JP4052725B2 - Chemical supply device - Google Patents

Chemical supply device Download PDF

Info

Publication number
JP4052725B2
JP4052725B2 JP10424598A JP10424598A JP4052725B2 JP 4052725 B2 JP4052725 B2 JP 4052725B2 JP 10424598 A JP10424598 A JP 10424598A JP 10424598 A JP10424598 A JP 10424598A JP 4052725 B2 JP4052725 B2 JP 4052725B2
Authority
JP
Japan
Prior art keywords
supply
chemical
tank
chemical solution
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10424598A
Other languages
Japanese (ja)
Other versions
JPH11297659A (en
Inventor
章 米谷
幸治 上田
孝志 豊田
次男 斉藤
孝雄 志保谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Nisso Engineering Co Ltd
Original Assignee
Kanto Chemical Co Inc
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc, Nisso Engineering Co Ltd filed Critical Kanto Chemical Co Inc
Priority to JP10424598A priority Critical patent/JP4052725B2/en
Publication of JPH11297659A publication Critical patent/JPH11297659A/en
Application granted granted Critical
Publication of JP4052725B2 publication Critical patent/JP4052725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に供給源側の薬液タンクから計量槽を備えた複数の処理槽へ自動供給する場合に安全性をより向上できるようにした薬液供給装置に関するものである。
【0002】
【従来の技術】
半導体製造等に不可欠な薬液供給装置は、過酸化水素や硫酸等の薬液を使用してウェハ表面処理する処理槽の設置数が製造規模の拡大や高性能化に伴って次第に増え(処理槽つまりユースポイントが10から30程度)ている。そして、現在の薬液供給装置では、供給源側の薬液タンクと各処理槽との間が共通配管及び各処理槽側の開閉弁を介して接続されて、各処理槽側からの薬液要求信号に基づき、各処理槽側の開閉弁及び薬液タンクの送液手段を運転制御部にて制御することにより、全てがほぼ自動的に行われる。この点を本発明を適用した図1を参照して概説する。処理槽側では、使用済み薬液が廃棄され新たに必要になると、運転制御部へ薬液要求信号を送り、処理槽の計量槽が所定液位に達すると停止信号を送る。運転制御部では、薬液要求信号を受けると該当する処理槽の開閉弁を開に、使用薬液タンクの送液手段を開始状態になるようそれぞれ信号を送り、要求信号が全てなくなると薬液タンクの送液手段を停止状態にする。
【0003】
このような、薬液供給装置では、駆動能力の増大と自動運転が進むほど、装置ドラブル等の異常が起こると、大事故や災害等の発生に加え、過剰薬液の流出、薬液飛散により二次トラブルの発生等が起こることから、安全対策がより重要になる。従来の薬液供給装置において、例えば、配管部側に関しては配管からの液漏れを防ぐために配管自体の構成やリークセンサ等を付設して液漏れを検出している。処理槽側では、液面センサーにより供給薬液を監視し所定液位に達すると開閉弁を自動的に閉じる。薬液供給源側では、要求信号等の異常により発生する過剰の薬液供給を防ぐためタイムアウト機能が設けられており、薬液タンク側の送液手段の供給作動状態が予めマニュアル設定された設定時間を経過すると強制的に停止するようにしている。
【0004】
【発明が解決しようとする課題】
とろこが、従来のタイムアウト機能では、例えば、ユースポイントつまり処理槽が10箇所の場合、同時に各処理槽へ供給する最大要求数10を基にし、1箇所の処理槽に供給する場合の少なくとも2〜5倍の時間を見越すことが必要となる。この設定時間は、フイルタ等の目詰の進行等も考慮すると更に大きな時間に設定される。したがって、従来のタイムアウト機能は、処理槽への薬液供給がこれに基づいて停止したとしても、異常が発生した時点から停止されるまでに長いタイムラグがあるため、大惨事を防ぐことができても、処理槽側における過剰な薬液による機器類の損傷等の被害を回避することができず、安全型として満足できるものではかった。
【0005】
本発明は、上記した従来の自動薬液供給装置の持つ問題を解消し、薬液の自動供給をより安全に行えるようにし、大惨事と共に比較的軽微な被害も確実に防ぐことができる安全型薬液供給装置を提供することにある。更に他の目的は、以下に説明する内容の中で順次明らかにして行く。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明は、供給源側の薬液タンクと計量槽および槽内薬液の液位を監視する液面センサーを備えた複数の処理槽との間を、共通の配管及び前記各処理槽側の開閉弁を介して接続し、前記処理槽側の液面センサーからの信号に基づき前記処理槽側の開閉弁を制御し、薬液タンクの送液手段により当該処理槽へ薬液を供給する薬液供給装置において、
前記各処理槽毎に薬液供給開始から停止までの薬液供給時間を計測する供給時間計測部と、薬液供給中の処理槽毎に、同時に薬液供給を行っている処理槽数を計測する同時供給数計測部と、前記各処理槽毎の同時供給数に対応する薬液供給時間を記憶する記憶部と、前記各処理槽毎に、前記記憶部データと計測中の同時供給数とから限界供給時間Trkを下記の式により推算し、計測中の薬液供給時間を前記限界供給時間と比較する演算判定部とを備え、供給停止時を検出した前記液面センサーの停止信号を受ける前に、薬液供給時間(T)>限界供給時間(Trk)の条件を充足したときに、これを異常発生として判断して、前記薬液タンクの送液手段を停止可能にしたものである。
Trk=T 0 +(R×n)+k
ここで、上記の式中、T 0 は当該処理槽への単独供給の場合の所要薬液供給時間、Rは実側データ及び式から算出される定数、nは平均同時供給数、kは安全係数時間であり適宜設定される定数である。
【0007】
この構造においては、供給時間計測部は、各処理槽毎に薬液供給開始から停止時までの薬液供給時間を計測している。同時供給数計測部は、一つの処理槽に薬液を供給している間、同時に薬液供給を行っている処理槽の数、即ち、同時供給数を計測している。この計測は、各処理槽毎に行われ、この同時供給数は、計測時点における平均値として処理される。
記憶部は、各処理槽毎に、同時供給数に対応したそれぞれの所要薬液供給時間を、初期入力により記憶している。この初期入力データは、過去の実積データを統計的に処理して設定されるものであるか、あるいは、十分安全を見込んだ適宜データであり、その場合は、その後の実積データにより適切なものに修正されるものである。前者の場合でも、同様にその後の実積データにより修正されることが好ましい。
演算判定部は、各処理槽毎に、記憶部データを基に、安全制御のために薬液供給を停止すべき限界薬液供給時間算出プログラム(段落0015の式(2))を動かし、計測中の同時供給数に対応する限界薬液供給時間(限界供給時間Trk)を推算し、計測中の薬液供給時間(T)がその限界薬液供給時間(Trk、以下これを限界供給時間と略称することもある)を越えたら、薬液タンクの送液手段の作動を止めるように指令を発する。
従って、この構造では、各処理槽毎に限界薬液供給時間(限界供給時間Trk)が、同時供給数に対応して管理されるので、安全制御としての薬液供給停止機能が適切な時点で作動し、過剰な薬液供給に起因する機器類の損傷等の被害をより最小限に抑えることができる。
【0008】
【発明の実施の形態】
以下、本発明の形態を図1から図2に基づいて詳細に説明する。なお、この形態例は本発明の好適な具体例であり、本発明の範囲を制約するものではない。
【0009】
図1は本発明が採用された薬液供給プラントを模式的に示している。この薬液供給プンラントは、半導体製造設備に取り入れられたもので、過酸化水素や硫酸等の薬液を連続的に供給する薬液供給部1と、半導体基板等のワークを処理する処理槽群を設置している処理部2とに大別され、処理部2の処理槽No1〜Non側からの薬液要求信号に応じ、処理槽側の開閉弁を開き薬液供給部1を供給開始状態に作動させる運転制御部3を有している。
【0010】
薬液供給部1は、薬液タンク4と、薬液タンク4内に窒素等の不活性ガスを導入する圧縮ガス源5とからなる。圧縮ガス源5は、配管6及び電磁弁等の自動式開閉弁7を介して窒素ガス等の不活性ガスを薬液タンク4へ高圧で送る。薬液タンク4は、主薬液タンク4aと共に補助薬液タンク4bを有し、これらが不図示の隔壁により外部と遮断されたタンク室に設置されている。両薬液タンク4a,4bの切り換えは作業者により行われる。各薬液タンク4a,4bは、何れもが配管6の先端側に接続するガス導入用の連結部8aと、処理部2に向かって配置された配管10に対し接続する薬液導出用の連結部8bとを有している。また、配管10のタンク側には、電磁弁等の自動式開閉弁11と、フイルタを内蔵した濾過部12とが管路に介在し組み込まれている。従って、薬液タンク4内の薬液は、開閉弁7,11の作動により配管10側へ圧送され、逆に停止されることになる。よって、この形態では開閉弁7,11が薬液タンク4の送液手段となる。
【0011】
そして、主薬液タンク4aと補助タンク4bの切り換えは、各タンク4a,4bに対し配管6との間を接続している管部分に介在された開閉弁9aを閉じ、開閉弁9bを開ける。また、配管10に接続している管部分に介在された開閉弁13aを閉じ、開閉弁13bを開ける。切り換え後の主薬液タンク4aは、新たな薬液タンクつまり次の補助タンクと交換される。この交換作業は連結部8a,8bを介し行われる。
【0012】
処理部2は、薬液供給部1から数十メートル以上離れており、計量槽を備えた大小様々な処理槽No1〜Non(nは通常10から30)を共通配管10に沿って設置し、各処理槽No1〜Nonでそれぞれ独立又は連続的にウェハを表面処理するところである。なお、処理槽No1,No2・・・Nonの配列は、共通の配管10に対し作業内容に適した状態に適宜設計される。
【0013】
各処理槽No1〜Nonの共通事項は、何れもが槽内薬液の液位を検出する液面センサーと、開閉弁等を少なくとも有している。各液面センサーは、槽内薬液の液位を監視しており、例えば、槽内薬液が全て廃棄され薬液の供給開始時を検出して前記排出部の弁を閉じるよう指令を送ったり、運転制御部3へ新たな薬液を供給するよう薬液要求信号を送ったり、供給停止時を検出して該当する前記開閉弁を閉じるよう指令等を送る。各開閉弁は電磁弁等の自動式であり、配管10との間を開閉して薬液を槽内に供給可能にする。そして、前記各液面センサー及び各開閉弁の機構部と、運転制御部3側との間が信号線15により接続されている。
【0014】
運転制御部3は、処理部2側から薬液要求信号を受けると、薬液タンク4の送液手段である開閉弁7,11を開状態になるようそれぞれ信号を送り、要求信号が全てなくなると開閉弁7,11を閉状態にする点で従来とほぼ同じ。異なる点は、安全制御部16を有し、前記薬液要求信号を安全制御部16を介して各処理槽No1〜Non毎で、かつ同時に薬液供給を行っている処理槽の数である同時供給数をベースにして管理するようにしたことである。この安全制御部16は、同時供給数計測部17及び供給時間計測部18と、演算判定部19と、演算判定部19に接続された記憶部20,入力部21,警報部22等を備えている。
【0015】
ここで、記憶部20には、各処理槽毎に同時供給数に対応した実測値である所要薬液供給時間と、両者の関係を表す式(1)とが記憶されている。
Tr=T0+(R×n) 式(1)
式(1)において、Trは、同時供給数がnである場合の所要薬液供給時間である。T0は同時供給数n=0、即ち、当該処理槽への単独供給の場合の所要薬液供給時間である。Rは定数である。この定数Rは記憶部20の実測データ及び式から算出される。また、記憶部20には、安全制御のために薬液供給を停止させるための限界薬液供給時間Trkを管理する式(2)が記憶されている。
Trk=T0+(R×n)+k 式(2)
式(2)において、kは、同時供給数がnである場合の所要薬液供給時間T0+(R×n)に加える安全係数時間であり適宜設定される定数である。
演算判定部19では、同時供給数計測部17で計測している同時供給数(現在までのn値の平均値)を式(2)により処理し、対応する限界供給時間(Trk)を推算し、供給時間測定部18で測定している供給時間(T)を、前記限界供給時間と比較し、測定中の供給時間(T)がその限界供給時間(Trk)を越えたときに運転制御部3を介して薬液タンク4の送液手段(開閉弁7,11)に停止信号(閉信号)を送る。
【0016】
そして、安全制御部16は次のような流れで各部を制御する。なお、図2はその制御の流れをフローチャートにまとめたもので、図2も参照しつつ説明する。 同時供給数計測部17は、薬液要求信号が処理部2側から信号線14を介し送られてくると、それを随時カウントすると共に、供給時間計測部18と演算判定部19へそれを送信する。これは各処理槽毎に行われる。また、同時供給数計測部17が最初の要求信号を受けたとき、運転制御部3を介して送液手段である開閉弁7,11へバルブ開信号を発し、各開閉弁7,11を開状態に切り換える。これにより、薬液タンク4内の薬液は配管10へ圧送され、該当する処理槽には薬液が配管10及び該当する開閉弁を介して供給される。
【0017】
供給時間計測部18は、同時供給数計測部17からの信号を基にして、実際に薬液供給されている薬液供給時間(T)を処理槽毎にそれぞれ計測し、それを演算判定部19へ各処理槽毎のデータとして送信する。
【0018】
演算判定部19では、各処理槽毎に、記憶部データを基に、安全制御のために薬液供給を停止すべき限界薬液供給時間算出プログラムを動かし、計測中の同時供給数に対応する限界薬液供給時間(限界供給時間Trk)を推算し、計測中の薬液供給時間(T)がその限界供給時間(Trk)を越えるか否かを判断している。この判断は、薬液供給時間(T)>限界供給時間(Trk)の条件が充足されず、かつ停止信号を受けるまで各処理槽毎に行われる。これが正規の管理ルートである。しかし、停止信号を受ける前に条件を充足したときに、これを異常発生として判断し、演算判定部19はその判断結果に基づいて、運転制御部3を介して送液手段である開閉弁7,11へバルブ閉信号を発し、各開閉弁7,11を閉状態に切り換える。同時に警報部22を介して警報音が出力される。これが異常時の管理ルートである。この異常発生の判断は、各処理槽別に行われること、計測中の同時供給数nの平均値に対応して限界供給時間(Trk)が管理式(2)に基づいて処理槽毎に推算され判断されていることから、適切な管理が可能となる。
【0019】
また、各処理槽毎に、正規の管理ルートで薬液供給が停止したときは、供給時間計測部18で計測された供給時間Tは所要薬液供給時間Trとして、同時供給数計測部17で計測された同時供給数とともに記憶部20に記録される。そして、所定期間毎に、それまで記憶部20に記憶され限界薬液供給時間算出のためのデータであった同時供給数と所要薬液供給時間とが、新たなデータにより修正される。この利点は、薬液供給装置1が継続して使用されると、例えば、フイルターを内蔵した濾過部12が次第に目詰まりし、薬液が同じ加圧力にて薬液タンク4から圧送しても、フィルターの目詰まりの進行に伴って供給圧ないしは供給流量が小さくなる。そのような状況も管理上に反映されることにある。
【0020】
【発明の効果】
以上説明したとおり、本発明の薬液供給装置は、例えば、処理槽つまりユースポイントが30に増えても、各処理槽毎に限界薬液供給時間が、同時供給数に応じて管理されるので、安全制御としての薬液供給停止機能が適切な時点で作動し、過剰な薬液供給に起因する機器類の損傷等の被害をより最小限に抑えるができ、装置信頼性を向上できる。
【図面の簡単な説明】
【図1】本発明を適用した薬液供給装置の全体を模式的に示す構成図である。
【図2】図1の安全制御部の制御手順を概念的にまとめた図である。
【符号の説明】
1は薬液供給部
2は処理部
3は運転制御部
7は開閉弁(薬液タンクの送液手段)
11は開閉弁(薬液タンクの送液手段)
16は安全制御部
17は同時供給数計測部
18は供給時間計測部
19は演算判定部
20は記憶部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical solution supply apparatus that can improve safety more particularly when automatically supplying from a chemical solution tank on a supply source side to a plurality of processing tanks equipped with a measuring tank.
[0002]
[Prior art]
In chemical supply equipment indispensable for semiconductor manufacturing, etc., the number of processing tanks that treat wafer surfaces using chemicals such as hydrogen peroxide and sulfuric acid gradually increases as the manufacturing scale increases and performance increases ( Use points are around 10 to 30). In the current chemical solution supply apparatus, the chemical solution tank on the supply source side and each processing tank are connected via a common pipe and an on-off valve on each processing tank side, and a chemical request signal from each processing tank side is received. On the basis of this, all the operations are performed almost automatically by controlling the opening / closing valve on each processing tank side and the liquid feeding means of the chemical tank by the operation control unit. This point will be outlined with reference to FIG. 1 to which the present invention is applied. On the processing tank side, when the used chemical liquid is discarded and newly required, a chemical request signal is sent to the operation control unit, and a stop signal is sent when the measuring tank of the processing tank reaches a predetermined liquid level. When the operation control unit receives the chemical request signal, it opens the open / close valve of the corresponding treatment tank and sends a signal to start the liquid supply means of the chemical tank to be used. Stop the liquid means.
[0003]
In such a chemical supply device, as the drive capability increases and the automatic operation progresses, if an abnormality such as device drool occurs, secondary troubles will occur due to the outflow of excessive chemicals and scattering of chemicals in addition to the occurrence of major accidents and disasters, etc. Safety measures are more important because of the occurrence of In the conventional chemical solution supply apparatus, for example, on the piping part side, in order to prevent liquid leakage from the piping, the configuration of the piping itself, a leak sensor, and the like are attached to detect the liquid leakage. On the processing tank side, the supply chemical solution is monitored by a liquid level sensor, and when the liquid level reaches a predetermined level, the on-off valve is automatically closed. On the chemical supply side, a time-out function is provided to prevent excessive chemical supply caused by an abnormality such as a request signal, and the supply operation state of the liquid supply means on the chemical tank side has passed a preset time set manually. Then, it is forced to stop.
[0004]
[Problems to be solved by the invention]
In the conventional time-out function, for example, when there are 10 use points, that is, 10 processing tanks, at least 2 when supplying to one processing tank based on the maximum number of requests 10 simultaneously supplied to each processing tank. It is necessary to allow for ~ 5 times the time. This set time is set to a longer time in consideration of the progress of clogging such as a filter. Therefore, even if the conventional time-out function stops the supply of chemicals to the treatment tank based on this, there is a long time lag from when the abnormality occurs until it stops, so it can prevent catastrophes. However, damage such as equipment damage due to excessive chemical solution on the treatment tank side could not be avoided, and it was not satisfactory as a safety type.
[0005]
The present invention eliminates the problems of the above-described conventional automatic chemical solution supply device, enables automatic supply of chemical solution more safely, and can safely prevent relatively minor damage as well as catastrophe. To provide an apparatus. Other objects will be clarified sequentially in the contents described below.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a common pipe and each of the above-described chemical tanks between a supply source side chemical tank, a measuring tank, and a plurality of processing tanks equipped with a liquid level sensor for monitoring the liquid level of the chemical liquid in the tank. Connected via an open / close valve on the treatment tank, controls the open / close valve on the treatment tank based on a signal from the liquid level sensor on the treatment tank, and supplies the chemical liquid to the treatment tank by the liquid supply means of the chemical tank In the chemical supply device
The supply time measuring unit that measures the chemical solution supply time from the start to the stop of the chemical solution supply for each treatment tank, and the simultaneous supply number that measures the number of treatment tanks that supply the chemical solution simultaneously for each treatment tank that is supplying the chemical solution The limit supply time Trk from the measurement unit, the storage unit for storing the chemical solution supply time corresponding to the simultaneous supply number for each processing tank, and the storage unit data and the simultaneous supply number during measurement for each processing tank Is calculated by the following formula , and includes a calculation determination unit that compares the chemical supply time during measurement with the limit supply time, and before receiving the stop signal of the liquid level sensor that detects the supply stop time, the chemical supply time When the condition of (T)> limit supply time (Trk) is satisfied, it is determined that an abnormality has occurred, and the liquid supply means of the chemical tank can be stopped.
Trk = T 0 + (R × n) + k
Here, in the above equation, T 0 is the required chemical solution supply time in the case of single supply to the treatment tank, R is a constant calculated from the actual data and equation, n is the average number of simultaneous supplies, and k is a safety factor. It is a constant that is set appropriately.
[0007]
In this structure, the supply time measurement unit measures the chemical solution supply time from the start to the stop of the chemical solution for each processing tank. The simultaneous supply number measuring unit measures the number of processing tanks that supply chemical solutions simultaneously, that is, the simultaneous supply number, while supplying chemical solutions to one processing tank. This measurement is performed for each processing tank, and this simultaneous supply number is processed as an average value at the time of measurement.
The storage unit stores the required chemical solution supply time corresponding to the number of simultaneous supply for each processing tank by initial input. This initial input data is set by statistically processing past actual product data, or appropriate data with sufficient safety in mind, in which case it is more appropriate for the subsequent actual product data. Is to be modified. Even in the former case, it is preferable that the actual product data is similarly corrected.
The calculation determination unit moves a limit chemical solution supply time calculation program (Equation (2) in paragraph 0015) to stop the supply of the chemical solution for safety control based on the storage unit data for each processing tank, The limit chemical supply time (limit supply time Trk) corresponding to the number of simultaneous supplies is estimated, and the chemical supply time (T) being measured is the limit chemical supply time (Trk; hereinafter, this may be abbreviated as the limit supply time). ), A command is issued to stop the operation of the liquid supply means of the chemical tank.
Therefore, in this structure, the limit chemical supply time (limit supply time Trk) is managed for each treatment tank corresponding to the number of simultaneous supplies, so that the chemical supply stop function as safety control is activated at an appropriate time. In addition, damage such as damage to equipment due to excessive supply of chemicals can be minimized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. This embodiment is a preferred specific example of the present invention and does not limit the scope of the present invention.
[0009]
FIG. 1 schematically shows a chemical supply plant in which the present invention is adopted. This chemical solution supply plant is incorporated in semiconductor manufacturing equipment, and is equipped with a chemical solution supply unit 1 that continuously supplies chemical solutions such as hydrogen peroxide and sulfuric acid, and a processing tank group that processes workpieces such as semiconductor substrates. Operation control that opens the on / off valve on the processing tank side and activates the chemical supply section 1 in a supply start state in response to a chemical request signal from the processing tank No1 to Non side of the processing section 2 Part 3.
[0010]
The chemical liquid supply unit 1 includes a chemical liquid tank 4 and a compressed gas source 5 for introducing an inert gas such as nitrogen into the chemical liquid tank 4. The compressed gas source 5 sends an inert gas such as nitrogen gas to the chemical tank 4 at a high pressure via a pipe 6 and an automatic on-off valve 7 such as a solenoid valve. The chemical liquid tank 4 has an auxiliary chemical liquid tank 4b together with the main chemical liquid tank 4a, and these are installed in a tank chamber that is cut off from the outside by a partition wall (not shown). Switching between the two chemical tanks 4a and 4b is performed by an operator. Each of the chemical liquid tanks 4 a and 4 b has a gas introduction connecting portion 8 a that is connected to the distal end side of the pipe 6, and a chemical liquid derivation connecting portion 8 b that is connected to the pipe 10 disposed toward the processing portion 2. And have. Further, on the tank side of the pipe 10, an automatic on-off valve 11 such as an electromagnetic valve and a filtration unit 12 with a built-in filter are interposed in a pipe line. Therefore, the chemical solution in the chemical solution tank 4 is pumped to the pipe 10 side by the operation of the on-off valves 7 and 11 and stopped on the contrary. Therefore, in this embodiment, the on-off valves 7 and 11 serve as liquid feeding means for the chemical tank 4.
[0011]
The main chemical liquid tank 4a and the auxiliary tank 4b are switched by closing the on-off valve 9a interposed in the pipe portion connecting the tanks 4a, 4b to the pipe 6 and opening the on-off valve 9b. Moreover, the on-off valve 13a interposed in the pipe part connected to the piping 10 is closed, and the on-off valve 13b is opened. The main chemical liquid tank 4a after switching is replaced with a new chemical liquid tank, that is, the next auxiliary tank. This replacement work is performed via the connecting portions 8a and 8b.
[0012]
The processing unit 2 is several tens of meters or more away from the chemical solution supply unit 1, and various processing tanks No 1 to Non (n is usually 10 to 30) equipped with a measuring tank are installed along the common pipe 10. This is where the wafers are surface-treated independently or continuously in the treatment tanks No1 to Non. The arrangement of the processing tanks No1, No2,... Non is appropriately designed in a state suitable for the work contents with respect to the common pipe 10.
[0013]
The common matters of the treatment tanks No1 to Non all have at least a liquid level sensor that detects the liquid level of the chemical solution in the tank, an on-off valve, and the like. Each liquid level sensor monitors the liquid level of the chemical liquid in the tank, for example, sends a command to detect when the chemical liquid in the tank is completely discarded and start supplying the chemical liquid, and closes the valve of the discharge unit. A chemical solution request signal is sent to the controller 3 to supply a new chemical solution, or a command or the like is sent to detect the supply stop time and close the corresponding on-off valve. Each on-off valve is an automatic type such as a solenoid valve, and opens and closes between the pipes 10 to supply a chemical solution into the tank. And the mechanism part of each said liquid level sensor and each on-off valve, and the operation control part 3 side are connected by the signal wire | line 15.
[0014]
When the operation control unit 3 receives a chemical request signal from the processing unit 2 side, the operation control unit 3 sends a signal to open the on-off valves 7 and 11 that are liquid supply means of the chemical tank 4, and opens and closes when all the request signals are lost. It is almost the same as the prior art in that the valves 7 and 11 are closed. The difference is that the number of simultaneous supply that is the number of processing tanks that have a safety control unit 16 and supply the chemical solution request signal to each of the processing tanks No 1 to Non via the safety control unit 16 at the same time. This is based on management. The safety control unit 16 includes a simultaneous supply number measurement unit 17 and a supply time measurement unit 18, a calculation determination unit 19, a storage unit 20 connected to the calculation determination unit 19, an input unit 21, an alarm unit 22, and the like. Yes.
[0015]
Here, the storage unit 20 stores a required chemical solution supply time, which is an actually measured value corresponding to the number of simultaneous supplies for each processing tank, and an expression (1) representing a relationship between the two.
Tr = T0 + (R × n) Formula (1)
In Formula (1), Tr is a required chemical | medical solution supply time in case the simultaneous supply number is n. T0 is the number of simultaneous supplies n = 0, that is, the required chemical solution supply time in the case of single supply to the treatment tank. R is a constant. This constant R is calculated from actually measured data and a formula in the storage unit 20. Further, the storage unit 20 stores an equation (2) for managing the limit chemical solution supply time Trk for stopping the supply of the chemical solution for safety control.
Trk = T0 + (R × n) + k Equation (2)
In equation (2), k is a safety factor time added to the required chemical solution supply time T0 + (R × n) when the number of simultaneous supplies is n, and is a constant set as appropriate.
The operation determination unit 19, simultaneously supplying the number of which is measured by the co-feed speed meter measuring unit 17 (average value of n values far) was treated by the equation (2), estimate the corresponding limit supply time (Trk) Then, the supply time (T) measured by the supply time measuring unit 18 is compared with the limit supply time, and the operation control is performed when the supply time (T) being measured exceeds the limit supply time (Trk). A stop signal (closed signal) is sent to the liquid feeding means (open / close valves 7, 11) of the chemical tank 4 via the unit 3.
[0016]
And the safety control part 16 controls each part with the following flows. FIG. 2 summarizes the flow of the control in a flowchart, and will be described with reference to FIG. When the chemical solution request signal is sent from the processing unit 2 side via the signal line 14, the simultaneous supply number measurement unit 17 counts it as needed and transmits it to the supply time measurement unit 18 and the operation determination unit 19. . This is performed for each processing tank. When the simultaneous supply number measuring unit 17 receives the first request signal, it sends a valve opening signal to the on-off valves 7 and 11 as the liquid feeding means via the operation control unit 3 to open the on-off valves 7 and 11. Switch to state. Thereby, the chemical solution in the chemical solution tank 4 is pumped to the pipe 10, and the chemical solution is supplied to the corresponding treatment tank via the pipe 10 and the corresponding on-off valve.
[0017]
Based on the signal from the simultaneous supply number measurement unit 17, the supply time measurement unit 18 measures the chemical solution supply time (T) in which the chemical solution is actually supplied for each processing tank, and supplies it to the calculation determination unit 19. It is transmitted as data for each processing tank.
[0018]
The calculation determination unit 19 moves a limit chemical solution supply time calculation program for stopping chemical supply for safety control on the basis of the storage unit data for each processing tank, and the limit chemical solution corresponding to the number of simultaneous supplies being measured. The supply time (limit supply time Trk) is estimated, and it is determined whether or not the chemical solution supply time (T) being measured exceeds the limit supply time (Trk). This determination is performed for each processing tank until the condition of chemical solution supply time (T)> limit supply time (Trk) is not satisfied and a stop signal is received. This is a regular management route. However, when the condition is satisfied before receiving the stop signal, this is determined as an abnormality, and the calculation determination unit 19 is based on the determination result, and the on-off valve 7 which is a liquid feeding means via the operation control unit 3. , 11 is issued to switch the open / close valves 7, 11 to the closed state. At the same time, an alarm sound is output via the alarm unit 22. This is the management route at the time of abnormality. The determination of the occurrence of the abnormality is made for each processing tank, and the limit supply time (Trk) is estimated for each processing tank based on the management formula (2) corresponding to the average value of the simultaneous supply number n during measurement. Since it is judged, appropriate management becomes possible.
[0019]
In addition, when the chemical solution supply is stopped for each treatment tank through the regular management route, the supply time T measured by the supply time measuring unit 18 is measured by the simultaneous supply number measuring unit 17 as the required chemical solution supply time Tr. The number of simultaneous supplies is recorded in the storage unit 20. Then, for each predetermined period, the simultaneous supply number and the required chemical solution supply time, which have been stored in the storage unit 20 and used for calculating the limit chemical solution supply time, are corrected with new data. This advantage is that, when the chemical solution supply device 1 is continuously used, for example, even if the filtration unit 12 with a built-in filter is gradually clogged and the chemical solution is pumped from the chemical solution tank 4 with the same pressure, As the clogging progresses, the supply pressure or the supply flow rate decreases. Such a situation is to be reflected in management.
[0020]
【The invention's effect】
As described above, the chemical supply apparatus of the present invention is safe because, for example, even if the number of treatment tanks, that is, the use point is increased to 30, the limit chemical liquid supply time is managed according to the number of simultaneous supply for each treatment tank. The chemical supply stop function as a control is activated at an appropriate time, and damage such as damage to devices due to excessive chemical supply can be further minimized, and the device reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing an entire chemical solution supply apparatus to which the present invention is applied.
FIG. 2 is a diagram conceptually summarizing the control procedure of the safety control unit in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 is chemical | medical solution supply part 2 is processing part 3 is operation control part 7 is on-off valve (liquid supply means of chemical | medical solution tank)
11 is an on-off valve (solution feeding means for the chemical tank)
16 is a safety control unit 17 is a simultaneous supply number measurement unit 18 is a supply time measurement unit 19 is a calculation determination unit 20 is a storage unit

Claims (1)

供給源側の薬液タンクと計量槽および槽内薬液の液位を監視する液面センサーを備えた複数の処理槽との間を、共通の配管及び前記各処理槽側の開閉弁を介して接続し、前記処理槽側の液面センサーからの信号に基づき前記処理槽側の開閉弁を制御し、薬液タンクの送液手段により当該処理槽へ薬液を供給する薬液供給装置において、
前記各処理槽毎に薬液供給開始から停止までの薬液供給時間を計測する供給時間計測部と、
薬液供給中の処理槽毎に、同時に薬液供給を行っている処理槽数を計測する同時供給数計測部と、
前記各処理槽毎の同時供給数に対応する薬液供給時間を記憶する記憶部と
前記各処理槽毎に、前記記憶部データと計測中の同時供給数とから限界供給時間Trkを下記の式により推算し、計測中の薬液供給時間を前記限界供給時間と比較する演算判定部とを備え、
供給停止時を検出した前記液面センサーの停止信号を受ける前に、薬液供給時間(T)>限界供給時間(Trk)の条件を充足したときに、これを異常発生として判断して、前記薬液タンクの送液手段を停止可能にしたことを特徴とする薬液供給装置。
Trk=T 0 +(R×n)+k
ここで、上記の式中、T 0 は当該処理槽への単独供給の場合の所要薬液供給時間、Rは実側データ及び式から算出される定数、nは平均同時供給数、kは安全係数時間であり適宜設定される定数である。
Connects between the chemical tank on the supply side and the measuring tank and multiple processing tanks equipped with a liquid level sensor that monitors the liquid level of the chemical liquid in the tank via a common pipe and the open / close valve on each processing tank. In the chemical supply apparatus for controlling the on-off valve on the processing tank side based on the signal from the liquid level sensor on the processing tank side and supplying the chemical liquid to the processing tank by the liquid feeding means of the chemical tank,
A supply time measuring unit that measures the chemical solution supply time from the start of supply of chemical solution to the stop for each treatment tank,
A simultaneous supply number measuring unit that measures the number of treatment tanks supplying chemical solutions at the same time for each treatment tank supplying chemical solutions,
The storage unit for storing the chemical solution supply time corresponding to the number of simultaneous supply for each processing tank, and the limit supply time Trk from the storage unit data and the number of simultaneous supply during measurement for each processing tank by the following formula A calculation determination unit that estimates and compares the chemical supply time during measurement with the limit supply time,
When the condition of chemical solution supply time (T)> limit supply time (Trk) is satisfied before receiving the stop signal of the liquid level sensor that detects the supply stop time, this is determined as the occurrence of abnormality, and the chemical solution A chemical supply apparatus characterized in that the liquid supply means of the tank can be stopped.
Trk = T 0 + (R × n) + k
Here, in the above equation, T 0 is the required chemical solution supply time in the case of single supply to the treatment tank, R is a constant calculated from the actual data and equation, n is the average number of simultaneous supplies, and k is a safety factor. It is a constant that is set appropriately.
JP10424598A 1998-04-15 1998-04-15 Chemical supply device Expired - Lifetime JP4052725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10424598A JP4052725B2 (en) 1998-04-15 1998-04-15 Chemical supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10424598A JP4052725B2 (en) 1998-04-15 1998-04-15 Chemical supply device

Publications (2)

Publication Number Publication Date
JPH11297659A JPH11297659A (en) 1999-10-29
JP4052725B2 true JP4052725B2 (en) 2008-02-27

Family

ID=14375570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10424598A Expired - Lifetime JP4052725B2 (en) 1998-04-15 1998-04-15 Chemical supply device

Country Status (1)

Country Link
JP (1) JP4052725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907396B1 (en) * 2007-09-07 2009-07-10 삼성에스디아이 주식회사 Fuel Cartridge and Direct Methanol Fuel Cell having the same and Method of Purging Direct Methanol Fuel Cell using the Fuel Cartridge
KR20230025563A (en) 2021-08-12 2023-02-22 세메스 주식회사 Substrate treating apparatus and substrate treating method

Also Published As

Publication number Publication date
JPH11297659A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
CN216319701U (en) Water fire extinguishing facility, control device for water fire extinguishing facility and hazard warning center
US6415870B1 (en) Wet type sprinkler system
JP4314537B2 (en) Safety detection type chemical supply device
CN215841362U (en) Water fire-extinguishing system, control unit and fire alarm and/or fire-extinguishing control centre
JP2017166693A (en) Control system for hydrogen fuel replenishment station
US8535015B2 (en) Rinsing device and method for the operation thereof
JPS6018695A (en) Feeder for fluid
JP4052725B2 (en) Chemical supply device
WO2018163908A1 (en) Cooling water supply system for laser processing head and method for supplying cooling water to laser processing head
CN113414165A (en) Liquid inlet device and semiconductor cleaning equipment
JP3095471B2 (en) Cartridge type pure water production system and cartridge type pure water production system management system
JP3625943B2 (en) Water supply device control method and control device
TW201736035A (en) Constant temperature water supply method and constant temperature water supply device efficiently supplying water of a predetermined temperature to the processing apparatus
JP4779137B2 (en) Gas supply system to container and gas supply method to container
KR102525285B1 (en) Dental air compressor with function of trouble detection
JPH06210270A (en) Deciding device for abnormal state of water treatment equipment
JPH05172A (en) Automatic inspection apparatus for fire extinguishing installation
KR100191234B1 (en) Dissolved oxygen measuring system for pure water
JPH01303165A (en) Pressure relief device for fire facility
JP4008639B2 (en) Automatic bath equipment
JP2607128B2 (en) Liquid injection surgery device
JPS6349078B2 (en)
JP3229603B2 (en) Cartridge type pure water production equipment
JPS6029056B2 (en) Fracture detection device for fluid high pressure pipelines
CN116044396A (en) Heading machine, control method and device of heading machine and readable storage medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19980707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term