JPS61222383A - Pickup device for amorphous semiconductor - Google Patents

Pickup device for amorphous semiconductor

Info

Publication number
JPS61222383A
JPS61222383A JP60062075A JP6207585A JPS61222383A JP S61222383 A JPS61222383 A JP S61222383A JP 60062075 A JP60062075 A JP 60062075A JP 6207585 A JP6207585 A JP 6207585A JP S61222383 A JPS61222383 A JP S61222383A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
amorphous semiconductor
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062075A
Other languages
Japanese (ja)
Inventor
Yoshinori Hatanaka
義式 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP60062075A priority Critical patent/JPS61222383A/en
Publication of JPS61222383A publication Critical patent/JPS61222383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a pickup device with high sensitivity, low residual image and low dark current by using an amorphous silicon film or a similar amorphous semiconductor film as a photoelectric transducing film and making contact an interface with an electrode with an injection-typed contact and making it perform an amplification function inside. CONSTITUTION:A clear electrode 2 is located on a glass substrate 1 and an n<+> type hydrogenated amorphous silicon layer 3 with <= nearly 1,000Angstrom thickness is attached on the electrode. On the layer 3, a p-type, hydrogen amorphous silicon layer 4 with the thickness of quite thin layer such as several 100Angstrom is attached and furthermore, an i-type hydrogenated amorphous silicon layer 5 with the thickness of several mum is performed. Then, an n<+> typed hydrogenated amorphous silicon layer 6 is provided between the layer 5 and an electrode 7 to perform an ohmic contact. By consisting the device as stated above, the whole element can perform the amplification function as a phototransistor and the sensitivity is improved. Also, by selecting an adequate p-type hydrogenated amorphous silicon layer 4, it is possible to reduce the residual image.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非晶質半導体膜を光電変換部に使用した撮像装
置に関わるもので、高感度、低残像、低暗電流の光検出
器、撮像管、檀層型向体操像板などを提供せんとするも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an imaging device using an amorphous semiconductor film in a photoelectric conversion section, and includes a photodetector with high sensitivity, low afterimage, and low dark current; The aim is to provide image pickup tubes, dan-layer type gymnastics image plates, etc.

(従来の技術と問題点) 従来光導電半導体を用いた撮像用光電変換膜は第7図に
示すように、ガラス基板1上に透明電極2を付け、その
上に光導電体21で極めて暗抵抗の高−半導体、例えば
セレン(SO)とか三硫化アンチモン(sb、s、 )
の薄膜を設け、光導電現象により抵抗値の変化すること
を利用する素子として、ビジエン撮像管および電子写真
用感光体がある。
(Prior art and problems) A photoelectric conversion film for imaging using a conventional photoconductive semiconductor is shown in FIG. High resistance semiconductors, such as selenium (SO) and antimony trisulfide (sb, s, )
Vizien image pickup tubes and electrophotographic photoreceptors are examples of devices that utilize the change in resistance value caused by a photoconductive phenomenon in which a thin film is provided.

これらは電極から電荷の注入がある(注入形接触l)た
め暗電流が小さく出来ないこと、光導電膜に直角方向に
均一な電界が一様にか−りにくかったり、膜内に光によ
って発生した電子または正孔の電荷担体を半永久的に捕
獲するトラップが多かったりして光導電現象の応答時間
が遅く、撮像管としては残像が大きく使用の範囲に限界
があったoしかしこの種の光IE変換膜は、印加電圧に
より感度を調節でき、かつ光感度領域のダイナミックレ
ンチがある程度とれ、安価に作り得るため工業用の用途
にお−て多く使用されてきた0 次の段階として上述の欠点を取り除くため、電極と光導
電半導体膜との界面近傍に、n形およびp形の半導体ま
たはそれに類するもので、光導電膜に電極から電荷が注
入されないような構造すなわち阻止形接触にして暗電流
を削減し、光導電膜に一様に電界をかけ電荷担体(電子
または正孔)のトラップの少な一光導電膜を工夫し、光
によって発生した電子正孔対を速やかに陽極、陰極側に
分離集積せしめて残像を減少したものが開発されてきた
These problems include the fact that the dark current cannot be reduced because charge is injected from the electrode (injected contact), that it is difficult to uniformly apply an electric field perpendicular to the photoconductive film, and that the dark current is generated by light within the film. The response time of the photoconductive phenomenon was slow due to the large number of traps that semi-permanently captured charge carriers such as electrons or holes. IE conversion films have been widely used in industrial applications because their sensitivity can be adjusted by applied voltage, they have a certain degree of dynamic wrench in the photosensitivity region, and they can be produced at low cost. In order to eliminate dark current, a structure is used near the interface between the electrode and the photoconductive semiconductor film to prevent charge from being injected from the electrode into the photoconductive film using n-type and p-type semiconductors or similar materials. By applying an electric field uniformly to the photoconductive film and creating a photoconductive film that traps fewer charge carriers (electrons or holes), electron-hole pairs generated by light can be quickly transferred to the anode and cathode sides. A method has been developed in which the afterimage is reduced by separating and accumulating the image.

第8(8)に阻止形接触の一例を示したが、使用状態で
n形半導体22側の電極に正、p形牛導体28側の電極
に負の電圧を印加するため、n形半導体へは電極より正
孔の注入が、p形半導体へは電極より電子の注入が阻止
され、中央の1形半導体24(真性半導体領域で抵抗が
高い)全域に電界がほぼ均一にか\す、1形半導体領域
で光により発生した電子と正孔は、均一で強い電界に引
かれて互−に反対方向の電極側により速やかに集権され
、残像も少なく暗電流も少ないものが得られている。最
近の実用化されて−る光導電型撮像管はほぼこの種の形
のものが多い◎ 所で上述の光導電膜は、光によって発生した電子と正孔
の電荷担体が速やかに分離され互−に反対方向の電極に
到達するのはよいが、そこで反対極性の電子または正孔
と再結合して消滅し、例えば第8図でn形半導体側電極
には正の電圧が印加されていて、光によって発生した1
形半導体領域の電子は電界に引かれてn形半導体に到り
、このn形半導体領域の熱平衡状靭を破るこの過剰電子
は、n形半導体とその側の電極界面で直ちに消滅してし
まう。従ってこの種光導電膜は電流利得が1以上、すな
わち光導電膜の外部に取り出される光電流の電荷数に対
する光導電膜内で光によって発生した電荷数の比が1を
越えることがない。現在実用化されて−る光導電型撮像
管は1良質の撮像をするためには数100ルツクスの照
度もしくは特別の構成または照明を必要とするがS10
””〜101ルックスの領域で手軽に使用できる光導電
型撮像管がな−。これは上述の電流利得lを大幅に凌駕
するものが得られな−、すなわち感度がまだ十分でない
からである。
An example of a blocking contact is shown in Section 8 (8), but in use, a positive voltage is applied to the electrode on the n-type semiconductor 22 side and a negative voltage is applied to the electrode on the p-type conductor 28 side. Holes are prevented from being injected from the electrode into the p-type semiconductor, and electrons from the electrode are prevented from being injected into the p-type semiconductor, and an electric field is generated almost uniformly over the entire central 1-type semiconductor 24 (intrinsic semiconductor region with high resistance). Electrons and holes generated by light in the shaped semiconductor region are attracted by a uniform and strong electric field and are quickly concentrated on opposite electrode sides, resulting in less afterimage and less dark current. Most of the photoconductive image pickup tubes that have been put into practical use recently are of this type.In the photoconductive film mentioned above, the charge carriers of electrons and holes generated by light are quickly separated and mutually separated. It is good that - reaches the electrode in the opposite direction, but there it recombines with electrons or holes of the opposite polarity and disappears.For example, in Figure 8, a positive voltage is applied to the electrode on the n-type semiconductor side. , 1 generated by light
The electrons in the n-type semiconductor region are attracted by the electric field and reach the n-type semiconductor, and the excess electrons that break the thermal equilibrium toughness of the n-type semiconductor region are immediately annihilated at the interface between the n-type semiconductor and the electrode on that side. Therefore, this type of photoconductive film does not have a current gain of 1 or more, that is, the ratio of the number of charges generated by light within the photoconductive film to the number of charges of the photocurrent extracted to the outside of the photoconductive film does not exceed 1. Photoconductive image pickup tubes currently in practical use require an illuminance of several hundred lux or a special configuration or illumination to capture high-quality images.
There is a photoconductive image pickup tube that can be easily used in the ~101 lux range. This is because it is not possible to obtain a current gain that greatly exceeds the above-mentioned current gain l, that is, the sensitivity is not yet sufficient.

(問題点を解決するための手段) 本発明の目的は上述の欠点を除去し、非晶質シリコン膜
または類似の非晶質半導体膜を光電変換膜として用い、
その膜の構成を特別に工夫し、電極との界面を注入形接
触に改めつ一1内部でフォトトランジスタ増幅作用をな
さしめて電流利得を1より大ならしめて光電変換効率を
高め、10−”〜lOルックスの低照度領域においても
使用できる受光素子1もしくは撮像素子を実現し、従来
の光導電型のものでは実現できなかった高感度な素子と
し、しかも8/Hも高くノイズも少なく取扱いも従来の
光導電型のものと同じように簡便な非晶   □質半導
体撮像装装置を提供せんとするものである。
(Means for Solving the Problems) An object of the present invention is to eliminate the above-mentioned drawbacks, use an amorphous silicon film or a similar amorphous semiconductor film as a photoelectric conversion film,
The structure of the film was specially devised, and the interface with the electrode was changed to injection type contact, and a phototransistor amplification effect was performed inside the film, increasing the current gain to more than 1 and increasing the photoelectric conversion efficiency. We have realized a photodetector 1 or image sensor that can be used even in the low-light region of 1O lux, and has a high sensitivity that could not be achieved with conventional photoconductive type devices.Moreover, it has a high 8/H, low noise, and is easy to handle. The purpose of the present invention is to provide an amorphous semiconductor imaging device that is as simple as the photoconductive type.

すなわち本発明非晶質半導体撮像装置は、光導電型受光
素子の光電変換膜を構成するにあたり、非晶質半導体材
料を使用し、光の入射方向から順次の当該非晶質半導体
材料のn”pin” 、 n”ipn” 、 。
That is, in the amorphous semiconductor imaging device of the present invention, an amorphous semiconductor material is used to construct the photoelectric conversion film of the photoconductive type light receiving element, and n'' of the amorphous semiconductor material is sequentially formed from the direction of light incidence. pin", n"ipn", .

p”nip+t p+inp+積層の何れか1つの積層
で前記光電変換膜を構成し1中間の前記pまたはn層を
ほぼ1000λ以下の極めて薄い層となし、これを外部
電源から浮動させ、前記光により発生した電荷担体(電
子または正孔)で前記pまたはn層の電位を変化させ、
前記光の入力に対応して発生した前記電荷担体の数似上
の電荷数を出力光電流として取り出し得る、量子効率1
以上の前記光電変換膜を構成することを特徴とするもの
であ・る・(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する〇 第1図に本発明にか−る非晶質シリコン(半導体)光電
変換膜を用−た受光素子の断面図を示す。
The photoelectric conversion film is made up of any one of p"nip+t p+inp+ stacked layers, and the intermediate p or n layer is an extremely thin layer of approximately 1000λ or less, which is floated from an external power source and generated by the light. changing the potential of the p or n layer with charge carriers (electrons or holes),
A quantum efficiency of 1 that allows a number of charges approximately equal to the number of charge carriers generated in response to the input of light to be extracted as an output photocurrent.
The photoelectric conversion film described above is characterized by configuring the above-mentioned photoelectric conversion film. 1 is a cross-sectional view of a light receiving element using an amorphous silicon (semiconductor) photoelectric conversion film.

ガラス板l上に透明電極3がおかれ、その上にn+形の
水素化非晶質シリコン(n” a −SiH)層8が約
1000λ以下の厚さでグリ−放電法またはスパッター
法により付着される。n” a −Sin 8の上には
同様な方法でp膨水素化非晶質シリコン(pa −Si
H) @ 4が数100λの極〈薄い層で付けられ、さ
らに1形(真性半導体)水素化非晶質シリコン(i a
 −81H)層5が数μm重ねられた後、n+形a −
5fi1層が電極7とのオーミック接触のために付着さ
れている。
A transparent electrode 3 is placed on a glass plate 1, and an n+ type hydrogenated amorphous silicon (n''a-SiH) layer 8 is deposited thereon to a thickness of about 1000λ or less by a green discharge method or a sputtering method. p-swollen hydrogenated amorphous silicon (pa-Si
H) @ 4 is attached in a very thin layer of several hundred λ, and further hydrogenated amorphous silicon (i a
-81H) After layer 5 is overlapped by several μm, n+ type a -
A 5fi1 layer is deposited for ohmic contact with electrode 7.

光8がガラス板lと透明電極2を透過してpa−8iH
Mt4またはi a −19iHMl Bで電子正孔対
を発生するとき、この半導体膜には外部電源9から電極
2に負、電極7に正と−うように電圧が印加されている
と、半導体膜中を電子は電極7の側に1正孔は透明電極
2の側に走行する。結果としてp a −8iil層4
部分に正孔は集り、この部分の電位を上昇させる(第2
図で実線より破線に移行)0熱平衡状態より逸脱し、過
剰正孔が集積され、電位の上昇したp a −81HM
 4には隣接したn+ a−SiHJllδから電子が
注入され、注入された電子11の1部の電子12は、電
子11がpa−8iH層番中をi a −811層5に
向って走行する間に、先のp a −SiHM4に集積
された過剰正孔と再結合し、残余の電子18はi a 
−SiH層5に到り、その後はi a −SiH層器に
か−った電界により電極7の方へ走行する。一方前記残
余の電子18がi a −811I m sに到達した
後は、再びna−8iil層8から電子がp a −8
11層4に注入され再びpa −ail wII4を走
行する。この繰返しはpa−8iil k 4中に集積
された光8によって発生され集積された過剰正孔が消滅
するまで続けられる。電界により電極7に到達した電子
は外部回路に取り出され光電流として観測される。
Light 8 passes through glass plate l and transparent electrode 2 and becomes pa-8iH.
When generating electron-hole pairs in Mt4 or ia-19iHMlB, if a voltage is applied to this semiconductor film from an external power supply 9 such that negative voltage is applied to electrode 2 and positive voltage is applied to electrode 7, the semiconductor film Inside, electrons travel to the electrode 7 side and one hole travels to the transparent electrode 2 side. As a result p a -8iil layer 4
Holes gather in this part and increase the potential of this part (second
In the figure, the solid line shifts to the broken line) p a -81HM deviates from the zero thermal equilibrium state, accumulates excess holes, and increases the potential.
4, electrons are injected from the adjacent n+ a-SiHJllδ, and some of the injected electrons 11, 12, are transmitted through the pa-8iH layer number while the electrons 11 travel toward the ia-811 layer 5. Then, the remaining electrons 18 recombine with the excess holes accumulated in the previous p a -SiHM4, and the remaining electrons 18
-SiH layer 5, and thereafter travels toward electrode 7 due to the electric field applied to the i a -SiH layer. On the other hand, after the remaining electrons 18 reach ia -811I m s, electrons are transferred from the na-8iil layer 8 again to p a -8
11 layer 4 and runs through pa-ail wII4 again. This repetition continues until the accumulated excess holes generated by the light 8 accumulated in the pa-8iil k 4 disappear. Electrons that have reached the electrode 7 due to the electric field are taken out to an external circuit and observed as a photocurrent.

かくて光8によって生成した電子正孔対の数よりも多い
電荷数の光電流が外部回路で観測され、1よりも大きな
電流利得が得られる。第1図にこの動作を説明するバン
ドダイヤグラムを示した。
In this way, a photocurrent whose number of charges is greater than the number of electron-hole pairs generated by the light 8 is observed in the external circuit, and a current gain greater than 1 is obtained. FIG. 1 shows a band diagram explaining this operation.

この動作はフォトトランジスタのトランジスタ増幅作用
そのもので阻止形接触の光導電膜では得られない高感度
の素子が得られる。この時前記残余の電子18の数と前
記1部の電子12の数の比が大きい程電流利得は大にな
るが、あまり残余の電子18の数が多−と、前記過剰正
孔がいつまでも残存し残像となって不都合になるから適
性なp a−8iH層を選択する必要がある0本実施例
の場合1このためp JL −SiH層は比抵抗が10
fi ”” 1Ω−備で厚みは数100人の層が選択さ
れた。この層の厚みは印加電圧でパンチスルーを起さな
い程度極力薄一方がよい。
This operation is the transistor amplification effect of the phototransistor itself, and a highly sensitive element that cannot be obtained with a blocking contact type photoconductive film can be obtained. At this time, the larger the ratio of the number of the remaining electrons 18 to the number of the one part electrons 12, the larger the current gain becomes. However, if the number of remaining electrons 18 is too large, the excess holes will remain forever. Therefore, it is necessary to select a suitable p a-8iH layer because it becomes an afterimage and is inconvenient.
A layer with a resistance of 1Ω and a thickness of several hundred people was selected. The thickness of this layer is preferably as thin as possible so as not to cause punch-through due to the applied voltage.

第8図に上述の実施例と従来例の実験により得られた電
圧電流特性の1例を示す。ムは従来の阻止形構造を持つ
SL −SiHの素子において得られた特性で、Bは上
記実施例の構成を有する素子の特性で、従来のものに比
し10倍以上の利得を得ることができる。
FIG. 8 shows an example of voltage-current characteristics obtained through experiments of the above-mentioned embodiment and the conventional example. B is the characteristic obtained in the SL-SiH element with the conventional blocking structure, and B is the characteristic of the element having the structure of the above example, which can obtain a gain of 10 times or more compared to the conventional one. can.

第1図における光の入射方向を反対にした第4図に示す
ような構成にお−ても同様な動作をし、本発明の目的に
合う素子を構成することができる。
A structure as shown in FIG. 4, in which the incident direction of light in FIG. 1 is reversed, also operates in a similar manner, and an element meeting the purpose of the present invention can be constructed.

光入射側が異ることにより分光特性に特徴を持たせるこ
とができる。また電圧印加の極性も逆転することとなり
極性の自由度が増し応用性も拡大するO 半導体においてn形とp形は素子を構成する場合に対称
的関係にあり、電子に対するものと、正孔に対するもの
の効果を取り換えれば素子が成立する。従って上記の素
子においてn”pin+構成またはn”ipn+構成は
、p”nip+構成またはp+inp+構成においても
同様に実現できるものである。ただし正孔の寿命(少数
−荷担体として再結合するまでの時間)は電子の寿命よ
り短いため、正孔の注入を用いるものでは同じ電流利得
を得るにはna−8iH層をより薄く500λ以下とし
なければならない。
By differentiating the light incident side, the spectral characteristics can be given characteristics. In addition, the polarity of voltage application is also reversed, increasing the degree of freedom in polarity and expanding the applicability. If we replace the effects of things, we can create an element. Therefore, in the above element, the n"pin+ configuration or n"ipn+ configuration can be similarly realized in the p"nip+ configuration or p+inp+ configuration. However, the lifetime of the hole (the time until it recombines as a minority carrier) ) is shorter than the lifetime of electrons, so in a device that uses hole injection, the na-8iH layer must be thinner and less than 500λ to obtain the same current gain.

水素化非晶質シリコン展では電子または正孔の拡散長が
短かく、かつ抵抗値が単結晶シリコンに比しきわめて高
く、従って膜面と平行な横方向に対する電荷担体の拡散
は少ない、また第1図において注入電流を制御するp 
a −SiH層4は極めて薄く、横方向の抵抗が大きい
ため横方向の充電変換電荷分布は、場所による光入力に
応じたものすなわち撮像のための解像力を有し、撮像素
子として応用可能となる0このことは単結晶シリコンを
用−たものでは同様な構成では実現できない0第5図に
本発明によるa −Sin構成のものを撮像管ターゲッ
トに適用した例を示す。ターゲット上第1図または第4
図の各層と同一の作用をするものには同一の参照番号を
付した。第S図の参照番号δ、4,5,6はp”a n
 * 1e p十層に相当するa −5iIf層である
が、参照番号6の9層はこ−では撮像管における特殊性
のために三硫化アンチモン(sb、s、 )の蒸着膜が
使用され、p 層と同じ働きをするようにされている。
In hydrogenated amorphous silicon, the diffusion length of electrons or holes is short, and the resistance value is extremely high compared to single crystal silicon, so there is little diffusion of charge carriers in the lateral direction parallel to the film surface, and In Figure 1, p which controls the injection current
Since the a-SiH layer 4 is extremely thin and has a large lateral resistance, the lateral charge conversion charge distribution corresponds to the optical input depending on the location, that is, it has a resolution for imaging, and can be applied as an imaging device. 0 This cannot be achieved with a similar configuration using single crystal silicon. FIG. 5 shows an example in which the a-Sin configuration according to the present invention is applied to an image pickup tube target. Figure 1 or 4 on target
Components having the same function as each layer in the figure are given the same reference numerals. Reference numbers δ, 4, 5, 6 in Figure S are p”a n
*1e The a-5iIf layer corresponds to the 10th layer, but for the 9th layer with reference number 6, a vapor-deposited film of antimony trisulfide (sb, s, ) is used for the special characteristics of the image pickup tube. It is designed to have the same function as the p layer.

光学レンズにより結像された光はガラスl、透明電極8
を透過し、a −SiH層に到り光の量に応じた電子正
孔対を生じる。電子はn a −Sin層に集積されこ
の層の電位を制御し正孔の注入をうながす。この結果増
倍された正孔がsb、s8層6に蓄積されこれが外部の
電子ビーム14により読み出される。
The light imaged by the optical lens passes through glass l and transparent electrode 8.
The light passes through the a-SiH layer and generates electron-hole pairs depending on the amount of light. Electrons are accumulated in the na-Sin layer, controlling the potential of this layer and promoting hole injection. As a result, the multiplied holes are accumulated in the sb, s8 layer 6 and read out by an external electron beam 14.

第6図には本発明のa −Sin膜構成を固体撮像板の
上に積層し適用したものである。撮像管の信号読出し部
にあたる固体撮像板のそれの構成は、ソース−基板間に
蓄積した電荷担体をゲートによりスイッチしてドレーン
より読みだすMOS型でも、電荷転送により各電位井戸
に蓄積された電荷担体を順次に転送して外部回路に読み
だすCOD型でもよく、積層型固体撮像板の光電変換層
を本発明によるa −SiH層の構成で置き替えたもの
である。
FIG. 6 shows the a-Sin film structure of the present invention applied by laminating it on a solid-state imaging plate. The structure of the solid-state image pickup plate, which is the signal readout section of the image pickup tube, is a MOS type in which charge carriers accumulated between the source and the substrate are switched by a gate and read out from the drain. A COD type in which carriers are sequentially transferred and read out to an external circuit may also be used, and the photoelectric conversion layer of a stacked solid-state imaging plate is replaced with the a-SiH layer structure according to the present invention.

第6図で参照番号!、6,6,4.8はそれぞれ透明電
極、” e ’ e pe ”+層に対応した構成であ
る。
Reference number in Figure 6! , 6, 6, and 4.8 have structures corresponding to transparent electrodes and "e' e pe"+ layers, respectively.

この場合n+層はごく薄い窒化シリコン膜またはモリブ
デン(10)やり田ム(Or)などのシリサイドによっ
て代えることができる。光学レンズ系によってa −8
1H膜に結像された光像は前述と同様な原理によって増
倍され、固体走査回路の蓄積ダイオード、前記MOS型
の場合にはソース−基板間、前記00D型の場合には電
位井戸に蓄積され、順次走査により読み出される。#!
6図でガラス板lが省略しであるのは、固体撮像板の場
合には前述の代りに機械的に強度のあるシリコン単結晶
走査基板16などが使用されるからである。
In this case, the n+ layer can be replaced by a very thin silicon nitride film or a silicide such as molybdenum (10) or tampon (Or). a −8 by optical lens system
The optical image formed on the 1H film is multiplied by the same principle as described above, and is accumulated in the storage diode of the solid-state scanning circuit, between the source and substrate in the case of the MOS type, and in the potential well in the case of the 00D type. and read out by sequential scanning. #!
The reason why the glass plate l is omitted in FIG. 6 is that in the case of a solid-state imaging plate, a mechanically strong silicon single crystal scanning substrate 16 or the like is used instead of the above-mentioned one.

以上はa −SiH層を用−たものについて述べてきた
が、この発明で適用できるのは水素化非晶質シリコン膜
に限らず、他の同等の層特性例えば比抵抗、少数電荷担
体の寿命、拡散長などが制御できる他の非晶質半導体膜
であればよい。例えば選択できる半導体としてはI−M
族またはI−v族半導体などがある。
Although the above description has been made using an a-SiH layer, this invention is applicable not only to hydrogenated amorphous silicon films but also to other equivalent layer properties such as resistivity and minority charge carrier life. Any other amorphous semiconductor film whose diffusion length and the like can be controlled may be used. For example, I-M
group or IV group semiconductors.

(発明の効果) 光導電型の簡便さをもった光電変換素子であり量子効率
1以上の増幅率をもった受光素子である。
(Effects of the Invention) The present invention is a simple photoconductive type photoelectric conversion element and a light receiving element having a quantum efficiency of 1 or more and an amplification factor.

原理及び動作は、フォトトランジスターと類似している
が、単結晶ではなく※非晶質シリコンであn:1!IJ
L暫−/ 11ゴνの銭妊り久−恵餅佑一絹1歓針長、
少数電荷担体への短い寿命の特性を生かし、画像デバイ
スベの適用が可能なこと、途一応答速度が得られること
1等新しい特徴を持ったものである〇 これは、101〜101程度の低照度領域での撮像デバ
イスを可能にするものであり1かつ、印加電圧のh節に
より増幅度を大きく制御出来、ダイナミックレンジの大
きな受光素子、撮像デバイスを可能にするものである。
The principle and operation are similar to a phototransistor, but it is not single crystal but amorphous silicon, n:1! I.J.
L temporary - / 11 Go ν Zeni Materikyu - Emochi Yuichi silk 1 Kan needle length,
It has new features such as being able to be applied to imaging devices by taking advantage of the short lifespan of minority charge carriers, and achieving extremely fast response times. In addition, the degree of amplification can be greatly controlled by the h-node of the applied voltage, making it possible to create a light-receiving element and an imaging device with a large dynamic range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にか\る非晶質シリコン光電変換膜を用
いた受光素子実施例の膜厚方向の断面図、第2図は第1
図に示した受光素子の光電変換動作を説明するための半
導体エネルギーバンドダイヤグラム図、 第8図は第1図の実施例と従来例の実験結果の比較を示
す図、 第4図は第1図と同様な他の実施例の受光素子の断面図
、 第6図は本発明にか\る非晶質シリコン膜構成を適用し
た撮像管ターゲットの断面図、第6図は同じく固体撮像
装置の光電変換部断面図1 第7図、第8図は従来の光電変換装置を説明するための
膜厚方向の断面図である・ 1・・・ガラス板     2・・・透明電極s−n+
またはp+形氷水素化非晶質シリコン n+またはpa
−8in)層 4・・・pまたはn形水紫化非晶質シリコン(pまだは
 n  a  −SiH)  Mjj5・・・1形水素
化非晶質シリコン(i&−8iil)層6・・・n+ま
たはp+形水累化非晶質シリコン(n+妨まp”5L 
−SiH)層 7・・・電極       8・・・光9・・・外部電
源     lO・・・負荷抵抗11・・・p a −
Sin層に注入された電子12・・・11の1部の電子 18−・11の残余の電子 14・・・電子ビーム    15−・電子銃第1図 第2図 第2図 印カロI電圧(V)− 第4図
FIG. 1 is a cross-sectional view in the film thickness direction of an example of a light receiving element using an amorphous silicon photoelectric conversion film according to the present invention, and FIG.
A semiconductor energy band diagram for explaining the photoelectric conversion operation of the photodetector shown in the figure; Figure 8 is a diagram showing a comparison of the experimental results of the embodiment shown in Figure 1 and the conventional example; Figure 4 is the figure shown in Figure 1. FIG. 6 is a cross-sectional view of an image pickup tube target to which the amorphous silicon film structure according to the present invention is applied, and FIG. Converter section cross-sectional view 1 FIGS. 7 and 8 are cross-sectional views in the film thickness direction for explaining a conventional photoelectric conversion device. 1...Glass plate 2...Transparent electrode sn+
or p+ type ice hydrogenated amorphous silicon n+ or pa
-8in) layer 4...p or n type water purple amorphous silicon (p or n a -SiH) Mjj5...1 type hydrogenated amorphous silicon (i & -8iil) layer 6... n+ or p+ type water accumulated amorphous silicon (n+ disturbed p”5L
-SiH) layer 7... Electrode 8... Light 9... External power supply lO... Load resistance 11... p a -
Part of the electrons 12...11 injected into the Sin layer 18-・Remaining electrons 14 of 11...Electron beam 15-・Electron gun Figure 1 Figure 2 Figure 2 Mark I voltage ( V) - Figure 4

Claims (1)

【特許請求の範囲】 1、光導電型受光素子の光電変換膜を構成するにあたり
、非晶質半導体材料を使用し、光の入射方向から順次の
当該非晶質半導体材料のn^+pin^+、n^+ip
n^+、p^+nip^+、p^+inp^+積層の何
れか1つの積層で前記光電変換膜を構成し、中間の前記
pまたはn層をほぼ1000Å以下の極めて薄い層とな
し、これを外部電源から浮動させ、前記光により発生し
た電荷担体(電子または正孔)で前記pまたはn層の電
位を変化させ、前記光の入力に対応して発生した前記電
荷担体の数以上の電荷数を出力光電流として取り出し得
る、量子効率1以上の前記光電変換膜を構成することを
特徴とする非晶質半導体撮像装置。 2、前記非晶質半導体材料が水素化非晶質シリコンであ
ることを特徴とする特許請求の範囲第1項記載の非晶質
半導体撮像装置。 3、前記何れか1つの積層を構成する1つまたは2つの
層が、前記何れか1つの積層を構成する他の層とは異な
った非晶質半導体材料を使用して生成されることを特徴
とする、特許請求の範囲第1項または第2項記載の非晶
質半導体撮像装置。
[Claims] 1. In constructing the photoelectric conversion film of the photoconductive type light receiving element, an amorphous semiconductor material is used, and n^+pin^+ of the amorphous semiconductor material is sequentially formed from the direction of light incidence. ,n^+ip
The photoelectric conversion film is composed of any one of n^+, p^+nip^+, p^+inp^+ laminated layers, and the intermediate p or n layer is an extremely thin layer of approximately 1000 Å or less, and this is floated from an external power supply, and the potential of the p or n layer is changed by charge carriers (electrons or holes) generated by the light, and charges greater than or equal to the number of charge carriers generated in response to the input of the light are generated. An amorphous semiconductor imaging device characterized in that the photoelectric conversion film has a quantum efficiency of 1 or more and can be extracted as an output photocurrent. 2. The amorphous semiconductor imaging device according to claim 1, wherein the amorphous semiconductor material is hydrogenated amorphous silicon. 3. One or two layers constituting any one of the laminated layers are produced using a different amorphous semiconductor material from other layers constituting any one of the laminated layers. An amorphous semiconductor imaging device according to claim 1 or 2, wherein:
JP60062075A 1985-03-28 1985-03-28 Pickup device for amorphous semiconductor Pending JPS61222383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062075A JPS61222383A (en) 1985-03-28 1985-03-28 Pickup device for amorphous semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062075A JPS61222383A (en) 1985-03-28 1985-03-28 Pickup device for amorphous semiconductor

Publications (1)

Publication Number Publication Date
JPS61222383A true JPS61222383A (en) 1986-10-02

Family

ID=13189592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062075A Pending JPS61222383A (en) 1985-03-28 1985-03-28 Pickup device for amorphous semiconductor

Country Status (1)

Country Link
JP (1) JPS61222383A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298630A (en) * 1988-05-27 1989-12-01 Hitachi Ltd Image pickup tube
US4980736A (en) * 1987-03-23 1990-12-25 Hitachi, Ltd. Electric conversion device
US5101255A (en) * 1987-01-14 1992-03-31 Sachio Ishioka Amorphous photoelectric conversion device with avalanche
US5233265A (en) * 1986-07-04 1993-08-03 Hitachi, Ltd. Photoconductive imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152280A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Light receiving surface
JPS57173967A (en) * 1981-04-20 1982-10-26 Fuji Photo Film Co Ltd Solid state image pickup device
JPS5848578A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPS58158648A (en) * 1982-03-16 1983-09-20 Canon Inc Photoconductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152280A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Light receiving surface
JPS57173967A (en) * 1981-04-20 1982-10-26 Fuji Photo Film Co Ltd Solid state image pickup device
JPS5848578A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPS58158648A (en) * 1982-03-16 1983-09-20 Canon Inc Photoconductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233265A (en) * 1986-07-04 1993-08-03 Hitachi, Ltd. Photoconductive imaging apparatus
US5101255A (en) * 1987-01-14 1992-03-31 Sachio Ishioka Amorphous photoelectric conversion device with avalanche
US4980736A (en) * 1987-03-23 1990-12-25 Hitachi, Ltd. Electric conversion device
JPH01298630A (en) * 1988-05-27 1989-12-01 Hitachi Ltd Image pickup tube

Similar Documents

Publication Publication Date Title
US4866499A (en) Photosensitive diode element and array
JP2000058804A (en) Direct conversion digital x-ray detector with unique high voltage protection to create static images and dynamic images
Imura et al. High-sensitivity image sensors overlaid with thin-film gallium oxide/crystalline selenium heterojunction photodiodes
US5892222A (en) Broadband multicolor photon counter for low light detection and imaging
US20230400353A1 (en) Photosensitive circuit structure and optical device
US4980736A (en) Electric conversion device
JPS61222383A (en) Pickup device for amorphous semiconductor
JP4054168B2 (en) Imaging device and operation method thereof
JP3774492B2 (en) IMAGING ELEMENT, ITS OPERATION METHOD, IMAGING DEVICE USING THE ELEMENT, AND IMAGE ANALYSIS SYSTEM
JPH07192663A (en) Image pickup device
US3792197A (en) Solid-state diode array camera tube having electronic control of light sensitivity
Takasaki et al. Avalanche multiplication of photo-generated carriers in amorphous semiconductor, and its application to imaging device
Aihara et al. Photoconductive properties of organic films based on porphine complex evaluated with image pickup tubes
US7432578B1 (en) CMOS image sensor with enhanced photosensitivity
JPH07115183A (en) Layer-built solid-state image pickup device
Park et al. Avalanche-type high sensitive image pickup tube using an a-Se photoconductive target
JP2000111653A (en) Radiation two-dimensional detector
Shidara et al. The advanced composition of SATICON photoconductive target
JPS63174480A (en) Photoelectric converting device
Shimizu et al. Vidicon target of ap‐i‐n structure using a‐Si: H
JPS6058779A (en) Solid-state image pickup device
Chikamura et al. A high-sensitivity solid-state image sensor using a thin-film ZnSe-Zn 1-x Cd x Te heterojunction photosensor
Kaneko Solid-State Image Sensor
JPH08204164A (en) Multilayered solid-state image sensing device and its manufacture
Baji et al. Solid-State Color Image Sensor Using Hydrogenated Amorphous Silicon