JP4061454B2 - Polymer compound, resist material, and pattern forming method - Google Patents

Polymer compound, resist material, and pattern forming method Download PDF

Info

Publication number
JP4061454B2
JP4061454B2 JP2001070217A JP2001070217A JP4061454B2 JP 4061454 B2 JP4061454 B2 JP 4061454B2 JP 2001070217 A JP2001070217 A JP 2001070217A JP 2001070217 A JP2001070217 A JP 2001070217A JP 4061454 B2 JP4061454 B2 JP 4061454B2
Authority
JP
Japan
Prior art keywords
group
bis
acid
tert
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001070217A
Other languages
Japanese (ja)
Other versions
JP2002268227A (en
Inventor
畠山  潤
俊明 高橋
淳 渡辺
俊信 石原
勝 笹子
政孝 遠藤
眞治 岸村
充孝 大谷
覚 宮澤
憲太郎 堤
一彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Central Glass Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Central Glass Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Central Glass Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001070217A priority Critical patent/JP4061454B2/en
Publication of JP2002268227A publication Critical patent/JP2002268227A/en
Application granted granted Critical
Publication of JP4061454B2 publication Critical patent/JP4061454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
本発明は、微細加工技術に適したレジスト材料、特に化学増幅レジスト材料のベースポリマーとして有用な高分子化合物並びにこれを含むレジスト材料及びこれを用いたパターン形成方法に関する。
【0001】
【従来の技術及び発明が解決しようとする課題】
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。微細化が急速に進歩した背景には、投影レンズの高NA化、レジストの性能向上、短波長化が挙げられる。
【0002】
特にi線(365nm)からKrF(248nm)への短波長化は大きな変革をもたらし、0.18μmルールのデバイスの量産も可能となってきている。レジストの高解像度化、高感度化に対して、酸を触媒とした化学増幅ポジ型レジスト材料(特公平2−27660号公報、特開昭63−27829号公報等に記載)は、優れた特徴を有するもので、遠紫外線リソグラフィーに特に主流なレジスト材料となった。
【0003】
KrFエキシマレーザー用レジスト材料は、一般的に0.3ミクロンプロセスに使われ始め、0.25ミクロンルールを経て、現在0.18ミクロンルールの量産化への適用、更に0.15ミクロンルールの試作も始まり0.13ミクロンルールの検討が行われており、微細化の勢いはますます加速されている。KrFからArF(193nm)への波長の短波長化は、デザインルールの微細化を0.13μm以下にすることが期待されるが、従来用いられてきたノボラックやポリビニルフェノール系の樹脂が193nm付近に非常に強い吸収を持つため、レジスト用のベース樹脂として用いることができない。透明性と、必要なドライエッチング耐性の確保のため、アクリルやシクロオレフィン系の脂環族系の樹脂が検討された(特開平9−73173号公報、特開平10−10739号公報、特開平9−230595号公報、WO97/33198)。更に0.10μm以下の微細化が期待できるF(157nm)に関しては、透明性の確保がますます困難になり、アクリルでは全く光を透過せず、シクロオレフィン系においてもカルボニル結合を持つものは強い吸収を持つことがわかった。ベンゼン環を持つポリマーは、波長160nm付近の透過率が若干向上するが、実用的な値にはほど遠く、単層レジストにおいて、ベンゼン環に代表される炭素炭素2重結合とカルボニル基に代表される炭素酸素2重結合を低減することが透過率確保のための必要条件であることが判明した(International Work Shop 157nm Lithography MIT−LL Boston, MA May 5, 1999)。透過率を向上するためにはフッ素の導入が効果的であることが示され(J. Vac. Sci. Technol. B 17(6), Nov/Dec 1999)、レジスト用に多くのフッ素含有ポリマーが提案された(J. Photopolymer Sci. and Technol. Vol. 13 No.4(2000) p657−664 and Vol. 13 No.4(2000) p451−458)が、KrF露光におけるポリヒドロキシスチレン及びその誘導体、ArF露光におけるポリ(メタ)アクリル誘導体あるいはポリシクロオレフィン誘導体の透過率には及ばない。
【0004】
一方、従来段差基板上に高アスペクト比のパターンを形成するには2層レジスト法が優れていることが知られており、更に、2層レジスト膜を一般的なアルカリ現像液で現像するためには、ヒドロキシ基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
【0005】
シリコーン系化学増幅ポジ型レジスト材料として、安定なアルカリ可溶性シリコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrF用シリコーン系化学増幅ポジ型レジスト材料が提案された(特開平7−118651号公報、SPIE vol.1925 (1993) p377等)。ArF用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジストが提案されている(特開平10−324748号公報、特開平11−302382号公報、SPIE vol.3333−07 (1998) p62)。また、珪素含有アクリルモノマーを用いたシリコーン含有ポリマーも提案されている(特開平9−110938号公報、J. Photopolymer Sci. and Technol. Vol. 9 No.3(1996) p435−446)。
【0006】
アクリルペンダント型の珪素含有ポリマーの欠点として、酸素プラズマにおけるドライエッチング耐性がシルセスキオキサン系ポリマーに比べて弱いということが挙げられる。これは珪素含有率が低いことと、ポリマー主骨格の違いが理由として上げられる。また、シロキサンペンダント型は、現像液をはじき易く、現像液の濡れ性が悪いという欠点もある。そこで、トリシランあるいはテトラシランペンダント型で、珪素含有率を高め、更に珪素含有基に酸脱離性を持たせた繰り返し単位を含むポリマーの提案がなされている(SPIE vol.3678p214、p241、p562)。しかしながら、200nm以下の波長においては、ジシラン以上のシラン化合物は、強い吸収があるため、導入率を多くすると透過率が低下するといった欠点がある。また、酸不安定基珪素を含有させるといった試みも上記以外にもなされているが(SPIE vol.3678 p420)、酸脱離性能が低いため、環境安定性が低く、T−トッププロファイルになり易いなどの欠点があった。
【0007】
それに対して、本出願人は環状炭化水素基に珪素を導入した酸不安定基を提案した(特願平11−342380号)。このものは、酸脱離性に優れ、T−トッププロファイルの発生などを防止できるという長所をもっている。更に一つの環状炭化水素基内に珪素を2個以上導入してドライエッチング耐性を高めることが可能である。また、珪素原子間に炭素原子を存在させ、ジシラン結合を発生させずに、ArFでの透過率を低下させる心配がないという特徴も併せ持つ。
【0008】
しかしながら、シリコーン含有ポリマーは薄膜化できる分だけ単層レジストに比べて透過率の面では確かに有利であるが、それでも波長157nm露光における解像力を上げるためには根本的に透過率を上げる必要があった。
【0009】
本発明は上記要望に応えるためになされたもので、300nm以下、特にF(157nm)、Kr(146nm)、KrAr(134nm)、Ar(126nm)などの真空紫外光における透過率とドライエッチング耐性に優れたレジスト材料、特に化学増幅レジスト材料のベースポリマーとして有用な新規高分子化合物並びにこれを含むレジスト材料及びこのレジスト材料を用いたパターン形成方法を提供することを目的とする。
【0010】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、部分的に酸不安定基で置換されたフッ素化されたアルコールを含むポリシルセスキオキサンをベース樹脂として用いることによって、透明性とドライエッチング耐性の両方を確保したレジスト材料が得られることを知見し、本発明をなすに至ったものである。
【0011】
即ち、本発明は、下記高分子化合物、化学増幅レジスト材料及びパターン形成方法を提供する。
請求項1: 下記一般式(1)で示される繰り返し単位を有する重量平均分子量1,000〜100,000の高分子化合物。
【化2】

Figure 0004061454
(式中、
【化44】
Figure 0004061454
で表される単位は、下記式から選ばれる。
【化45】
Figure 0004061454
2は酸不安定基である。a、bは正数である。また、
【化46】
Figure 0004061454
は、下記式から選ばれる。
【化47】
Figure 0004061454
【化48】
Figure 0004061454
【化49】
Figure 0004061454
【化50】
Figure 0004061454
請求項
請求項記載の高分子化合物を含むことを特徴とするレジスト材料。
請求項
(A)請求項記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤
を含有することを特徴とする化学増幅レジスト材料。
請求項
更に、(D)塩基性化合物を含有する請求項記載のレジスト材料。
請求項
更に、(E)溶解阻止剤を含有する請求項又は記載のレジスト材料。
請求項
(1)請求項乃至のいずれか1項記載の化学増幅レジスト材料を基板上に塗布する工程と、
(2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
(3)必要に応じて加熱処理した後、現像液を用いて現像する工程と
を含むことを特徴とするパターン形成方法。
請求項
請求項において、パターン形成後、酸素プラズマエッチングを含むエッチングにより下地の加工を行うレジストパターン形成方法。
請求項
請求項において、パターン形成後、塩素あるいは臭素を含むハロゲンガスによるエッチングにより下地の加工を行うレジストパターン形成方法。
【0012】
以下、本発明につき更に詳しく説明する。
本発明の高分子化合物は、下記一般式(1)で示される繰り返し単位を有するものである。
【0013】
【化3】
Figure 0004061454
(式中、R1は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基又は下記式
【化53】
Figure 0004061454
から選ばれる2価の基である。R2は酸不安定基であり、0≦m≦3、0≦n≦3、0≦o≦3、0≦p≦3、m+n=3、o+p=3、0<n+p≦6の範囲である。R3上記した式から選ばれるフッ素原子を含まない親水性基である。a、bは正数を示す。)
【0014】
ここで、一般式(1)の繰り返し単位中、R1 しては、メチレン基、エチレン基、プロピレン基、ブチレン基、シクロペンチレン基、シクロへキシレン基などの直鎖状、分岐状もしくは環状のアルキレン基及び上記した2価の基が挙げられる。
【0015】
上記式(1)において、単位(a)の具体例としては、以下のものを挙げることができる。
【0016】
【化4】
Figure 0004061454
【0017】
また、Rの酸不安定基としては種々選定されるが、特に下記式(A−1)、(A−2)で示される基、下記式(A−3)で示される炭素数4〜40の三級アルキル基、炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基等であることが好ましい。
【0018】
【化5】
Figure 0004061454
【0019】
式(A−1)において、R30は炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、三級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。a0〜6の整数である。
【0020】
式(A−2)において、R31、R32は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R33は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状もしくは環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
【0021】
【化6】
Figure 0004061454
【0022】
31とR32、R31とR33、R32とR33とは環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示す。
【0023】
上記式(A−1)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
【0024】
更に、下記式(A−1)−1〜(A−1)−9で示される置換基を挙げることもできる。
【0025】
【化7】
Figure 0004061454
【0026】
ここで、R37は互いに同一又は異種の炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基、R38は水素原子、又は炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基である。
【0027】
また、R39は互いに同一又は異種の炭素数2〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基である。
【0028】
上記式(A−2)で示される酸不安定基のうち、直鎖状又は分岐状のものとしては、下記式(A−2)−1〜(A−2)−23のものを例示することができる。
【0029】
【化8】
Figure 0004061454
【0030】
【化9】
Figure 0004061454
【0031】
上記式(A−2)で示される酸不安定基のうち、環状のものとしては、テトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が挙げられる。
【0032】
また、一般式(A−2a)あるいは(A−2b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。
【0033】
【化10】
Figure 0004061454
【0034】
式中、R40、R41は水素原子又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R40とR41は結合して環を形成してもよく、環を形成する場合にはR40、R41は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R42は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b、dは0又は1〜10、好ましくは0又は1〜5の整数、cは1〜7の整数である。Aは、(c+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。
【0035】
この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、cは好ましくは1〜3の整数である。
【0036】
一般式(A−2a)、(A−2b)で示される架橋型アセタール基は、具体的には下記式(A−2)−24〜(A−2)−31のものが挙げられる。
【0037】
【化11】
Figure 0004061454
【0038】
次に、式(A−3)においてR34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。
【0039】
式(A−3)に示される三級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。
【0040】
また、三級アルキル基としては、下記に示す式(A−3)−1〜(A−3)−18を具体的に挙げることもできる。
【0041】
【化12】
Figure 0004061454
【0042】
式(A−3)−1〜(A−3)−18中、R43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基等のアリール基を示す。R44、R46は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R45は炭素数6〜20のフェニル基等のアリール基を示す。
【0043】
更に下記式(A−3)−19、(A−3)−20に示すように、2価以上のアルキレン基、アリーレン基であるR47を含んで、ポリマーの分子内あるいは分子間が架橋されていてもよい。式(A−3)−19、(A−3)−20中、R43は前述と同様、R47は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はフェニレン基等のアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。b1は1〜3の整数である。
【0044】
【化13】
Figure 0004061454
【0045】
更に、式(A−3)中のR34、R35、R36は酸素、窒素、硫黄などのヘテロ原子を有していてもよく、具体的には下記式(A)−1〜(A)−7に示すものを挙げることができる。
【0046】
式(A−1)、(A−2)、(A−3)中のR30、R33、R36は、フェニル基、p−メチルフェニル基、p−エチルフェニル基、p−メトキシフェニル基等のアルコキシ置換フェニル基等の非置換又は置換アリール基、ベンジル基、フェネチル基等のアラルキル基等や、これらの基に酸素原子を有する、あるいは炭素原子に結合する水素原子が水酸基に置換されたり、2個の水素原子が酸素原子で置換されてカルボニル基を形成する下記式(A)−1〜(A)−7で示されるようなアルキル基、あるいは式(A)−8、(A)−9で示されるオキソアルキル基を挙げることができる。
【0047】
【化14】
Figure 0004061454
【0048】
また、酸不安定基として用いられる各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基等が挙げられる。
【0049】
炭素数4〜20のオキソアルキル基としては、3−オキソシクロヘキシル基、下記式で示される基が挙げられる。
【0050】
【化15】
Figure 0004061454
【0051】
本発明の高分子化合物は、上記単位(a)に加えて、下記単位(a’)を含むことができる。
【0052】
【化16】
Figure 0004061454
(式中、R、m、n、o、pは上記の通り。)
【0053】
この場合、単位(a)と(a’)との合計に対し、上記酸不安定基による置換率は、アルカリ溶解性、現像液の濡れ性の観点から部分置換が好ましく、10〜90モル%が好ましく用いられ、更に好ましくは20〜70モル%である。
【0054】
上記単位(a)、(a’)を製造する場合、一例として、一般的には下記合成方法によってトリクロロシランあるいはトリアルコキシシランモノマーを合成し、加水分解反応によって高分子化する方法を挙げることができる。重合時フッ素化アルコールはアセチル基、あるいはアルコキシ基で保護しておき重合後に脱離する。その後酸不安定基でアルコールを保護する方法が挙げられるが、高分子化する前のモノマーの段階で酸不安定基を導入しておき、その後加水分解によって重合を行ってもよい。
【0055】
【化17】
Figure 0004061454
【0056】
一方、一般式(1)中、(b)単位の親水性基を含んだ繰り返し単位は、アルコール基、カルボキシル基、エーテル基、エステル基、アセチル基、ホルミル基、カーボネート基、ラクトン環、マレイミド基、スルホンアミド基、カルボン酸無水物などの酸素原子、硫黄原子、窒素原子などを含むが、フッ素原子を含まない基で構成されていることを特徴とし、具体的には下記式(2)−1〜(2)−84に示すものを挙げることができるが、先に示したものが使用される
【0057】
【化18】
Figure 0004061454
【0058】
【化19】
Figure 0004061454
【0059】
【化20】
Figure 0004061454
【0060】
【化21】
Figure 0004061454
【0061】
【化22】
Figure 0004061454
【0062】
ここで、単位a、bの割合は、
0.1≦a/(a+b)≦0.9、特に0.2≦a/(a+b)≦0.8
0.1≦b/(a+b)≦0.9、特に0.2≦b/(a+b)≦0.8
とすることが好ましい。この場合、a+bの割合は、0.3以上であることが好ましい。
【0063】
本発明の高分子化合物には、更に、透明性向上、あるいは分子量の最適化のために下記式(4)−1〜(4)−4に示されるアルキル基あるいはフッ素化アルキルがペンダントされた繰り返し単位を含ませることもできる。
【0064】
【化23】
Figure 0004061454
(式中、R 4 鎖状、分岐状もしくは環状の非置換又は置換の炭素数1〜10のアルキル基であり、置換のアルキル基としては、フッ素化されたアルキル基が挙げられる。c〜fは、0≦c<1、0≦d<1、0≦e<1、0≦f<1の範囲である。)
【0065】
なお、本発明の高分子化合物の重量平均分子量は、1,000〜100,000、好ましくは1,500〜50,000である。
【0066】
本発明の高分子化合物は、レジスト材料、特に化学増幅レジスト材料、とりわけ化学増幅ポジ型レジスト材料のベース樹脂として好適に用いられる。この場合、本発明の化学増幅ポジ型レジスト材料は、
(A)上記高分子化合物からなるベース樹脂、
(B)有機溶剤
(C)酸発生剤
を含み、更に好ましくは
(D)塩基性化合物
(E)溶解阻止剤
を含むものとすることができる。
【0067】
ここで、本発明のレジスト材料で使用される酸発生剤としては、下記一般式(6)のオニウム塩、式(7)のジアゾメタン誘導体、式(8)のグリオキシム誘導体、β−ケトスルホン誘導体、ジスルホン誘導体、ニトロベンジルスルホネート誘導体、スルホン酸エステル誘導体、イミド−イルスルホネート誘導体等が挙げられる。
【0068】
(R51 (6)
(但し、R51は同一でも異なっていてもよい炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、炭素数6〜12のアリール基又は炭素数7〜12のアラルキル基を表し、Mはヨードニウム、スルホニウムを表し、Kは非求核性対向イオンを表し、cは2又は3である。)
【0069】
51のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、2−オキソシクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。Kの非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、2,3,4,5,6−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネートが挙げられる。
【0070】
【化24】
Figure 0004061454
(但し、R52、R53は同一でも異なっていてもよい炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜12のアリール基又はハロゲン化アリール基又は炭素数7〜12のアラルキル基を表す。)
【0071】
52、R53のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、アミル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、2,2,2−トリフルオロエチル基、2,2,2−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、2,3,4,5,6−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
【0072】
【化25】
Figure 0004061454
(但し、R54、R55、R56は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜12のアリール基又はハロゲン化アリール基又は炭素数7〜12のアラルキル基を表す。また、R55、R56は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R55、R56はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を表す。)
【0073】
54、R55、R56のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R52、R53で説明したものと同様の基が挙げられる。なお、R55、R56のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
【0074】
具体的には、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−o−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−o−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−o−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−o−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−o−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体、ジフェニルジスルホン、ジシクロヘキシルジスルホン等のジスルホン誘導体、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、フタルイミド−イル−トリフレート、フタルイミド−イル−トシレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−トリフレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−トシレート、5−ノルボルネン−2,3−ジカルボキシイミド−イル−n−ブチルスルホネート等のイミド−イル−スルホネート誘導体等が挙げられるが、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−o−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ナフトキノンジアジドスルホン酸エステル誘導体が好ましく用いられる。なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるが、両者を組み合わせることにより、プロファイルの微調整を行うことが可能である。
【0075】
酸発生剤の配合量は、全ベース樹脂100部(重量部、以下同じ)に対して0.2〜50部、特に0.5〜40部とすることが好ましく、0.2部に満たないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
【0076】
本発明のレジスト材料で使用される有機溶剤としては、酸発生剤、ベース樹脂、溶解阻止剤等が溶解可能な有機溶媒であればいずれでもよい。このような有機溶剤としては、例えばシクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコール−モノ−tert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種を単独で又は2種以上を混合して使用することができるが、これらに限定されるものではない。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチルの他、安全溶剤であるプロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
【0077】
本発明のレジスト材料で使用される溶解阻止剤としては、酸の作用によりアルカリ現像液への溶解性が変化する分子量3,000以下の化合物、特に2,500以下の低分子量フェノールあるいはカルボン酸誘導体の一部あるいは全部を酸に不安定な置換基で置換した化合物を挙げることができる。酸不安定基は(A−1)〜(A−)と同様なものを用いることができる。
【0078】
分子量2,500以下のフェノールあるいはカルボン酸誘導体としては、4,4’−(1−メチルエチリデン)ビスフェノール、[1,1’−ビフェニル−4,4’−ジオール]2,2’−メチレンビス[4−メチルフェノール]、4,4−ビス(4’−ヒドロキシフェニル)吉草酸、トリス(4−ヒドロキシフェニル)メタン、1,1,1−トリス(4’−ヒドロキシフェニル)エタン、1,1,2−トリス(4’−ヒドロキシフェニル)エタン、フェノールフタレイン、チモールフタレイン、3,3’−ジフルオロ[(1,1’ビフェニル)4,4’−ジオール]、3,3’,5,5’−テトラフルオロ[(1,1’−ビフェニル)−4,4’−ジオール]、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール、4,4’−メチレンビス[2−フルオロフェノール]、2,2’−メチレンビス[4−フルオロフェノール]、4,4’−イソプロピリデンビス[2−フルオロフェノール]、シクロヘキシリデンビス[2−フルオロフェノール]、4,4’−[(4−フルオロフェニル)メチレン]ビス[2−フルオロフェノール]、4,4’−メチレンビス[2,6−ジフルオロフェノール]、4,4’−(4−フルオロフェニル)メチレンビス[2,6−ジフルオロフェノール]、2,6−ビス[(2−ヒドロキシ−5−フルオロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[(4−ヒドロキシ−3−フルオロフェニル)メチル]−4−フルオロフェノール、2,4−ビス[(3−ヒドロキシ−4−ヒドロキシフェニル)メチル]−6−メチルフェノール等が挙げられ、酸に不安定な置換基としては、上記と同様のものが挙げられる。
【0079】
好適に用いられる溶解阻止剤の例としては、3,3’,5,5’−テトラフルオロ[(1,1’−ビフェニル)−4,4’−ジ−t−ブトキシカルボニル]、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール−4,4’−ジ−t−ブトキシカルボニル、ビス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、ビス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、ビス(4−tert−ブトキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルオキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)メタン、ビス(4−(1’−エトキシエトキシ)フェニル)メタン、ビス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、2,2−ビス(4’−(2’’−テトラヒドロピラニルオキシ))プロパン、2,2−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)プロパン、2,2−ビス(4’−tert−ブトキシフェニル)プロパン、2,2−ビス(4’−tert−ブトキシカルボニルオキシフェニル)プロパン、2,2−ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)プロパン、2,2−ビス(4’−(1’’−エトキシエトキシ)フェニル)プロパン、2,2−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)プロパン、4,4−ビス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシフェニル)吉草酸tert−ブチル、4,4−ビス(4−tert−ブトキシカルボニルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−tert−ブトキシカルボニルメチルオキシフェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシエトキシ)フェニル)吉草酸tert−ブチル、4,4−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)吉草酸tert−ブチル、トリス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、トリス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、トリス(4−tert−ブトキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシメチルフェニル)メタン、トリス(4−(1’−エトキシエトキシ)フェニル)メタン、トリス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、1,1,2−トリス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−tert−ブトキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルオキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルメチルオキシフェニル)エタン、1,1,2−トリス(4’−(1’−エトキシエトキシ)フェニル)エタン、1,1,2−トリス(4’−(1’−エトキシプロピルオキシ)フェニル)エタン、2−トリフルオロメチルベンゼンカルボン酸1,1−t−ブチルエステル、2−トリフルオロメチルシクロヘキサンカルボン酸−t−ブチルエステル、デカヒドロナフタレン−2,6−ジカルボン酸−t−ブチルエステル、コール酸−t−ブチルエステル、デオキシコール酸−t−ブチルエステル、アダマンタンカルボン酸−t−ブチルエステル、アダマンタン酢酸−t−ブチルエステル、[1,1’−ビシクロヘキシル−3,3’,4,4’−テトラカルボン酸テトラ−t−ブチルエステル]等が挙げられる。
【0080】
本発明のレジスト材料中における溶解阻止剤の添加量としては、レジスト材料中のベース樹脂100部に対して20部以下、好ましくは15部以下である。20部より多いとモノマー成分が増えるためレジスト材料の耐熱性が低下する。
【0081】
また、本発明のレジスト材料で使用する塩基性化合物は、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適しており、このような塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる(特開平5−232706号、同5−249683号、同5−158239号、同5−249662号、同5−257282号、同5−289322号、同5−289340号公報等記載)。
【0082】
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、特に脂肪族アミンが好適に用いられる。
【0083】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0084】
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0085】
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0086】
更に、下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。
N(X)(Y)3−n (B)−1
式中、n=1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子、又は直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。
【0087】
ここで、R300、R302、R305は炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R301、R304は水素原子、炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。
【0088】
303は単結合、炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。
【0089】
【化26】
Figure 0004061454
【0090】
一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−フォルミルオキシエチル)アミン、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
【0091】
更に、下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。
【0092】
【化27】
Figure 0004061454
(式中、Xは前述の通り、R307は炭素数2〜20の直鎖状、分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1個あるいは複数個含んでいてもよい。)
【0093】
式(B)−2として具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチルで挙げることができる。
【0094】
更に、一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。
【0095】
【化28】
Figure 0004061454
(式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状、分岐状のアルキレン基である。)
【0096】
シアノ基を含む塩基は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)が例示される。
【0097】
なお、本発明塩基性化合物の配合量は全ベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果がなく、2部を超えると感度が低下しすぎる場合がある。
【0098】
本発明のレジスト材料には、上記成分以外に任意成分として塗布性を向上させるために慣用されている界面活性剤を添加することができる。なお、任意成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。
【0099】
ここで、界面活性剤としては非イオン性のものが好ましく、パーフルオロアルキルポリオキシエチレンエタノール、フッ素化アルキルエステル、パーフルオロアルキルアミンオキサイド、含フッ素オルガノシロキサン系化合物等が挙げられる。例えばフロラード「FC−430」、「FC−431」(いずれも住友スリーエム(株)製)、サーフロン「S−141」、「S−145」、「S−381」、「S−383」(いずれも旭硝子(株)製)、ユニダイン「DS−401」、「DS−403」、「DS−451」(いずれもダイキン工業(株)製)、メガファック「F−8151」、「F−171」、「F−172」、「F−173」、「F−177」(いずれも大日本インキ工業(株)製)、「X−70−092」、「X−70−093」(いずれも信越化学工業(株)製)等を挙げることができる。好ましくは、フロラード「FC−430」(住友スリーエム(株)製)、「X−70−093」(信越化学工業(株)製)が挙げられる。
【0100】
本発明のレジスト材料を使用してパターンを形成するには、公知のリソグラフィー技術を採用して行うことができ、例えばシリコンウエハー等の基板上にスピンコーティング等の手法で膜厚が0.1〜1.0μmとなるように塗布し、これをホットプレート上で60〜200℃、10秒〜10分間、好ましくは80〜150℃、30秒〜5分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、波長300nm以下の遠紫外線、エキシマレーザー、X線等の高エネルギー線もしくは電子線を露光量1〜200mJ/cm程度、好ましくは10〜100mJ/cm程度となるように照射した後、ホットプレート上で60〜150℃、10秒〜5分間、好ましくは80〜130℃、30秒〜3分間ポストエクスポージャベーク(PEB)する。更に、0.1〜5%、好ましくは2〜3%のテトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ水溶液の現像液を用い、10秒〜3分間、好ましくは30秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明材料は、特に高エネルギー線の中でも254〜120nmの遠紫外線又はエキシマレーザー、特に193nmのArF、157nmのF、146nmのKr、134nmのKrAr、126nmのArなどのエキシマレーザー、X線及び電子線による微細パターンニングに最適である。また、上記範囲を上限及び下限から外れる場合は、目的のパターンを得ることができない場合がある。
【0101】
図1は、露光、PEB、現像によって珪素含有レジストパターンを形成し、酸素ガスエッチングによって下地の有機膜パターンを形成し、ドライエッチングによって被加工膜の加工を行う方法を示す。ここで、図1(A)において、1は下地基板、2は被加工基板(SiO、SiN等)、3は有機膜(ノボラック、ポリヒドロキシスチレン等)、4は本発明に係る珪素含有高分子化合物を含むレジスト材料によるレジスト層であり、図1(B)に示したように、このレジスト層の所用部分を露光5し、更に図1(C)に示したようにPEB、現像を行って露光領域を除去し、更に図1(D)に示したように酸素プラズマエッチング、図1(E)に示したように被加工基板エッチング(CF系ガス)を行って、パターン形成することができる。
【0102】
ここで、酸素ガスエッチングは酸素ガスを主成分とした反応性プラズマエッチングであり、高いアスペクト比で下地の有機膜を加工することができる。酸素ガスの他にオーバーエッチングによるT−トップ形状を防止するために、側壁保護を目的とするSOやN、CO、COガスを添加してもよい。また、現像後のレジストのスカムを除去し、ラインエッジを滑らかにしてラフネスを防止するために、酸素ガスエッチングを行う前に、短時間のフロン系ガスでエッチングすることも可能である。次に、被加工膜のドライエッチング加工は、被加工膜がSiOやSiであれば、フロン系のガスを主成分としたエッチングを行う。フロン系ガスはCF、CHF、CF、C、C、C10、C12などが挙げられる。この時は被加工膜のドライエッチングと同時に、珪素含有レジスト膜を剥離することが可能である。被加工膜がポリシリコン、タングステンシリサイド、TiN/Alなどの場合は、塩素、臭素ガスを主成分としたエッチングを行う。
【0103】
本発明の珪素含有レジストは、塩素、臭素ガスを主成分としたエッチングに対して優れた耐性を示し、単層レジストと同じ加工方法を用いることもできる。
【0104】
図2は、これを示すもので、図2(A)において、1は下地基板、6は被加工基板、4は上記したレジスト層であり、図2(B)、(C)に示したように、露光5及びPEB、現像を行った後、図2(D)に示したように被加工基板エッチング(Cl系ガス)を行うことができるもので、このように被加工膜直上に本発明の珪素含有レジスト膜をパターン形成し、塩素、臭素ガスを主成分としたエッチングで被加工膜の加工を行うことができる。
【0105】
【発明の効果】
本発明のレジスト材料は、高エネルギー線に感応し、200nm以下、特には170nm以下の波長における感度、解像性、及びプラズマエッチング耐性に優れている。従って、本発明のレジスト材料は、これらの特性より、特にFエキシマレーザーの露光波長での吸収が小さいレジスト材料となり得るもので、微細でしかも基板に対して垂直なパターンを容易に形成でき、このため超LSI製造用の微細パターン形成材料として好適である。
【0106】
【実施例】
以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記例に制限されるものではない。
【0107】
[合成例1]5−(2−アセトキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタン−2−エン
200mlのオートクレーブに、クロペンタジエン(13.2g)と1,1−ビストリフルオロメチル−3−ブテン−1−オール(43.8g)を仕込み、180℃で2時間撹拌した。反応混合物を減圧蒸留し、19.6gの5−(2−ヒドロキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタン−2−エンを得た(沸点84〜88℃/25mmHg)。200mlの3つ口フラスコに水素化ナトリウム(1.9g)とテトラヒドロフラン(90ml)を仕込み、上記のノルボルネン誘導体(18.0g)のテトラヒドロフラン(90ml)溶液を水素の発生に注意し滴下した。30分間室温で撹拌した後、氷冷下、塩化アセチル(8.0g)を1時間かけて滴下し、室温で1時間撹拌した。反応混合物を氷冷した炭酸水素ナトリウム水溶液に注ぎ、水層をジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥後、濾過、濃縮し、減圧蒸留(沸点90〜94℃/25mmHg)して、目的の5−(2−アセトキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタン−2−エン(16.6g)を得た。その生成はマススペクトルにより確認した。
【0108】
[合成例2](2−アセトキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタントリクロロシラン
撹拌機、還流器、滴下ロート及び温度計を備えた100mlの3つ口フラスコに、5−(2−アセトキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタン−2−エン(9.0g)、20重量%塩化白金酸−イソプロパノール溶液(0.009g)、イソオクタン(15ml)を仕込み、80℃に加熱した。内温が安定した後、トリクロロシラン(4.3g)を30分かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。反応液を減圧蒸留し、(2−アセトキシ−2,2−ビストリフルオロメチル)エチル−ビシクロ[2.2.1]ヘプタントリクロロシラン(8.2g)を沸点98〜102℃/10mmHgの留分として得た。
【0109】
[合成例3]γブチロラクトントリクロロシラン
撹拌機、還流器、滴下ロート及び温度計を備えた100mlの3つ口フラスコに、2(5H)−フラノン(9.0g)、20重量%塩化白金酸−イソプロパノール溶液(0.009g)、イソオクタン(15ml)を仕込み、80℃に加熱した。内温が安定した後、トリクロロシラン(14.3g)を30分かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。反応液を減圧蒸留し、γブチロラクトントリクロロシランを得た。
【0110】
【化29】
Figure 0004061454
【0111】
[合成例4]ビシクロ[2.2.1]ヘプタントリクロロシラン−6−スピロ−4’−2’−オキソオキソラン
撹拌機、還流器、滴下ロート及び温度計を備えた100mlの3つ口フラスコに、ビシクロ[2.2.1]ヘプン−6−スピロ−4’−2’−オキソオキソラン(17.4g)、20重量%塩化白金酸−イソプロパノール溶液(0.009g)、イソオクタン(15ml)を仕込み、80℃に加熱した。内温が安定した後、トリクロロシラン(14.3g)を30分かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。反応液を減圧蒸留し、ビシクロ[2.2.1]ヘプタントリクロロシラン−6−スピロ−4’−2’−オキソオキソランを得た。
【0112】
【化30】
Figure 0004061454
【0113】
[合成例5]テトラヒドロピラニルトリクロロシラン
撹拌機、還流器、滴下ロート及び温度計を備えた100mlの3つ口フラスコに、3,4−ジヒドロ−2H−ピラン(9.0g)、20重量%塩化白金酸−イソプロパノール溶液(0.009g)、イソオクタン(15ml)を仕込み、80℃に加熱した。内温が安定した後、トリクロロシラン(14.4g)を30分かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。反応液を減圧蒸留し、テトラヒドロピラニルトリクロロシランを得た。
【0114】
【化31】
Figure 0004061454
【0115】
[合成例6]ポリマー(I)
200mlの3つ口フラスコに、トリエチルアミン(8.5g)、トルエン(5ml)、メチルイソブチルケトン(5ml)、水(10ml)を仕込み、氷冷下、合成例2で得たノルボルナン誘導体(5.0g)、合成例3で得られたγブチロラクトントリクロロシラン(3.0g)を滴下し、室温で1時間撹拌した。この反応混合物をメチルイソブチルケトンで希釈し、pHが8以下となるまで食塩と塩化アンモニウムの混合水溶液で繰り返し洗浄し、濃縮した。これをトルエンに溶解、濾過し、200mlの3つ口フラスコ中、200℃で12時間撹拌し、重量平均分子量3,600のポリマー(6.2g)を得た。放冷後、炭酸カリウム(7.7g)、メタノール(45ml)、テトラヒドロフラン(55ml)、水(10ml)を加え、室温で12時間撹拌した。これに飽和塩化アンモニウム水溶液(50ml)と水(10ml)を加え、水層をエーテルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥後、濾過、濃縮した。これをテトラヒドロフラン(50ml)に溶解し、メタンスルホン酸(0.3g)を加えた後、30℃でエチルビニルエーテル(1.3g)を加えて3時間撹拌し、濃アンモニア水を加え中和した。この反応液を酢酸エチルに溶媒交換し、純水とアセトンの混合溶液で6回洗浄した後、アセトンに溶媒交換し、純水に滴下した。晶析物を濾過で集め、純水で洗浄し、真空乾燥して(3.9g)の白色粉末を得た。NMRとGPC分析の結果、このものは下記式で示される重量平均分子量3,900のポリマー(I)であることが確認された。
【0116】
【化32】
Figure 0004061454
【0117】
[合成例7]ポリマー(II)
200mlの3つ口フラスコに、トリエチルアミン(8.5g)、トルエン(5ml)、メチルイソブチルケトン(5ml)、水(10ml)を仕込み、氷冷下、合成例2で得たノルボルナン誘導体(5.0g)、合成例4で得られたビシクロ[2.2.1]ヘプタントリクロロシラン−6−スピロ−4’−2’−オキソオキソラン(6.0g)を滴下し、室温で1時間撹拌した。この反応混合物をメチルイソブチルケトンで希釈し、pHが8以下となるまで食塩と塩化アンモニウムの混合水溶液で繰り返し洗浄し、濃縮した。これをトルエンに溶解、濾過し、200mlの3つ口フラスコ中、200℃で12時間撹拌し、重量平均分子量3,600のポリマー(6.2g)を得た。放冷後、炭酸カリウム(7.7g)、メタノール(45ml)、テトラヒドロフラン(55ml)、水(10ml)を加え、室温で12時間撹拌した。これに飽和塩化アンモニウム水溶液(50ml)と水(10ml)を加え、水層をエーテルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥後、濾過、濃縮した。これをテトラヒドロフラン(50ml)に溶解し、メタンスルホン酸(0.3g)を加えた後、30℃でエチルビニルエーテル(1.3g)を加えて3時間撹拌し、濃アンモニア水を加え中和した。この反応液を酢酸エチルに溶媒交換し、純水とアセトンの混合溶液で6回洗浄した後、アセトンに溶媒交換し、純水に滴下した。晶析物を濾過で集め、純水で洗浄し、真空乾燥して(4.2g)の白色粉末を得た。NMRとGPC分析の結果、このものは下記式で示される重量平均分子量3,700のポリマー(II)であることが確認された。
【0118】
【化33】
Figure 0004061454
【0119】
[合成例8]ポリマー(III)
200mlの3つ口フラスコに、トリエチルアミン(8.5g)、トルエン(5ml)、メチルイソブチルケトン(5ml)、水(10ml)を仕込み、氷冷下、合成例2で得たノルボルナン誘導体(5.0g)、合成例5で得られたテトラヒドロピラニルトリクロロシラン(6.0g)を滴下し、室温で1時間撹拌した。この反応混合物をメチルイソブチルケトンで希釈し、pHが8以下となるまで食塩と塩化アンモニウムの混合水溶液で繰り返し洗浄し、濃縮した。これをトルエンに溶解、濾過し、200mlの3つ口フラスコ中、200℃で12時間撹拌し、重量平均分子量4400のポリマー(6.2g)を得た。放冷後、炭酸カリウム(7.7g)、メタノール(45ml)、テトラヒドロフラン(55ml)、水(10ml)を加え、室温で12時間撹拌した。これに飽和塩化アンモニウム水溶液(50ml)と水(10ml)を加え、水層をエーテルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥後、濾過、濃縮した。これをテトラヒドロフラン(50ml)に溶解し、メタンスルホン酸(0.3g)を加えた後、30℃でエチルビニルエーテル(1.3g)を加えて3時間撹拌し、濃アンモニア水を加え中和した。この反応液を酢酸エチルに溶媒交換し、純水とアセトンの混合溶液で6回洗浄した後、アセトンに溶媒交換し、純水に滴下した。晶析物を濾過で集め、純水で洗浄し、真空乾燥して(5.2g)の白色粉末を得た。NMRとGPC分析の結果、このものは下記式で示される重量平均分子量4,500のポリマー(III)であることが確認された。
【0120】
【化34】
Figure 0004061454
【0121】
[比較合成例]ポリマーIV
反応器に1,200mlの水を仕込み、30℃で撹拌しながらp−メトキシベンジルトリクロロシラン487.2g(2.0mol)及びトルエン600mlの混合液を2時間かけて滴下し、加水分解を行った。その後分液操作により水層を除去し、有機層は水層が中性になるまで水洗を行った。有機層へヘキサメチルシラザン80gを添加し5時間還流を行った。冷却後、トルエン並びに未反応のヘキサメチルシラザンをエバポレーターによって留去し、次いで、アセトニトリル400gに溶解した。この溶液中に60℃以下でトリメチルシリルアイオダイド480gを滴下し、60℃で10時間反応させた。反応終了後、水200gを加えて加水分解を行い、次いでデカントによりポリマー層を得た。溶媒をエバポレーターで除去後、ポリマーを真空乾燥することにより、ポリ(p−ヒドロキシベンジルシルセスキオキサン)330gを得た。このポリマーの分子量をGPC(ゲルパーミエィションクロマトグラフィー)によって測定したところ、ポリスチレン換算でMw=3,500であった。
2Lのフラスコにリ(p−ヒドロキシベンジルシルセスキオキサン)160gをジメチルホルムアミド1,000mlに溶解させ、触媒量のp−トルエンスルホン酸を添加した後、20℃で撹拌しながらエチルビニルエーテル19.0gを添加した。1時間反応させた後、濃アンモニア水により中和し、水10Lに中和反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン500mlに溶解させ、水10Lに滴下し、濾過後、真空乾燥した。NMRとGPC分析の結果、このものは下記式で示される重量平均分子量3,800のポリマー(IV)であることが確認された。
【0122】
【化35】
Figure 0004061454
【0123】
評価例
[ポリマー透過率測定]
得られたポリマー1gをプロピレングリコールモノメチルエーテルアセテート10gに十分に溶解させ、0.2μmのフィルターで濾過して、ポリマー溶液を調製した。
ポリマー溶液をMgF基板にスピンコーティングし、ホットプレートを用いて100℃で90秒間ベークし、厚さ100nmのポリマー層をMgF基板上に作成した。真空紫外光度計(日本分光製、VUV200S)を用いて248nm、193nm、157nmにおける透過率を測定した。結果を表1に示す。
【0124】
【表1】
Figure 0004061454
【0125】
[耐ドライエッチング性試験]
上で得られたポリマー2gをプロピレングリコールモノメチルエーテルアセテート10gに十分に溶解させ、0.2μmのフィルターで濾過して、ポリマー溶液を調製した。
ポリマー溶液をスピンコーティングでシリコンウエハーに塗布して、100℃で90秒間ベークして300nm厚みのポリマー膜を作成した。
次にポリマー膜を作成したウエハーを下記2つの条件でドライエッチングを行い、エッチング前後のポリマー膜の膜厚差を求めた。
【0126】
(1)Oガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のレジストの膜厚差を求めた。エッチング条件は下記に示す通りである。
【0127】
【表2】
Figure 0004061454
【0128】
(2)Cl/BCl系ガスでのエッチング試験
日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のポリマーの膜厚差を求めた。エッチング条件は下記に示す通りである。
【0129】
【表3】
Figure 0004061454
【0130】
エッチング試験結果を表4に示す。
【表4】
Figure 0004061454
【0131】
[レジスト調製例]
合成例で得られたポリマー、PAG1,2で示される酸発生剤、表5に示す塩基、DRIで示される溶解阻止剤をFC−430(住友スリーエム(株)製)0.01重量%を含むプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶媒1,000重量部に表5に示す組成で十分に溶解させ、0.1μmのテフロン(登録商標)製のフィルターを濾過することによってレジスト液をそれぞれ調製した。
【0132】
次に、得られたレジスト液を、シリコンウエハーにDUV−30(日産化学製)を55nmの膜厚で成膜して、KrF光(248nm)で反射率を1%以下に抑えた基板上にスピンコーティングし、ホットプレートを用いて100℃で90秒間ベークし、レジストの厚みを100nmの厚さにした。
これをKrFエキシマレーザーステッパー(ニコン社、NSR−S202A、NA−0.6、σ0.75、2/3輪帯照明)を用いて露光し、露光後直ちに110℃で90秒間ベークし、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で30秒間現像を行って、ポジ型のパターンを得た。
【0133】
得られたレジストパターンを次のように評価した。結果を表5に示す。
評価方法:
0.25μmのラインアンドスペースを1:1で解像する露光量を最適露光量(Eop)として、この露光量において分離しているラインアンドスペースの最小線幅を評価レジストの解像度とした。
【0134】
【表5】
Figure 0004061454
【0135】
【化36】
Figure 0004061454
【0136】
上記の結果より、本発明の高分子化合物を用いたレジスト材料は、従来提案されているベンジルシルセスキオキサンタイプと同程度の解像力と感度を満たし、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかった。更にVUV領域での透過率が非常に高く、Fリソグラフィーにおいても有望な材料であることがわかった。
【図面の簡単な説明】
【図1】酸素エッチングを用いた加工プロセスの説明図である。
【図2】塩素系エッチングを用いた加工プロセスの説明図である。
【符号の説明】
1 下地基板
2 被加工基板
3 有機膜
4 レジスト層
5 露光
6 被加工基板BACKGROUND OF THE INVENTION
The present invention relates to a resist material suitable for a microfabrication technique, in particular, a polymer compound useful as a base polymer of a chemically amplified resist material, a resist material containing the same, and a pattern forming method using the same.
[0001]
[Prior art and problems to be solved by the invention]
With the high integration and high speed of LSI, pattern rule miniaturization is progressing rapidly. The background of rapid progress in miniaturization includes higher NA of projection lenses, improved resist performance, and shorter wavelengths.
[0002]
In particular, the shortening of the wavelength from i-line (365 nm) to KrF (248 nm) has brought about a major change, and the mass production of 0.18 μm rule devices has become possible. A chemically amplified positive resist material using acid as a catalyst (described in JP-B-2-27660, JP-A-63-27829, etc.) has excellent characteristics for increasing the resolution and sensitivity of the resist. It has become a mainstream resist material particularly for deep ultraviolet lithography.
[0003]
Resist materials for KrF excimer lasers are generally used in the 0.3 micron process, passed through the 0.25 micron rule, and are now applied to the mass production of the 0.18 micron rule. The 0.13 micron rule has been studied, and the momentum of miniaturization is increasingly accelerated. The shortening of the wavelength from KrF to ArF (193 nm) is expected to make the design rule finer to 0.13 μm or less, but novolak and polyvinylphenol resins that have been used in the past are around 193 nm. Since it has very strong absorption, it cannot be used as a base resin for resist. In order to ensure transparency and necessary dry etching resistance, acrylic and cycloolefin type alicyclic resins have been studied (Japanese Patent Laid-Open Nos. 9-73173, 10-10739, and 9). -230595 publication, WO97 / 33198). In addition, F can be expected to be 0.10 μm or less.2Regarding (157 nm), it became more difficult to ensure transparency, acrylics did not transmit light at all, and those having a carbonyl bond even in cycloolefins were found to have strong absorption. A polymer having a benzene ring has a slightly improved transmittance around a wavelength of 160 nm, but is far from a practical value, and is represented by a carbon-carbon double bond represented by a benzene ring and a carbonyl group in a single layer resist. It has been found that reduction of carbon-oxygen double bonds is a necessary condition for ensuring transmittance (International Work Shop 157 nm Lithography MIT-LL Boston, MA May 5, 1999). It has been shown that introduction of fluorine is effective for improving the transmittance (J. Vac. Sci. Technol. B 17 (6), Nov / Dec 1999), and many fluorine-containing polymers are used for resists. Proposed (J. Photopolymer Sci. And Technol. Vol. 13 No. 4 (2000) p657-664 and Vol. 13 No. 4 (2000) p451-458), polyhydroxystyrene and its derivatives in KrF exposure, It does not reach the transmittance of the poly (meth) acryl derivative or polycycloolefin derivative in ArF exposure.
[0004]
On the other hand, it is known that the two-layer resist method is excellent for forming a pattern with a high aspect ratio on a conventional stepped substrate. Further, in order to develop a two-layer resist film with a general alkali developer. Requires a high molecular silicone compound having a hydrophilic group such as a hydroxy group or a carboxyl group.
[0005]
As a silicone-based chemically amplified positive resist material, a base resin in which a part of the phenolic hydroxyl group of polyhydroxybenzylsilsesquioxane, which is a stable alkali-soluble silicone polymer, is protected with a t-Boc group is used. A silicone-based chemically amplified positive resist material for KrF combined with an acid generator has been proposed (JP-A-7-118651, SPIE vol. 1925 (1993) p377, etc.). For ArF, positive resists based on silsesquioxane in which cyclohexylcarboxylic acid is substituted with an acid labile group have been proposed (Japanese Patent Laid-Open Nos. 10-324748 and 11-302382). SPIE vol.3333-07 (1998) p62). In addition, a silicone-containing polymer using a silicon-containing acrylic monomer has also been proposed (Japanese Patent Laid-Open No. 9-110938, J. Photopolymer Sci. And Technol. Vol. 9 No. 3 (1996) p435-446).
[0006]
A disadvantage of the acrylic pendant type silicon-containing polymer is that the dry etching resistance in oxygen plasma is weaker than that of the silsesquioxane polymer. This is because of the low silicon content and the difference in the polymer main skeleton. Further, the siloxane pendant type has a drawback that it easily repels the developer and has poor wettability. In view of this, a trisilane or tetrasilane pendant type polymer having a repeating unit in which the silicon content is increased and the silicon-containing group is acid-eliminating has been proposed (SPIE vol. 3678 p214, p241, p562). . However, at a wavelength of 200 nm or less, a silane compound of disilane or higher has a strong absorption, so that there is a drawback that the transmittance decreases when the introduction rate is increased. In addition, attempts to contain acid labile group silicon have been made in addition to the above (SPIE vol. 3678 p420). However, since acid detachment performance is low, environmental stability is low and T-top profile tends to be obtained. There were drawbacks.
[0007]
On the other hand, the present applicant has proposed an acid labile group in which silicon is introduced into a cyclic hydrocarbon group (Japanese Patent Application No. 11-342380). This has the advantage of being excellent in acid detachment and preventing the occurrence of T-top profile. Furthermore, it is possible to improve the dry etching resistance by introducing two or more silicon atoms into one cyclic hydrocarbon group. In addition, there is also a feature that there is no fear that the transmittance in ArF is lowered without causing carbon atoms to exist between silicon atoms and generating disilane bonds.
[0008]
However, silicone-containing polymers are certainly more advantageous in terms of transmittance than single-layer resists because they can be made thinner, but it is still necessary to fundamentally increase the transmittance in order to increase the resolution in exposure at a wavelength of 157 nm. It was.
[0009]
The present invention has been made to meet the above-mentioned demands, and is 300 nm or less, particularly F.2(157 nm), Kr2(146 nm), KrAr (134 nm), Ar2Resist material excellent in transmittance and dry etching resistance in vacuum ultraviolet light such as (126 nm), in particular, a novel polymer compound useful as a base polymer of a chemically amplified resist material, a resist material containing the same, and a pattern using the resist material An object is to provide a forming method.
[0010]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor has found that by using a polysilsesquioxane containing a fluorinated alcohol partially substituted with an acid labile group as a base resin, It has been found that a resist material that secures both properties and dry etching resistance can be obtained, and has led to the present invention.
[0011]
  That is, the present invention provides the following polymer compound, chemically amplified resist material, and pattern formation method.
Claim 1: A polymer compound having a repeating unit represented by the following general formula (1) and having a weight average molecular weight of 1,000 to 100,000.
[Chemical formula 2]
Figure 0004061454
(Where
Embedded image
Figure 0004061454
The unit represented by is selected from the following formulae.
Embedded image
Figure 0004061454
R2Is an acid labile groupThea and b are positive numbersIt is. Also,
Embedded image
Figure 0004061454
Is selected from the following formulae.
Embedded image
Figure 0004061454
Embedded image
Figure 0004061454
Embedded image
Figure 0004061454
Embedded image
Figure 0004061454
Claim2:
  Claim1A resist material comprising the polymer compound described above.
Claim3:
(A) Claim1The polymer compound described,
(B) an organic solvent,
(C) Acid generator
A chemically amplified resist material comprising:
Claim4:
  And (D) a basic compound.3The resist material as described.
Claim5:
  And (E) a dissolution inhibitor3Or4The resist material as described.
Claim6:
(1) Claim3Thru5Applying a chemically amplified resist material according to claim 1 on a substrate;
(2) Next, after the heat treatment, a step of exposing with a high energy beam or an electron beam having a wavelength of 300 nm or less through a photomask;
(3) A step of developing using a developer after heat treatment as necessary;
A pattern forming method comprising:
Claim7:
  Claim6A method for forming a resist pattern in which, after pattern formation, a base is processed by etching including oxygen plasma etching.
Claim8:
  Claim6A method of forming a resist pattern in which after the pattern formation, the base is processed by etching with a halogen gas containing chlorine or bromine.
[0012]
Hereinafter, the present invention will be described in more detail.
The polymer compound of the present invention has a repeating unit represented by the following general formula (1).
[0013]
[Chemical Formula 3]
Figure 0004061454
(Wherein R1Is linear, branched or cyclic having 1 to 20 carbon atomsAlkylene group or the following formula
Embedded image
Figure 0004061454
Is a divalent group selected from. R2Is an acid labile group and has a range of 0 ≦ m ≦ 3, 0 ≦ n ≦ 3, 0 ≦ o ≦ 3, 0 ≦ p ≦ 3, m + n = 3, o + p = 3, and 0 <n + p ≦ 6. RThreeIsSelected from the above formulaA hydrophilic group containing no fluorine atom. a and b are positive numbers. )
[0014]
  Here, in the repeating unit of the general formula (1), R1 WhenA linear, branched or cyclic alkylene group such as a methylene group, an ethylene group, a propylene group, a butylene group, a cyclopentylene group or a cyclohexylene group.And the above divalent groupIs mentioned.
[0015]
In the above formula (1), specific examples of the unit (a) include the following.
[0016]
[Formula 4]
Figure 0004061454
[0017]
R2As the acid labile group, various groups are selected. In particular, groups represented by the following formulas (A-1) and (A-2) and tertiary groups having 4 to 40 carbon atoms represented by the following formula (A-3) An alkyl group, a trialkylsilyl group having 1 to 6 carbon atoms, an oxoalkyl group having 4 to 20 carbon atoms, and the like are preferable.
[0018]
[Chemical formula 5]
Figure 0004061454
[0019]
  In the formula (A-1), R30Is a tertiary alkyl group having 4 to 20 carbon atoms, preferably 4 to 15 carbon atoms, each alkyl group is a trialkylsilyl group having 1 to 6 carbon atoms, an oxoalkyl group having 4 to 20 carbon atoms, or the above general formula (A- 3), and the tertiary alkyl group specifically includes a tert-butyl group, a tert-amyl group, a 1,1-diethylpropyl group, a 1-ethylcyclopentyl group, a 1-butylcyclopentyl group, 1 -Ethylcyclohexyl group, 1-butylcyclohexyl group, 1-ethyl-2-cyclopentenyl group, 1-ethyl-2-cyclohexenyl group, 2-methyl-2-adamantyl group, etc. Specific examples include trimethylsilyl group, triethylsilyl group, dimethyl-tert-butylsilyl group, etc. Specifically, the 3-oxo-cyclohexyl group, 4-methyl-2-oxooxan-4-yl group, and 5-methyl-2-oxooxolan-5-yl group. aIsIt is an integer of 0-6.
[0020]
In formula (A-2), R31, R32Represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, specifically a methyl group, an ethyl group, a propyl group, an isopropyl group, or an n-butyl group. , Sec-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, 2-ethylhexyl group, n-octyl group and the like. R33Represents a monovalent hydrocarbon group which may have a hetero atom such as an oxygen atom having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, a linear, branched or cyclic alkyl group, and these hydrogen atoms In which a part of them is substituted with a hydroxyl group, an alkoxy group, an oxo group, an amino group, an alkylamino group, or the like. Specific examples include the following substituted alkyl groups.
[0021]
[Chemical 6]
Figure 0004061454
[0022]
R31And R32, R31And R33, R32And R33May form a ring, and in the case of forming a ring, R31, R32, R33Each represents a linear or branched alkylene group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
[0023]
Specific examples of the acid labile group of the above formula (A-1) include tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tert-amyloxycarbonyl group, tert-amyloxycarbonylmethyl group, 1,1 -Diethylpropyloxycarbonyl group, 1,1-diethylpropyloxycarbonylmethyl group, 1-ethylcyclopentyloxycarbonyl group, 1-ethylcyclopentyloxycarbonylmethyl group, 1-ethyl-2-cyclopentenyloxycarbonyl group, 1-ethyl Examples include 2-cyclopentenyloxycarbonylmethyl group, 1-ethoxyethoxycarbonylmethyl group, 2-tetrahydropyranyloxycarbonylmethyl group, 2-tetrahydrofuranyloxycarbonylmethyl group and the like.
[0024]
Furthermore, the substituent shown by following formula (A-1) -1-(A-1) -9 can also be mentioned.
[0025]
[Chemical 7]
Figure 0004061454
[0026]
Where R37Are the same or different from each other, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, R38Is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
[0027]
R39Are the same or different, C2-C10 linear, branched or cyclic alkyl groups, or C6-C20 aryl groups.
[0028]
Of the acid labile groups represented by the above formula (A-2), examples of the linear or branched groups include those of the following formulas (A-2) -1 to (A-2) -23. be able to.
[0029]
[Chemical 8]
Figure 0004061454
[0030]
[Chemical 9]
Figure 0004061454
[0031]
Among the acid labile groups represented by the above formula (A-2), the cyclic ones include tetrahydrofuran-2-yl group, 2-methyltetrahydrofuran-2-yl group, tetrahydropyran-2-yl group, 2- Examples thereof include a methyltetrahydropyran-2-yl group.
[0032]
Further, the base resin may be intermolecularly or intramolecularly crosslinked by an acid labile group represented by the general formula (A-2a) or (A-2b).
[0033]
Embedded image
Figure 0004061454
[0034]
Where R40, R41Represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. Or R40And R41May combine to form a ring, and in the case of forming a ring, R40, R41Represents a linear or branched alkylene group having 1 to 8 carbon atoms. R42Is a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms, b and d are 0 or 1 to 10, preferably 0 or an integer of 1 to 5, and c is an integer of 1 to 7. A represents a (c + 1) -valent aliphatic or alicyclic saturated hydrocarbon group having 1 to 50 carbon atoms, an aromatic hydrocarbon group or a heterocyclic group, and these groups may intervene a hetero atom, Alternatively, a part of hydrogen atoms bonded to the carbon atom may be substituted with a hydroxyl group, a carboxyl group, a carbonyl group, or a fluorine atom. B represents —CO—O—, —NHCO—O— or —NHCONH—.
[0035]
In this case, preferably, A is a divalent to tetravalent C1-20 linear, branched or cyclic alkylene group, an alkyltriyl group, an alkyltetrayl group, or an arylene group having 6 to 30 carbon atoms. In these groups, a hetero atom may be interposed, and a part of hydrogen atoms bonded to the carbon atom may be substituted with a hydroxyl group, a carboxyl group, an acyl group, or a halogen atom. C is preferably an integer of 1 to 3.
[0036]
Specific examples of the crosslinked acetal groups represented by the general formulas (A-2a) and (A-2b) include those represented by the following formulas (A-2) -24 to (A-2) -31.
[0037]
Embedded image
Figure 0004061454
[0038]
Next, R in the formula (A-3)34, R35, R36Is a monovalent hydrocarbon group such as a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain heteroatoms such as oxygen, sulfur, nitrogen, fluorine, R34And R35, R34And R36, R35And R36And may combine with each other to form a ring having 3 to 20 carbon atoms together with the carbon atoms to which they are bonded.
[0039]
As the tertiary alkyl group represented by the formula (A-3), a tert-butyl group, a triethylcarbyl group, a 1-ethylnorbornyl group, a 1-methylcyclohexyl group, a 1-ethylcyclopentyl group, 2- (2- A methyl) adamantyl group, a 2- (2-ethyl) adamantyl group, a tert-amyl group, and the like.
[0040]
Moreover, as a tertiary alkyl group, the formula (A-3) -1-(A-3) -18 shown below can also be specifically mentioned.
[0041]
Embedded image
Figure 0004061454
[0042]
In formulas (A-3) -1 to (A-3) -18, R43Represents the same or different alkyl group having 1 to 8 carbon atoms, such as a linear, branched or cyclic alkyl group, or a phenyl group having 6 to 20 carbon atoms. R44, R46Represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. R45Represents an aryl group such as a phenyl group having 6 to 20 carbon atoms.
[0043]
Further, as shown in the following formulas (A-3) -19 and (A-3) -20, R which is a divalent or higher valent alkylene group or arylene group47Intramolecular or intermolecular molecules of the polymer may be crosslinked. In formulas (A-3) -19 and (A-3) -20, R43Is the same as above, R47Represents an arylene group such as a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, or a phenylene group, and may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom. b1 is an integer of 1 to 3.
[0044]
Embedded image
Figure 0004061454
[0045]
Further, R in the formula (A-3)34, R35, R36May have heteroatoms such as oxygen, nitrogen and sulfur, and specific examples thereof include those shown in the following formulas (A) -1 to (A) -7.
[0046]
R in formulas (A-1), (A-2), and (A-3)30, R33, R36Is an unsubstituted or substituted aryl group such as an alkoxy-substituted phenyl group such as a phenyl group, a p-methylphenyl group, a p-ethylphenyl group or a p-methoxyphenyl group, an aralkyl group such as a benzyl group or a phenethyl group, or the like The following formulas (A) -1 to (A) in which a hydrogen atom having an oxygen atom in the group or a hydrogen atom bonded to a carbon atom is substituted with a hydroxyl group, or two hydrogen atoms are substituted with an oxygen atom to form a carbonyl group ) -7, or an oxoalkyl group represented by formulas (A) -8 and (A) -9.
[0047]
Embedded image
Figure 0004061454
[0048]
Examples of the trialkylsilyl group in which each alkyl group used as the acid labile group has 1 to 6 carbon atoms include a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and the like.
[0049]
Examples of the oxoalkyl group having 4 to 20 carbon atoms include a 3-oxocyclohexyl group and a group represented by the following formula.
[0050]
Embedded image
Figure 0004061454
[0051]
The polymer compound of the present invention can contain the following unit (a ′) in addition to the unit (a).
[0052]
Embedded image
Figure 0004061454
(Wherein R1, M, n, o, p are as described above. )
[0053]
In this case, with respect to the total of the units (a) and (a ′), the substitution rate by the acid labile group is preferably partial substitution from the viewpoint of alkali solubility and developer wettability, and is 10 to 90 mol%. Is preferably used, and more preferably 20 to 70 mol%.
[0054]
In the case of producing the units (a) and (a ′), as an example, a method of generally synthesizing a trichlorosilane or trialkoxysilane monomer by the following synthesis method and polymerizing it by a hydrolysis reaction may be mentioned. it can. During the polymerization, the fluorinated alcohol is protected with an acetyl group or an alkoxy group and is eliminated after the polymerization. Although the method of protecting alcohol with an acid labile group is mentioned after that, an acid labile group may be introduce | transduced in the step of the monomer before polymerizing, and it may superpose | polymerize by hydrolysis after that.
[0055]
Embedded image
Figure 0004061454
[0056]
  On the other hand, in the general formula (1), the repeating unit containing the hydrophilic group (b) is an alcohol group, carboxyl group, ether group, ester group, acetyl group, formyl group, carbonate group, lactone ring, maleimide group. It is composed of a group containing an oxygen atom, a sulfur atom, a nitrogen atom, etc., such as a sulfonamide group and a carboxylic acid anhydride, but not containing a fluorine atom.ageSpecific examples include those represented by the following formulas (2) -1 to (2) -84.But the one shown above is used.
[0057]
Embedded image
Figure 0004061454
[0058]
Embedded image
Figure 0004061454
[0059]
Embedded image
Figure 0004061454
[0060]
Embedded image
Figure 0004061454
[0061]
Embedded image
Figure 0004061454
[0062]
Here, the ratio of the units a and b is
0.1 ≦ a / (a + b) ≦ 0.9, especially 0.2 ≦ a / (a + b) ≦ 0.8
0.1 ≦ b / (a + b) ≦ 0.9, especially 0.2 ≦ b / (a + b) ≦ 0.8
It is preferable that In this case, the ratio of a + b is preferably 0.3 or more.
[0063]
The polymer compound of the present invention is further repeated with pendant alkyl groups or fluorinated alkyls represented by the following formulas (4) -1 to (4) -4 in order to improve transparency or optimize molecular weight. Units can also be included.
[0064]
Embedded image
Figure 0004061454
(Wherein R Four IsstraightIt is a chain, branched or cyclic unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, and examples of the substituted alkyl group include a fluorinated alkyl group. c to f are ranges of 0 ≦ c <1, 0 ≦ d <1, 0 ≦ e <1, and 0 ≦ f <1. )
[0065]
The polymer compound of the present invention has a weight average molecular weight of 1,000 to 100,000, preferably 1,500 to 50,000.
[0066]
  The polymer compound of the present invention is suitably used as a base resin for resist materials, particularly chemically amplified resist materials, especially chemically amplified positive resist materials. In this case, the chemically amplified positive resist material of the present invention is
(A) a base resin comprising the above polymer compound,
(B)Organic solvent,
(C)Acid generator
More preferably
(D)Basic compound,
(E)Dissolution inhibitor
Can be included.
[0067]
Here, as the acid generator used in the resist material of the present invention, an onium salt of the following general formula (6), a diazomethane derivative of the formula (7), a glyoxime derivative of the formula (8), a β-ketosulfone derivative, a disulfone Derivatives, nitrobenzyl sulfonate derivatives, sulfonate ester derivatives, imido-yl sulfonate derivatives and the like.
[0068]
(R51)cM+K            (6)
(However, R51Represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms which may be the same or different, an aryl group having 6 to 12 carbon atoms or an aralkyl group having 7 to 12 carbon atoms;+Represents iodonium, sulfonium, KRepresents a non-nucleophilic counter ion, and c is 2 or 3. )
[0069]
R51Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, a 2-oxocyclohexyl group, a norbornyl group, and an adamantyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. KExamples of non-nucleophilic counter ions include halide ions such as chloride ions and bromide ions, triflate, fluoroalkyl sulfonates such as 1,1,1-trifluoroethanesulfonate, and nonafluorobutanesulfonate, tosylate, and benzenesulfonate. -Aryl sulfonates such as fluorobenzene sulfonate and 2,3,4,5,6-pentafluorobenzene sulfonate, and alkyl sulfonates such as mesylate and butane sulfonate.
[0070]
Embedded image
Figure 0004061454
(However, R52, R53Which may be the same or different, a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 12 carbon atoms, or 7 to 12 carbon atoms Represents an aralkyl group. )
[0071]
R52, R53Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group. Examples of the halogenated alkyl group include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 2,2,2-trichloroethyl group, and a nonafluorobutyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the halogenated aryl group include a fluorophenyl group, a chlorophenyl group, and 2,3,4,5,6-pentafluorophenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group.
[0072]
Embedded image
Figure 0004061454
(However, R54, R55, R56Represents a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. R55, R56May be bonded to each other to form a cyclic structure.55, R56Each represents a linear or branched alkylene group having 1 to 6 carbon atoms. )
[0073]
R54, R55, R56As the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group and aralkyl group,52, R53And the same groups as described above. R55, R56Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
[0074]
Specifically, for example, trifluoromethanesulfonic acid diphenyliodonium, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, p-toluenesulfonic acid diphenyliodonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) phenyl Iodonium, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate (p-tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium trifluoromethanesulfonate, tris (p-tert) trifluoromethanesulfonate -Butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (pt rt-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium p-toluenesulfonate, tris (p-tert-butoxyphenyl) sulfonium p-toluenesulfonate, triphenylsulfonium nonafluorobutanesulfonate, Triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium p-toluenesulfonate , Dimethylphenylsulfonium trifluoromethanesulfonate, dimethylphenol p-toluenesulfonate Onyl salts such as nylsulfonium, dicyclohexylphenylsulfonium trifluoromethanesulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexyl) Sulfonyl) diazomethane, bis (cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) Diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) ) Diazomethane, bis (isoamylsulfonyl) diazomethane, bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-butylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- Diazomethane derivatives such as (tert-amylsulfonyl) diazomethane, 1-tert-amylsulfonyl-1- (tert-butylsulfonyl) diazomethane, bis-o- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-o- (P-toluenesulfonyl) -α-diphenylglyoxime, bis-o- (p-toluenesulfonyl) -α-dicyclohexylglyoxime, bis-o- (p-toluenesulfonyl) -2,3-pentanedi Nglyoxime, bis-o- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-o- (n-butanesulfonyl) -α-dimethylglyoxime, bis-o- (n- Butanesulfonyl) -α-diphenylglyoxime, bis-o- (n-butanesulfonyl) -α-dicyclohexylglyoxime, bis-o- (n-butanesulfonyl) -2,3-pentanedioneglyoxime, bis-o -(N-butanesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-o- (methanesulfonyl) -α-dimethylglyoxime, bis-o- (trifluoromethanesulfonyl) -α-dimethylglyme Oxime, bis-o- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis o- (tert-butanesulfonyl) -α-dimethylglyoxime, bis-o- (perfluorooctanesulfonyl) -α-dimethylglyoxime, bis-o- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis-o -(Benzenesulfonyl) -α-dimethylglyoxime, bis-o- (p-fluorobenzenesulfonyl) -α-dimethylglyoxime, bis-o- (p-tert-butylbenzenesulfonyl) -α-dimethylglyoxime, Glyoxime derivatives such as bis-o- (xylenesulfonyl) -α-dimethylglyoxime, bis-o- (camphorsulfonyl) -α-dimethylglyoxime, 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane, 2 -Isopropylcarbonyl-2- (p-tolue Sulfonyl) propane and other β-ketosulfone derivatives, diphenyldisulfone, dicyclohexyldisulfone and other disulfone derivatives, p-toluenesulfonic acid 2,6-dinitrobenzyl, p-toluenesulfonic acid 2,4-dinitrobenzyl and other nitrobenzylsulfonate derivatives, Sulfonic acid ester derivatives such as 1,2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene Phthalimido-yl-triflate, phthalimido-yl-tosylate, 5-norbornene-2,3-dicarboximido-yl-triflate, 5-norbornene-2,3-dicarboximido-yl-tosylate, 5-norbol Imido-yl-sulfonate derivatives such as 2-phenylcarboxyl-yl-n-butylsulfonate, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) Diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris ( Onium salts such as p-tert-butoxyphenyl) sulfonium, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfo) Lu) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butyl) Diazomethane derivatives such as sulfonyl) diazomethane, glyoxime derivatives such as bis-o- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-o- (n-butanesulfonyl) -α-dimethylglyoxime, naphthoquinonediazidesulfonic acid Ester derivatives are preferably used. In addition, the said acid generator can be used individually by 1 type or in combination of 2 or more types. An onium salt is excellent in the effect of improving rectangularity, and a diazomethane derivative and a glyoxime derivative are excellent in a standing wave reducing effect. However, by combining both, the profile can be finely adjusted.
[0075]
The blending amount of the acid generator is preferably 0.2 to 50 parts, particularly preferably 0.5 to 40 parts, and less than 0.2 parts with respect to 100 parts (parts by weight, hereinafter the same) of the total base resin. The amount of acid generated during exposure is small, and the sensitivity and resolution may be inferior. When the amount exceeds 50 parts, the transmittance of the resist may be lowered and the resolution may be inferior.
[0076]
The organic solvent used in the resist material of the present invention may be any organic solvent that can dissolve an acid generator, a base resin, a dissolution inhibitor, and the like. Examples of such an organic solvent include ketones such as cyclohexanone and methyl-2-n-amyl ketone, 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, and 1-ethoxy-2. -Alcohols such as propanol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, and other ethers, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxy Esters such as ethyl lopionate, tert-butyl acetate, tert-butyl propionate, propylene glycol mono-tert-butyl ether acetate, etc. are used, and one of these may be used alone or in combination of two or more. However, it is not limited to these. In the present invention, among these organic solvents, diethylene glycol dimethyl ether, 1-ethoxy-2-propanol, and ethyl lactate, which are most excellent in solubility of the acid generator in the resist component, as well as propylene glycol monomethyl ether acetate, which is a safety solvent, are used. And mixed solvents thereof are preferably used.
[0077]
  The dissolution inhibitor used in the resist material of the present invention is a compound having a molecular weight of 3,000 or less, particularly a low molecular weight phenol or carboxylic acid derivative having a molecular weight of 3,000 or less, whose solubility in an alkali developer is changed by the action of an acid. And a compound in which a part or all of the compound is substituted with an acid-labile substituent. The acid labile groups are (A-1) to (A-3) Can be used.
[0078]
Examples of the phenol or carboxylic acid derivative having a molecular weight of 2,500 or less include 4,4 ′-(1-methylethylidene) bisphenol, [1,1′-biphenyl-4,4′-diol] 2,2′-methylenebis [4 -Methylphenol], 4,4-bis (4'-hydroxyphenyl) valeric acid, tris (4-hydroxyphenyl) methane, 1,1,1-tris (4'-hydroxyphenyl) ethane, 1,1,2 -Tris (4'-hydroxyphenyl) ethane, phenolphthalein, thymolphthalein, 3,3'-difluoro [(1,1'biphenyl) 4,4'-diol], 3,3 ', 5,5' -Tetrafluoro [(1,1'-biphenyl) -4,4'-diol], 4,4 '-[2,2,2-trifluoro-1- (trifluoromethyl) ethyl Bisphenol, 4,4′-methylenebis [2-fluorophenol], 2,2′-methylenebis [4-fluorophenol], 4,4′-isopropylidenebis [2-fluorophenol], cyclohexylidenebis [ 2-fluorophenol], 4,4 ′-[(4-fluorophenyl) methylene] bis [2-fluorophenol], 4,4′-methylenebis [2,6-difluorophenol], 4,4 ′-(4 -Fluorophenyl) methylenebis [2,6-difluorophenol], 2,6-bis [(2-hydroxy-5-fluorophenyl) methyl] -4-fluorophenol, 2,6-bis [(4-hydroxy-3 -Fluorophenyl) methyl] -4-fluorophenol, 2,4-bis [(3-hydroxy-4-hydroxy Eniru) methyl] -6-methylphenol and the like, as The acid labile substituents are the same as those described above.
[0079]
Examples of the dissolution inhibitor suitably used include 3,3 ′, 5,5′-tetrafluoro [(1,1′-biphenyl) -4,4′-di-t-butoxycarbonyl], 4,4 '-[2,2,2-trifluoro-1- (trifluoromethyl) ethylidene] bisphenol-4,4'-di-t-butoxycarbonyl, bis (4- (2'-tetrahydropyranyloxy) phenyl) Methane, bis (4- (2′-tetrahydrofuranyloxy) phenyl) methane, bis (4-tert-butoxyphenyl) methane, bis (4-tert-butoxycarbonyloxyphenyl) methane, bis (4-tert-butoxycarbonyl) Methyloxyphenyl) methane, bis (4- (1′-ethoxyethoxy) phenyl) methane, bis (4- (1′-ethoxypropyloxy) Cis) phenyl) methane, 2,2-bis (4 ′-(2 ″ -tetrahydropyranyloxy)) propane, 2,2-bis (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) propane, 2,2-bis (4′-tert-butoxycarbonyloxyphenyl) propane, 2,2-bis (4′-tert-butoxycarbonyloxyphenyl) propane, 2,2-bis (4-tert-butoxycarbonylmethyloxyphenyl) Propane, 2,2-bis (4 ′-(1 ″ -ethoxyethoxy) phenyl) propane, 2,2-bis (4 ′-(1 ″ -ethoxypropyloxy) phenyl) propane, 4,4-bis (4 ′-(2 ″ -tetrahydropyranyloxy) phenyl) tert-butyl valerate, 4,4-bis (4 ′-(2 ″ -tetrahydrofuranyl) Xyl) phenyl) tert-butyl valerate, 4,4-bis (4'-tert-butoxyphenyl) tert-butyl valerate, 4,4-bis (4-tert-butoxycarbonyloxyphenyl) tert-butyl valerate , Tert-butyl 4,4-bis (4′-tert-butoxycarbonylmethyloxyphenyl) valerate, tert-butyl 4,4-bis (4 ′-(1 ″ -ethoxyethoxy) phenyl) valerate, 4, , 4-Bis (4 ′-(1 ″ -ethoxypropyloxy) phenyl) tert-butyl valerate, tris (4- (2′-tetrahydropyranyloxy) phenyl) methane, tris (4- (2′- Tetrahydrofuranyloxy) phenyl) methane, tris (4-tert-butoxyphenyl) methane, tris (4-tert-butyl) Toxicarbonyloxyphenyl) methane, tris (4-tert-butoxycarbonyloxymethylphenyl) methane, tris (4- (1′-ethoxyethoxy) phenyl) methane, tris (4- (1′-ethoxypropyloxy) phenyl) Methane, 1,1,2-tris (4 ′-(2 ″ -tetrahydropyranyloxy) phenyl) ethane, 1,1,2-tris (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) ethane 1,1,2-tris (4′-tert-butoxyphenyl) ethane, 1,1,2-tris (4′-tert-butoxycarbonyloxyphenyl) ethane, 1,1,2-tris (4′- tert-Butoxycarbonylmethyloxyphenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxyethoxy) Phenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxypropyloxy) phenyl) ethane, 2-trifluoromethylbenzenecarboxylic acid 1,1-tert-butyl ester, 2-trifluoromethylcyclohexane Carboxylic acid-t-butyl ester, decahydronaphthalene-2,6-dicarboxylic acid-t-butyl ester, cholic acid-t-butyl ester, deoxycholic acid-t-butyl ester, adamantanecarboxylic acid-t-butyl ester, And adamantane acetic acid-t-butyl ester and [1,1′-bicyclohexyl-3,3 ′, 4,4′-tetracarboxylic acid tetra-t-butyl ester].
[0080]
The addition amount of the dissolution inhibitor in the resist material of the present invention is 20 parts or less, preferably 15 parts or less with respect to 100 parts of the base resin in the resist material. If it exceeds 20 parts, the monomer component increases, so the heat resistance of the resist material decreases.
[0081]
In addition, as the basic compound used in the resist material of the present invention, a compound capable of suppressing the diffusion rate when the acid generated from the acid generator diffuses into the resist film is suitable. By compounding the compound, the acid diffusion rate in the resist film is suppressed and the resolution is improved, the sensitivity change after exposure is suppressed, the substrate and environment dependency is reduced, and the exposure margin and pattern profile are reduced. (JP-A-5-232706, JP-A-5-249683, JP-A-5-158239, JP-A-5-24962, JP-A-5-257282, JP-A-5-289322, JP-A-5-289340, etc.) Description).
[0082]
Examples of such basic compounds include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, and sulfonyl groups. A nitrogen-containing compound having a hydroxy group, a nitrogen-containing compound having a hydroxy group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like. Particularly, an aliphatic amine is preferably used.
[0083]
Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine, etc. are exemplified as secondary aliphatic amines. Dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, disi Lopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepenta The tertiary aliphatic amines are exemplified by trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, and tripentylamine. , Tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, Examples include cetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like. Is done.
[0084]
Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine. Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3- Methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5- Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dim Lupyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole, 4-methylimidazole, 4 -Methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.) ), Imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethyl) Lysine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridine, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine Derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinoline carbo Nitriles), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine Examples include derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
[0085]
Furthermore, examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (eg, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine , Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like, and examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. Nitrogen-containing compounds having a hydroxy group, nitrogen-containing compounds having a hydroxyphenyl group, and alcoholic nitrogen-containing compounds include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3-indolemeta Hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) Ethyl] piperazine, piperidineethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propane Diol, 8-hydroxy Loridine, 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidine ethanol, 1-aziridine ethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide, etc. Illustrated. Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. Examples of the imide derivative include phthalimide, succinimide, maleimide and the like.
[0086]
Furthermore, 1 type, or 2 or more types chosen from the basic compound shown by the following general formula (B) -1 can also be added.
N (X)n(Y)3-n          (B) -1
In the formula, n = 1, 2 or 3. The side chains X may be the same or different and can be represented by the following general formulas (X) -1 to (X) -3. The side chain Y represents the same or different hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain an ether group or a hydroxyl group. Xs may be bonded to form a ring.
[0087]
Where R300, R302, R305Is a linear or branched alkylene group having 1 to 4 carbon atoms, R301, R304Is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain one or more hydroxy groups, ether groups, ester groups and lactone rings.
[0088]
R303Is a single bond, a linear or branched alkylene group having 1 to 4 carbon atoms, and R306Is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms and may contain one or more hydroxy groups, ether groups, ester groups and lactone rings.
[0089]
Embedded image
Figure 0004061454
[0090]
Specific examples of the compound represented by formula (B) -1 are given below.
Tris (2-methoxymethoxyethyl) amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris {2- (2-methoxyethoxymethoxy) ethyl} amine, tris {2- (1-methoxyethoxy) ethyl } Amine, Tris {2- (1-ethoxyethoxy) ethyl} amine, Tris {2- (1-ethoxypropoxy) ethyl} amine, Tris [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] amine, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane, 4,7,13,18-tetraoxa-1,10-diazabicyclo [8.5.5] Eicosane, 1,4,10,13-tetraoxa-7,16-diazabicyclooctadecane, 1-aza-12-crown-4 1-aza-15-crown-5, 1-aza-18-crown-6, tris (2-formyloxyethyl) amine, tris (2-formyloxyethyl) amine, tris (2-acetoxyethyl) amine, Tris (2-propionyloxyethyl) amine, tris (2-butyryloxyethyl) amine, tris (2-isobutyryloxyethyl) amine, tris (2-valeryloxyethyl) amine, tris (2-pivalloy) Ruoxyxyethyl) amine, N, N-bis (2-acetoxyethyl) 2- (acetoxyacetoxy) ethylamine, tris (2-methoxycarbonyloxyethyl) amine, tris (2-tert-butoxycarbonyloxyethyl) amine, tris [2- (2-oxopropoxy) ethyl] amine, tris [2- Methoxycarbonylmethyl) oxyethyl] amine, tris [2- (tert-butoxycarbonylmethyloxy) ethyl] amine, tris [2- (cyclohexyloxycarbonylmethyloxy) ethyl] amine, tris (2-methoxycarbonylethyl) amine, tris (2-ethoxycarbonylethyl) amine, N, N-bis (2-hydroxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (methoxycarbonyl) ethylamine, N, N -Bis (2-hydroxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2 -Methoxyethoxycarbonyl) Tylamine, N, N-bis (2-acetoxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-hydroxyethoxycarbonyl) ethylamine, N, N- Bis (2-acetoxyethyl) 2- (2-acetoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-acetoxy) Ethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- ( 2-oxopropoxycarbonyl) ethylamine, N, N-bis ( -Hydroxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- [(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (4-hydroxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (4-formyloxybutoxycarbonyl) ethylamine, N, N-bis (2-formyl) Oxyethyl) 2- (2-formyloxyate) Sicarbonyl) ethylamine, N, N-bis (2-methoxyethyl) 2- (methoxycarbonyl) ethylamine, N- (2-hydroxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-acetoxy) Ethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-hydroxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (ethoxycarbonyl) Ethyl] amine, N- (3-hydroxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (3-acetoxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-methoxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N-butylbis [2 -(Methoxycarbonyl) ethyl] amine, N-butylbis [2- (2-methoxyethoxycarbonyl) ethyl] amine, N-methylbis (2-acetoxyethyl) amine, N-ethylbis (2-acetoxyethyl) amine, N- Methylbis (2-pivaloyloxyoxyethyl) amine, N-ethylbis [2- (methoxycarbonyloxy) ethyl] amine, N-ethylbis [2- (tert-butoxycarbonyloxy) ethyl] amine, tris (methoxycarbonylmethyl) Examples include, but are not limited to, amine, tris (ethoxycarbonylmethyl) amine, N-butylbis (methoxycarbonylmethyl) amine, N-hexylbis (methoxycarbonylmethyl) amine, and β- (diethylamino) -δ-valerolactone.
[0091]
Furthermore, 1 type, or 2 or more types of the basic compound which has a cyclic structure shown by the following general formula (B) -2 can also be added.
[0092]
Embedded image
Figure 0004061454
(In the formula, X is R as described above.307Is a linear or branched alkylene group having 2 to 20 carbon atoms and may contain one or a plurality of carbonyl groups, ether groups, ester groups and sulfides. )
[0093]
Specifically as formula (B) -2, 1- [2- (methoxymethoxy) ethyl] pyrrolidine, 1- [2- (methoxymethoxy) ethyl] piperidine, 4- [2- (methoxymethoxy) ethyl] morpholine , 1- [2-[(2-methoxyethoxy) methoxy] ethyl] pyrrolidine, 1- [2-[(2-methoxyethoxy) methoxy] ethyl] piperidine, 4- [2-[(2-methoxyethoxy) methoxy ] Ethyl] morpholine, 2- (1-pyrrolidinyl) ethyl acetate, 2-piperidinoethyl acetate, 2-morpholinoethyl acetate, 2- (1-pyrrolidinyl) ethyl formate, 2-piperidinoethyl propionate, 2-morpholinoethyl acetoxyacetate, methoxy 2- (1-Pyrrolidinyl) ethyl acetate, 4- [2- (methoxycarbonyloxy) ethyl] mol Phosphorus, 1- [2- (t-butoxycarbonyloxy) ethyl] piperidine, 4- [2- (2-methoxyethoxycarbonyloxy) ethyl] morpholine, methyl 3- (1-pyrrolidinyl) propionate, 3-piperidi Methyl nopropionate, methyl 3-morpholinopropionate, methyl 3- (thiomorpholino) propionate, methyl 2-methyl-3- (1-pyrrolidinyl) propionate, ethyl 3-morpholinopropionate, 3-piperidinopropion Methoxycarbonylmethyl acid, 2-hydroxyethyl 3- (1-pyrrolidinyl) propionate, 2-acetoxyethyl 3-morpholinopropionate, 2-oxotetrahydrofuran-3-yl 3- (1-pyrrolidinyl) propionate, 3-morpholino Tetrahydrofurfuryl propionate Glycidyl 3-piperidinopropionate, 2-methoxyethyl 3-morpholinopropionate, 2- (2-methoxyethoxy) ethyl 3- (1-pyrrolidinyl) propionate, butyl 3-morpholinopropionate, 3-piperidino Cyclohexyl propionate, α- (1-pyrrolidinyl) methyl-γ-butyrolactone, β-piperidino-γ-butyrolactone, β-morpholino-δ-valerolactone, methyl 1-pyrrolidinyl acetate, methyl piperidinoacetate, methyl morpholinoacetate, thiomorpholino Examples thereof include methyl acetate, ethyl 1-pyrrolidinyl acetate and 2-methoxyethyl morpholinoacetate.
[0094]
Furthermore, a basic compound containing a cyano group represented by general formulas (B) -3 to (B) -6 can be added.
[0095]
Embedded image
Figure 0004061454
(Where X, R307, N is R as described above.308, R309Are the same or different C1-C4 linear and branched alkylene groups. )
[0096]
Specific examples of the base containing a cyano group include 3- (diethylamino) propiononitrile, N, N-bis (2-hydroxyethyl) -3-aminopropiononitrile, and N, N-bis (2-acetoxyethyl). -3-aminopropiononitrile, N, N-bis (2-formyloxyethyl) -3-aminopropiononitrile, N, N-bis (2-methoxyethyl) -3-aminopropiononitrile, N, N -Bis [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, methyl N- (2-cyanoethyl) -N- (2-methoxyethyl) -3-aminopropionate, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropionic acid methyl, N- (2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopro Methyl onate, N- (2-cyanoethyl) -N-ethyl-3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropiononitrile, N- ( 2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-formyloxyethyl) -3-aminopropiononitrile, N- (2 -Cyanoethyl) -N- (2-methoxyethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, N- ( 2-cyanoethyl) -N- (3-hydroxy-1-propyl) -3-aminopropiononitrile, N- (3-acetoxy-1-propyl) -N- (2 Cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (3-formyloxy-1-propyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N-tetrahydrofur Furyl-3-aminopropiononitrile, N, N-bis (2-cyanoethyl) -3-aminopropiononitrile, diethylaminoacetonitrile, N, N-bis (2-hydroxyethyl) aminoacetonitrile, N, N-bis ( 2-acetoxyethyl) aminoacetonitrile, N, N-bis (2-formyloxyethyl) aminoacetonitrile, N, N-bis (2-methoxyethyl) aminoacetonitrile, N, N-bis [2- (methoxymethoxy) ethyl Aminoacetonitrile, N-cyanomethyl-N- (2-methoxyethyl) ) Methyl 3-aminopropionate, methyl N-cyanomethyl-N- (2-hydroxyethyl) -3-aminopropionate, methyl N- (2-acetoxyethyl) -N-cyanomethyl-3-aminopropionate, N -Cyanomethyl-N- (2-hydroxyethyl) aminoacetonitrile, N- (2-acetoxyethyl) -N- (cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (2-formyloxyethyl) aminoacetonitrile, N-cyanomethyl -N- (2-methoxyethyl) aminoacetonitrile, N-cyanomethyl-N- [2- (methoxymethoxy) ethyl] aminoacetonitrile, N- (cyanomethyl) -N- (3-hydroxy-1-propyl) aminoacetonitrile, N- (3-acetoxy-1-propyl) -N (Cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (3-formyloxy-1-propyl) aminoacetonitrile, N, N-bis (cyanomethyl) aminoacetonitrile, 1-pyrrolidinepropiononitrile, 1-piperidinepropiononitrile, 4-morpholinepropiononitrile, 1-pyrrolidineacetonitrile, 1-piperidineacetonitrile, 4-morpholineacetonitrile, cyanomethyl 3-diethylaminopropionate, cyanomethyl N, N-bis (2-hydroxyethyl) -3-aminopropionate, N, Cyanomethyl N-bis (2-acetoxyethyl) -3-aminopropionate, cyanomethyl N, N-bis (2-formyloxyethyl) -3-aminopropionate, N, N-bis (2-methoxyethyl) Cyanomethyl 3-aminopropionate, N, N-bis [2- (methoxymethoxy) ethyl] -3-aminopropionate cyanomethyl, 3-diethylaminopropionic acid (2-cyanoethyl), N, N-bis (2-hydroxyethyl) ) -3-Aminopropionic acid (2-cyanoethyl), N, N-bis (2-acetoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis (2-formyloxyethyl) -3 Aminopropionic acid (2-cyanoethyl), N, N-bis (2-methoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis [2- (methoxymethoxy) ethyl] -3- Aminopropionic acid (2-cyanoethyl), 1-pyrrolidinepropionate cyanomethyl, 1-piperidinepropionate cyano Examples include methyl, cyanomethyl 4-morpholine propionate, 1-pyrrolidinepropionic acid (2-cyanoethyl), 1-piperidinepropionic acid (2-cyanoethyl), 4-morpholine propionic acid (2-cyanoethyl).
[0097]
In addition, the compounding quantity of this invention basic compound is 0.001-2 parts with respect to 100 parts of all base resins, Especially 0.01-1 part is suitable. When the blending amount is less than 0.001 part, there is no blending effect, and when it exceeds 2 parts, the sensitivity may be excessively lowered.
[0098]
In addition to the above components, a surfactant conventionally used for improving the coating property can be added as an optional component to the resist material of the present invention. In addition, the addition amount of an arbitrary component can be made into a normal amount in the range which does not inhibit the effect of this invention.
[0099]
Here, the surfactant is preferably nonionic, and examples thereof include perfluoroalkyl polyoxyethylene ethanol, fluorinated alkyl ester, perfluoroalkylamine oxide, and fluorinated organosiloxane compound. For example, Florard “FC-430”, “FC-431” (all manufactured by Sumitomo 3M Limited), Surflon “S-141”, “S-145”, “S-381”, “S-383” (any Manufactured by Asahi Glass Co., Ltd.), Unidyne "DS-401", "DS-403", "DS-451" (all manufactured by Daikin Industries, Ltd.), MegaFuck "F-8151", "F-171" , “F-172”, “F-173”, “F-177” (all manufactured by Dainippon Ink and Co., Ltd.), “X-70-092”, “X-70-093” (all Shin-Etsu) Chemical Industry Co., Ltd.). Preferably, Florard “FC-430” (manufactured by Sumitomo 3M Co., Ltd.), “X-70-093” (manufactured by Shin-Etsu Chemical Co., Ltd.) can be used.
[0100]
In order to form a pattern using the resist material of the present invention, a known lithography technique can be adopted. For example, a film thickness of 0.1 to 0.1 can be formed on a substrate such as a silicon wafer by spin coating or the like. It is applied to a thickness of 1.0 μm and prebaked on a hot plate at 60 to 200 ° C. for 10 seconds to 10 minutes, preferably 80 to 150 ° C. for 30 seconds to 5 minutes. Next, a mask for forming a target pattern is placed over the resist film, and high-energy rays such as far ultraviolet rays having a wavelength of 300 nm or less, excimer laser, X-rays or electron beams are applied in an exposure amount of 1 to 200 mJ / cm.2Degree, preferably 10 to 100 mJ / cm2After irradiation to a degree, post-exposure baking (PEB) is performed on a hot plate at 60 to 150 ° C. for 10 seconds to 5 minutes, preferably 80 to 130 ° C. for 30 seconds to 3 minutes. Further, using an alkaline aqueous developer such as tetramethylammonium hydroxide (TMAH) of 0.1 to 5%, preferably 2-3%, immersion for 10 seconds to 3 minutes, preferably 30 seconds to 2 minutes. The target pattern is formed on the substrate by developing by a conventional method such as a dip method, a paddle method, or a spray method. The material of the present invention is a 254 to 120 nm deep ultraviolet ray or excimer laser, especially 193 nm ArF, 157 nm F, among high energy rays.2146 nm Kr2134 nm KrAr, 126 nm Ar2It is most suitable for fine patterning by excimer laser such as X-ray and electron beam. In addition, when the above range deviates from the upper limit and the lower limit, the target pattern may not be obtained.
[0101]
FIG. 1 shows a method of forming a silicon-containing resist pattern by exposure, PEB, and development, forming a base organic film pattern by oxygen gas etching, and processing a film to be processed by dry etching. Here, in FIG. 1A, 1 is a base substrate, 2 is a substrate to be processed (SiO 2).2, SiN, etc.), 3 is an organic film (novolak, polyhydroxystyrene, etc.), 4 is a resist layer made of a resist material containing a silicon-containing polymer compound according to the present invention, and as shown in FIG. The required portion of the resist layer is exposed to light 5, and further, PEB and development are performed as shown in FIG. 1C to remove the exposed area, and oxygen plasma etching is performed as shown in FIG. As shown in FIG. 1 (E), the substrate can be etched (CF gas) to form a pattern.
[0102]
Here, oxygen gas etching is reactive plasma etching in which oxygen gas is a main component, and an underlying organic film can be processed with a high aspect ratio. In order to prevent T-top shape due to over-etching in addition to oxygen gas, SO for the purpose of sidewall protection2Or N2, CO2CO gas may be added. Further, in order to remove the scum of the resist after development, to smooth the line edge and prevent roughness, it is possible to perform etching with a short-time fluorocarbon gas before performing oxygen gas etching. Next, the dry etching process of the film to be processed is performed by using the SiO 2 film to be processed.2And Si3N4If so, etching is performed using a fluorocarbon gas as a main component. Fluorocarbon gas is CF4, CHF3, CF2F2, C2F6, C3F8, C4F10, C5F12Etc. At this time, the silicon-containing resist film can be peeled off simultaneously with dry etching of the film to be processed. When the film to be processed is polysilicon, tungsten silicide, TiN / Al, or the like, etching using chlorine and bromine gas as main components is performed.
[0103]
The silicon-containing resist of the present invention exhibits excellent resistance to etching mainly composed of chlorine and bromine gas, and the same processing method as that of a single layer resist can be used.
[0104]
FIG. 2 shows this. In FIG. 2A, reference numeral 1 denotes a base substrate, 6 denotes a substrate to be processed, and 4 denotes the resist layer as shown in FIGS. 2B and 2C. Further, after performing exposure 5, PEB, and development, the substrate to be processed (Cl-based gas) can be etched as shown in FIG. 2D. Thus, the present invention is directly above the film to be processed. The silicon-containing resist film can be patterned, and the film to be processed can be processed by etching mainly containing chlorine and bromine gas.
[0105]
【The invention's effect】
The resist material of the present invention is sensitive to high energy rays and is excellent in sensitivity, resolution and plasma etching resistance at a wavelength of 200 nm or less, particularly 170 nm or less. Therefore, the resist material according to the present invention has F characteristics in particular because of these characteristics.2It can be a resist material that absorbs less light at the exposure wavelength of the excimer laser, and can easily form a fine pattern perpendicular to the substrate. Therefore, it is suitable as a fine pattern forming material for VLSI manufacturing.
[0106]
【Example】
EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following example.
[0107]
    [Synthesis Example 1] 5- (2-acetoxy-2,2-bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptan-2-ene
  In a 200ml autoclave,ShiClopentadiene (13.2 g) and 1,1-bistrifluoromethyl-3-buten-1-ol (43.8 g) were charged and stirred at 180 ° C. for 2 hours. The reaction mixture was distilled under reduced pressure to obtain 19.6 g of 5- (2-hydroxy-2,2-bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptan-2-ene (bp 84-88 ° C). / 25 mmHg). Sodium hydride (1.9 g) and tetrahydrofuran (90 ml) were charged into a 200 ml three-necked flask, and a solution of the above norbornene derivative (18.0 g) in tetrahydrofuran (90 ml) was added dropwise while paying attention to the generation of hydrogen. After stirring at room temperature for 30 minutes, acetyl chloride (8.0 g) was added dropwise over 1 hour under ice cooling, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was poured into an ice-cooled aqueous sodium bicarbonate solution, and the aqueous layer was extracted with diethyl ether. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, concentrated and distilled under reduced pressure (boiling point 90-94 ° C./25 mmHg) to give the desired 5- (2-acetoxy-2,2- Bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptan-2-ene (16.6 g) was obtained. Its formation was confirmed by mass spectrum.
[0108]
Synthesis Example 2 (2-acetoxy-2,2-bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptanetrichlorosilane
In a 100 ml three-necked flask equipped with a stirrer, reflux, dropping funnel and thermometer, add 5- (2-acetoxy-2,2-bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptane-2. -Ene (9.0 g), 20 wt% chloroplatinic acid-isopropanol solution (0.009 g) and isooctane (15 ml) were charged and heated to 80 ° C. After the internal temperature was stabilized, trichlorosilane (4.3 g) was added dropwise over 30 minutes. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. The reaction solution was distilled under reduced pressure, and (2-acetoxy-2,2-bistrifluoromethyl) ethyl-bicyclo [2.2.1] heptanetrichlorosilane (8.2 g) was used as a fraction having a boiling point of 98 to 102 ° C./10 mmHg. Obtained.
[0109]
[Synthesis Example 3] γ-butyrolactone trichlorosilane
To a 100 ml three-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 2 (5H) -furanone (9.0 g), 20 wt% chloroplatinic acid-isopropanol solution (0.009 g), isooctane (15 ml) was charged and heated to 80 ° C. After the internal temperature was stabilized, trichlorosilane (14.3 g) was added dropwise over 30 minutes. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. The reaction solution was distilled under reduced pressure to obtain γ-butyrolactone trichlorosilane.
[0110]
Embedded image
Figure 0004061454
[0111]
    Synthesis Example 4 Bicyclo [2.2.1] heptanetrichlorosilane-6-spiro-4'-2'-oxooxolane
  Into a 100 ml three-necked flask equipped with a stirrer, reflux, dropping funnel and thermometer, add bicyclo [2.2.1] hept.Te6-spiro-4'-2'-oxooxolane (17.4 g), 20 wt% chloroplatinic acid-isopropanol solution (0.009 g), and isooctane (15 ml) were charged and heated to 80 ° C. After the internal temperature was stabilized, trichlorosilane (14.3 g) was added dropwise over 30 minutes. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. The reaction solution was distilled under reduced pressure to obtain bicyclo [2.2.1] heptanetrichlorosilane-6-spiro-4'-2'-oxooxolane.
[0112]
Embedded image
Figure 0004061454
[0113]
[Synthesis Example 5] Tetrahydropyranyltrichlorosilane
To a 100 ml three-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 3,4-dihydro-2H-pyran (9.0 g), 20 wt% chloroplatinic acid-isopropanol solution (0.009 g) ), Isooctane (15 ml) was charged and heated to 80 ° C. After the internal temperature was stabilized, trichlorosilane (14.4 g) was added dropwise over 30 minutes. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. The reaction solution was distilled under reduced pressure to obtain tetrahydropyranyltrichlorosilane.
[0114]
Embedded image
Figure 0004061454
[0115]
[Synthesis Example 6] Polymer (I)
A 200 ml three-necked flask was charged with triethylamine (8.5 g), toluene (5 ml), methyl isobutyl ketone (5 ml) and water (10 ml), and the norbornane derivative (5.0 g) obtained in Synthesis Example 2 was cooled with ice. ), Γ-butyrolactone trichlorosilane (3.0 g) obtained in Synthesis Example 3 was added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with methyl isobutyl ketone, repeatedly washed with a mixed aqueous solution of sodium chloride and ammonium chloride until the pH was 8 or less, and concentrated. This was dissolved in toluene, filtered, and stirred in a 200 ml three-necked flask at 200 ° C. for 12 hours to obtain a polymer having a weight average molecular weight of 3,600 (6.2 g). After allowing to cool, potassium carbonate (7.7 g), methanol (45 ml), tetrahydrofuran (55 ml) and water (10 ml) were added, and the mixture was stirred at room temperature for 12 hours. A saturated aqueous ammonium chloride solution (50 ml) and water (10 ml) were added thereto, the aqueous layer was extracted with ether, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. This was dissolved in tetrahydrofuran (50 ml), methanesulfonic acid (0.3 g) was added, ethyl vinyl ether (1.3 g) was added at 30 ° C. and stirred for 3 hours, and concentrated aqueous ammonia was added to neutralize. The solvent of this reaction solution was changed to ethyl acetate, washed 6 times with a mixed solution of pure water and acetone, then changed to acetone and added dropwise to pure water. The crystallized product was collected by filtration, washed with pure water, and vacuum dried to obtain (3.9 g) of white powder. As a result of NMR and GPC analysis, it was confirmed that this was a polymer (I) having a weight average molecular weight of 3,900 represented by the following formula.
[0116]
Embedded image
Figure 0004061454
[0117]
[Synthesis Example 7] Polymer (II)
A 200 ml three-necked flask was charged with triethylamine (8.5 g), toluene (5 ml), methyl isobutyl ketone (5 ml) and water (10 ml), and the norbornane derivative (5.0 g) obtained in Synthesis Example 2 was cooled with ice. ), Bicyclo [2.2.1] heptanetrichlorosilane-6-spiro-4′-2′-oxooxolane (6.0 g) obtained in Synthesis Example 4 was added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with methyl isobutyl ketone, repeatedly washed with a mixed aqueous solution of sodium chloride and ammonium chloride until the pH was 8 or less, and concentrated. This was dissolved in toluene, filtered, and stirred in a 200 ml three-necked flask at 200 ° C. for 12 hours to obtain a polymer having a weight average molecular weight of 3,600 (6.2 g). After allowing to cool, potassium carbonate (7.7 g), methanol (45 ml), tetrahydrofuran (55 ml) and water (10 ml) were added, and the mixture was stirred at room temperature for 12 hours. A saturated aqueous ammonium chloride solution (50 ml) and water (10 ml) were added thereto, the aqueous layer was extracted with ether, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. This was dissolved in tetrahydrofuran (50 ml), methanesulfonic acid (0.3 g) was added, ethyl vinyl ether (1.3 g) was added at 30 ° C. and stirred for 3 hours, and concentrated aqueous ammonia was added to neutralize. The solvent of this reaction solution was changed to ethyl acetate, washed 6 times with a mixed solution of pure water and acetone, then changed to acetone and added dropwise to pure water. The crystallized product was collected by filtration, washed with pure water, and vacuum-dried (4.2 g) to obtain a white powder. As a result of NMR and GPC analysis, it was confirmed that this was a polymer (II) having a weight average molecular weight of 3,700 represented by the following formula.
[0118]
Embedded image
Figure 0004061454
[0119]
[Synthesis Example 8] Polymer (III)
A 200 ml three-necked flask was charged with triethylamine (8.5 g), toluene (5 ml), methyl isobutyl ketone (5 ml) and water (10 ml), and the norbornane derivative (5.0 g) obtained in Synthesis Example 2 was cooled with ice. ), Tetrahydropyranyltrichlorosilane (6.0 g) obtained in Synthesis Example 5 was added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with methyl isobutyl ketone, repeatedly washed with a mixed aqueous solution of sodium chloride and ammonium chloride until the pH was 8 or less, and concentrated. This was dissolved in toluene, filtered, and stirred in a 200 ml three-necked flask at 200 ° C. for 12 hours to obtain a polymer having a weight average molecular weight of 4400 (6.2 g). After allowing to cool, potassium carbonate (7.7 g), methanol (45 ml), tetrahydrofuran (55 ml) and water (10 ml) were added, and the mixture was stirred at room temperature for 12 hours. A saturated aqueous ammonium chloride solution (50 ml) and water (10 ml) were added thereto, the aqueous layer was extracted with ether, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. This was dissolved in tetrahydrofuran (50 ml), methanesulfonic acid (0.3 g) was added, ethyl vinyl ether (1.3 g) was added at 30 ° C. and stirred for 3 hours, and concentrated aqueous ammonia was added to neutralize. The solvent of this reaction solution was changed to ethyl acetate, washed 6 times with a mixed solution of pure water and acetone, then changed to acetone and added dropwise to pure water. The crystallized product was collected by filtration, washed with pure water, and vacuum dried to obtain (5.2 g) of white powder. As a result of NMR and GPC analysis, it was confirmed that this was a polymer (III) having a weight average molecular weight of 4,500 represented by the following formula.
[0120]
Embedded image
Figure 0004061454
[0121]
    [Comparative Synthesis Example] Polymer IV
  1,200 ml of water was charged into the reactor, and a mixture of 487.2 g (2.0 mol) of p-methoxybenzyltrichlorosilane and 600 ml of toluene was added dropwise over 2 hours while stirring at 30 ° C. to perform hydrolysis. . Thereafter, the aqueous layer was removed by a liquid separation operation, and the organic layer was washed with water until the aqueous layer became neutral. To the organic layer, 80 g of hexamethylsilazane was added and refluxed for 5 hours. After cooling, toluene and unreacted hexamethylsilazane were distilled off by an evaporator, and then dissolved in 400 g of acetonitrile. In this solution, 480 g of trimethylsilyl iodide was dropped at 60 ° C. or less, and the reaction was performed at 60 ° C. for 10 hours. After completion of the reaction, hydrolysis was performed by adding 200 g of water, and then a polymer layer was obtained by decanting. After removing the solvent with an evaporator, the polymer was vacuum-dried to obtain 330 g of poly (p-hydroxybenzylsilsesquioxane). When the molecular weight of this polymer was measured by GPC (gel permeation chromatography), it was Mw = 3,500 in terms of polystyrene.
  Into a 2L flaskPo160 g of li (p-hydroxybenzylsilsesquioxane) was dissolved in 1,000 ml of dimethylformamide, and after adding a catalytic amount of p-toluenesulfonic acid, 19.0 g of ethyl vinyl ether was added with stirring at 20 ° C. After reacting for 1 hour, the mixture was neutralized with concentrated aqueous ammonia, and the neutralized reaction solution was added dropwise to 10 L of water to obtain a white solid. This was filtered, dissolved in 500 ml of acetone, dropped into 10 L of water, filtered and dried in vacuo. As a result of NMR and GPC analysis, it was confirmed that this was a polymer (IV) having a weight average molecular weight of 3,800 represented by the following formula.
[0122]
Embedded image
Figure 0004061454
[0123]
Evaluation example
[Polymer permeability measurement]
1 g of the obtained polymer was sufficiently dissolved in 10 g of propylene glycol monomethyl ether acetate and filtered through a 0.2 μm filter to prepare a polymer solution.
Polymer solution is MgF2The substrate was spin-coated, baked at 100 ° C. for 90 seconds using a hot plate, and a polymer layer having a thickness of 100 nm was MgF.2Created on the substrate. The transmittance at 248 nm, 193 nm, and 157 nm was measured using a vacuum ultraviolet photometer (manufactured by JASCO Corporation, VUV200S). The results are shown in Table 1.
[0124]
[Table 1]
Figure 0004061454
[0125]
[Dry etching resistance test]
2 g of the polymer obtained above was sufficiently dissolved in 10 g of propylene glycol monomethyl ether acetate and filtered through a 0.2 μm filter to prepare a polymer solution.
The polymer solution was applied to a silicon wafer by spin coating, and baked at 100 ° C. for 90 seconds to form a polymer film having a thickness of 300 nm.
Next, the wafer on which the polymer film was formed was dry-etched under the following two conditions, and the difference in film thickness between the polymer film before and after etching was determined.
[0126]
(1) O2Etching test with gas
Using a dry etching apparatus TE-8500P manufactured by Tokyo Electron Limited, the difference in thickness of the resist before and after etching was determined. Etching conditions are as shown below.
[0127]
[Table 2]
Figure 0004061454
[0128]
(2) Cl2/ BCl3Etching test with system gas
Using a dry etching apparatus L-507D-L manufactured by Nidec Anelva Co., Ltd., the difference in thickness of the polymer before and after etching was determined. Etching conditions are as shown below.
[0129]
[Table 3]
Figure 0004061454
[0130]
Table 4 shows the results of the etching test.
[Table 4]
Figure 0004061454
[0131]
[Examples of resist preparation]
  Including 0.01% by weight of FC-430 (manufactured by Sumitomo 3M Limited), the polymer obtained in the synthesis example, an acid generator represented by PAG1 and 2, a base represented by Table 5, and a dissolution inhibitor represented by DRI Propylene glycol monomethyl ether acetate (PGMEA) solvent is sufficiently dissolved in 1,000 parts by weight of the composition shown in Table 5, and 0.1 μm Teflon.(Registered trademark)Each resist solution was prepared by filtering the manufactured filter.
[0132]
Next, the obtained resist solution is formed on a silicon wafer with DUV-30 (manufactured by Nissan Chemical Co., Ltd.) having a film thickness of 55 nm, and the reflectance is suppressed to 1% or less with KrF light (248 nm). It spin-coated and baked at 100 degreeC for 90 second using the hotplate, and the thickness of the resist was 100 nm in thickness.
This is exposed using a KrF excimer laser stepper (Nikon Corporation, NSR-S202A, NA-0.6, σ0.75, 2/3 annular illumination), and baked immediately after exposure at 110 ° C. for 90 seconds. Development was carried out with an aqueous solution of 38% tetramethylammonium hydroxide for 30 seconds to obtain a positive pattern.
[0133]
The obtained resist pattern was evaluated as follows. The results are shown in Table 5.
Evaluation methods:
The exposure amount for resolving a 0.25 μm line and space at 1: 1 was the optimum exposure amount (Eop), and the minimum line width of the line and space separated at this exposure amount was taken as the resolution of the evaluation resist.
[0134]
[Table 5]
Figure 0004061454
[0135]
Embedded image
Figure 0004061454
[0136]
From the above results, the resist material using the polymer compound of the present invention satisfies the same resolution and sensitivity as the conventionally proposed benzylsilsesquioxane type, and the difference in film thickness after etching is small. It was found to have excellent dry etching resistance. Furthermore, the transmittance in the VUV region is very high, and F2It turned out to be a promising material in lithography.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a processing process using oxygen etching.
FIG. 2 is an explanatory diagram of a processing process using chlorine-based etching.
[Explanation of symbols]
1 Substrate
2 Substrate to be processed
3 Organic membrane
4 resist layer
5 Exposure
6 Substrate

Claims (8)

下記一般式(1)で示される繰り返し単位を有する重量平均分子量1,000〜100,000の高分子化合物。
Figure 0004061454
(式中、
Figure 0004061454
で表される単位は、下記式から選ばれる。
Figure 0004061454
2は酸不安定基である。a、bは正数である。また、
Figure 0004061454
は、下記式から選ばれる。
Figure 0004061454
Figure 0004061454
Figure 0004061454
Figure 0004061454
A polymer compound having a repeating unit represented by the following general formula (1) and having a weight average molecular weight of 1,000 to 100,000.
Figure 0004061454
(Where
Figure 0004061454
The unit represented by is selected from the following formulae.
Figure 0004061454
R 2 is Ru der acid labile group. a and b are positive numbers . Also,
Figure 0004061454
Is selected from the following formulae.
Figure 0004061454
Figure 0004061454
Figure 0004061454
Figure 0004061454
請求項記載の高分子化合物を含むことを特徴とするレジスト材料。A resist material comprising the polymer compound according to claim 1 . (A)請求項記載の高分子化合物、
(B)有機溶剤、
(C)酸発生剤
を含有することを特徴とする化学増幅レジスト材料。
(A) The polymer compound according to claim 1 ,
(B) an organic solvent,
(C) A chemically amplified resist material comprising an acid generator.
更に、(D)塩基性化合物を含有する請求項記載のレジスト材料。The resist material according to claim 3 , further comprising (D) a basic compound. 更に、(E)溶解阻止剤を含有する請求項又は記載のレジスト材料。The resist material according to claim 3 or 4 , further comprising (E) a dissolution inhibitor. (1)請求項乃至のいずれか1項記載の化学増幅レジスト材料を基板上に塗布する工程と、
(2)次いで加熱処理後、フォトマスクを介して波長300nm以下の高エネルギー線もしくは電子線で露光する工程と、
(3)必要に応じて加熱処理した後、現像液を用いて現像する工程と
を含むことを特徴とするパターン形成方法。
(1) a step of applying the chemically amplified resist material according to any one of claims 3 to 5 on a substrate;
(2) Next, after the heat treatment, a step of exposing with a high energy beam or an electron beam having a wavelength of 300 nm or less through a photomask;
(3) A pattern forming method characterized by including a step of performing heat treatment as necessary and then developing with a developer.
請求項において、パターン形成後、酸素プラズマエッチングを含むエッチングにより下地の加工を行うレジストパターン形成方法。7. The resist pattern forming method according to claim 6, wherein after the pattern is formed, the base is processed by etching including oxygen plasma etching. 請求項において、パターン形成後、塩素あるいは臭素を含むハロゲンガスによるエッチングにより下地の加工を行うレジストパターン形成方法。7. The resist pattern forming method according to claim 6, wherein after the pattern is formed, the base is processed by etching with a halogen gas containing chlorine or bromine.
JP2001070217A 2001-03-13 2001-03-13 Polymer compound, resist material, and pattern forming method Expired - Lifetime JP4061454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070217A JP4061454B2 (en) 2001-03-13 2001-03-13 Polymer compound, resist material, and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070217A JP4061454B2 (en) 2001-03-13 2001-03-13 Polymer compound, resist material, and pattern forming method

Publications (2)

Publication Number Publication Date
JP2002268227A JP2002268227A (en) 2002-09-18
JP4061454B2 true JP4061454B2 (en) 2008-03-19

Family

ID=18928124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070217A Expired - Lifetime JP4061454B2 (en) 2001-03-13 2001-03-13 Polymer compound, resist material, and pattern forming method

Country Status (1)

Country Link
JP (1) JP4061454B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534371B2 (en) * 2001-03-16 2010-09-01 Jsr株式会社 Radiation sensitive resin composition
TWI310119B (en) * 2003-02-26 2009-05-21 Tokyo Ohka Kogyo Co Ltd Silsequioxane resin, positive photoresist composition, resist laminar body and resist pattern formation method
KR100779442B1 (en) * 2003-02-26 2007-11-28 도오꾜오까고오교 가부시끼가이샤 Silsesquioxane resin, positive resist composition, layered product including resist, and method of forming resist pattern
KR100578737B1 (en) * 2003-06-25 2006-05-12 학교법인 포항공과대학교 Preparation of star-shaped polymers containing reactive end groups and polymer composite film having low dielectric constant using the same
US6939664B2 (en) * 2003-10-24 2005-09-06 International Business Machines Corporation Low-activation energy silicon-containing resist system
JP4488215B2 (en) 2004-08-19 2010-06-23 信越化学工業株式会社 Resist composition and pattern forming method using the same
JP2006106311A (en) * 2004-10-05 2006-04-20 Shin Etsu Chem Co Ltd Silicon-containing resist composition and method for forming pattern by using the same
US20060223001A1 (en) 2005-03-28 2006-10-05 Isao Nishimura Radiation-sensitive resin composition
JP4626758B2 (en) 2005-07-07 2011-02-09 信越化学工業株式会社 Silicon compound and silicone resin having fluorine-containing cyclic structure, resist composition using the same, and pattern forming method
JP4600678B2 (en) 2006-02-13 2010-12-15 信越化学工業株式会社 Resist composition and pattern forming method using the same
JP4600679B2 (en) * 2006-02-13 2010-12-15 信越化学工業株式会社 Resist composition and pattern forming method using the same
JP4687898B2 (en) 2006-03-14 2011-05-25 信越化学工業株式会社 Fluorine-containing silicon compound, silicone resin, resist composition using the same, and pattern forming method
JP4509080B2 (en) * 2006-09-28 2010-07-21 信越化学工業株式会社 Silsesquioxane compound mixture, hydrolyzable silane compound, production method thereof, resist composition using the same, pattern formation method, and substrate processing method
JP5158370B2 (en) 2008-02-14 2013-03-06 信越化学工業株式会社 Double pattern formation method
JP5007827B2 (en) 2008-04-04 2012-08-22 信越化学工業株式会社 Double pattern formation method

Also Published As

Publication number Publication date
JP2002268227A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4114064B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
US20040013980A1 (en) Silicon-containing polymer, resist composition and patterning process
JP4525912B2 (en) Polymer compound, resist material, and pattern forming method
EP1236745B1 (en) Silicon-containing polymer, resist composition and patterning process
JP4488174B2 (en) Resist material and pattern forming method
JP4061454B2 (en) Polymer compound, resist material, and pattern forming method
JP3856122B2 (en) Resist material and pattern forming method
JP3931951B2 (en) Polymer compound, resist material, and pattern forming method
JP3945200B2 (en) Chemically amplified resist material and pattern forming method
JP3874070B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
JP4114067B2 (en) Polymer compound, resist material, and pattern forming method
JP3978601B2 (en) Chemically amplified resist material and pattern forming method
JP4088746B2 (en) Polymer compound, chemically amplified resist material, and pattern forming method
US7232638B2 (en) Resist composition and patterning process
JP3900246B2 (en) Polymer compound, resist material, and pattern forming method
JP3915895B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
JP4200368B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
JP4718114B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
JP3931950B2 (en) Polymer compound, resist material, and pattern forming method
JP3912516B2 (en) Polymer compound, resist material, and pattern forming method
JP4154593B2 (en) Resist material and pattern forming method
JP4055654B2 (en) Silicon-containing polymer compound, resist material, and pattern forming method
JP4013063B2 (en) Resist material and pattern forming method
JP3944717B2 (en) Polymer compound, resist material, and pattern forming method
JP3944724B2 (en) Resist material and pattern forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term