JP4060020B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4060020B2
JP4060020B2 JP2000042695A JP2000042695A JP4060020B2 JP 4060020 B2 JP4060020 B2 JP 4060020B2 JP 2000042695 A JP2000042695 A JP 2000042695A JP 2000042695 A JP2000042695 A JP 2000042695A JP 4060020 B2 JP4060020 B2 JP 4060020B2
Authority
JP
Japan
Prior art keywords
insulating member
semiconductor device
mounting portion
element mounting
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000042695A
Other languages
Japanese (ja)
Other versions
JP2001237366A (en
Inventor
貴信 吉田
利彰 篠原
寿 川藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000042695A priority Critical patent/JP4060020B2/en
Publication of JP2001237366A publication Critical patent/JP2001237366A/en
Application granted granted Critical
Publication of JP4060020B2 publication Critical patent/JP4060020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which does not have the forming inconvenience of a sealing part and whose insulating property and heat radiation property are secured. SOLUTION: A semiconductor device 101 is provided with an electrode frame 2, power semiconductor elements 1, an insulating member 7 constituted of ceramic and a sealing part 5 constituted of epoxy resin. The power semiconductor elements 1 are loaded on the surface 2S1 of the element loading part 2D of the electrode frame 2. The peripheral edge of the surface 7S1 of the insulating member 7 facing the surface 2S2 of the element loading part 2D has a size and a shape large enough to surround the peripheral edge of the surface 2S2 of the element loading part 2D. The peripheral edge of the surface 7S1 is arranged by surrounding the peripheral edge of the surface 2S2 of the element loading part 2D. The sealing part 5 is formed so that it covers the power semiconductor elements 1 and the element loading part 2D and it is brought into contact with the surfaces 7S1 and 7S3 of the insulating member 7. The surface 7S2 of the insulating member 7 is not covered by the sealing part 5 and the whole surface 7S2 is exposed.

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に関するものであり、特に、発熱の大きい半導体素子を備えた半導体装置における封止ないしはパッケージの形成及び絶縁性の確保、更には放熱の各技術に関する。
【0002】
【従来の技術】
図10に、従来の電力用半導体装置101P(以下、単に半導体装置101Pとも呼ぶ)を説明するための縦断面図を示す。図10に示すように、電極フレーム2の素子搭載部ないしはダイパッド2D上に電力用半導体素子1がろう材3により接合されており、電力用半導体素子1と電極フレーム2のリード部2Lとの間等が金属細線4で接続されている。電力用半導体素子1及び素子搭載部2Dは封止樹脂5Pで以て封止されており、封止樹脂5Pにより半導体装置101Pの絶縁性を確保している。封止樹脂5Pは例えばポッティング法やトランスファモールド法により形成される。
【0003】
【発明が解決しようとする課題】
上述のように、従来の半導体装置101Pの素子搭載部2Dは封止樹脂5Pで覆われている。このとき、電力用半導体素子1の素子搭載部2D側の絶縁性を高めるためには、素子搭載部2D下方の封止樹脂5P(封止樹脂5PP参照)をより厚くする必要がある(厚さt参照)。しかしながら、一般的に封止樹脂5Pの熱伝導率は低いため、厚さtを増大させると熱抵抗が大きくなってしまう。即ち、電力用半導体素子1の発熱に対する放熱性が低下してしまう。
【0004】
他方、放熱性を向上させるために厚さtを減少させると上述の絶縁性を確保できないばかりでなく、封止樹脂5PPの形成不具合及び当該不具合に起因した絶縁性の低下が惹起される。即ち、封止樹脂5Pを例えばポッティング法やトランスファモールド法により形成する場合、厚さtが小さいと、素子搭載部2Dと金型(図示せず)との隙間へ封止樹脂を注入ないしは充填しにくくなる。このため、封止樹脂の充填不足等によって封止樹脂5PPの形成不具合が生じ、かかる形成不具合が封止樹脂5PPにおける絶縁性を低下させてしまう。
【0005】
本発明はかかる問題点に鑑みてなされたものであり、封止部の形成不具合を有さず絶縁性が確保された半導体装置を提供することを第1の目的とする。
【0006】
また、本発明は、上記第1の目的を実現しうる半導体装置を低コスト・低価格で提供することを第2の目的とする。
【0007】
更に、本発明は、上記第1及び第2の目的の実現と共に放熱性の安定化及び向上が図られた半導体装置を提供することを第3の目的とする。
【0008】
【課題を解決するための手段】
(1)請求項1に記載の発明に係る半導体装置は、素子搭載部及びリード部を有する電極フレームと、前記素子搭載部の一方の表面上に搭載された半導体素子と、その周縁が前記素子搭載部の他方の表面の周縁を取り囲んで前記他方の表面に対面する第1表面と、前記第1表面に対向する第2表面とを有し、前記素子搭載部に固定された絶縁部材と、前記絶縁部材の前記第2表面の全面及び前記第1表面と前記第2表面との間で側面を成す第3表面の少なくとも一部を露出させた状態で前記絶縁部材に接すると共に前記半導体素子を覆って形成された封止部とを備え、前記絶縁部材は、前記第2表面の中央がその周縁に対して凸形状又は凹形状を成していることを特徴とする。
【0009】
(2)請求項2に記載の発明に係る半導体装置は、請求項1に記載の半導体装置であって、前記封止部は、前記絶縁部材の前記第3表面を全面及び前記第1表面の一部をさらに露出させるように形成されていることを特徴とする。
【0010】
(3)請求項3に記載の発明に係る半導体装置は、請求項1又は請求項2に記載の半導体装置であって、前記絶縁部材は、少なくとも前記第2表面上に金属層を備えることを特徴とする。
【0012】
(4)請求項4に記載の発明に係る半導体装置は、素子搭載部及びリード部を有する電極フレームと、前記素子搭載部の一方の表面上に搭載された半導体素子と、その周縁が前記素子搭載部の他方の表面の周縁を取り囲んで前記他方の表面に対面する第1表面と、前記第1表面に対向する第2表面とを有し、前記素子搭載部に固定された絶縁部材と、前記絶縁部材の前記第2表面の全面を露出させた状態で前記絶縁部材に接すると共に前記半導体素子を覆って形成された封止部とを備え、前記絶縁部材は、前記第2表面の中央がその周縁に対して凸形状又は凹形状を成していることを特徴とする。
【0013】
【発明の実施の形態】
<実施の形態1>
図1及び図2にそれぞれ実施の形態1に係る電力用半導体装置(半導体装置)101を説明するための縦断面図及び上面図を示す。図2中のI−I線における縦断面図が図1にあたる。また、図2では、絶縁部材7及び封止部5をそれぞれ太線及び破線で図示している。電力用半導体装置101(以下、単に半導体装置101のように呼ぶ)は、いわゆるDIP(Dual Inline Package)タイプにあたる。
【0014】
図1及び図2に示すように、半導体装置101は、電極フレーム2と、電力用半導体素子1(図1及び図2では2個を図示している)と、(予めに所定の形状に形成されている)絶縁部材7と、封止部5とを備える。詳細には、電極フレーム2は素子搭載部ないしはダイパッド2D及びリード部2Lを有しており、素子搭載部2Dの一方の表面2S1上に電力用半導体素子1が搭載されている。電力用半導体素子1はろう材3によって素子搭載部2Dに固定されている。そして、電力用半導体素子1とリード部2Lとの間等が金属細線4で接続されている。
【0015】
絶縁部材7は、(a)素子搭載部2Dの他方の表面2S2に対面する表面(第1表面)7S1と、(b)表面7S1に対向する表面(第2表面)7S2と、(c)表面7S1,7S2の双方に結合して両表面7S1,7S2と共に絶縁部材7の外表面を成す表面ないしは側面(第3表面)7S3とを有している。
【0016】
特に、表面7S1は、当該表面7S1の周縁7Aが素子搭載部2Dの表面2S2の周縁2DAを取り囲みうる寸法・形状を有しており、表面7S1の周縁7Aが素子搭載部2Dの表面2S2の周縁2DAを取り囲んで配置されている。このとき、両表面7S1,7S2は同じ寸法・形状でなくとも良く、例えば図1における縦断面が台形状であっても構わない。絶縁部材7は例えば0.5mm程度の厚さのAl2O3,AlN,Si3N4等のセラミック板から成る。
【0017】
絶縁部材7はろう材(接着材)6によって素子搭載部2Dに固定されている。ろう材6及び上記ろう材3として、鉛成分を含まない材料、例えばエポキシ樹脂中に硬化剤ないしは添加剤,銀(Ag)等を添加した樹脂系ろう材を用いている。
【0018】
封止部5は、電力用半導体素子1及び素子搭載部2D等を覆って、且つ、絶縁部材7の表面7S1,7S3に接して形成されている。特に、絶縁部材7の表面7S2は封止部5で覆われておらず全面が露出している。また、絶縁部材7の表面7S2と封止部5の外表面5Sとが平坦に繋がっている。即ち、半導体装置101の外表面において絶縁部材7の表面7S2は凹部を形成していない。
【0019】
封止部5は例えばエポキシ樹脂等の材料から成る。かかるエポキシ樹脂等の熱伝導率は2W/(m・K)程度である一方、絶縁部材7を成すアルミナ(Al2O3)等の熱伝導率は20W/(m・K)程度である。即ち、絶縁部材7は封止部5と比較して熱伝導率が高い。
【0020】
半導体装置101によれば、以下の効果を得ることができる。
まず、予めに所定の形状に形成されている絶縁部材7が素子搭載部2Dの表面2S2側に配置されている。このとき、絶縁部材7の表面7S1の周縁7Aは素子搭載部2Dの表面2S2の周縁2DAを取り囲んでいる。このため、当該絶縁部材7によって素子搭載部2Dの表面2S1側の絶縁性を確保することができる。
【0021】
絶縁部材7は封止部5と比較して熱伝導率が高いので、従来の半導体装置101Pと比較して高い放熱性を得ることができる。
【0022】
ここで、上述の絶縁性と放熱性に関して具体例を挙げて説明する。図10の従来の半導体装置101Pにおいて、封止樹脂5Pを成すエポキシ樹脂の耐圧が10kV/mmであり厚さtが0.1mmの場合、封止樹脂5PPの耐圧は1kVである。上述のようにエポキシ樹脂の熱伝導率は2W/(m・K)程度である一方、絶縁部材7を成すセラミックの熱伝導率は20W/(m・K)程度であるので、封止樹脂5PPと同じ熱伝導性ないしは放熱性を得る場合、絶縁部材7を約1mmの厚さに設定することができる。このとき、絶縁部材7としてエポキシ樹脂と同じ10kV/mm程度の耐圧を有するセラミックを用いるとすれば、約10kVの耐圧を確保することができる。逆に耐圧を同じにするときには、絶縁部材7によって優れた放熱性が得られる。更には、絶縁部材7によれば、従来の半導体装置101Pと比較して、絶縁性及び放熱性を同時に向上することができる。
【0023】
次に、絶縁部材7の表面7S2の全面が露出しており封止部5で覆われていないことによって、以下の効果が得られる。即ち、半導体装置101によれば、従来の半導体装置101P(図10参照)とは異なり、例えばトランスファモールド法等により封止部5を形成する場合に素子搭載部2Dの表面2S2側に封止部5の材料を充填する必要が無い。従って、素子搭載部2Dの表面2S2側において封止部5の形成不具合が発生することが無い。加えて、そのような封止部の形成不具合に起因する絶縁性の低下が惹起されないので、かかる点からも高い絶縁性が得られる。
【0024】
更に、上述のように素子搭載部2Dの表面2S2側に封止部5の材料を充填する必要が無いので、封止部5の材料に求められる流動性の条件を緩和することができる。また、従来の半導体装置101Pとは異なり、素子搭載部2Dの表面2S2側からの放熱は絶縁部材を介して行われる。このため、封止部5の材料に求められる熱伝導性(放熱性)の条件を緩和することができる。従って、従来の封止部5P(図10参照)よりも安価な材料を用いることができるので、半導体装置の低コスト化・低価格化を図ることができる。
【0025】
更に、半導体装置101では、絶縁部材7の表面7S2の全面が露出しており、上記表面7S2と封止部5の外表面5Sとが平坦を成している。このため、絶縁部材7に接して、放熱フィン等の放熱部材(後述の図6の放熱部材20を参照)を設ける場合、絶縁部材7の表面7S2と放熱部材とを確実に接触させることができるし、絶縁部材7の表面7S2全体を介して放熱部材へ熱伝導することができる。従って、放熱の安定化及び向上を図ることができる。また、半導体装置101の外表面において絶縁部材7の表面7S2が凹部を成す場合と比較して、上記放熱部材の形状の自由度が大きい。
【0026】
また、絶縁部材7の表面7S2はろう材6で以て素子搭載部2Dに固定されている。このため、絶縁部材7と素子搭載部2Dとを隙間無く接合することができるので、放熱の安定化及び向上を図ることができる。
【0027】
ところで、絶縁部材7ではなく金属絶縁基板を備えた半導体装置が特開平7−45765号公報に開示されている。上記金属絶縁板は、ヒートシンクとなる金属板と、当該金属板上に接合した絶縁層と、当該絶縁層上に形成されてダイパッド等に接する導体パターンとから成る。ここで、金属絶縁基板の絶縁層の耐圧−時間特性の概略を図11に示す。図11に示すように、金属絶縁基板の絶縁層は、電圧が長時間かかると耐圧が低下するという傾向を有する。これに対して、半導体装置101の絶縁部材7はセラミックから成るので、そのような傾向は見られない。
【0028】
また、一般的に、金属絶縁基板の絶縁層は0.1〜0.2mm程度の厚さであり熱伝導率は1〜3W/(m・K)程度である。これに対して、半導体装置101の絶縁部材7は0.5mm程度の厚さであり熱伝導率は20W/(m・K)程度である。つまり、絶縁部材7によれば、上記絶縁層と比較して、厚さは約2.5〜5倍になるものの、放熱性は約10〜20倍大きいという利点がある。
【0029】
また、絶縁材を備えた半導体装置が特開平6−209054号公報に開示されている。しかしながら、当該公報に開示される絶縁材は載置部(素子搭載部2Dに対応する)よりも小さいという点において、絶縁部材7とは異なる。詳細には、上記公報に開示される半導体装置の封止材(封止部5に対応する)は載置部の下面において額縁状に形成されており、かかる額縁状の開口から露出した載置部の下面に接して絶縁材が配置されている。このため、絶縁部材7とは逆に、上記絶縁材の周縁は載置部の周縁よりも内側に配置されている。
【0030】
更に、上記絶縁材の露出表面(表面7S2に対応する)は半導体装置の外表面において凹部を成している点で、半導体装置101とは異なる。
【0031】
<実施の形態1の変形例1>
図3に本変形例1に係る第1の半導体装置101Aを説明するための縦断面図を示す。なお、以下の説明において、既述の構成要素と同等のものには同一の符号を付して、その説明を援用する。図3と既述の図1とを比較すれば分かるように、半導体装置101Aでは絶縁部材7の側面7S3の一部が封止部5に覆われずに露出している。
【0032】
なお、絶縁部材7の側面7S3の全部が露出していても構わない。このとき、図4及び図5の各縦断面図に示す本変形例1に係る第2及び第3の各半導体装置101B,101Cのように、絶縁部材7の大きさを図1の半導体装置101等よりも大きくしても構わない。半導体装置101Cでは絶縁部材7の表面7S1の周縁部も露出している。
【0033】
半導体装置101A〜101Cによれば、絶縁部材7の側面7S3が更に露出しているので、封止部5を介さずに側面7S3から直接に放熱が可能である。従って、上述の半導体装置101と比較して、更なる放熱の安定化及び向上を図ることができる。また、半導体装置101と同様に、絶縁部材7に接して放熱部材を設ける場合において放熱部材の形状の自由度が大きい。
【0034】
<実施の形態1の変形例2>
なお、絶縁部材の表面7S1上に薄い金属層(図示せず)を設けても良い。かかる金属層は、金属ペーストを塗布し、これを焼成することにより形成される。このとき、当該金属層を表面7S1上の全面に形成しても構わないし、種々の形状にパターン形成しても構わない。
【0035】
当該金属層によればろう材6と絶縁部材7との密着性が更に向上するので、絶縁部材7と素子搭載部2Dとを良好に密着することができる。これにより、素子搭載部2Dと絶縁部材7と間の接触熱抵抗が低減するので、絶縁部材7を介した放熱の安定化及び向上を図ることができる。
【0036】
ところで、絶縁部材7がセラミックの場合(局所的な)うねりを有することがある。このような場合、上記金属層を適切にパターニングすることによって、そのようなうねりを軽減・解消することができる。このとき、絶縁部材7の表面7S2にも金属層を設けることによって、また、各表面7S1,7S2上の各金属層の厚さを制御することによって、より効果的にうねりを軽減・解消することができる。
【0037】
<実施の形態2>
図6に、実施の形態2に係る半導体装置102を説明するための縦断面図を示す。なお、図6では半導体装置102に放熱部材20、例えば放熱フィンが設けられた場合を図示している。図6と既述の図1とを比較すれば分かるように、絶縁部材7に代えて半導体装置102は、凸形状ないしは山型の絶縁部材17を備える。
【0038】
詳細には、絶縁部材17は既述の各表面7S1,7S2,7S3(図1参照)に相当する各表面17S1,17S2,17S3を有し、表面17S2,17S1の中央がその周縁に対して凸形状を成している。特に、絶縁部材17は素子搭載部2Dとは反対側に向かって、換言すれば半導体装置102の外側に向かって突出する凸形状を有している。そして、絶縁部材17の表面17S2は放熱グリス(熱伝導率は1W/(m・K)程度)21を介して放熱部材20に接触している。
【0039】
絶縁部材17の凸形状は例えば既述の絶縁部材7を用いて以下のようにして形成される。即ち、平板状の絶縁部材7の中央に荷重を加えた状態で、例えば表面17S1上におもりを載せた状態で熱処理を施すことによって、絶縁部材17の凸形状を形成することができる。また、実施の形態1の変形例2で述べた金属層によって、かかる凸形状を形成することも可能である。
【0040】
ここで、図7に、実施の形態2に係る他の半導体装置102Aを説明するための縦断面図を示す。図7と図6とを比較すれば分かるように、半導体装置102Aは、絶縁部材17に代えて、当該絶縁部材17とは逆方向に凸形状を成した絶縁部材17Aを備える。
【0041】
両半導体装置102,102Aによっても既述の半導体装置101が奏する効果を得ることができる。特に、半導体装置102によれば、以下の効果をも得ることができる。
【0042】
半導体装置102,102Aと放熱部材20を接触させる際、絶縁部材17,17A及び/又は放熱部材20に放熱グリス21を塗布した後に両者を接触させる。このとき、半導体装置102Aでは、絶縁部材17Aと放熱部材20との間に放熱グリス21が留まってしまい、絶縁部材17Aと放熱部材20とが接触しない場合が生じうる。また、放熱グリス21が少量の場合、絶縁部材17Aと放熱部材20との間に隙間が、即ち空気の層が残ってしまう場合がある。
【0043】
これに対して、半導体装置102の絶縁部材17は外側に向かって凸形状を成しているので、半導体装置102と放熱部材20とを接触させる際に絶縁部材17が余分な放熱グリス21を横に押し退ける。このため、放熱グリス21の塗布量に関わらず、絶縁部材17の凸形状の頂部を放熱部材20に確実に接触させることができるし、適量の換言すれば不必要に厚くない放熱グリス21を配置することができる。
【0044】
このとき、絶縁部材と放熱部材とが接している方が放熱性がより高い点及び一般的に放熱グリス21の方が空気よりも熱伝導率が高い点に鑑みれば、半導体装置102A,101等と比較して、半導体装置102の方が放熱部材20との間の熱抵抗を低減することができる。従って、放熱の安定化及び向上を図ることができる。
【0045】
このとき、絶縁部材17の少なくとも表面17S2が半導体装置102の外側に向かって凸形状を成していれば、かかる効果を得ることができる。また、絶縁部材(の表面17S2に相当する表面)が円筒の一部にあたる形状であっても構わない。
【0046】
<実施の形態3>
図8及び図9にそれぞれ実施の形態3に係る半導体装置103を説明するための縦断面図及び上面図を示す。図9中のI−I線における縦断面図が図8にあたる。また、図9では、絶縁部材7及び封止部5をそれぞれ太線及び破線で図示している。
【0047】
図8及び図9に示すように、半導体装置103は、図1の半導体装置101の構成に加えて、電力用半導体素子1を制御するための制御回路8を更に備える。半導体装置103は、いわゆるDIPタイプのIPM(Intelligent Power Module)にあたる。
【0048】
制御回路8は、いわゆるプリント回路板(Printed Circuit Board;PCB)から成り、所定の配線を有する例えばガラスエポキシ樹脂基板と上記配線に接続された半導体チップや抵抗、コンデンサ等の部品とを含む。このとき、抵抗等の部品をエポキシ樹脂基板上にプリント部品として形成しても構わない。なお、図面の煩雑化を避けるため、図8及び図9では制御回路8の詳細な図示化を省略している。
【0049】
制御回路8は電極フレーム2の制御回路8用の素子搭載部2D2にろう材9によって固定されており、制御回路8とリード部2Lとの間等が金属細線4で接続されている。
【0050】
このように、半導体装置103は半導体素子1及び制御回路8を備えるので、半導体装置101等と比較して高機能化を図ることができる。
【0051】
<まとめ>
なお、電力用半導体素子1の代わりに電力用ではないが発熱の比較的大きい半導体素子を備えた半導体装置においても既述の効果を得ることができる。
【0052】
【発明の効果】
(1)請求項1に係る発明によれば、(予めに所定の形状に形成されている)絶縁部材が素子搭載部の他方の表面側に配置されており、絶縁部材の第1表面の周縁は素子搭載部の上記他方の表面の周縁を取り囲んでいる。このため、当該絶縁部材によって素子搭載部の他方の表面側の絶縁性を確保することができる。
【0053】
更に、絶縁部材の第2表面の全面及び前記第1表面と前記第2表面との間で側面を成す第3表面の少なくとも一部が露出しており封止部に覆われていない。即ち、当該絶縁部材を有さず、電極フレームの素子搭載部の他方の表面を覆って封止部が形成されている従来の半導体装置とは異なり、例えばトランスファモールド法等により封止部を形成する場合に素子搭載部の他方の表面側に封止部の材料を充填する必要が無い。従って、素子搭載部の他方の表面側において封止部の形成不具合が発生することが無い。加えて、そのような封止部の形成不具合に起因する絶縁性の低下が惹起されないので、かかる点からも高い絶縁性が得られる。
【0054】
更に、上述のように素子搭載部の他方の表面側に封止部の材料を充填する必要が無いので、封止部の材料に求められる流動性の条件を緩和することができる。また、従来の半導体装置とは異なり、素子搭載部の他方の表面側からの放熱は絶縁部材を介して行われる。このため、封止部の材料に求められる熱伝導性(放熱性)の条件を緩和することができる。従って、従来の封止部よりも安価な材料を用いることができるので、半導体装置の低コスト化・低価格化を図ることができる。
【0055】
(2)請求項2に係る発明によれば、絶縁部材の第3表面を全面及び第1表面の一部をさらに露出させるよう形成されている。このため、絶縁部材に接して放熱部材を設ける場合、絶縁部材の第2表面と放熱部材とを確実に接触させることができるし、絶縁部材の第2表面全体及び第3表面全体、第1表面の一部を介して放熱部材へ熱伝導することができる。従って、放熱の安定化及び向上を図ることができる。また、半導体装置の外表面において絶縁部材の第2表面が凹部を成す場合と比較して、上記放熱部材の形状の自由度が大きい。
【0056】
(3)請求項3に係る発明によれば、絶縁部材は、少なくとも前記第2表面上に金属層を備えるので、絶縁部材の局所的なうねりを軽減・解消することができる。
【0057】
(4)請求項に係る発明によれば、絶縁部材は、第2表面の中央がその周縁に対して凸形状又は凹形状を成している。このため、絶縁部材に放熱グリス21を塗布した放熱部材20に接触させる場合、放熱グリス21の塗布量に関わらず、絶縁部材の凸形状の頂部又は凹形状を放熱部材20に確実に接触させることができ、適量の換言すれば不必要に厚くない放熱グリス21を配置することができる。
【0058】
(5)請求項に係る発明によれば、絶縁部材は、第2表面の中央がその周縁に対して凸形状又は凹形状を成している。このため、絶縁部材に放熱グリス21を塗布した放熱部材20に接触させる場合、放熱グリス21の塗布量に関わらず、絶縁部材の凸形状の頂部又は凹形状を放熱部材20に確実に接触させることができ、適量の換言すれば不必要に厚くない放熱グリス21を配置することができる。
【図面の簡単な説明】
【図1】 実施の形態1に係る半導体装置を説明するための縦断面図である。
【図2】 実施の形態1に係る半導体装置を説明するための上面図である。
【図3】 実施の形態1の変形例1に係る第1の半導体装置を説明するための縦断面図である。
【図4】 実施の形態1の変形例1に係る第2の半導体装置を説明するための縦断面図である。
【図5】 実施の形態1の変形例1に係る第3の半導体装置を説明するための縦断面図である。
【図6】 実施の形態2に係る半導体装置を説明するための縦断面図である。
【図7】 実施の形態2に係る他の半導体装置を説明するための縦断面図である。
【図8】 実施の形態3に係る半導体装置を説明するための縦断面図である。
【図9】 実施の形態3に係る半導体装置を説明するための上面図である。
【図10】 従来の半導体装置を説明するための縦断面図である。
【図11】 金属絶縁基板の絶縁層の耐圧−時間特性を説明するための模式図である。
【符号の説明】
1 電力用半導体素子(半導体素子)、2 電極フレーム、2D 素子搭載部、2DA,7A 周縁、2L リード部、2S1 表面(一方の表面)、2S2表面(他方の表面)、5 封止部、5S 外表面、6 ろう材(接着材)、7,17,17A 絶縁部材、7S1,17S1 表面(第1表面)、7S2,17S2 表面(第2表面)、7S3,17S3 表面(第3表面)、101〜103,101A〜101C,102A 電力用半導体装置(半導体装置)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly, to a technology for sealing or forming a package and ensuring insulation in a semiconductor device provided with a semiconductor element generating a large amount of heat, and further to heat dissipation.
[0002]
[Prior art]
FIG. 10 is a longitudinal sectional view for explaining a conventional power semiconductor device 101P (hereinafter also simply referred to as a semiconductor device 101P). As shown in FIG. 10, the power semiconductor element 1 is joined to the element mounting portion or the die pad 2 </ b> D of the electrode frame 2 by the brazing material 3, and between the power semiconductor element 1 and the lead portion 2 </ b> L of the electrode frame 2. Are connected by a thin metal wire 4. The power semiconductor element 1 and the element mounting portion 2D are sealed with a sealing resin 5P, and the insulating property of the semiconductor device 101P is secured by the sealing resin 5P. The sealing resin 5P is formed by, for example, a potting method or a transfer mold method.
[0003]
[Problems to be solved by the invention]
As described above, the element mounting portion 2D of the conventional semiconductor device 101P is covered with the sealing resin 5P. At this time, in order to improve the insulation on the element mounting portion 2D side of the power semiconductor element 1, it is necessary to make the sealing resin 5P below the element mounting portion 2D (see the sealing resin 5PP) thicker (thickness). t). However, since the thermal conductivity of the sealing resin 5P is generally low, increasing the thickness t increases the thermal resistance. In other words, the heat dissipation of the power semiconductor element 1 against heat generation is reduced.
[0004]
On the other hand, if the thickness t is decreased in order to improve heat dissipation, not only the above-described insulation cannot be ensured, but also the formation failure of the sealing resin 5PP and the insulation deterioration due to the failure are caused. That is, when the sealing resin 5P is formed by, for example, the potting method or the transfer molding method, if the thickness t is small, the sealing resin is injected or filled into the gap between the element mounting portion 2D and the mold (not shown). It becomes difficult. For this reason, the formation malfunction of sealing resin 5PP arises by the insufficient filling of sealing resin, etc., and this formation malfunction will reduce the insulation in sealing resin 5PP.
[0005]
The present invention has been made in view of such problems, and a first object of the present invention is to provide a semiconductor device in which insulation is ensured without forming a sealing portion.
[0006]
A second object of the present invention is to provide a semiconductor device capable of realizing the first object at low cost and low price.
[0007]
Furthermore, a third object of the present invention is to provide a semiconductor device in which the heat radiation performance is stabilized and improved while realizing the first and second objects.
[0008]
[Means for Solving the Problems]
(1) According to a first aspect of the present invention, there is provided a semiconductor device comprising: an electrode frame having an element mounting portion and a lead portion; a semiconductor element mounted on one surface of the element mounting portion; An insulating member having a first surface surrounding the periphery of the other surface of the mounting portion and facing the other surface, and a second surface facing the first surface, and fixed to the element mounting portion; The semiconductor element is in contact with the insulating member in a state in which the entire surface of the second surface of the insulating member and at least a part of the third surface forming a side surface between the first surface and the second surface are exposed. The insulating member is characterized in that the center of the second surface has a convex shape or a concave shape with respect to the periphery thereof.
[0009]
(2) The semiconductor device according to the invention described in claim 2 is the semiconductor device according to claim 1, wherein the sealing portion covers the entire third surface of the insulating member and the first surface. It is formed so that a part is further exposed.
[0010]
(3) The semiconductor device according to claim 3 is the semiconductor device according to claim 1 or 2 , wherein the insulating member includes a metal layer on at least the second surface. Features.
[0012]
(4) A semiconductor device according to a fourth aspect of the invention includes an electrode frame having an element mounting portion and a lead portion, a semiconductor element mounted on one surface of the element mounting portion, and a peripheral edge of the semiconductor device. An insulating member having a first surface surrounding the periphery of the other surface of the mounting portion and facing the other surface, and a second surface facing the first surface, and fixed to the element mounting portion; A sealing portion formed so as to be in contact with the insulating member and covering the semiconductor element in a state where the entire surface of the second surface of the insulating member is exposed, and the insulating member has a central portion of the second surface. A convex shape or a concave shape is formed with respect to the peripheral edge.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
<Embodiment 1>
1 and 2 are a longitudinal sectional view and a top view, respectively, for explaining a power semiconductor device (semiconductor device) 101 according to the first embodiment. A vertical sectional view taken along line II in FIG. 2 corresponds to FIG. Moreover, in FIG. 2, the insulating member 7 and the sealing part 5 are shown by the thick line and the broken line, respectively. The power semiconductor device 101 (hereinafter simply referred to as the semiconductor device 101) corresponds to a so-called DIP (Dual Inline Package) type.
[0014]
As shown in FIGS. 1 and 2, a semiconductor device 101 includes an electrode frame 2, a power semiconductor element 1 (two are shown in FIGS. 1 and 2), and formed in a predetermined shape in advance. Insulating member 7 and sealing portion 5 are provided. Specifically, the electrode frame 2 has an element mounting portion or die pad 2D and a lead portion 2L, and the power semiconductor element 1 is mounted on one surface 2S1 of the element mounting portion 2D. The power semiconductor element 1 is fixed to the element mounting portion 2D by a brazing material 3. The power semiconductor element 1 and the lead portion 2L are connected by a thin metal wire 4.
[0015]
The insulating member 7 includes (a) a surface (first surface) 7S1 facing the other surface 2S2 of the element mounting portion 2D, (b) a surface (second surface) 7S2 facing the surface 7S1, and (c) a surface. 7S1 and 7S2 are combined with both surfaces 7S1 and 7S2 to form an outer surface of the insulating member 7 or a side surface (third surface) 7S3.
[0016]
In particular, the surface 7S1 has a size and shape that allows the periphery 7A of the surface 7S1 to surround the periphery 2DA of the surface 2S2 of the element mounting portion 2D, and the periphery 7A of the surface 7S1 is the periphery of the surface 2S2 of the element mounting portion 2D. It is arranged around 2DA. At this time, both surfaces 7S1 and 7S2 do not have to have the same size and shape. For example, the longitudinal section in FIG. 1 may have a trapezoidal shape. The insulating member 7 is made of a ceramic plate made of Al2O3, AlN, Si3N4 or the like having a thickness of about 0.5 mm.
[0017]
The insulating member 7 is fixed to the element mounting portion 2D by a brazing material (adhesive material) 6. As the brazing material 6 and the brazing material 3, a material that does not contain a lead component, for example, a resin brazing material in which a curing agent or additive, silver (Ag), or the like is added to an epoxy resin is used.
[0018]
The sealing portion 5 is formed so as to cover the power semiconductor element 1, the element mounting portion 2 </ b> D, and the like and in contact with the surfaces 7 </ b> S <b> 1 and 7 </ b> S <b> 3 of the insulating member 7. In particular, the surface 7S2 of the insulating member 7 is not covered with the sealing portion 5, and the entire surface is exposed. Further, the surface 7S2 of the insulating member 7 and the outer surface 5S of the sealing portion 5 are connected flatly. That is, on the outer surface of the semiconductor device 101, the surface 7S2 of the insulating member 7 does not form a recess.
[0019]
The sealing part 5 is made of a material such as an epoxy resin. The thermal conductivity of the epoxy resin or the like is about 2 W / (m · K), while the thermal conductivity of alumina (Al 2 O 3) or the like constituting the insulating member 7 is about 20 W / (m · K). That is, the insulating member 7 has a higher thermal conductivity than the sealing portion 5.
[0020]
According to the semiconductor device 101, the following effects can be obtained.
First, the insulating member 7 formed in a predetermined shape in advance is disposed on the surface 2S2 side of the element mounting portion 2D. At this time, the peripheral edge 7A of the surface 7S1 of the insulating member 7 surrounds the peripheral edge 2DA of the surface 2S2 of the element mounting portion 2D. For this reason, the insulating member 7 can ensure the insulation on the surface 2S1 side of the element mounting portion 2D.
[0021]
Since the insulating member 7 has a higher thermal conductivity than the sealing portion 5, a higher heat dissipation can be obtained as compared with the conventional semiconductor device 101 </ b> P.
[0022]
Here, a specific example is given and demonstrated about the above-mentioned insulation and heat dissipation. In the conventional semiconductor device 101P of FIG. 10, when the withstand voltage of the epoxy resin constituting the sealing resin 5P is 10 kV / mm and the thickness t is 0.1 mm, the withstand voltage of the sealing resin 5PP is 1 kV. As described above, the thermal conductivity of the epoxy resin is about 2 W / (m · K), while the thermal conductivity of the ceramic forming the insulating member 7 is about 20 W / (m · K). When the same thermal conductivity or heat dissipation is obtained, the insulating member 7 can be set to a thickness of about 1 mm. At this time, if a ceramic having a breakdown voltage of about 10 kV / mm, which is the same as that of the epoxy resin, is used as the insulating member 7, a breakdown voltage of about 10 kV can be secured. On the other hand, when the withstand voltage is the same, the insulating member 7 provides excellent heat dissipation. Furthermore, according to the insulating member 7, compared with the conventional semiconductor device 101P, insulation and heat dissipation can be improved at the same time.
[0023]
Next, since the entire surface 7S2 of the insulating member 7 is exposed and not covered with the sealing portion 5, the following effects are obtained. That is, according to the semiconductor device 101, unlike the conventional semiconductor device 101P (see FIG. 10), the sealing portion is formed on the surface 2S2 side of the element mounting portion 2D when the sealing portion 5 is formed by, for example, transfer molding. There is no need to fill 5 materials. Therefore, the formation failure of the sealing portion 5 does not occur on the surface 2S2 side of the element mounting portion 2D. In addition, since a decrease in insulation caused by such a formation defect of the sealing portion is not caused, high insulation can be obtained from this point.
[0024]
Furthermore, since it is not necessary to fill the surface 2S2 side of the element mounting portion 2D with the material of the sealing portion 5 as described above, the fluidity condition required for the material of the sealing portion 5 can be relaxed. Further, unlike the conventional semiconductor device 101P, the heat radiation from the surface 2S2 side of the element mounting portion 2D is performed via an insulating member. For this reason, the conditions of thermal conductivity (heat dissipation) required for the material of the sealing portion 5 can be relaxed. Therefore, since a material cheaper than the conventional sealing portion 5P (see FIG. 10) can be used, the cost and cost of the semiconductor device can be reduced.
[0025]
Further, in the semiconductor device 101, the entire surface 7S2 of the insulating member 7 is exposed, and the surface 7S2 and the outer surface 5S of the sealing portion 5 are flat. Therefore, when a heat radiating member such as a heat radiating fin (see heat radiating member 20 in FIG. 6 described later) is provided in contact with the insulating member 7, the surface 7S2 of the insulating member 7 and the heat radiating member can be reliably brought into contact with each other. In addition, heat can be conducted to the heat radiating member through the entire surface 7S2 of the insulating member 7. Therefore, stabilization and improvement of heat dissipation can be achieved. In addition, the degree of freedom of the shape of the heat radiating member is greater than when the surface 7S2 of the insulating member 7 forms a recess on the outer surface of the semiconductor device 101.
[0026]
The surface 7S2 of the insulating member 7 is fixed to the element mounting portion 2D with a brazing material 6. For this reason, since insulating member 7 and element mounting part 2D can be joined without a gap, stabilization and improvement of heat dissipation can be aimed at.
[0027]
Incidentally, a semiconductor device provided with a metal insulating substrate instead of the insulating member 7 is disclosed in Japanese Patent Laid-Open No. 7-45765. The metal insulating plate includes a metal plate serving as a heat sink, an insulating layer bonded onto the metal plate, and a conductor pattern formed on the insulating layer and in contact with a die pad or the like. Here, FIG. 11 shows an outline of the breakdown voltage-time characteristics of the insulating layer of the metal insulating substrate. As shown in FIG. 11, the insulating layer of the metal insulating substrate has a tendency that the withstand voltage decreases when a voltage is applied for a long time. On the other hand, since the insulating member 7 of the semiconductor device 101 is made of ceramic, such a tendency is not seen.
[0028]
In general, the insulating layer of the metal insulating substrate has a thickness of about 0.1 to 0.2 mm and a thermal conductivity of about 1 to 3 W / (m · K). In contrast, the insulating member 7 of the semiconductor device 101 has a thickness of about 0.5 mm and a thermal conductivity of about 20 W / (m · K). That is, according to the insulating member 7, the thickness is about 2.5 to 5 times that of the insulating layer, but there is an advantage that the heat dissipation is about 10 to 20 times larger.
[0029]
A semiconductor device provided with an insulating material is disclosed in Japanese Patent Laid-Open No. 6-209054. However, the insulating material disclosed in the publication is different from the insulating member 7 in that it is smaller than the mounting portion (corresponding to the element mounting portion 2D). In detail, the sealing material (corresponding to the sealing portion 5) of the semiconductor device disclosed in the above publication is formed in a frame shape on the lower surface of the mounting portion, and the mounting exposed from the frame-shaped opening An insulating material is disposed in contact with the lower surface of the part. For this reason, contrary to the insulating member 7, the peripheral edge of the insulating material is arranged on the inner side of the peripheral edge of the mounting portion.
[0030]
Further, the exposed surface of the insulating material (corresponding to the surface 7S2) is different from the semiconductor device 101 in that a concave portion is formed on the outer surface of the semiconductor device.
[0031]
<Modification 1 of Embodiment 1>
FIG. 3 is a longitudinal sectional view for explaining the first semiconductor device 101A according to the first modification. In addition, in the following description, the same code | symbol is attached | subjected to the thing equivalent to the above-mentioned component, and the description is used. As can be seen from a comparison between FIG. 3 and FIG. 1 described above, in the semiconductor device 101 </ b> A, a part of the side surface 7 </ b> S <b> 3 of the insulating member 7 is exposed without being covered by the sealing portion 5.
[0032]
Note that the entire side surface 7S3 of the insulating member 7 may be exposed. At this time, like the second and third semiconductor devices 101B and 101C according to the first modification shown in the longitudinal sectional views of FIGS. 4 and 5, the size of the insulating member 7 is set to the semiconductor device 101 of FIG. It may be larger than. In the semiconductor device 101C, the peripheral portion of the surface 7S1 of the insulating member 7 is also exposed.
[0033]
According to the semiconductor devices 101A to 101C, since the side surface 7S3 of the insulating member 7 is further exposed, heat can be directly radiated from the side surface 7S3 without the sealing portion 5 interposed therebetween. Therefore, as compared with the semiconductor device 101 described above, further stabilization and improvement of heat dissipation can be achieved. Similarly to the semiconductor device 101, when the heat dissipation member is provided in contact with the insulating member 7, the degree of freedom of the shape of the heat dissipation member is large.
[0034]
<Modification 2 of Embodiment 1>
A thin metal layer (not shown) may be provided on the surface 7S1 of the insulating member. Such a metal layer is formed by applying a metal paste and firing it. At this time, the metal layer may be formed on the entire surface of the surface 7S1, or may be patterned in various shapes.
[0035]
According to the metal layer, the adhesiveness between the brazing material 6 and the insulating member 7 is further improved, so that the insulating member 7 and the element mounting portion 2D can be satisfactorily adhered. Thereby, since the contact thermal resistance between element mounting part 2D and the insulating member 7 reduces, the stabilization and improvement of the thermal radiation through the insulating member 7 can be aimed at.
[0036]
By the way, when the insulating member 7 is a ceramic, it may have a (local) waviness. In such a case, such undulation can be reduced or eliminated by appropriately patterning the metal layer. At this time, by providing a metal layer also on the surface 7S2 of the insulating member 7, and by controlling the thickness of each metal layer on each surface 7S1, 7S2, the waviness can be reduced and eliminated more effectively. Can do.
[0037]
<Embodiment 2>
FIG. 6 is a longitudinal sectional view for explaining the semiconductor device 102 according to the second embodiment. Note that FIG. 6 illustrates a case where the semiconductor device 102 is provided with a heat dissipation member 20, for example, a heat dissipation fin. As can be seen from a comparison between FIG. 6 and FIG. 1 described above, the semiconductor device 102 includes a convex or mountain-shaped insulating member 17 instead of the insulating member 7.
[0038]
Specifically, the insulating member 17 has surfaces 17S1, 17S2, and 17S3 corresponding to the surfaces 7S1, 7S2, and 7S3 (see FIG. 1) described above, and the centers of the surfaces 17S2 and 17S1 are convex with respect to the periphery. It has a shape. In particular, the insulating member 17 has a convex shape that protrudes toward the side opposite to the element mounting portion 2 </ b> D, in other words, toward the outside of the semiconductor device 102. The surface 17S2 of the insulating member 17 is in contact with the heat radiating member 20 via the heat radiating grease (thermal conductivity is about 1 W / (m · K)) 21.
[0039]
The convex shape of the insulating member 17 is formed as follows using the insulating member 7 described above, for example. That is, the convex shape of the insulating member 17 can be formed by performing heat treatment in a state where a load is applied to the center of the flat insulating member 7 and a weight is placed on the surface 17S1, for example. Further, such a convex shape can be formed by the metal layer described in the second modification of the first embodiment.
[0040]
Here, FIG. 7 shows a longitudinal sectional view for explaining another semiconductor device 102A according to the second embodiment. As can be seen from a comparison between FIG. 7 and FIG. 6, the semiconductor device 102 </ b> A includes an insulating member 17 </ b> A having a convex shape in a direction opposite to the insulating member 17 instead of the insulating member 17.
[0041]
The effects produced by the semiconductor device 101 described above can also be obtained by both the semiconductor devices 102 and 102A. In particular, according to the semiconductor device 102, the following effects can be obtained.
[0042]
When the semiconductor devices 102 and 102A and the heat radiating member 20 are brought into contact with each other, the insulating members 17 and 17A and / or the heat radiating member 20 are coated with the heat radiating grease 21 and then brought into contact with each other. At this time, in the semiconductor device 102A, the heat radiation grease 21 may remain between the insulating member 17A and the heat radiating member 20, and the insulating member 17A and the heat radiating member 20 may not contact each other. Further, when the heat radiation grease 21 is small, a gap, that is, an air layer may remain between the insulating member 17A and the heat radiation member 20.
[0043]
On the other hand, since the insulating member 17 of the semiconductor device 102 has a convex shape toward the outside, when the semiconductor device 102 and the heat dissipation member 20 are brought into contact with each other, the insulating member 17 laterally displaces excess heat dissipation grease 21. Push away. For this reason, irrespective of the application amount of the heat radiation grease 21, the convex top portion of the insulating member 17 can be brought into contact with the heat radiation member 20 reliably. In other words, the heat radiation grease 21 that is not unnecessarily thick is disposed. can do.
[0044]
At this time, in view of the point that the insulating member and the heat dissipating member are in contact with each other, the heat dissipating property is higher, and the heat dissipating grease 21 generally has the heat conductivity higher than that of air. In comparison with the semiconductor device 102, the thermal resistance between the semiconductor device 102 and the heat dissipation member 20 can be reduced. Therefore, stabilization and improvement of heat dissipation can be achieved.
[0045]
At this time, if at least the surface 17S2 of the insulating member 17 is convex toward the outside of the semiconductor device 102, such an effect can be obtained. Further, the insulating member (the surface corresponding to the surface 17S2 thereof) may have a shape corresponding to a part of the cylinder.
[0046]
<Embodiment 3>
8 and 9 are a longitudinal sectional view and a top view, respectively, for explaining the semiconductor device 103 according to the third embodiment. FIG. 8 is a longitudinal sectional view taken along line II in FIG. Moreover, in FIG. 9, the insulating member 7 and the sealing part 5 are shown with the thick line and the broken line, respectively.
[0047]
As shown in FIGS. 8 and 9, the semiconductor device 103 further includes a control circuit 8 for controlling the power semiconductor element 1 in addition to the configuration of the semiconductor device 101 of FIG. 1. The semiconductor device 103 corresponds to a so-called DIP type IPM (Intelligent Power Module).
[0048]
The control circuit 8 is formed of a so-called printed circuit board (PCB), and includes, for example, a glass epoxy resin substrate having predetermined wiring and components such as a semiconductor chip, a resistor, and a capacitor connected to the wiring. At this time, components such as resistors may be formed as printed components on the epoxy resin substrate. In addition, in order to avoid complication of drawing, detailed illustration of the control circuit 8 is abbreviate | omitted in FIG.8 and FIG.9.
[0049]
The control circuit 8 is fixed to the element mounting portion 2D2 for the control circuit 8 of the electrode frame 2 by a brazing material 9, and the control circuit 8 and the lead portion 2L are connected by a thin metal wire 4.
[0050]
Thus, since the semiconductor device 103 includes the semiconductor element 1 and the control circuit 8, higher functionality can be achieved as compared with the semiconductor device 101 and the like.
[0051]
<Summary>
Note that the above-described effects can be obtained also in a semiconductor device provided with a semiconductor element which is not for power but has a relatively large heat generation instead of the power semiconductor element 1.
[0052]
【The invention's effect】
(1) According to the invention of claim 1, the insulating member (formed in a predetermined shape in advance) is disposed on the other surface side of the element mounting portion, and the peripheral edge of the first surface of the insulating member Surrounds the periphery of the other surface of the element mounting portion. For this reason, the insulation of the other surface side of an element mounting part is securable by the said insulating member.
[0053]
Further, the entire second surface of the insulating member and at least a part of the third surface forming a side surface between the first surface and the second surface are exposed and not covered with the sealing portion. That is, unlike the conventional semiconductor device that does not have the insulating member and covers the other surface of the element mounting portion of the electrode frame, the sealing portion is formed by, for example, a transfer mold method. In this case, it is not necessary to fill the material of the sealing portion on the other surface side of the element mounting portion. Therefore, the formation defect of the sealing portion does not occur on the other surface side of the element mounting portion. In addition, since a decrease in insulation caused by such a formation defect of the sealing portion is not caused, high insulation can be obtained from this point.
[0054]
Furthermore, since there is no need to fill the other surface side of the element mounting portion with the material of the sealing portion as described above, the fluidity condition required for the material of the sealing portion can be relaxed. Further, unlike the conventional semiconductor device, heat radiation from the other surface side of the element mounting portion is performed via an insulating member. For this reason, the conditions of thermal conductivity (heat dissipation) required for the material of the sealing portion can be relaxed. Accordingly, since a material cheaper than the conventional sealing portion can be used, the cost and cost of the semiconductor device can be reduced.
[0055]
(2) According to the second aspect of the present invention, the third surface of the insulating member is formed so as to expose the entire surface and a part of the first surface . For this reason, when providing a heat radiating member in contact with the insulating member, the second surface of the insulating member and the heat radiating member can be reliably brought into contact with each other, and the second surface, the third surface, and the first surface of the insulating member. It is possible to conduct heat to the heat radiating member through a part of Therefore, stabilization and improvement of heat dissipation can be achieved. In addition, the degree of freedom of the shape of the heat radiating member is greater than when the second surface of the insulating member forms a recess on the outer surface of the semiconductor device.
[0056]
(3) According to the invention of claim 3, since the insulating member includes the metal layer on at least the second surface, local swell of the insulating member can be reduced or eliminated.
[0057]
(4) According to the invention of claim 1 , the center of the second surface of the insulating member is convex or concave with respect to the periphery. For this reason, when making it contact with the heat radiating member 20 which apply | coated the thermal radiation grease 21 to the insulating member, regardless of the application quantity of the thermal radiation grease 21, make the convex top part or concave shape of an insulating member contact the thermal radiation member 20 reliably. In other words, an appropriate amount of the heat dissipating grease 21 that is not unnecessarily thick can be disposed.
[0058]
(5) According to the invention of Motomeko 4, the insulating member, the center of the second surface is a convex shape or a concave shape with respect to its periphery. For this reason, when making it contact with the heat radiating member 20 which apply | coated the thermal radiation grease 21 to the insulating member, regardless of the application quantity of the thermal radiation grease 21, make the convex top part or concave shape of an insulating member contact the thermal radiation member 20 reliably. In other words, an appropriate amount of the heat dissipating grease 21 that is not unnecessarily thick can be disposed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view for explaining a semiconductor device according to a first embodiment;
FIG. 2 is a top view for explaining the semiconductor device according to the first embodiment;
3 is a longitudinal sectional view for explaining a first semiconductor device according to a first modification of the first embodiment. FIG.
4 is a longitudinal sectional view for explaining a second semiconductor device according to a first modification of the first embodiment. FIG.
5 is a longitudinal sectional view for explaining a third semiconductor device according to a first modification of the first embodiment. FIG.
6 is a longitudinal sectional view for explaining a semiconductor device according to a second embodiment; FIG.
7 is a longitudinal sectional view for explaining another semiconductor device according to the second embodiment; FIG.
FIG. 8 is a longitudinal sectional view for explaining a semiconductor device according to a third embodiment.
FIG. 9 is a top view for explaining the semiconductor device according to the third embodiment.
FIG. 10 is a longitudinal sectional view for explaining a conventional semiconductor device.
FIG. 11 is a schematic diagram for explaining the breakdown voltage-time characteristics of an insulating layer of a metal insulating substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power semiconductor element (semiconductor element), 2 electrode frame, 2D element mounting part, 2DA, 7A periphery, 2L lead part, 2S1 surface (one surface), 2S2 surface (the other surface), 5 sealing part, 5S Outer surface, 6 brazing material (adhesive), 7, 17, 17A insulating member, 7S1, 17S1 surface (first surface), 7S2, 17S2 surface (second surface), 7S3, 17S3 surface (third surface), 101 -103,101A-101C, 102A Power semiconductor device (semiconductor device).

Claims (4)

素子搭載部及びリード部を有する電極フレームと、
前記素子搭載部の一方の表面上に搭載された半導体素子と、
その周縁が前記素子搭載部の他方の表面の周縁を取り囲んで前記他方の表面に対面する第1表面と、前記第1表面に対向する第2表面とを有し、前記素子搭載部に固定された絶縁部材と、
前記絶縁部材の前記第2表面の全面及び前記第1表面と前記第2表面との間で側面を成す第3表面の少なくとも一部を露出させた状態で前記絶縁部材に接すると共に前記半導体素子を覆って形成された封止部とを備え
前記絶縁部材は、前記第2表面の中央がその周縁に対して凸形状又は凹形状を成していることを特徴とする、
半導体装置。
An electrode frame having an element mounting portion and a lead portion;
A semiconductor element mounted on one surface of the element mounting portion;
The peripheral surface has a first surface that surrounds the peripheral surface of the other surface of the element mounting portion and faces the other surface, and a second surface that faces the first surface, and is fixed to the element mounting portion. An insulating member;
The semiconductor element is in contact with the insulating member in a state in which the entire surface of the second surface of the insulating member and at least a part of the third surface forming a side surface between the first surface and the second surface are exposed. A sealing portion formed to cover ,
The insulating member is characterized in that the center of the second surface is convex or concave with respect to the periphery thereof.
Semiconductor device.
請求項1に記載の半導体装置であって、
前記封止部は、前記絶縁部材の前記第3表面を全面及び前記第1表面の一部をさらに露出させるように形成されていることを特徴とする、
半導体装置。
The semiconductor device according to claim 1,
The sealing portion is formed to further expose the entire third surface of the insulating member and a part of the first surface,
Semiconductor device.
請求項1又は請求項2に記載の半導体装置であって、
前記絶縁部材は、少なくとも前記第2表面上に金属層を備えることを特徴とする、
半導体装置。
The semiconductor device according to claim 1 or 2, wherein
The insulating member includes a metal layer on at least the second surface,
Semiconductor device.
素子搭載部及びリード部を有する電極フレームと、An electrode frame having an element mounting portion and a lead portion;
前記素子搭載部の一方の表面上に搭載された半導体素子と、  A semiconductor element mounted on one surface of the element mounting portion;
その周縁が前記素子搭載部の他方の表面の周縁を取り囲んで前記他方の表面に対面する第1表面と、前記第1表面に対向する第2表面とを有し、前記素子搭載部に固定された絶縁部材と、  The peripheral edge has a first surface that surrounds the peripheral edge of the other surface of the element mounting portion and faces the other surface, and a second surface that faces the first surface, and is fixed to the element mounting portion. An insulating member;
前記絶縁部材の前記第2表面の全面を露出させた状態で前記絶縁部材に接すると共に前記半導体素子を覆って形成された封止部とを備え、  A sealing portion formed in contact with the insulating member in a state where the entire surface of the second surface of the insulating member is exposed, and covering the semiconductor element;
前記絶縁部材は、前記第2表面の中央がその周縁に対して凸形状又は凹形状を成していることを特徴とする、  The insulating member is characterized in that the center of the second surface is convex or concave with respect to the periphery thereof.
半導体装置。Semiconductor device.
JP2000042695A 2000-02-21 2000-02-21 Semiconductor device Expired - Lifetime JP4060020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042695A JP4060020B2 (en) 2000-02-21 2000-02-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042695A JP4060020B2 (en) 2000-02-21 2000-02-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001237366A JP2001237366A (en) 2001-08-31
JP4060020B2 true JP4060020B2 (en) 2008-03-12

Family

ID=18565735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042695A Expired - Lifetime JP4060020B2 (en) 2000-02-21 2000-02-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4060020B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492257B2 (en) * 2004-08-26 2010-06-30 富士電機システムズ株式会社 Semiconductor module and manufacturing method thereof
JP5390064B2 (en) * 2006-08-30 2014-01-15 ルネサスエレクトロニクス株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2001237366A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
US10249552B2 (en) Semiconductor package having double-sided heat dissipation structure
KR100339044B1 (en) ball grid array semiconductor package and method for making the same
JP3627738B2 (en) Semiconductor device
JP2003124437A (en) Semiconductor device
JP2006303400A (en) Package for containing electronic component, electronic device and its packaging structure
JP2008141140A (en) Semiconductor device
JP4967701B2 (en) Power semiconductor device
JP5126201B2 (en) Semiconductor module and manufacturing method thereof
JP4549171B2 (en) Hybrid integrated circuit device
JPS6042620B2 (en) Semiconductor device encapsulation
JP2828358B2 (en) Semiconductor heat dissipation structure
JP4062157B2 (en) Semiconductor module mounting structure
JP4060020B2 (en) Semiconductor device
JP5039388B2 (en) Circuit equipment
JPH03280453A (en) Semiconductor device and manufacture thereof
JP2736161B2 (en) Semiconductor device
JPS63190363A (en) Power package
JP2005347356A (en) Manufacturing method for circuit arrangement
JPH07235633A (en) Multi-chip module
JP2020053611A (en) Semiconductor module, and method for manufacturing semiconductor module
JP3894749B2 (en) Semiconductor device
CN216698339U (en) Chip packaging assembly
JP2009158825A (en) Semiconductor device
JPH11330315A (en) Semiconductor device and its manufacture
JP2004228162A (en) Electronic control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4060020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term