melting point between the core and the sheath is preferably 30 ° C. or more. Further, if the crystal melting start temperature of the polylactic acid stereocomplex constituting the core part is less than 180 ° C., the component constituting the sheath part has a lower melting point, and a woven fabric using a biodegradable false twisted yarn later. There is a risk that it will not be able to withstand heat treatments that are performed daily, such as ironing the knitted fabric.
[0025]
The binder fibers described in detail above are all biodegradable short fibers, which are used alone or in combination with the above-described polymer, or mixed with other biodegradable binder fibers. And it can manufacture efficiently, for example with the following method. The polymer is melt-spun from a spinneret having a plurality of spinning holes, taken out after cooling the spun long fiber group, and converged into an unstretched tow exceeding about 100,000 dTex. Is drawn using a multi-stage heat roller drawing device to form a drawn tow, and cut into a predetermined length to form a short fiber. At this time, the fineness and the fiber length can be arbitrarily selected. However, since false twisting is later performed together with the regenerated fiber or the natural fiber, the fineness of 1 to 3 dTex and the fiber length of 30 to 50 mm are desirable in terms of uniformity.
The spinning temperature at the time of melt spinning depends on the melting point and degree of polymerization of the polymer to be used, but it is usually desirable to be 120 to 300 ° C. When the spinning temperature is less than 120 ° C, it becomes difficult to melt and extrude the polymer. On the other hand, when the spinning temperature exceeds 300 ° C, the polymer is significantly decomposed and high-strength fibers cannot be obtained. It is not preferable. The total draw ratio when the undrawn long fiber yarn is drawn depends on the strength level of the target short fiber, but is usually 2.0 to 4.0 times, whereby the tensile strength is 3.5 cN / dTex or more. , Short fibers having an elongation of 20 to 60% or more can be obtained.
[0026]
The cross-sectional shape of the short fiber is not limited at all, and may be any shape such as a round shape, an elliptical shape, a rhombus shape, a triangular shape, a T shape, and a well shape. In particular, when the shape has an acute angle portion such as a triangular shape or a well shape, the fusion form is close to point adhesion, the bending rigidity of the biodegradable false twisted yarn of the present invention is lowered, and the natural feeling of the woven or knitted fabric is reduced. , Softness, bulkiness and flexibility are improved.
Furthermore, in order to promote the effect of point bonding, it is also a preferable aspect to perform mechanical crimping using a stuffing box or crimping by heat treatment before cutting into such short fibers.
In addition, various additives such as matting agents, pigments, light stabilizers, heat stabilizers, antioxidants and the like may be added to the short fibers within a range that does not impair the effects of the present invention. it can.
[0027]
The biodegradable false-twisted spun yarn of the present invention can be obtained by blending a short fiber containing regenerated fiber or natural fiber and the binder fiber into a mixed or multi-layered form and fusing false twist.
The blended yarn and the multilayer yarn are produced by a known method. For example, the blended yarn is produced through the previously described blended cotton process and kneading process, and the mixing ratio of the recycled fiber, natural fiber and binder fiber is appropriately determined according to the purpose. In the multi-layer yarn, a plurality of slivers are supplied side by side in a draft area of the roving machine, and at least one sliver is used as a core, and the other sliver is wound to obtain a roving yarn. Each sliver is configured with an arbitrary mixing ratio of the recycled fiber, natural fiber, and binder fiber according to the purpose.
The mixing ratio of the binder fiber and the other short fibers in the biodegradable false twist spun yarn of the present invention is preferably 5:95 to 30:70. When the mixing ratio of the binder fibers is less than 5%, the effect of heat-sealing is small, and pilling due to fiber removal is likely to occur when a woven or knitted fabric is formed. When the mixing ratio of the binder fibers exceeds 30%, the heat fusion proceeds too much and the texture of the woven or knitted fabric becomes hard.
[0028]
The blended yarn or the multi-layer yarn containing the binder fiber described above is formed into a roving yarn or a fine spinning yarn and then fused and false twisted. However, in this case, it is desirable to produce a so-called “twisted spun yarn” in which the roving is drafted 15 to 25 times and false twisted continuously. When the spun yarn is fused and twisted, the woven or knitted fabric gives a sense of elasticity and dryness, but it may lack some natural feeling and bulkiness. In this, fine spinning is twisted (usually twisting in the range of a twisting factor of 3.0 to 4.2. K = T / N1/2   However, since T: number of twists / 2.54 cm, N: cotton count, K: twist coefficient), there are few gaps between the fibers (staples) from the beginning, and the gaps are further reduced by fusing.
[0029]
On the other hand, although it is a fusion false twisting method, a known method in which twisting-heating-untwisting is continuously performed is used. As an example, after supplying the roving yarn to a draft device, it is fused and fixed by a heater (non-contact) while being twisted by a false twisted twisted body, and wound around a package by a winding roller via a delivery roller.
The false twisted twisted body is not particularly limited as long as it is a false twisted twisted body capable of imparting a turning force to the blended yarn or the multi-layered yarn, such as a friction pin, a belt nip, a fluid swirling device, in addition to a spindle pin. However, the fluid swirl device is preferable in consideration of quality and efficiency reduction due to fluff. Furthermore, an additional effect can be aimed at by this fusion false twisting process. For example, in order to obtain the spot effect, it is preferable to intermittently perform twisting operations to alternately form twisted converging portions and reverse twist converging portions.
[0030]
A woven or knitted fabric is obtained using the biodegradable false twisted yarn of the present invention thus obtained. The weaving and knitting process is preferably sized using a known method. The loom is not particularly limited, but a rapier loom is preferable in consideration of versatility.
The woven or knitted fabric using only the biodegradable false-twisted spun yarn of the present invention has an appropriate refreshing feeling, dry feeling, natural feeling, soft feeling, bulkiness and flexibility, but should be combined with other yarns. Thus, a higher effect can be achieved.
The composite method may be arbitrarily performed according to the use and purpose. Specifically, there are knots, knits, arrangements, and the like. If it is desired to develop a stretch, latent crimped yarns may be used, ultrafine yarns may be used for peach feeling, and cationic dyed yarns may be used for chambray tones. The knitting and knitting structure is not particularly limited.
[0031]
As described above, the woven and knitted raw machine is subjected to a known dyeing process. For example, after scouring, the binder fiber is dyed with a disperse dye, and after reductive cleaning, the regenerated fiber / natural fiber is dyed with a reactive dye in the presence of alkali.
[0032]
On the other hand, in order to further express the characteristics of the regenerated fiber / natural fiber without impairing the characteristics, the adhesive component is removed with an alkaline solution or the like during the dyeing process. As a result, a bulky woven or knitted fabric with further enhanced natural feeling, soft feeling and bulging feeling can be obtained.
[0033]
[Action]
The biodegradable false-twisted spun yarn of the present invention is obtained by falsely twisting a fiber bundle obtained by blending a short fiber containing at least one of regenerated fiber or natural fiber and a binder fiber into a multi-layered form. Although the fibers are fused together, the binder fiber is a biodegradable short fiber containing at least an aliphatic polyester polymer or an aliphatic polyester amide copolymer, so that it has biodegradability. Has an effect. In addition, the binder fiber is not melted completely, but by maintaining the fiber form, the biodegradable false twisted spun yarn has an effect of imparting a natural feeling, soft feeling, bulkiness and flexibility. In particular, the binder fiber is a core-sheath composite short fiber, the core part is made of a biodegradable thermoplastic polymer having a high melting point, and the sheath part is made of a biodegradable thermoplastic polymer having a lower melting point than the polymer. As a mode in which a degradable composite short fiber is desirable and further reflects the above-described action, in the core-sheath composite short fiber, a component constituting the core part forms a stereocomplex with a crystal melting start temperature of 180 ° C. or higher. A biodegradable false-twisted spun yarn comprising a polylactic acid-based polymer and having a melting point lower than the melting point of the component constituting the core, and the melting point difference being 30 ° C. or higher. It is done.
[0034]
In addition, the woven or knitted fabric using only the biodegradable false twisted yarn of the present invention has an effect of expressing an appropriate refreshing feeling, dry feeling, natural feeling, soft feeling, bulkiness and flexibility, but is combined with other yarns. By doing so, a higher effect can be produced. If the binder fiber contained in the biodegradable false-twisted spun yarn is removed, the natural feeling and soft feeling are increased as compared with the original material and the bulkiness is increased.
[0035]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.
Melting point (° C.): Measured with a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd. under a temperature rising rate of 20 ° C./min. .
Crystal melting start temperature (° C.): Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., holding at a temperature rising rate of 10 ° C./min, holding at 250 ° C. for 5 minutes, and at a cooling rate of 10 ° C./min to 20 ° C. The temperature at which the endothermic peak starts on the DSC curve when the temperature was lowered and the temperature was raised again to 280 ° C. at a rate of temperature rise of 10 ° C./min was defined as the crystal melting start temperature.
[0037]
(Example1)
  Melting point 140 ° C., glass transition temperature 59 ° C., optical purity 95%, melt flow rate 18 g / 10 min, crystallization temperature 132 ° C. poly L-lactic acid as sheath component, melting point 172 ° C., glass transition temperature 60 ° C., optical The master chip composition in which 10% by weight of talc having an average particle diameter of 1 μm is added to poly L-lactic acid having a purity of 99%, a melt flow rate value of 25 g / 10 min, and a crystallization temperature of 136 ° C. is a uniaxial extension Using a compound spinning apparatus equipped with two ruder type melt extruders, spinning temperature is 210 ° C., single hole discharge rate is 1.0 g / min, core / Melt spinning was performed at a sheath composite ratio (weight ratio) = 1/1, and the undrawn yarn was obtained by winding at a spinning speed of 1100 m / min while cooling with an air cooling device and applying an oil agent. The obtained undrawn yarn was rewound to form a 220,000 dTex undrawn yarn tow. Next, the undrawn yarn tow was drawn using a generally used multi-stage heat drawing apparatus capable of two-stage drawing. In stretching, the first roller temperature is 65 ° C., the second roller temperature is 95 ° C., the bath temperature is 80 ° C., the total draw ratio is 2.3, the fineness is 2.0 dTex, and the average fiber length is 37 mm. Fiber was obtained.
  On the other hand, solvent-spun cellulose fiber “Lyocell” (manufactured by Lenzing) is used as a regenerated fiber, and a short fiber having a fineness of 1.5 dTex and an average fiber length of 40 mm is prepared, and the regenerated fiber component / polylactic acid component mixing ratio (weight ratio) is 92. / 8 blended using a blended cotton machine, and the resulting blended cotton was opened with a roller card machine to form a web, and a roving was obtained through kneading and roving.
  The resulting roving was given a draft of 23 times, an air jet swirling nozzle was used for the false twisted body, nozzle air pressure 4.4 kg, yarn speed 80 m / min, heater temperature 147 ° C. (non-contact) The fusion false twist was taken up into a package. The obtained biodegradable false-twisted spun yarn of the present invention was 60th, and when the cross section and the side surface were observed with an optical microscope, only the sheath component of the binder fiber was melted and the fiber form of the core portion was maintained.
[0038]
(Example2)
  A polylactic acid stereocomplex having a crystal melting start temperature of 206 ° C. and a melting point of 218 ° C. prepared by mixing poly-L- and poly-D-lactic acid with an optical purity of 99% in an equivalent amount in the core, and in the sheathMelting point: 21 ° C., melting point 170 ° C., glass transition point 66 ° C., heat of fusion 42 J / g, optical purity 99% (determined mainly by L-form: L, D-form charge ratio during lactic acid monomer polymerization) / 10 minutesUsing polylactic acid, melt spinning with core / sheath composite ratio (melting volume ratio) = 1/1, spinning temperature 240 ° C., spinning speed 900 m / min. An undrawn yarn was obtained. Next, the undrawn yarn was drawn at a temperature of 60 ° C. and a magnification of 4.15 and then cut to obtain a polylactic acid core-sheath binder fiber having a fineness of 1.8 dTex and an average fiber length of 35 mm.
  AndCotton blended using a blended cotton machine, the resulting blended cotton was opened using a roller card machine to form a web, and a polylactic acid sliver was obtained through a drawing process.
On the other hand, a cotton comb sliver is prepared through a known spinning process, and the sliver (polylactic acid binder fiber) forming the core is supplied to the outside as viewed from the fryer head in the roving machine, and the wound sliver (cotton combed yarn) is flyer. A double layer roving was spun from the inside as viewed from the head. The mass ratio of cotton comb sliver to polylactic acid sliver is 85:15.
Next, a 20 times draft was given to the double layer coarse yarn, an air jet swirl nozzle was used for the false twisted twisted body, nozzle air pressure 4.0 Kg, yarn speed 80 m / min, heater temperature 160 ° C. (non-contact) Fused false twisted under the conditions of
  like thisThus, a 60th biodegradable false twist spun yarn was obtained.
[0039]
(Example3)
  Example2No. 60 No. biodegradable false twisted spun yarn was used as a background, and a mock-up woven fabric was prepared with a rapier loom. After a reduction cleaning at 70 ° C. for 20 minutes, the cotton component was dyed with a reactive dye at 55 ° C. for 60 minutes to obtain a woven or knitted fabric.
  The obtained woven or knitted fabric was excellent in natural feeling and soft feeling in addition to refreshing feeling and dry feeling, and was synergistic with breathability of imitation weaving, and was optimal for summer clothes. In addition, it was a woven or knitted fabric that was excellent in preventing pilling and that did not tingle and had a good finish.
[0040]
(Example4)
  Example1No. 60 biodegradable false twisted spun yarn was used as warp and side-by-side latent crimped polylactic acid filament 110dTex24f was used as weft to produce a French twill fabric.3A woven or knitted fabric was obtained by performing the same dyeing process.
  The obtained knitted and knitted fabrics were knitted and knitted fabrics that had not only moderate coolness, dryness, naturalness and softness, but also stretch, resilience and tension.
[0042]
【The invention's effect】
The biodegradable false twisted spun yarn of the present invention is obtained by falsely twisting a fiber bundle obtained by blending a short fiber containing at least one of regenerated fiber or natural fiber and a binder fiber or in the form of a multilayer. Although the binder fibers are biodegradable short fibers, the binder fibers are biodegradable and do not melt all the binder fibers, but maintain the fiber form. The biodegradable false twisted spun yarn has the effect of giving a natural feeling, soft feeling, bulkiness and flexibility.
In particular, the binder fiber is a core-sheath composite short fiber, the core part is made of a biodegradable thermoplastic polymer having a high melting point, and the sheath part is made of a biodegradable thermoplastic polymer having a lower melting point than the polymer. As a mode in which a degradable composite short fiber is desirable and further reflects the above effect, in the core-sheath composite short fiber, a component constituting the core part forms a stereocomplex with a crystal melting start temperature of 180 ° C. or higher. A biodegradable false-twisted spun yarn comprising a polylactic acid-based polymer and having a melting point lower than the melting point of the component constituting the core, and the melting point difference being 30 ° C. or higher. It is done.
[0043]
Furthermore, the woven or knitted fabric using only the biodegradable false twisted yarn of the present invention has an effect of expressing an appropriate refreshing feeling, dry feeling, natural feeling, soft feeling, bulkiness and flexibility, but it is combined with other yarns. By doing so, there is a higher effect. Moreover, if the binder fiber contained in the biodegradable false twisted spun yarn is removed, an effect of obtaining a bulky woven or knitted fabric having a natural feeling and a soft feeling increased from those of the original material can be obtained.
As described above, the biodegradable false twisted spun yarn of the present invention can be listed in various modes according to the use and purpose, and is a novel garment material that is extremely versatile regardless of whether it is thick or thin. And since recycled fibers or natural fibers are fused to each other, it has excellent pilling prevention and has an appropriate bending rigidity, so that it retains its natural feel, does not get ridiculous, and does not lose its shape after washing. Providing clothing materials with good shine.

Claims (4)

再生繊維又は天然繊維の少なくとも一方を含む短繊維とバインダー繊維とを混合比率95:5〜70:30で混紡又は複重層した繊維束を仮撚してなる、該短繊維が相互に融着された仮撚紡績糸であって、バインダー繊維が、芯部が高融点の生分解性熱可塑性重合体からなり、鞘部が該重合体より低融点の生分解性熱可塑性重合体からなり、かつ両生分解性熱可塑性重合体が脂肪族ポリエステル系重合体又は脂肪族ポリエステルアミド系共重合体からなる生分解性複合短繊維であることを特徴とする生分解性仮撚紡績糸。And short fibers containing at least either reproduces or natural fibers, a binder fiber mixture ratio 95: 5 to 70: The fiber bundle blended or multi-layer 30 and the false twist formed by, the short fibers are fused to each other The false twisted spun yarn , the binder fiber is made of a biodegradable thermoplastic polymer having a high melting point in the core, and a biodegradable thermoplastic polymer having a melting point lower than that of the polymer, A biodegradable false-twisted spun yarn, wherein the biodegradable thermoplastic polymer is a biodegradable composite short fiber made of an aliphatic polyester-based polymer or an aliphatic polyesteramide-based copolymer. 部を構成する生分解性熱可塑性重合体が、結晶融解開始温度が180℃以上でステレオコンプレックスを形成しているポリ乳酸系重合体であり、鞘部を構成する生分解性熱可塑性重合体が、芯部を構成する重合体の融点よりも低い融点を有し、両重合体の融点差が30℃以上であることを特徴とする請求項記載の生分解性仮撚紡績糸。 Biodegradable thermoplastic polymer constituting the core portion, crystal melting start temperature is polylactic acid polymer that forms the stereocomplex at 180 ° C. or higher, biodegradable thermoplastic polymer constituting the sheath part 2. The biodegradable false-twisted spun yarn according to claim 1 , wherein the biodegradable false-twisted spun yarn has a melting point lower than the melting point of the polymer constituting the core, and the difference between the melting points of the two polymers is 30 ° C. or more. 請求項1又は2に記載の生分解性仮撚紡績糸を、少なくともその構成の一部とすることを特徴とする織編物。A woven or knitted fabric comprising the biodegradable false-twisted spun yarn according to claim 1 or 2 as at least a part of its configuration. 請求項記載の織編物からバインダー繊維を溶解除去したことを特徴とする嵩高性織編物。Bulkiness woven or knitted fabric, characterized in that the woven or knitted fabric Karaba Indah fiber according to claim 3, wherein the dissolved and removed.
JP2002253856A 2002-08-30 2002-08-30 Biodegradable false twisted spun yarn and woven / knitted fabric Expired - Fee Related JP4064188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253856A JP4064188B2 (en) 2002-08-30 2002-08-30 Biodegradable false twisted spun yarn and woven / knitted fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253856A JP4064188B2 (en) 2002-08-30 2002-08-30 Biodegradable false twisted spun yarn and woven / knitted fabric

Publications (2)

Publication Number Publication Date
JP2004091962A JP2004091962A (en) 2004-03-25
JP4064188B2 true JP4064188B2 (en) 2008-03-19

Family

ID=32059746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253856A Expired - Fee Related JP4064188B2 (en) 2002-08-30 2002-08-30 Biodegradable false twisted spun yarn and woven / knitted fabric

Country Status (1)

Country Link
JP (1) JP4064188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835042A (en) * 2014-03-11 2014-06-04 南通斯得福纺织装饰有限公司 Process for manufacturing multi-component fiber mixed fabrics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030380B2 (en) * 2004-12-27 2012-09-19 ユニチカ株式会社 Rod and manufacturing method thereof
JP4584762B2 (en) * 2005-04-20 2010-11-24 Kbセーレン株式会社 Lining fabric
JP6262541B2 (en) * 2014-01-17 2018-01-17 ユニチカ株式会社 Woven knitting
WO2024058076A1 (en) * 2022-09-14 2024-03-21 株式会社カネカ Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835042A (en) * 2014-03-11 2014-06-04 南通斯得福纺织装饰有限公司 Process for manufacturing multi-component fiber mixed fabrics
CN103835042B (en) * 2014-03-11 2017-01-04 南通斯得福纺织装饰有限公司 A kind of production technology of multicomponent fibre mixture fabric

Also Published As

Publication number Publication date
JP2004091962A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
TWI725267B (en) Eccentric core sheath composite fiber and mixed fiber yarn
JP3859672B2 (en) Composite fiber and method for producing the same
JP2005507033A (en) Heterogeneous composite yarn, its cloth and manufacturing method
JP2014167185A (en) Spun yarn containing polymethylpentene hollow fiber, and fiber structure comprising the same
TWI320808B (en) Sewing thread and sewn fabric products
Mukhopadhyay et al. Microfibres
JP2007009395A (en) Ultrafine false-twist polytrimethylene terephthalate yarn and method for producing the same
JP4064188B2 (en) Biodegradable false twisted spun yarn and woven / knitted fabric
JP2000303283A (en) Composite yarn of filament and staple
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP7476619B2 (en) Polyester composite fiber
JP6308127B2 (en) Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
JP4886368B2 (en) Long / short composite spun yarn and fabric using the same
JP4329553B2 (en) Polyamide composite false twisted yarn and method for producing the same
JP5116995B2 (en) Long / short composite spun yarn and fabric comprising the same
JP2009084748A (en) Combined filament yarn using polymer alloy fiber and woven fabric formed of the same
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP4370629B2 (en) Polyester blend yarn and knitted fabric
JP2001040537A (en) Polyester fiber yarn and fabric
JP2003055848A (en) Composite yarn composed of filament and staple fiber and having excellent antipilling property and stretchability
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP4699072B2 (en) Stretch polyester composite fiber
JP4687091B2 (en) Soft stretch yarn and fabric
JP3484514B2 (en) Fabric with anti-pill properties
JP4380519B2 (en) Method for producing soft stretch yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150111

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees