JP4054168B2 - Imaging device and operation method thereof - Google Patents

Imaging device and operation method thereof Download PDF

Info

Publication number
JP4054168B2
JP4054168B2 JP2000242356A JP2000242356A JP4054168B2 JP 4054168 B2 JP4054168 B2 JP 4054168B2 JP 2000242356 A JP2000242356 A JP 2000242356A JP 2000242356 A JP2000242356 A JP 2000242356A JP 4054168 B2 JP4054168 B2 JP 4054168B2
Authority
JP
Japan
Prior art keywords
imaging device
layer
photoelectric conversion
selenium
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000242356A
Other languages
Japanese (ja)
Other versions
JP2002057314A (en
Inventor
裕司 大川
和典 宮川
四郎 鈴木
保 高畠
典文 江上
健吉 谷岡
忠明 平井
昭 小林
功一 小楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Japan Broadcasting Corp
Original Assignee
Hamamatsu Photonics KK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Japan Broadcasting Corp filed Critical Hamamatsu Photonics KK
Priority to JP2000242356A priority Critical patent/JP4054168B2/en
Publication of JP2002057314A publication Critical patent/JP2002057314A/en
Application granted granted Critical
Publication of JP4054168B2 publication Critical patent/JP4054168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光導電型の撮像デバイス、特に暗電流の増加と残像の増加及び解像度の劣化とを抑止した状態で、光電変換効率と分光感度特性とを大幅に改善した高感度・高解像度で高S/Nの高品位画像が得られる光導電型撮像デバイス及びその動作方法に関するものである。
【0002】
【従来の技術】
非晶質セレンに高電界を印加すると、内部で電荷のアバランシェ増倍現象が起こることが知られており、この現象を利用したアバランシェ増倍方式の高感度撮像管や非晶質セレン薄膜を2次元固体走査IC基板上に積層した高感度固体撮像素子が開示されている(特願平7-29507号公報、特開昭63-174480号公報、特開平7-192663号公報)。
【0003】
非晶質セレンにおける上記アバランシェ増倍現象は、5×10V/m以上の高い電界を必要とするため、電極から非晶質セレンへの電荷(正孔)の注入を阻止して暗電流を抑制する手段として、正極性電極と非晶質セレンとの間に、例えば酸化セリウム薄膜を設ける方法が知られている。
【0004】
また、非晶質セレンのバンドギャップは約2eVであり、波長620nmの光量子エネルギーに相当するので、これ以上の長波長光は吸収されず、光電変換は起こらない。一方、人の長波長光視感限界はほぼ750nmであるため、例えばカラーカメラに非晶質セレンを用いた上記撮像デバイスを使用しても、赤色光に対する感度が不足して色調を忠実に再現することができず、良質の画像は得られない。この問題を解決するために、非晶質セレン膜の一部(光入射側)にTe、Sb、Cd、Biのうち少なくとも1つを添加してバンドギャップを小さくすることにより、光吸収端を長波長側にシフトさせ、分光感度特性を長波長側に拡張する方法が知られている(特開昭62-004871号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、非晶質セレンに添加する上記材料の量が多すぎたり、添加領域が適切でなかったりすると、分光感度特性の不具合、暗電流や残像の増加、解像度特性劣化といった問題が生じる。
【0006】
本発明の目的は、上記問題を抑止した状態で、カラーカメラに好適な分光感度特性と更なる高効率の光電変換特性を実現した撮像デバイスを提供することである。また本発明の他の目的は、上記問題を抑止した状態で、前記導電性薄膜からなる透光性電極に、前記キャリア増倍層内で電荷のアバランシェ増倍が生じるほどの電圧を印加して使用し得るカラーカメラに好適な分光感度特性と更なる高効率の光電変換特性を実現した撮像デバイスの動作方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明では、上記目的を達成するために、導電性薄膜からなる透光性電極と、この透光性電極の表面上に形成された正孔注入阻止層と、この正孔注入阻止層の表面上に形成されたセレン系非晶質半導体からなる正孔注入阻止補助層と、この正孔注入阻止補助層の表面上に形成された入射する可視光の大部分を吸収して電荷に変換するためのセレン・テルル系非晶質半導体からなる光キャリア発生層と、この光キャリア発生層の表面上に形成され、発生した光キャリアをアバランシェ増倍するためのセレン系非晶質半導体からなるキャリア増倍層と、を含み、増倍されたキャリアを信号電荷として蓄積する機能を有する電荷注入阻止型の光電変換部と、蓄積された信号電荷を読み取るための手段と、を具える撮像デバイスにおいて、前記光キャリア発生層のテルル濃度を、13重量%以上20重量%以下とし、膜厚を0.1μm以上0.2μm以下とする。濃度や膜厚を上記範囲にすると、暗電流や残像の増大や解像度の劣化を抑え、長波長光に対する感度を人の視感度限界内に抑え、カラーカメラに使用する場合に長波長光カットフィルタを不要とする。
【0008】
また本発明の他の目的を達成するために、前記導電性薄膜からなる透光性電極に、前記キャリア増倍層内で電荷のアバランシェ増倍が生じるほどの電圧を印加して動作させる。
【0009】
【発明の実施の形態】
添付する図面を参照しながら、本発明の具体的な実施の形態を説明する。
図1は、本発明の第1の実施態様の蓄積された信号電荷を読み取るための手段として、2次元固体走査IC基板を用いる平板型撮像デバイスを示す概略断面図であり、図1(a)は撮像デバイス全体の断面概略図、図1(b)は1画素に対応する部分を拡大して詳細に示す断面概略図である。図1(a)に示すように、画素電極121が配列されていて、表面が平滑化されている、蓄積された信号電荷を読み取るための2次元固体走査IC基板12上に光電変換部11を設ける。図1(b)に示すように、画素電極121が配列された2次元固体走査IC基板12上に設けられた光電変換部11は、透光性電極111上に正孔注入阻止層112を設け、更にその上に正孔注入阻止補助層113、光キャリア発生層114、光キャリア増倍層115を設けた構成になっている。
【0010】
即ち、本発明の第1の実施態様では、光電変換部11を、少なくとも、上記の透光性電極111、正孔注入阻止層112、正孔注入阻止補助層113、光キャリア発生層114、及びキャリア増倍層115で構成し、セレン・テルル系非晶質半導体からなる光キャリア発生層114のテルル濃度を平均で13重量%以上20重量%以下、膜厚を0.1μm以上0.2μm以下とする。キャリア発生層114のテルル濃度が13重量%未満、或いは膜厚が0.1μm未満の場合は、光電変換効率及び分光感度特性の改善効果が不十分となる。逆に、濃度や膜厚が上記範囲を越えた場合は、暗電流や残像の増大、解像度の劣化が起こり易くなったり、更にまた長波長光に対する感度が人の視感度限界を越えてしまい、カラーカメラに使用する場合に長波長光カットフィルタが必須となるなどの不具合が生じる。
【0011】
また、本発明の第1の実施態様による撮像デバイスでは、導電性薄膜からなる透光性電極111を、蓄積された信号電荷を読み取るための手段に対してプラスにバイアスして使用する。従って、透光性電極111側から入射した可視光は、その一部が正孔注入阻止補助層113にも吸収されるが、大部分は光キャリア発生層114に吸収されて電子・正孔対に変換され、この正孔がキャリア増倍層115に移行してアバランシェ増倍効果により次々と新たな電子・正孔対を生成する。増倍された信号電荷(正孔)は、各画素毎に蓄積され、順次読み取られることにより高感度動作が達成される。
【0012】
また、本発明の第1の実施態様による撮像デバイスは、正孔注入阻止補助層113を弗化物と砒素とを含有するセレン系非晶質半導体で構成される。弗化物は、弗化リチウム、弗化ナトリウム、弗化カリウム、弗化マグネシウム、弗化カルシウムからなる群の中から選ばれた少なくとも1つを用いる。これらの弗化物は、非晶質セレン中で正孔に対する捕獲準位を形成し、正の空間電荷として作用する性質を有している。正孔注入阻止補助層113はこの性質を利用するもので、動作中に、捕獲された正孔による空間電荷によって正孔注入阻止層112の電界を緩和し、透光性電極111からの正孔注入を阻止する機能を補助する働きをなす。従って、弗化物の添加量が少なすぎたり、或いは添加領域の膜厚が小さすぎると正孔注入阻止補助機能が不十分となり、暗電流や残像の増大を来たす恐れがある。また、逆に添加量が多すぎたり添加領域の膜厚が大きすぎると、動作中に正孔注入阻止補助層113内に過大の正の空間電荷が形成され、正孔注入阻止補助層113全体が無電界領域と化すため、この領域に吸収される光が信号電荷に変換されなくなって光の利用効率が低下することになる。このようなことから、弗化物の含有量は平均で0.05重量%以上1重量%以下、膜厚は0.01μm以上0.05μm以下とすることが好適である。
【0013】
正孔注入阻止補助層113に添加する砒素は、熱的特性を改善するためのものであり、少なすぎるとその効果が得られない。一方、非晶質セレン中に添加された砒素は電子に対する捕獲準位を形成するため、多すぎると弗化物による正孔捕獲準位を相殺して、正孔注入阻止補助機能を低下させる。このようなことから、正孔注入阻止補助層113の砒素含有量は、平均で0.5重量%以上5重量%以下とすることが好適である。
【0014】
図2は、本発明の第2の実施態様の蓄積された信号電荷を読み取るための手段として、走査電子ビームを発射する電子銃を用いた撮像デバイスの概略図である。図2(a)は撮像デバイス全体の断面概略図である。図2(a)に示すように、走査電子ビームを発射する電子銃22上に、光電変換部21を設けた構成となっている。図2(b)は光電変換部を電子ビーム走査側(電子銃22側)から見た平面図である。図2(c)は光電変換部21の概略断面図である。図2(c)に示すように(図1とは上下逆に図示する)、透光性面板210の上に導電性薄膜からなる透光性電極211を設け、その上に正孔注入阻止層212、正孔注入阻止補助層213、入射する可視光の大部分を吸収して光キャリアに変換するための光キャリア発生層214、キャリア増倍層215を積層させた構成となっている。図2(b)に示すように200は電子ビーム走査領域の境界を示す線であり、この線200の内側が走査領域、外側が非走査領域である。図2(c)に示すように、キャリア増倍層上の非走査領域に対応する部分に非走査領域の表面電位を安定化するための増し付け層216を、さらに走査領域並びに非走査領域の表面全域に走査電子ビームランディング層217を設ける。この走査電子ビームランディング層217は、電子注入阻止層としての役割もなす。
【0015】
この第2の実施態様では、増し付け層216を設けることで非走査領域の全膜厚が厚くなり、キャリア増倍層で電荷のアバランシェ増倍現象が生じるほどの高い電圧を印加して動作させた場合においても、非走査領域ではアバランシェ増倍が生じるほどの電界には至らず、過度の表面電位上昇が抑制されることになる。その結果、さざ波状の画像欠陥、画像の極性反転現象、電極反射像、画像歪みなどの発生が大幅に抑制される。図2(a)に示すように、電子銃22は、メッシュ電極221、カソード222、電子ビームを偏向・収束するための電極223、インジウムリング228、金属リング229、筐体227で構成される。図面において、224は動作時における走査電子ビーム、20は入射光、201はレンズ、202は電源、203は負荷抵抗、204は信号出力端子、210は透光性面板、21は光電変換部、218は電極ピンである。
【0016】
この第2の実施態様(図2)による光電変換部21が第1の実施態様(図1)と異なる主な点は、透光性面板210、増し付け層216、及び走査電子ビームランディング層217の3点であり、他は同様の構成要素からなる。
【0017】
図1及び図2の光電変換部において、光キャリア発生層とアバランシェ増倍層とが接する界面に、熱或いは電界によるテルルの拡散を防止するために、非晶質セレンを主体とし、平均で1重量%以上10重量%以下の砒素を含有する膜厚0.01μm以上0.5μm以下のテルル拡散防止層を設けることが好適である。このテルル拡散防止層により、熱的安定性をさらに改善することができる。但し、砒素の含有量、或いは膜厚が上記の値より少ないと十分な拡散防止効果が得られず、また多すぎると暗電流や残像が増加して良質の画像が得られなくなる。
【0018】
以上述べたように、本発明の骨子は、セレンを主体とする非晶質半導体層におけるアバランシェ増倍現象を用いて感度を高める撮像デバイスにおいて、カラーカメラ用として最も好適な分光感度特性と更なる高効率の光電変換特性とを実現するために、上記非晶質半導体層の構成、特に光キャリア発生層のテルル含有量と膜厚を最適範囲に限定することである。
【0019】
以下、本発明の実施態様について添付する図面を用いてさらに詳細に説明する。
図1に示した本発明の第1の実施態様による信号電荷を読み取るための手段として2次元固体走査IC基板を用いた撮像デバイスの製法について説明する。
【0020】
まず初めに、単結晶シリコン基板上に、通常のLSIプロセスを用いて、画素電極121及びMOS型スイッチング回路を形成させた2次元固体走査IC基板12を作成する。続いて、上記の画素電極をアレイ上に配列させたMOS型2次元固体走査IC回路基板12の上に、真空蒸着法によって、三硫化アンチモンからなる膜厚0.1μmの電子注入阻止層(図1には示さず)を形成し、その上に非晶質セレンからなる厚さ2μmのキャリア増倍層115を形成する。このキャリア増倍層115の上に、真空蒸着法により、セレンと三セレン化砒素を各々別々のボートから同時に蒸発させて、平均で1重量%以上10重量%以下の砒素を含む膜厚0.01μm以上0.1μm以下のセレン系非晶質半導体からなるテルル拡散防止層(図1には示さず)を形成する。その上に、真空蒸着法により、セレンとテルルとを各々別々のボートから同時に蒸発させて、平均で13重量%以上20重量%以下のテルルを含有する膜厚0.1μm以上0.2μm以下のセレン・テルル系非晶質半導体からなる光キャリア発生層114を形成する。更にその上に、正孔注入阻止補助層113として、真空蒸着法により、セレンと三セレン化砒素と弗化リチウムとを各々別々のボートから同時に蒸発させて、平均で0.5重量%以上5重量%以下の砒素と平均で0.05重量%以上1重量%以下の弗化リチウムとを含む膜厚0.01μm以上0.04μm以下のセレン系非晶質半導体層と平均で0.5重量%以上5重量%以下の砒素を含む膜厚0.01μm以下のセレン系非晶質半導体層を形成する。次にその上に、酸化セリウムからなる膜厚15nmの正孔注入阻止層112を真空蒸着法により、更にその上に高周波スパッタリング蒸着法により酸化インジウムを主体とする膜厚20nmの透光性電極111を形成し、平面型の撮像デバイスを得る。
【0021】
図2に示すように、本発明の第2の実施態様による撮像デバイスは、信号電荷を読み取るための手段として走査電子ビームを発射する電子銃を用いて構成させたものである。光電変換部21が第1の実施態様(図1)と異なる主な点は、透光性面板210、増し付け層216、及び走査電子ビームランディング層217の3点である。以下、本発明の第2の実施態様による電子銃を用いて構成させた撮像デバイスの製法について詳細に説明する。
まず、3分の2インチサイズの透光性ガラスからなる面板210の片面に高周波スパッタリング蒸着法により、直径14mm、膜厚30nmの酸化インジウムを主体とする透光性電極211を形成する。次に、その上に真空蒸着法によって、直径14mm、膜厚20nmの酸化セリウムからなる正孔注入阻止層212を形成し、更にその上に正孔注入阻止補助層213として、膜厚0.01μm以下の非晶質セレン層と平均で0.5重量%以上5重量%以下の砒素と平均で0.05重量%以上1重量%以下の弗化物とを含む膜厚0.01μm以上0.04μm以下のセレン系非晶質半導体層からなる複合層を形成する。更にその上に平均で13重量%以上20重量%のテルルを含有する膜厚0.1μm以上0.2μm以下のセレン系非晶質半導体層からなる光キャリア発生層214を形成し、その上に平均で1重量%以上10重量%以下の砒素を含む膜厚0.01μm以上0.5μm以下の砒素を含有するセレン系非晶質層からなるテルル拡散防止層(図2(c)には示さず)を形成し、その上にセレンを主体とする非晶質半導体からなる厚さ25μmのキャリア増倍層215を形成する。
【0022】
次に、図2(b)の非走査領域の部分に、真空蒸着法により、蒸着用マスクを用いて、増し付け層216を形成する。増し付け層216は、平均で0.2重量%の弗化リチウムを含有する膜厚0.05〜0.5μmのセレン系非晶質半導体層と膜厚30μmのセレンを主体とする非晶質半導体層で構成する。次に、蒸着用マスクを取り外し、直径14mmの走査側表面全域に、圧力0.3Torrの不活性ガス雰囲気中で三硫化アンチモンを蒸着し、厚さ0.2μmの走査電子ビームランディング層、兼電子注入阻止層217を形成し、本発明の光電変換部21を得る。上記により得られた光電変換部21をインジウムリング228及び金属リング229を用いて、筐体227に装着し、内部を真空封止して撮像管型の撮像デバイスを得る。
【0023】
本発明の第3の実施態様による光電変換部とMOS型の2次元固体走査IC基板とを各画素毎にインジウムバンプ方式で接合した撮像デバイスについて説明する。図3は、本発明の第3の実施態様の光電変換部とMOS型の2次元固体走査IC基板とを各画素毎にインジウムバンプ方式で接合した撮像デバイスの概略図であり、図3(a)は撮像デバイス全体の断面概略図、図3(b)は1画素に相当する部分を拡大して示した断面概略図である。図3(a)に示すように、光電変換部31と、蓄積された信号電荷を読み取るための2次元固体走査IC基板32とをインジウムバンプ326で接合させた構成となっている。光電変換部31の上には透光性面板310が積層されており、この透光性面板310に電極ピン318を溶着(貫通)させて光電変換部(即ち透光性電極311)と電気的に接続させている。図3(b)に示すように、透光性面板310に、導電性薄膜からなる透光性電極311、正孔注入阻止層312、正孔注入阻止補助層313、入射する可視光の大部分を吸収して光キャリアに変換するための光キャリア発生層314、キャリア増倍層315、電子注入阻止層317、第2の画素電極319を積層させた構成となっている。2次元固体走査IC基板32は、図に示すように、第1の画素電極321、ソース電極322、ゲート電極323、ドレイン電極324、絶縁層325、インジウムバンプ326から構成される。本実施態様による撮像デバイスは、第1の各画素電極321と第2の各画素電極319とをインジウムバンプを介して接合した構成となっている。
【0024】
次に、図3に示す本発明の第3の実施態様によるインジウムバンプ方式で接合した撮像デバイスの製法について詳細に説明する。
まず初めに、光電変換部31を接合させた透光性面板310と、各画素毎にインジウムバンプ326を有する2次元固体走査IC基板32とを別々に用意する。2次元固体走査IC基板は実施態様1と同様にMOS型とし、第1の各画素電極321の各々の上に、インジウムバンプをアレイ状に通常のホトレジスト加工法により形成する。他方の光電変換部31については、予め電極ピン318が溶着された3分の2インチサイズのガラスからなる透光性面板310の片面に、実施態様1と同様の材料及び方法で、それぞれ直径14mmの酸化インジウムを主体とする透光性電極311、正孔注入阻止層312、正孔注入阻止補助層313、光キャリア発生層314、キャリア増倍層315、電子注入阻止層317を形成する。この電子注入阻止層317の上に、真空蒸着法により真空蒸着法により金薄膜を形成し、通常のホトレジスト加工法により第2の画素電極319を作成する。以上により得られた光電変換部(光導電部)31を有する透光性面板310と、第1の各画素電極321上に形成されたインジウムバンプ326の配列を有するMOS型の2次元固体走査IC基板32とを図3に示した構成になるように各画素毎にインジウムバンプを介して圧着し、平面型のインジウムバンプ接合型撮像デバイスを得る。
【0025】
図4に示すように本発明の第4の実施態様による撮像デバイスは、信号電荷を読み取るための手段として、複数個の電界放出素子を2次元に配列整備した平面電子源を用いて構成させたものである。図4は、本発明の第4の実施態様の平面電子源を用いた撮像デバイスの概略図である。この撮像デバイスは、光電変換部41、平面電子源42、透光性面板410、電極ピン418、メッシュ電極421、電子放出板422、インジウムリング428、金属リング429、筐体427、レンズ401、電源402、負荷抵抗403、信号出力端子404、平面電子源用電源405から構成される。また、図面において、40は入射光を示すものである。図4に示すように、透光性ガラス面板410の片面に光電変換部41を、第2の実施態様と同じ工程で形成し、インジウムリング428及び金属リング429を用いて平面電子源筐体に圧着する。次に、内部を真空に排気封止して偏平真空型の撮像デバイスを得る。
【0026】
上記実施態様1〜4で得られた本発明の撮像デバイスを用いて、特性評価を行ったところ、解像度の劣化と暗電流や残像の増加とを抑止した状態で、カラーカメラに好適な分光感度特性が得られること、光電変換特性が大幅に改善されることなどを確認することができた。
【0027】
本発明は、上記実施態様に限定されるものではなく、幾多の変更及び変形が可能である。例えば、蓄積された信号電荷を読み取るための手段としてMOS型の2次元固体走査IC基板を用いる例を説明してきたがCCD型の固体走査IC基板を用いることもが可能である。同様に、電子ビーム発生部としては、必ずしも静電偏向・静電収束方式に限られるものでなく、例えば電磁偏向・静電収束方式、静電偏向・電磁収束方式、電磁偏向・電磁収束方式を用いることもできる。
【0028】
【発明の効果】
上述したように、本発明によれば、暗電流の増加、残像の増加、及び解像度の劣化を抑止した状態で、カラーカメラに好適な分光感度特性及び更なる高効率の光電変換特性をもつ高感度・高解像度で高S/Nの高品位画像が得られる光導電型の撮像デバイスを実現することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施態様の蓄積された信号電荷を読み取るための手段として、2次元固体走査IC基板を用いる平板型撮像デバイスを示す概略断面図であって、(a)は撮像デバイス全体の断面概略図、(b)は1画素に対応する部分を拡大して詳細に示す断面概略図である。
【図2】 本発明の第2の実施態様の蓄積された信号電荷を読み取るための手段として、走査電子ビームを発射する電子銃を用いた撮像デバイスの概略図であって、(a)は撮像デバイス全体の断面概略図で、(b)は光電変換部を電子ビーム走査側(電子銃22側)から見た平面図で、(c)は光電変換部21の概略断面図である。
【図3】 本発明の第3の実施態様の光電変換部とMOS型の2次元固体走査IC基板とを各画素毎にインジウムバンプ方式で接合した撮像デバイスの概略図であって、(a)は撮像デバイス全体の断面概略図、(b)は1画素に相当する部分を拡大して示した断面概略図である。
【図4】 本発明の第4の実施態様の平面電子源を用いた撮像デバイスの概略図である。
【符号の説明】
11、21、31、41 光電変換部
111、211、311 導電性薄膜からなる透光性電極
112、212、312 正孔注入阻止層
113、213、313 正孔注入阻止補助層
114、214、314 光キャリア発生層
115、215、315 キャリア増倍層
12、32 2次元固体走査IC基板
121 画素電極
200 電子ビーム走査領域の境界を示す線
20、40 入射光
201、401 レンズ
202、402 電源
203、403 負荷抵抗
204、404 信号出力端子
210、310、410 透光性面板
216 増し付け層
217 走査電子ビームランディング層、兼電子注入阻止層
22 走査電子ビームを発射する電子銃
221、421 メッシュ電極
222 カソード
223 電子ビームを偏向・収束するための電極
224 走査電子ビーム
227、427 筐体
228、428 インジウムリング
229、429 金属リング
317 電子注入阻止層
319 第2の画素電極
218、318、418 電極ピン
321 第1の画素電極
322 ソース電極
323 ゲート電極
324 ドレイン電極
325 絶縁層
326 インジウムバンプ
405 平面電子源用電源
42 平面電子源
422 電子放出板
423 電子ビーム
[0001]
BACKGROUND OF THE INVENTION
The present invention is a photoconductive type imaging device, particularly with high sensitivity and high resolution with greatly improved photoelectric conversion efficiency and spectral sensitivity characteristics while suppressing an increase in dark current, an increase in afterimage and a deterioration in resolution. The present invention relates to a photoconductive imaging device capable of obtaining a high-quality image with high S / N and an operation method thereof.
[0002]
[Prior art]
It is known that when a high electric field is applied to amorphous selenium, a charge avalanche multiplication phenomenon occurs inside. A high-sensitivity image pickup tube of the avalanche multiplication method using this phenomenon or an amorphous selenium thin film is applied to 2 layers. A high-sensitivity solid-state imaging device laminated on a three-dimensional solid-state scanning IC substrate has been disclosed (Japanese Patent Application Nos. 7-29507, 63-174480, 7-192663).
[0003]
Since the avalanche multiplication phenomenon in amorphous selenium requires a high electric field of 5 × 10 7 V / m or more, the injection of charges (holes) from the electrode to the amorphous selenium is prevented, and dark current is prevented. As a means for suppressing this, for example, a method of providing a cerium oxide thin film between a positive electrode and amorphous selenium is known.
[0004]
Moreover, since the band gap of amorphous selenium is about 2 eV and corresponds to photon energy with a wavelength of 620 nm, longer wavelength light is not absorbed and photoelectric conversion does not occur. On the other hand, because the human long-wavelength light visibility limit is approximately 750 nm, even if the above imaging device using amorphous selenium is used for a color camera, for example, the sensitivity to red light is insufficient and the color tone is faithfully reproduced. It is not possible to obtain a high-quality image. In order to solve this problem, at least one of Te, Sb, Cd, and Bi is added to a part of the amorphous selenium film (light incident side) to reduce the band gap, thereby reducing the light absorption edge. A method of shifting to the long wavelength side and extending the spectral sensitivity characteristic to the long wavelength side is known (Japanese Patent Laid-Open No. 62-004871).
[0005]
[Problems to be solved by the invention]
However, if the amount of the material added to amorphous selenium is too large or the addition region is not appropriate, problems such as a problem of spectral sensitivity characteristics, an increase in dark current and afterimage, and deterioration of resolution characteristics occur.
[0006]
An object of the present invention is to provide an imaging device that realizes spectral sensitivity characteristics suitable for a color camera and further high-efficiency photoelectric conversion characteristics in a state where the above problems are suppressed. Another object of the present invention is to apply a voltage that causes charge avalanche multiplication within the carrier multiplication layer to the translucent electrode made of the conductive thin film while suppressing the above problem. An object of the present invention is to provide an operation method of an imaging device that realizes a spectral sensitivity characteristic suitable for a color camera that can be used and a photoelectric conversion characteristic with higher efficiency.
[0007]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a translucent electrode made of a conductive thin film, a hole injection blocking layer formed on the surface of the translucent electrode, and a surface of the hole injection blocking layer A hole injection blocking auxiliary layer made of a selenium-based amorphous semiconductor formed on the surface and a large portion of incident visible light formed on the surface of the hole injection blocking auxiliary layer are absorbed and converted into charges. An optical carrier generation layer made of a selenium-tellurium-based amorphous semiconductor and a carrier formed of a selenium-based amorphous semiconductor for avalanche multiplication of the generated optical carrier formed on the surface of the optical carrier generation layer In an imaging device, comprising: a multiplication layer; and a charge injection blocking type photoelectric conversion unit having a function of accumulating the multiplied carriers as signal charges, and means for reading the accumulated signal charges , The optical carrier Tellurium concentration of A generating layer, and more than 20 wt% 13 wt% or more and 0.1μm or 0.2μm or less the film thickness. When the density and film thickness are within the above ranges, dark current, afterimage increase and resolution degradation are suppressed, sensitivity to long wavelength light is kept within the human visibility limit, and long wavelength light cut filter when used in color cameras. Is unnecessary.
[0008]
In order to achieve another object of the present invention, the translucent electrode made of the conductive thin film is operated by applying a voltage that causes charge avalanche multiplication within the carrier multiplication layer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Specific embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view showing a flat-type imaging device using a two-dimensional solid-state scanning IC substrate as a means for reading accumulated signal charges according to the first embodiment of the present invention, and FIG. FIG. 1B is a schematic cross-sectional view of the entire imaging device, and FIG. 1B is a schematic cross-sectional view illustrating an enlarged portion corresponding to one pixel in detail. As shown in FIG. 1A, the photoelectric conversion unit 11 is arranged on a two-dimensional solid-state scanning IC substrate 12 for reading accumulated signal charges, in which pixel electrodes 121 are arranged and the surface is smoothed. Provide. As shown in FIG. 1B, the photoelectric conversion unit 11 provided on the two-dimensional solid-state scanning IC substrate 12 on which the pixel electrodes 121 are arranged has a hole injection blocking layer 112 provided on the translucent electrode 111. Further, a hole injection blocking auxiliary layer 113, a photocarrier generation layer 114, and a photocarrier multiplication layer 115 are further provided thereon.
[0010]
That is, in the first embodiment of the present invention, the photoelectric conversion unit 11 includes at least the translucent electrode 111, the hole injection blocking layer 112, the hole injection blocking auxiliary layer 113, the photocarrier generation layer 114, and An optical carrier generation layer 114 made of a selenium / tellurium-based amorphous semiconductor has an average tellurium concentration of 13% by weight to 20% by weight and a film thickness of 0.1 μm to 0.2 μm. And When the tellurium concentration of the carrier generation layer 114 is less than 13% by weight or the film thickness is less than 0.1 μm, the effect of improving the photoelectric conversion efficiency and the spectral sensitivity characteristics becomes insufficient. Conversely, when the density or film thickness exceeds the above range, dark current or afterimage increases, resolution is likely to deteriorate, and the sensitivity to long wavelength light exceeds the human visibility limit, When used for a color camera, a problem such as the necessity of a long wavelength light cut filter occurs.
[0011]
In the imaging device according to the first embodiment of the present invention, the translucent electrode 111 made of a conductive thin film is used while being positively biased with respect to the means for reading the accumulated signal charge. Therefore, a part of the visible light incident from the translucent electrode 111 side is also absorbed by the hole injection blocking auxiliary layer 113, but most of the visible light is absorbed by the photocarrier generation layer 114 and becomes an electron / hole pair. These holes are transferred to the carrier multiplication layer 115, and new electron / hole pairs are generated one after another by the avalanche multiplication effect. The multiplied signal charges (holes) are accumulated for each pixel and sequentially read to achieve a high sensitivity operation.
[0012]
In the imaging device according to the first embodiment of the present invention, the hole injection blocking auxiliary layer 113 is made of a selenium-based amorphous semiconductor containing fluoride and arsenic. As the fluoride, at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, and calcium fluoride is used. These fluorides have a property of forming trap levels for holes in amorphous selenium and acting as positive space charges. The hole injection blocking auxiliary layer 113 utilizes this property, and during operation, the electric field of the hole injection blocking layer 112 is relaxed by the space charge due to the trapped holes, and the holes from the translucent electrode 111 are relaxed. Helps to prevent injection. Therefore, if the amount of fluoride added is too small, or if the film thickness of the added region is too small, the hole injection prevention assisting function will be insufficient, and there is a possibility that dark current and afterimage will increase. On the other hand, if the added amount is too large or the thickness of the added region is too large, an excessive positive space charge is formed in the hole injection blocking auxiliary layer 113 during operation, and the hole injection blocking auxiliary layer 113 as a whole is formed. Therefore, the light absorbed in this region is not converted into signal charges, and the light use efficiency is reduced. For these reasons, it is preferable that the fluoride content is 0.05 to 1% by weight on average and the film thickness is 0.01 to 0.05 μm on average.
[0013]
Arsenic added to the hole injection blocking auxiliary layer 113 is for improving the thermal characteristics. If the amount is too small, the effect cannot be obtained. On the other hand, since arsenic added to amorphous selenium forms a trap level for electrons, if it is too much, the hole trap level due to fluoride is offset and the hole injection blocking assist function is lowered. For this reason, the arsenic content of the hole injection blocking auxiliary layer 113 is preferably 0.5% by weight or more and 5% by weight or less on average.
[0014]
FIG. 2 is a schematic diagram of an imaging device using an electron gun that emits a scanning electron beam as a means for reading accumulated signal charge according to the second embodiment of the present invention. FIG. 2A is a schematic cross-sectional view of the entire imaging device. As shown in FIG. 2A, a photoelectric conversion unit 21 is provided on an electron gun 22 that emits a scanning electron beam. FIG. 2B is a plan view of the photoelectric conversion unit viewed from the electron beam scanning side (electron gun 22 side). FIG. 2C is a schematic cross-sectional view of the photoelectric conversion unit 21. As shown in FIG. 2C (illustrated upside down from FIG. 1), a translucent electrode 211 made of a conductive thin film is provided on a translucent face plate 210, and a hole injection blocking layer is formed thereon. 212, a hole injection blocking auxiliary layer 213, a photocarrier generation layer 214 for absorbing most of incident visible light and converting it into optical carriers, and a carrier multiplication layer 215 are laminated. As shown in FIG. 2B, reference numeral 200 denotes a line indicating the boundary of the electron beam scanning region. The inner side of the line 200 is a scanning region and the outer side is a non-scanning region. As shown in FIG. 2 (c), an additional layer 216 for stabilizing the surface potential of the non-scanning region is further formed in the portion corresponding to the non-scanning region on the carrier multiplication layer. A scanning electron beam landing layer 217 is provided over the entire surface. This scanning electron beam landing layer 217 also serves as an electron injection blocking layer.
[0015]
In the second embodiment, by providing the additional layer 216, the entire thickness of the non-scanning region is increased, and the carrier multiplication layer is operated by applying a voltage high enough to cause a charge avalanche multiplication phenomenon. Even in this case, the electric field does not reach an avalanche multiplication in the non-scanning region, and an excessive increase in surface potential is suppressed. As a result, the occurrence of ripple-like image defects, image polarity reversal, electrode reflection images, image distortion, and the like is greatly suppressed. As shown in FIG. 2A, the electron gun 22 includes a mesh electrode 221, a cathode 222, an electrode 223 for deflecting and converging an electron beam, an indium ring 228, a metal ring 229, and a housing 227. In the drawing, 224 is a scanning electron beam during operation, 20 is incident light, 201 is a lens, 202 is a power source, 203 is a load resistor, 204 is a signal output terminal, 210 is a translucent face plate, 21 is a photoelectric conversion unit, 218 Is an electrode pin.
[0016]
The photoelectric converter 21 according to the second embodiment (FIG. 2) differs from the first embodiment (FIG. 1) mainly in that the translucent face plate 210, the additional layer 216, and the scanning electron beam landing layer 217. The other is composed of the same components.
[0017]
In the photoelectric conversion part of FIGS. 1 and 2, in order to prevent tellurium from being diffused by heat or an electric field at the interface between the photocarrier generation layer and the avalanche multiplication layer, amorphous selenium is mainly used, and the average is 1 It is preferable to provide a tellurium diffusion prevention layer having a film thickness of 0.01 μm or more and 0.5 μm or less containing arsenic in an amount of 10% by weight or less. This tellurium diffusion preventing layer can further improve the thermal stability. However, if the arsenic content or the film thickness is less than the above value, a sufficient diffusion preventing effect cannot be obtained, and if it is too much, a dark current and an afterimage increase and a good quality image cannot be obtained.
[0018]
As described above, the gist of the present invention is the most suitable spectral sensitivity characteristic for a color camera in an imaging device that enhances sensitivity using an avalanche multiplication phenomenon in an amorphous semiconductor layer mainly composed of selenium. In order to realize high-efficiency photoelectric conversion characteristics, the structure of the amorphous semiconductor layer, particularly the tellurium content and film thickness of the photocarrier generation layer are limited to the optimum range.
[0019]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
A method of manufacturing an imaging device using a two-dimensional solid-state scanning IC substrate as means for reading signal charges according to the first embodiment of the present invention shown in FIG. 1 will be described.
[0020]
First, a two-dimensional solid-state scanning IC substrate 12 in which a pixel electrode 121 and a MOS type switching circuit are formed on a single crystal silicon substrate is formed using a normal LSI process. Subsequently, on the MOS type two-dimensional solid-state scanning IC circuit board 12 in which the pixel electrodes are arranged on the array, an electron injection blocking layer having a thickness of 0.1 μm made of antimony trisulfide (see FIG. (Not shown in FIG. 1), and a carrier multiplication layer 115 having a thickness of 2 μm made of amorphous selenium is formed thereon. On this carrier multiplication layer 115, selenium and arsenic triselenide are simultaneously evaporated from separate boats by a vacuum deposition method, and a film thickness of 0.1% to 10% by weight of arsenic on average is obtained. A tellurium diffusion prevention layer (not shown in FIG. 1) made of a selenium amorphous semiconductor having a thickness of 01 μm or more and 0.1 μm or less is formed. In addition, selenium and tellurium are simultaneously evaporated from separate boats by a vacuum deposition method, and the film thickness is 0.1 μm or more and 0.2 μm or less containing tellurium of 13 wt% or more and 20 wt% or less on average. A photocarrier generation layer 114 made of a selenium / tellurium-based amorphous semiconductor is formed. Further, as a hole injection blocking auxiliary layer 113, selenium, arsenic triselenide, and lithium fluoride are simultaneously evaporated from separate boats by a vacuum deposition method, and an average of 0.5 wt% or more 5 A selenium-based amorphous semiconductor layer having a thickness of 0.01 μm or more and 0.04 μm or less containing 0.5% by weight or less of arsenic and 0.05% by weight or more and 1% by weight or less of lithium fluoride on average and 0.5% by weight on average A selenium-based amorphous semiconductor layer having a film thickness of 0.01 μm or less and containing arsenic in an amount of 5% to 5% by weight is formed. Next, a 15 nm-thick hole injection blocking layer 112 made of cerium oxide is formed thereon by a vacuum deposition method, and further a 20 nm-thick translucent electrode 111 mainly composed of indium oxide is formed thereon by a high-frequency sputtering deposition method. To obtain a planar imaging device.
[0021]
As shown in FIG. 2, the imaging device according to the second embodiment of the present invention is configured by using an electron gun that emits a scanning electron beam as means for reading signal charges. The photoelectric converter 21 is different from the first embodiment (FIG. 1) in three points: a translucent face plate 210, an additional layer 216, and a scanning electron beam landing layer 217. Hereinafter, a method for manufacturing an imaging device configured using the electron gun according to the second embodiment of the present invention will be described in detail.
First, a translucent electrode 211 mainly composed of indium oxide having a diameter of 14 mm and a film thickness of 30 nm is formed on one side of a face plate 210 made of translucent glass having a size of 2/3 inch by high-frequency sputtering deposition. Next, a hole injection blocking layer 212 made of cerium oxide having a diameter of 14 mm and a film thickness of 20 nm is formed thereon by vacuum deposition, and further a hole injection blocking auxiliary layer 213 is formed thereon as a hole injection blocking auxiliary layer 213. A film thickness of 0.01 μm or more and 0.04 μm including the following amorphous selenium layer, an average of 0.5% to 5% by weight of arsenic and an average of 0.05% to 1% by weight of fluoride. A composite layer composed of the following selenium-based amorphous semiconductor layer is formed. Further formed thereon is a photocarrier generation layer 214 made of a selenium-based amorphous semiconductor layer having a film thickness of 0.1 μm or more and 0.2 μm or less containing tellurium of 13 wt% or more and 20 wt% on average. A tellurium diffusion prevention layer comprising a selenium-based amorphous layer containing an arsenic film having a thickness of 0.01 μm or more and 0.5 μm or less containing an arsenic of 1 wt% to 10 wt% on average (shown in FIG. 2C) A carrier multiplication layer 215 having a thickness of 25 μm and made of an amorphous semiconductor mainly containing selenium is formed thereon.
[0022]
Next, an additional layer 216 is formed in the non-scanning region of FIG. 2B by a vacuum evaporation method using an evaporation mask. The additional layer 216 is an amorphous layer mainly composed of a selenium-based amorphous semiconductor layer having a thickness of 0.05 to 0.5 μm and containing selenium having a thickness of 30 μm, containing 0.2% by weight of lithium fluoride on average. It consists of a semiconductor layer. Next, the deposition mask was removed, and antimony trisulfide was deposited in an inert gas atmosphere with a pressure of 0.3 Torr over the entire surface on the scanning side with a diameter of 14 mm to obtain a scanning electron beam landing layer having a thickness of 0.2 μm. An injection blocking layer 217 is formed to obtain the photoelectric conversion unit 21 of the present invention. The photoelectric conversion unit 21 obtained as described above is attached to the housing 227 using the indium ring 228 and the metal ring 229, and the inside is vacuum-sealed to obtain an imaging tube type imaging device.
[0023]
An imaging device in which a photoelectric conversion unit and a MOS type two-dimensional solid-state scanning IC substrate according to a third embodiment of the present invention are bonded to each pixel by an indium bump method will be described. FIG. 3 is a schematic diagram of an imaging device in which the photoelectric conversion unit and the MOS type two-dimensional solid-state scanning IC substrate according to the third embodiment of the present invention are joined to each pixel by an indium bump method. ) Is a schematic cross-sectional view of the entire imaging device, and FIG. 3B is a schematic cross-sectional view showing an enlarged portion corresponding to one pixel. As shown in FIG. 3A, the photoelectric conversion unit 31 and the two-dimensional solid-state scanning IC substrate 32 for reading the accumulated signal charge are joined by indium bumps 326. A translucent face plate 310 is laminated on the photoelectric conversion portion 31, and electrode pins 318 are welded (penetrated) to the translucent face plate 310 to electrically connect the photoelectric conversion portion (that is, the translucent electrode 311). Is connected. As shown in FIG. 3B, a translucent face plate 310, a translucent electrode 311 made of a conductive thin film, a hole injection blocking layer 312, a hole injection blocking auxiliary layer 313, and most of the incident visible light. In this structure, an optical carrier generation layer 314, a carrier multiplication layer 315, an electron injection blocking layer 317, and a second pixel electrode 319 for absorbing and converting light are converted to optical carriers. As shown in the drawing, the two-dimensional solid scanning IC substrate 32 includes a first pixel electrode 321, a source electrode 322, a gate electrode 323, a drain electrode 324, an insulating layer 325, and an indium bump 326. The imaging device according to this embodiment has a configuration in which each first pixel electrode 321 and each second pixel electrode 319 are joined via an indium bump.
[0024]
Next, the manufacturing method of the imaging device joined by the indium bump method according to the third embodiment of the present invention shown in FIG. 3 will be described in detail.
First, a translucent face plate 310 to which the photoelectric conversion unit 31 is bonded and a two-dimensional solid-state scanning IC substrate 32 having indium bumps 326 for each pixel are prepared separately. The two-dimensional solid-state scanning IC substrate is of the MOS type as in the first embodiment, and indium bumps are formed in an array on each of the first pixel electrodes 321 by an ordinary photoresist processing method. The other photoelectric conversion unit 31 has a diameter of 14 mm on one side of a translucent face plate 310 made of glass with a size of 2/3 inch to which electrode pins 318 are previously welded, using the same material and method as in the first embodiment. A transparent electrode 311 mainly composed of indium oxide, a hole injection blocking layer 312, a hole injection blocking auxiliary layer 313, a photocarrier generation layer 314, a carrier multiplication layer 315, and an electron injection blocking layer 317 are formed. On the electron injection blocking layer 317, a gold thin film is formed by a vacuum deposition method by a vacuum deposition method, and a second pixel electrode 319 is formed by a normal photoresist processing method. A MOS-type two-dimensional solid-state scanning IC having a translucent face plate 310 having the photoelectric conversion portion (photoconductive portion) 31 obtained as described above and an indium bump 326 formed on each first pixel electrode 321. The substrate 32 is pressure-bonded to each pixel through an indium bump so as to have the configuration shown in FIG. 3 to obtain a planar indium bump bonded imaging device.
[0025]
As shown in FIG. 4, the imaging device according to the fourth embodiment of the present invention is configured using a planar electron source in which a plurality of field emission elements are arranged in two dimensions as means for reading signal charges. Is. FIG. 4 is a schematic view of an imaging device using a planar electron source according to the fourth embodiment of the present invention. This imaging device includes a photoelectric conversion unit 41, a planar electron source 42, a translucent face plate 410, electrode pins 418, a mesh electrode 421, an electron emission plate 422, an indium ring 428, a metal ring 429, a housing 427, a lens 401, a power source 402, a load resistor 403, a signal output terminal 404, and a planar electron source power source 405. In the drawings, reference numeral 40 denotes incident light. As shown in FIG. 4, a photoelectric conversion part 41 is formed on one side of a translucent glass face plate 410 in the same process as in the second embodiment, and an indium ring 428 and a metal ring 429 are used to form a planar electron source housing. Crimp. Next, the inside is evacuated and sealed to obtain a flat vacuum type imaging device.
[0026]
When the characteristic evaluation was performed using the imaging device of the present invention obtained in Embodiments 1 to 4 above, spectral sensitivity suitable for a color camera in a state in which deterioration in resolution and increase in dark current and afterimage were suppressed. It was confirmed that the characteristics were obtained and the photoelectric conversion characteristics were greatly improved.
[0027]
The present invention is not limited to the above-described embodiments, and many changes and modifications can be made. For example, an example in which a MOS type two-dimensional solid scanning IC substrate is used as a means for reading the accumulated signal charge has been described, but a CCD type solid scanning IC substrate can also be used. Similarly, the electron beam generator is not necessarily limited to the electrostatic deflection / electrostatic convergence method. For example, the electromagnetic deflection / electrostatic convergence method, the electrostatic deflection / electromagnetic convergence method, the electromagnetic deflection / electromagnetic convergence method can be used. It can also be used.
[0028]
【The invention's effect】
As described above, according to the present invention, a high spectral sensitivity characteristic suitable for a color camera and a further high-efficiency photoelectric conversion characteristic can be achieved while suppressing an increase in dark current, an increase in afterimage, and deterioration in resolution. A photoconductive imaging device capable of obtaining a high-quality image with high sensitivity and high resolution can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a flat-plate imaging device using a two-dimensional solid-state scanning IC substrate as a means for reading accumulated signal charges according to the first embodiment of the present invention, wherein FIG. FIG. 2B is a schematic cross-sectional view of the entire imaging device, and FIG. 4B is a schematic cross-sectional view illustrating an enlarged portion corresponding to one pixel in detail.
FIG. 2 is a schematic view of an imaging device using an electron gun that emits a scanning electron beam as a means for reading accumulated signal charges according to the second embodiment of the present invention, in which (a) shows imaging FIG. 2B is a schematic cross-sectional view of the entire device, FIG. 2B is a plan view of the photoelectric conversion unit viewed from the electron beam scanning side (electron gun 22 side), and FIG.
FIG. 3 is a schematic diagram of an imaging device in which a photoelectric conversion unit and a MOS type two-dimensional solid-state scanning IC substrate according to a third embodiment of the present invention are joined to each pixel by an indium bump method. Is a schematic cross-sectional view of the entire imaging device, and (b) is an enlarged schematic cross-sectional view showing a portion corresponding to one pixel.
FIG. 4 is a schematic view of an imaging device using a planar electron source according to a fourth embodiment of the present invention.
[Explanation of symbols]
11, 21, 31, 41 Photoelectric conversion parts 111, 211, 311 Translucent electrodes 112, 212, 312 made of a conductive thin film Hole injection blocking layer 113, 213, 313 Hole injection blocking auxiliary layers 114, 214, 314 Photocarrier generation layer 115, 215, 315 Carrier multiplication layer 12, 32 Two-dimensional solid-state scanning IC substrate 121 Pixel electrode 200 Lines 20, 40 indicating the boundary of the electron beam scanning region Incident light 201, 401 Lens 202, 402 Power source 203, 403 Load resistors 204 and 404 Signal output terminals 210, 310, and 410 Translucent face plate 216 Additional layer 217 Scanning electron beam landing layer and electron injection blocking layer 22 Electron guns 221 and 421 that emit a scanning electron beam Mesh electrode 222 Cathode 223 Electrode 224 for deflecting and converging electron beam 227, 427 Case 228, 428 Indium ring 229, 429 Metal ring 317 Electron injection blocking layer 319 Second pixel electrode 218, 318, 418 Electrode pin 321 First pixel electrode 322 Source electrode 323 Gate electrode 324 Drain electrode 325 Insulating layer 326 Indium bump 405 Planar electron source power supply 42 Planar electron source 422 Electron emission plate 423 Electron beam

Claims (8)

導電性薄膜からなる透光性電極と、この透光性電極の表面上に形成された正孔注入阻止層と、この正孔注入阻止層の表面上に形成されたセレン系非晶質半導体からなる正孔注入阻止補助層と、この正孔注入阻止補助層の表面上に形成された入射する可視光の大部分を吸収して電荷に変換するためのセレン・テルル系非晶質半導体からなる光キャリア発生層と、この光キャリア発生層の表面上に形成され、発生した光キャリアをアバランシェ増倍するためのセレン系非晶質半導体からなるキャリア増倍層と、を含み、増倍されたキャリアを信号電荷として蓄積する機能を有する電荷注入阻止型の光電変換部と、蓄積された信号電荷を読み取るための手段と、を具える撮像デバイスにおいて、
前記光キャリア発生層のテルル濃度が13重量%以上20重量%以下で膜厚が0.1μm以上0.2μm以下であることを特徴とする撮像デバイス。
A translucent electrode made of a conductive thin film, a hole injection blocking layer formed on the surface of the translucent electrode, and a selenium-based amorphous semiconductor formed on the surface of the hole injection blocking layer And a selenium-tellurium-based amorphous semiconductor that absorbs most of the incident visible light formed on the surface of the hole injection prevention auxiliary layer and converts it into charges. A photocarrier generation layer and a carrier multiplication layer formed on the surface of the photocarrier generation layer and made of a selenium-based amorphous semiconductor for avalanche multiplication of the generated photocarriers. In an imaging device comprising a charge injection blocking photoelectric conversion unit having a function of storing carriers as signal charges, and means for reading the stored signal charges,
An imaging device, wherein the photocarrier generation layer has a tellurium concentration of 13% by weight to 20% by weight and a film thickness of 0.1 μm to 0.2 μm.
請求項1記載の撮像デバイスにおいて、
前記光電変換部の正孔注入阻止補助層が、0.5重量%以上5重量%以下の砒素と、0.05重量%以上1重量%以下の弗化物とを含有し、膜厚0.01μm以上0.05μm以下のセレン系非晶質半導体からなることを特徴とする撮像デバイス。
The imaging device according to claim 1.
The hole injection blocking auxiliary layer of the photoelectric conversion part contains arsenic in an amount of 0.5 wt% to 5 wt% and a fluoride of 0.05 wt% to 1 wt%, and has a film thickness of 0.01 μm. An imaging device comprising a selenium-based amorphous semiconductor having a thickness of 0.05 μm or less.
請求項2記載の撮像デバイスにおいて、
前記弗化物が弗化リチウム、弗化ナトリウム、弗化カリウム、弗化マグネシウム、弗化カルシウムからなる群から選ばれた少なくとも1つであることを特徴とする撮像デバイス。
The imaging device according to claim 2.
An imaging device, wherein the fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, and calcium fluoride.
請求項1から3のいずれかに記載の撮像デバイスにおいて、
前記光キャリア発生層とキャリア増倍層との間に、非晶質セレンを主体とし、1重量%以上10重量%以下の砒素を含有する膜厚0.01μm以上0.5μm以下のテルル拡散防止層を設けることを特徴とする撮像デバイス。
The imaging device according to any one of claims 1 to 3,
Tellurium diffusion prevention with a film thickness of 0.01 μm or more and 0.5 μm or less containing mainly 1% by weight to 10% by weight of arsenic between the photocarrier generation layer and the carrier multiplication layer. An imaging device comprising a layer.
請求項1から4のいずれかに記載の撮像デバイスにおいて、
前記蓄積された信号電荷を読み取るための手段が、2次元固体走査IC基板からなり、かつ、この2次元固体走査IC基板と前記光電変換部とを接合して設けたことを特徴とする撮像デバイス。
The imaging device according to any one of claims 1 to 4,
An imaging device characterized in that the means for reading the accumulated signal charge is a two-dimensional solid-state scanning IC substrate, and the two-dimensional solid-state scanning IC substrate and the photoelectric conversion unit are joined to each other. .
請求項1から4のいずれかに記載の撮像デバイスにおいて、
前記蓄積された信号電荷を読み取るための手段が、走査電子ビームを発射する電子銃からなり、かつ、この電子銃と前記光電変換部とを真空容器内で対向して設けたことを特徴とする撮像デバイス。
The imaging device according to any one of claims 1 to 4,
The means for reading the accumulated signal charge comprises an electron gun that emits a scanning electron beam, and the electron gun and the photoelectric conversion unit are provided facing each other in a vacuum container. Imaging device.
請求項1から4のいずれかに記載の撮像デバイスにおいて、
前記蓄積された信号電荷を読み取るための手段が、複数個の電界放出素子を2次元に配列整備した平面電子源からなり、かつ、この平面電子源と前記光電変換部とを真空容器内で対向して設けたことを特徴とする撮像デバイス。
The imaging device according to any one of claims 1 to 4,
The means for reading the accumulated signal charge comprises a planar electron source in which a plurality of field emission elements are arranged in a two-dimensional manner, and the planar electron source and the photoelectric conversion unit are opposed to each other in a vacuum vessel. An imaging device characterized by being provided.
請求項1から7のいずれかに記載の撮像デバイスにおいて、
前記導電性薄膜からなる透光性電極に、前記キャリア増倍層内で電荷のアバランシェ増倍が生じるほどの電圧を印加して用いることを特徴とする撮像デバイスの動作方法。
The imaging device according to any one of claims 1 to 7,
A method for operating an imaging device, wherein a voltage that causes charge avalanche multiplication in the carrier multiplication layer is applied to the translucent electrode made of the conductive thin film.
JP2000242356A 2000-08-10 2000-08-10 Imaging device and operation method thereof Expired - Fee Related JP4054168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242356A JP4054168B2 (en) 2000-08-10 2000-08-10 Imaging device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242356A JP4054168B2 (en) 2000-08-10 2000-08-10 Imaging device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002057314A JP2002057314A (en) 2002-02-22
JP4054168B2 true JP4054168B2 (en) 2008-02-27

Family

ID=18733387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242356A Expired - Fee Related JP4054168B2 (en) 2000-08-10 2000-08-10 Imaging device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4054168B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414646B2 (en) * 2002-11-18 2010-02-10 浜松ホトニクス株式会社 Photodetector
JP2004186604A (en) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd Image recording medium
JP4663956B2 (en) * 2002-12-25 2011-04-06 浜松ホトニクス株式会社 Photodetector
WO2005103762A2 (en) * 2004-04-15 2005-11-03 Direct Radiography Corp. Flat panel x-ray imager with avalanche gain layer
US20090242774A1 (en) * 2006-04-04 2009-10-01 Shimadzu Corporation Radiation detector
JP2008072090A (en) * 2006-08-14 2008-03-27 Fujifilm Corp Photoelectric conversion element, and solid-state imaging element
JP2008244412A (en) * 2007-03-29 2008-10-09 Fujifilm Corp Radiation detecting device
JP5207451B2 (en) * 2007-09-28 2013-06-12 富士フイルム株式会社 Radiation image detector
WO2015198388A1 (en) * 2014-06-24 2015-12-30 パイオニア株式会社 Photoelectric conversion film and image capturing device equipped with same
JP7116597B2 (en) * 2018-06-07 2022-08-10 日本放送協会 Photoelectric conversion element and imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648616B2 (en) * 1984-05-21 1994-06-22 株式会社日立製作所 Photoconductive film
JPH0810582B2 (en) * 1987-01-14 1996-01-31 株式会社日立製作所 Light receiving element
JPH0337939A (en) * 1989-07-05 1991-02-19 Hitachi Ltd Light accepting device and its operation
JPH07169931A (en) * 1993-12-16 1995-07-04 Hitachi Ltd Semiconductor device and its manufacture
JPH08204166A (en) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> Multilayered solid-state image sensing device
JP3774492B2 (en) * 1995-07-21 2006-05-17 日本放送協会 IMAGING ELEMENT, ITS OPERATION METHOD, IMAGING DEVICE USING THE ELEMENT, AND IMAGE ANALYSIS SYSTEM

Also Published As

Publication number Publication date
JP2002057314A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
JP4741015B2 (en) Image sensor
JP5430810B2 (en) Electron impact active pixel sensor
CA1249013A (en) Image detector for camera operating in &#34;day-night&#34; mode
JP2002148342A (en) Radiation imaging device
JP4054168B2 (en) Imaging device and operation method thereof
EP2835830B1 (en) Night-vision sensor and apparatus
US4900975A (en) Target of image pickup tube having an amorphous semiconductor laminate
JP3774492B2 (en) IMAGING ELEMENT, ITS OPERATION METHOD, IMAGING DEVICE USING THE ELEMENT, AND IMAGE ANALYSIS SYSTEM
JP3384840B2 (en) Image pickup tube and operation method thereof
JPH07192663A (en) Image pickup device
Takasaki et al. Avalanche multiplication of photo-generated carriers in amorphous semiconductor, and its application to imaging device
JPH03163872A (en) Image sensing device
US5218264A (en) Image pick-up tube and apparatus having the same
EP0013241A1 (en) Radiological intensifier tube with video output and radiological network provided with such a tube
JP2753264B2 (en) Imaging tube
JP4172881B2 (en) Imaging device and operation method thereof
JP2010161269A (en) Organic photoelectric conversion element and method of manufacturing the same, and organic photoelectric conversion imaging element
JPH07115183A (en) Layer-built solid-state image pickup device
JPH08204165A (en) Multilayered solid-state image sensing device
Tanioka High-Gain Avalanche Rushing Pickup Tube
JPH0129297B2 (en)
JPH0810582B2 (en) Light receiving element
JPS61222383A (en) Pickup device for amorphous semiconductor
JPS59177962A (en) Solid-state color image pickup device
Tanioka et al. Ultra-high-sensitivity new super-HARP pickup tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4054168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees