JP4779137B2 - Gas supply system to container and gas supply method to container - Google Patents

Gas supply system to container and gas supply method to container Download PDF

Info

Publication number
JP4779137B2
JP4779137B2 JP2005310180A JP2005310180A JP4779137B2 JP 4779137 B2 JP4779137 B2 JP 4779137B2 JP 2005310180 A JP2005310180 A JP 2005310180A JP 2005310180 A JP2005310180 A JP 2005310180A JP 4779137 B2 JP4779137 B2 JP 4779137B2
Authority
JP
Japan
Prior art keywords
gas
container
supply
pressure
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005310180A
Other languages
Japanese (ja)
Other versions
JP2007118956A (en
Inventor
恵史 志岐
要 久保田
忍 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2005310180A priority Critical patent/JP4779137B2/en
Publication of JP2007118956A publication Critical patent/JP2007118956A/en
Application granted granted Critical
Publication of JP4779137B2 publication Critical patent/JP4779137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,例えば粉体等の粉体を貯蔵する容器にガスを供給するためのガス供給用システム,及び,ガス供給方法に関する。   The present invention relates to a gas supply system and a gas supply method for supplying gas to a container for storing powder such as powder.

例えば還元鉄粉の粉末等は,大気と接触させずに保存する必要がある。このような大気との接触を防止すべき粉体を貯蔵するための器具として,粉体を貯蔵する密閉構造の容器に,窒素等の不活性ガスを加圧供給するガス供給路を備えたものが知られている(特許文献1参照。)。この容器は,粉体を容器に投入したり容器から排出したりするときも,容器内をガスによってパージした状態を維持することができる。即ち,粉体を大気に接触させることなく,投入及び排出を行える構造になっている。   For example, reduced iron powder powder must be stored without contact with the atmosphere. As a device for storing such powder that should be prevented from coming into contact with the atmosphere, it is equipped with a gas supply passage that supplies pressurized inert gas such as nitrogen to a sealed container that stores the powder. Is known (see Patent Document 1). This container can maintain a state in which the inside of the container is purged with a gas even when powder is charged into or discharged from the container. In other words, the powder can be charged and discharged without bringing the powder into contact with the atmosphere.

また,かかる容器には,容器内の内圧を計測する圧力計が設けられている。容器内にガスを供給する際,作業者は,圧力計の測定値を目視で監視し,内圧が所定の正圧(大気圧に対して陽圧)になるまでガスの供給を継続させ,所定の正圧になったことを確認したら,ガス供給路に介設された開閉弁を閉じ,ガスの供給を停止させるようにしている。こうして容器内を正圧にすることで,容器内に大気が侵入することを抑制できる。   Moreover, the pressure gauge which measures the internal pressure in a container is provided in this container. When supplying gas into the container, the operator visually monitors the measured value of the pressure gauge and continues to supply gas until the internal pressure reaches a predetermined positive pressure (positive pressure relative to atmospheric pressure). When the positive pressure is confirmed, the on-off valve provided in the gas supply path is closed to stop the gas supply. By making the inside of the container a positive pressure in this way, it is possible to prevent the atmosphere from entering the container.

特許3409974号公報Japanese Patent No. 3409974

しかしながら,従来のガス供給方法では,作業者がガスの供給中に他の作業を始め,ガスの供給をしていることを忘れてしまったり,圧力計の読み取りや開閉弁の操作を誤ったりすることがあり,そのような作業者の不注意により,容器内にガスが過剰に供給されてしまうおそれがあった。その結果,容器内が高圧に加圧されて容器が破損し,粉体が大気に晒されて不良品化したり,粉体が容器から吹き出して作業者に危害を及ぼしたりするおそれがあった。特に,各容器内に貯蔵されている粉体の量がそれぞれ異なる場合,ガスの供給を開始してから容器内が所定の正圧になるまでの経過時間が各容器でそれぞれ異なるので,圧力計の監視を慎重に行わなければならず,面倒であり,作業者の不注意を招きやすかった。また,容器内とガス供給路の出口との間には,粉体がガス供給路内に侵入することを防止するため,フィルタが設けられているが,このフィルタの目開きの大きさや目詰まりの状態は,各容器によってそれぞれ異なることがある。即ち,容器内に供給される際のガスの流速にはばらつきがあり,この場合も,所定の正圧になるまでの経過時間が大幅に異なることがあり,作業者の不注意を招きやすかった。   However, in the conventional gas supply method, the worker starts other work during the gas supply, forgets that the gas is being supplied, or misreads the pressure gauge or operates the on-off valve. In some cases, carelessness of such an operator may cause excessive gas supply into the container. As a result, the inside of the container was pressurized to a high pressure, and the container was damaged, and the powder was exposed to the atmosphere, resulting in a defective product. In particular, when the amount of powder stored in each container is different, the elapsed time from the start of gas supply until the container reaches a predetermined positive pressure is different for each container. It was necessary to carefully monitor the operation, which was cumbersome and easy to cause carelessness of workers. In addition, a filter is provided between the inside of the container and the outlet of the gas supply path to prevent the powder from entering the gas supply path. The condition may vary from container to container. In other words, the flow rate of the gas supplied to the container varies, and in this case as well, the elapsed time until reaching a predetermined positive pressure may vary greatly, which is easy to cause carelessness of the operator. .

本発明は,上記の点に鑑みてなされたものであり,容器内へのガスの供給作業を自動的に行うことができ,容器内の内圧を正確に調整できるガス供給用システム,及び,ガス供給方法を提供することを目的とする。   The present invention has been made in view of the above points. A gas supply system capable of automatically performing a gas supply operation into a container and accurately adjusting an internal pressure in the container, and a gas An object is to provide a supply method.

上記課題を解決するため,本発明によれば,粉体を貯蔵する容器にガスを供給するためのシステムであって,前記容器内にガスを供給するガス供給路と,前記ガス供給路によって前記容器内に供給されるガスの供給圧を切り換える供給圧調節機構と,前記供給圧調節機構を制御する制御部とを備え,前記制御部は,前記ガスを前記容器内に第一の供給圧で供給させた後,前記ガスの供給圧を前記第一の供給圧よりも低い第二の供給圧にして,前記容器内が所定の内圧になるまで,前記ガスを前記容器内に供給させる制御を行うことを特徴とする,容器へのガス供給用システムが提供される。   In order to solve the above problems, according to the present invention, there is provided a system for supplying gas to a container for storing powder, wherein the gas supply path for supplying gas into the container and the gas supply path A supply pressure adjusting mechanism for switching a supply pressure of the gas supplied into the container, and a control unit for controlling the supply pressure adjusting mechanism, wherein the control unit supplies the gas into the container at a first supply pressure. After the supply, the gas supply pressure is set to a second supply pressure lower than the first supply pressure, and the gas is supplied into the container until the inside of the container reaches a predetermined internal pressure. A system for supplying gas to a container is provided that is characterized in that it does.

かかるガス供給用システムによれば,制御部の制御により,容器内へのガスの供給を自動的に行うことができる。また,第一の供給圧でガスを供給した後,第二の供給圧に下げて供給することにより,容器内の過剰加圧を防止でき,ガス供給を安全に行うことができる。   According to such a gas supply system, the gas can be automatically supplied into the container under the control of the control unit. In addition, by supplying the gas at the first supply pressure and then supplying the gas at the second supply pressure, excessive pressurization in the container can be prevented, and the gas can be supplied safely.

前記制御部は,前記容器内に供給したガスの積算供給量及び前記容器内の内圧より,前記容器内の全容積から前記容器内に貯蔵された粉体の体積を差し引いた空間容積を検知する機能と,前記空間容積の内圧を所定の値に加圧するために必要な追加積算供給量を計算する機能とを有するとしても良い。   The control unit detects a spatial volume obtained by subtracting the volume of the powder stored in the container from the total volume in the container based on an integrated supply amount of the gas supplied into the container and an internal pressure in the container. A function and a function of calculating an additional integrated supply amount necessary for pressurizing the internal pressure of the space volume to a predetermined value may be provided.

前記供給圧調節機構は,前記ガスをガス供給源から加圧して供給する主導入路と,前記主導入路から前記ガス供給路に前記ガスを前記第一の供給圧で供給する第一の流路と,前記主導入路から前記ガス供給路に前記ガスを前記第二の供給圧で供給する第二の流路とを備える構成としても良い。前記第一の流路には,前記第一の流路を連通及び遮断させる第一の開閉弁が設けられ,前記第二の流路には,前記第二の流路を通過するガスの供給圧を前記第二の供給圧に減圧する圧力調整弁と,前記第二の流路を連通及び遮断させる第二の開閉弁とが設けられている構成としても良い。   The supply pressure adjusting mechanism includes a main introduction path that supplies the gas under pressure from a gas supply source, and a first flow that supplies the gas from the main introduction path to the gas supply path at the first supply pressure. It is good also as a structure provided with a 2nd flow path which supplies the said gas to said gas supply path from said main introduction path to said gas supply path by said 2nd supply pressure. The first channel is provided with a first on-off valve for communicating and blocking the first channel, and the second channel is supplied with gas passing through the second channel. A pressure adjustment valve that reduces the pressure to the second supply pressure and a second opening / closing valve that allows the second flow path to communicate and block may be provided.

前記ガス供給路に供給されるガスの積算流量を測定する積算流量計を設けても良い。また,前記容器内の内圧を測定する圧力計を設けても良い。   An integrated flow meter for measuring the integrated flow rate of the gas supplied to the gas supply path may be provided. Moreover, you may provide the pressure gauge which measures the internal pressure in the said container.

また,本発明に依れば,粉体を貯蔵する容器にガスを供給する方法であって,前記ガスを前記容器内に第一の供給圧で供給し,その後,前記ガスの供給圧を前記第一の供給圧よりも低い第二の供給圧にして,前記ガスを前記容器内に供給し,前記容器内を所定の内圧にすることを特徴とする,容器へのガス供給方法が提供される。   According to the present invention, there is also provided a method for supplying gas to a container for storing powder, wherein the gas is supplied into the container at a first supply pressure, and then the supply pressure of the gas is set to the There is provided a gas supply method to a container, wherein the gas is supplied into the container at a second supply pressure lower than the first supply pressure, and the container is set to a predetermined internal pressure. The

この方法にあっては,前記ガスを前記第一の供給圧で供給する前に,前記ガスを前記容器内に供給し,その後,前記容器内の内圧を測定し,前記容器内に供給した積算供給量,及び,前記測定した内圧より,前記容器内の全容積から前記容器内に貯蔵された粉体の体積を差し引いた空間容積を計算し,前記空間容積より,前記容器内を前記所定の内圧まで加圧するために必要な追加積算供給量を求め,前記追加積算供給量のうち第一の積算供給量を,前記第一の供給圧で供給し,前記追加積算供給量から前記第一の積算供給量を差し引いた第二の積算供給量を,前記第二の供給圧で供給するようにしても良い。   In this method, before supplying the gas at the first supply pressure, the gas is supplied into the container, and then the internal pressure in the container is measured, and the integrated value supplied into the container is measured. A space volume obtained by subtracting the volume of the powder stored in the container from the total volume in the container is calculated from the supply amount and the measured internal pressure, and the inside of the container is calculated based on the space volume. An additional integrated supply amount required to pressurize to the internal pressure is obtained, and a first integrated supply amount of the additional integrated supply amount is supplied at the first supply pressure, and the first integrated supply amount is calculated from the additional integrated supply amount. A second integrated supply amount obtained by subtracting the integrated supply amount may be supplied at the second supply pressure.

前記容器内の内圧を測定する前に,前記容器内にガスを供給するガス供給路からガスを排出し,前記ガス供給路内の圧力を減圧させても良い。また,前記容器内に供給されるガスの流速が所定の範囲内にない場合,前記容器内へのガスの供給を停止し,警報を発生させても良い。前記第二の供給圧による供給が所定の経過時間内に終了しない場合,前記容器内へのガスの供給を停止し,警報を発生させても良い。   Before measuring the internal pressure in the container, gas may be discharged from a gas supply path that supplies gas into the container, and the pressure in the gas supply path may be reduced. Further, when the flow rate of the gas supplied into the container is not within a predetermined range, the supply of the gas into the container may be stopped and an alarm may be generated. If the supply by the second supply pressure does not end within a predetermined elapsed time, the supply of gas into the container may be stopped and an alarm may be generated.

前記第二の供給圧による供給が終了した後,前記容器内にガスを供給するガス供給路内の圧力が低下した場合,前記ガス供給路にガスを供給するようにしても良い。   After the supply by the second supply pressure is completed, when the pressure in the gas supply path for supplying the gas into the container decreases, the gas may be supplied to the gas supply path.

即ち本発明は,鉄粉等を収納した密閉容器(コンテナ)に対して行われている加圧作業の自動化を検討してなされたものである。加圧の経過時間ではなく,積算流量計を利用して制御することで,加圧を正確に行えるようにした。ガス供給用のホース(ガス供給路)が接続される部分のフィルタが異なる場合や,フィルタの目詰まりの状態が異なる場合でも,容器内を適切に加圧できるようにした。   That is, the present invention has been made in consideration of the automation of the pressurization work performed on a closed container (container) containing iron powder or the like. By using the integrated flow meter instead of the elapsed time of pressurization, pressurization can be performed accurately. The inside of the container can be properly pressurized even when the filter to which the gas supply hose (gas supply path) is connected is different or when the filter is clogged.

本発明によれば,制御部の制御により,容器内へのガスの供給を自動的に行うことができる。容器内にガスが過剰に供給されることを防止できる。第一の供給圧でガスを供給した後,第二の供給圧に下げて供給することにより,容器内の過剰加圧を確実に防止できる。積算供給量に基づいてガスの供給停止を判断することにより,経過時間に基づいてガスの供給停止を判断する場合よりも,容器内を正確に加圧できる。   According to the present invention, the gas can be automatically supplied into the container under the control of the control unit. An excessive supply of gas into the container can be prevented. By supplying the gas at the first supply pressure and then supplying it at the second supply pressure, it is possible to reliably prevent overpressurization in the container. By determining the gas supply stop based on the integrated supply amount, the inside of the container can be pressurized more accurately than when the gas supply stop is determined based on the elapsed time.

以下,本発明の好ましい実施形態を説明する。図1に示すように,本実施形態にかかるガス供給用システム1は,容器2内にガス(不活性ガス)として例えば窒素(N)ガスを供給するガス供給路3aを有するホース3,ガス供給路3aによって容器2内に供給されるガスの供給圧を切り換える供給圧調節機構5,及び,供給圧調節機構5を制御する制御部6を備えている。 Hereinafter, preferred embodiments of the present invention will be described. As shown in FIG. 1, a gas supply system 1 according to this embodiment includes a hose 3 having a gas supply path 3a for supplying, for example, nitrogen (N 2 ) gas as a gas (inert gas) into a container 2 and gas. A supply pressure adjusting mechanism 5 for switching the supply pressure of the gas supplied into the container 2 by the supply path 3a and a control unit 6 for controlling the supply pressure adjusting mechanism 5 are provided.

容器2の内部空間2aには,被貯蔵物である粉体としての還元鉄粉が貯蔵される。また,容器2には,容器2内に鉄粉を投入及び容器2内から鉄粉を排出させるための入出口7が設けられている。入出口7には,入出口7を開閉させる開閉弁7aが設けられている。開閉弁7aとしては例えばバタフライ弁などが用いられる。   In the internal space 2 a of the container 2, reduced iron powder as powder to be stored is stored. In addition, the container 2 is provided with an inlet / outlet 7 for feeding iron powder into the container 2 and discharging iron powder from the container 2. The inlet / outlet 7 is provided with an opening / closing valve 7 a for opening and closing the inlet / outlet 7. For example, a butterfly valve or the like is used as the on-off valve 7a.

また,容器2には,容器2内の内圧を測定する容器内圧力計としての圧力計10が設けられている。この圧力計10は,容器2の筐体から外側に延設された管路11の端部に設けられており,管路11に対して取り外し可能になっている。また,圧力計10の測定値は,制御部6に送信されるようになっている。管路11において,圧力計10と容器2との間には,安全弁12が設けられている。この安全弁12は,例えば容器2内が過剰に加圧されたときなどに開かれ,管路11内の圧力を下降させる機能を有し,これにより,圧力計10が過剰な圧力によって故障しないように保護されるようになっている。   The container 2 is provided with a pressure gauge 10 as a container pressure gauge for measuring the internal pressure in the container 2. The pressure gauge 10 is provided at an end portion of a pipe line 11 extending outward from the casing of the container 2 and can be detached from the pipe line 11. The measured value of the pressure gauge 10 is transmitted to the control unit 6. In the pipe line 11, a safety valve 12 is provided between the pressure gauge 10 and the container 2. The safety valve 12 is opened, for example, when the inside of the container 2 is excessively pressurized, and has a function of lowering the pressure in the pipe line 11 so that the pressure gauge 10 does not break down due to excessive pressure. To be protected.

さらに,図2に示すように,容器2には,容器2にガスを供給させるための供給口13aを有する接続筒体13,及び,接続筒体13とホース3とを連結させる接続具15が設けられている。接続具15には,接続具15内の流路を連通及び遮断させる開閉弁22が設けられている。開閉弁22としては,例えばボール弁などが用いられる。かかる開閉弁22と入出口7の開閉弁7aを閉じることにより,容器2の内部空間2aを密閉状態にすることができる。即ち,内部空間2a中の鉄粉を外気(大気)から遮断し,鉄粉の酸化を防止できるようになっている。   Further, as shown in FIG. 2, the container 2 includes a connection cylinder 13 having a supply port 13 a for supplying gas to the container 2, and a connection tool 15 for connecting the connection cylinder 13 and the hose 3. Is provided. The connection tool 15 is provided with an on-off valve 22 for communicating and blocking the flow path in the connection tool 15. For example, a ball valve or the like is used as the on-off valve 22. By closing the on-off valve 22 and the on-off valve 7a of the inlet / outlet 7, the internal space 2a of the container 2 can be sealed. That is, the iron powder in the internal space 2a is shielded from the outside air (atmosphere), and the oxidation of the iron powder can be prevented.

接続筒体13は,略円筒状をなし,容器2の筐体から外側に突出するように設けられている。接続筒体13の内部は供給口13aになっており,貯蔵空間2aに連通している。接続筒体13の内周面には,雌ねじ部13bが設けられている。   The connecting cylinder 13 has a substantially cylindrical shape and is provided so as to protrude outward from the housing of the container 2. The inside of the connection cylinder 13 serves as a supply port 13a and communicates with the storage space 2a. An internal thread portion 13 b is provided on the inner peripheral surface of the connection cylinder 13.

接続具15は,接続筒体13と開閉弁22とを接続するニップル31,開閉弁22とホース3の端部とを連結するカップラ32を備えている。ニップル31は,接続筒体13に取り付けられる筒体31aを備えている。筒体31aの外周面には,雌ねじ部13bに螺合させられる雄ねじ部31bが設けられている。即ち,雌ねじ部13aと雄ねじ部31bを螺合させ,筒体31aを接続筒体13a内に挿入させることにより,接続具15と接続筒体13を結合させるようになっている。   The connection tool 15 includes a nipple 31 that connects the connection cylinder 13 and the opening / closing valve 22, and a coupler 32 that connects the opening / closing valve 22 and the end of the hose 3. The nipple 31 includes a cylinder body 31 a that is attached to the connection cylinder body 13. On the outer peripheral surface of the cylindrical body 31a, a male screw portion 31b that is screwed into the female screw portion 13b is provided. That is, the connecting screw 15 and the connecting cylinder 13 are coupled by screwing the female screw part 13a and the male screw part 31b and inserting the cylinder 31a into the connecting cylinder 13a.

接続筒体13の内部には,容器2内の鉄粉が供給口13aを介して外部に漏れることを防止するためのフィルタ35が設けられている。フィルタ35は,略円板形状をなし,筒体31aの先端部開口を覆い,筒体31aの先端部開口と供給口13aの端部との間を仕切るように備えられている。また,筒体31aの内部には,フィルタ35を弾性力によって接続筒体13側に押さえつけるためのスプリング36が設けられている。スプリング36は螺旋状をなし,筒体31aの内周面に沿って設けられている。また,筒体31aの内周面に設けられた段部とフィルタ35の周縁部との間において,圧縮された状態で保持されている。かかる構成において,ホース3から供給されたガスは,接続具15内の流路を通過し,フィルタ35を通過した後,供給口13aを介して,内部空間2aに流入するようになっている。   A filter 35 for preventing the iron powder in the container 2 from leaking to the outside through the supply port 13a is provided inside the connection cylinder 13. The filter 35 has a substantially disk shape, covers the tip end opening of the cylinder 31a, and is provided so as to partition the tip end opening of the cylinder 31a and the end of the supply port 13a. A spring 36 for pressing the filter 35 against the connecting cylinder 13 by an elastic force is provided inside the cylinder 31a. The spring 36 has a spiral shape and is provided along the inner peripheral surface of the cylindrical body 31a. Further, it is held in a compressed state between a step portion provided on the inner peripheral surface of the cylindrical body 31 a and the peripheral portion of the filter 35. In such a configuration, the gas supplied from the hose 3 passes through the flow path in the connector 15, passes through the filter 35, and then flows into the internal space 2a through the supply port 13a.

図1において,ホース3は,可撓性を有する細長い略円管状をなし,その内部空間がガス供給路3aとなっている。ホース3の出口端部は,接続具15に対して取り外し可能であり,接続具15のカップラ32内に挿入されることにより,接続具15に固定される。   In FIG. 1, the hose 3 has an elongated, substantially circular tubular shape having flexibility, and its internal space is a gas supply path 3a. The outlet end portion of the hose 3 is removable with respect to the connection tool 15 and is fixed to the connection tool 15 by being inserted into the coupler 32 of the connection tool 15.

ガス供給路3aには,ガス供給路3a内の圧力(ガスの供給圧)を測定するガス供給路用圧力計45,ガス供給路3aからガスを排出させる排出路46が介設されており,排出路46には,排出路46を連通及び遮断させる開閉弁47が設けられている。ガス供給路用圧力計45の測定値は,制御部6に送信されるようになっている。開閉弁47の開閉動作は,制御部6の制御命令によって制御される。   The gas supply path 3a is provided with a gas supply path pressure gauge 45 for measuring the pressure in the gas supply path 3a (gas supply pressure), and a discharge path 46 for discharging gas from the gas supply path 3a. The discharge passage 46 is provided with an on-off valve 47 that allows the discharge passage 46 to communicate with and shut off. The measurement value of the gas supply path pressure gauge 45 is transmitted to the control unit 6. The opening / closing operation of the opening / closing valve 47 is controlled by a control command of the control unit 6.

供給圧調節機構5は,ガス供給源48からガスを加圧して供給する主導入路50,主導入路50からガス供給路3aにガスを高圧で供給する第一の流路51,及び,主導入路50からガス供給路3aにガスを低圧で供給する第二の流路52を備えている。流路51と流路52は,主導入路50の下流端部から2本に分岐させて設けられた流路であり,ガス供給路3aの入口端部において合流させられている。   The supply pressure adjusting mechanism 5 includes a main introduction path 50 that pressurizes and supplies gas from a gas supply source 48, a first flow path 51 that supplies gas from the main introduction path 50 to the gas supply path 3a, and a main flow path. A second flow path 52 for supplying gas from the introduction path 50 to the gas supply path 3a at a low pressure is provided. The flow path 51 and the flow path 52 are branched from the downstream end portion of the main introduction path 50 and are joined at the inlet end of the gas supply path 3a.

主導入路50には,主導入路50を連通及び遮断させる開閉弁61,主導入路50を通過するガスの供給圧を所定の供給圧Ps1に調節する圧力調整弁62,主導入路50を通過するガスの温度(即ち,ガス供給路3aに供給されるガスの温度)を測定する温度計63,主導入路50を通過するガスの積算流量(即ち,ガス供給路3aに供給されるガスの積算流量)を測定する積算流量計64が,ガス供給源48側からこの順に介設されている。温度計63の測定値,積算流量計64の測定値は,それぞれ制御部6に送信されるようになっている。なお,積算流量計64は,ガス供給路3aに設けても良い。 The main introduction path 50 includes an open / close valve 61 for communicating and blocking the main introduction path 50, a pressure adjusting valve 62 for adjusting the supply pressure of gas passing through the main introduction path 50 to a predetermined supply pressure Ps1 , and the main introduction path 50. A thermometer 63 for measuring the temperature of the gas passing through the gas (that is, the temperature of the gas supplied to the gas supply passage 3a), and the integrated flow rate of the gas passing through the main introduction passage 50 (ie, supplied to the gas supply passage 3a). An integrated flow meter 64 for measuring the integrated gas flow rate is provided in this order from the gas supply source 48 side. The measured value of the thermometer 63 and the measured value of the integrated flow meter 64 are each transmitted to the control unit 6. The integrated flow meter 64 may be provided in the gas supply path 3a.

流路51には,流路51を連通及び遮断させる第一の開閉弁71が設けられている。開閉弁71の開閉動作は,制御部6の制御命令によって制御される。   The flow path 51 is provided with a first on-off valve 71 that allows the flow path 51 to communicate and shut off. The opening / closing operation of the opening / closing valve 71 is controlled by a control command of the control unit 6.

流路52には,流路52を通過するガスの供給圧を供給圧Ps1から第二の供給圧Ps2に減圧する圧力調整弁(減圧弁)72と,流路52を連通及び遮断させる第二の開閉弁73が設けられている。開閉弁73の開閉動作は,制御部6の制御命令によって制御される。 In the flow path 52, the pressure adjusting valve (pressure reducing valve) 72 that reduces the supply pressure of the gas passing through the flow path 52 from the supply pressure P s1 to the second supply pressure P s2 and the flow path 52 are communicated and blocked. A second on-off valve 73 is provided. The opening / closing operation of the opening / closing valve 73 is controlled by a control command of the control unit 6.

また,ガス供給用システム1には,警報を発生させる際に点灯させられる信号灯81と,警報を発生させる際に警告音を鳴らすブザー82が設けられている。信号灯81の作動とブザー82の作動は,それぞれ制御部6の制御命令によって制御される。なお,信号灯81は,例えば正常動作時には緑色のランプを点灯させ,異常時には赤色のランプを点灯させるようにしても良い。   In addition, the gas supply system 1 is provided with a signal lamp 81 that is turned on when an alarm is generated and a buzzer 82 that emits a warning sound when the alarm is generated. The operation of the signal lamp 81 and the operation of the buzzer 82 are controlled by control commands of the control unit 6, respectively. For example, the signal lamp 81 may light a green lamp during normal operation, and may light a red lamp when abnormal.

制御部6は,前述したように,圧力計10,ガス供給路用圧力計45,温度計63,積算流量計64の各測定値を監視するとともに,開閉弁47,開閉弁71,開閉弁73,信号灯81,ブザー82の作動を制御する命令を与える。また,制御部6は,制御用のソフトウェアを実行させることにより,ガス供給用システム1を制御して自動運転させ,後に詳細に説明するガス供給工程を実施させることができる。なお,かかるガス供給工程には,後に詳細に説明するように,容器2内に対して所定の積算供給量Qのガスを供給する前期ガス供給工程S4,前期ガス供給工程S4を行った後に容器2内に対して追加積算供給量Qのガスを供給する後期ガス供給工程S21などが含まれており,これらの工程を実行する制御が順次行われるようになっている。後期ガス供給工程S21には,ガスを容器2内に第一の供給圧PS1で供給する第一の後期ガス供給工程S21a,ガスの供給圧を供給圧P1よりも低い第二の供給圧PS2で供給する第二の後期ガス供給工程S21bが含まれている。 As described above, the control unit 6 monitors the measured values of the pressure gauge 10, the gas supply path pressure gauge 45, the thermometer 63, and the integrated flow meter 64, and the on-off valve 47, on-off valve 71, on-off valve 73. , A command for controlling the operation of the signal lamp 81 and the buzzer 82 is given. In addition, the control unit 6 can control the gas supply system 1 to automatically operate by executing control software, and can perform a gas supply process described in detail later. In this gas supply step, as will be described in detail later, after performing the first gas supply step S4 and the first gas supply step S4 for supplying a predetermined integrated supply amount Q1 of gas into the container 2. It is included, such as late gas supply step S21 for supplying the additional cumulative supply quantity Q 2 gas to the container 2, control for executing these processes is adapted to be sequentially performed. The late gas supply step S21 includes a first late gas supply step S21a for supplying gas into the container 2 at the first supply pressure PS1 , and a second supply pressure P at which the gas supply pressure is lower than the supply pressure P1. A second late gas supply step S21b supplied in S2 is included.

また,制御部6は,圧力計10の測定値及び積算流量計64の測定値(積算供給量)より,容器2内の空間容積V[L](容器2内の全容積V[L]から容器2内に貯蔵された鉄粉の体積V[L]を差し引いた容積:V=V−V)を計算する機能を有する。さらに,制御部6は,計算された空間容積Vを利用して,容器2内を所定の内圧(目標値)Pc2まで加圧させるために追加する必要がある追加積算供給量Q[L]を計算することができる。 Further, the control unit 6 determines the space volume V r [L] in the container 2 (total volume V c [L in the container 2] from the measured value of the pressure gauge 10 and the measured value (integrated supply amount) of the integrated flow meter 64. ], The volume obtained by subtracting the volume V p [L] of the iron powder stored in the container 2: V r = V m −V p ). Furthermore, the control unit 6 uses the calculated space volume V r to add an additional integrated supply amount Q 2 [necessary to be added to pressurize the container 2 to a predetermined internal pressure (target value) P c2 . L] can be calculated.

空間容積Vの計算方法としては,例えばボイルの法則を利用できる。即ち,所定の積算供給量Qのガスを供給したときの内圧の増加分ΔPが,容器2内の鉄粉の量に比例し,空間容積Vに反比例する関係を利用できる。例えば,容器2内に最大重量(最大体積)の鉄粉を入れた状態の空間容積Vrminに積算供給量Qのガスを供給したときの容器2内の内圧の増加分ΔPsmaxを,予め調べておく。そして,実際に加圧を行う容器2内に,積算供給量Qのガスを供給し,圧力計10によって,容器2内の内圧の増加分ΔPを測定する。そうすれば,V=ΔPsmax×Vrmin/ΔPの関係より,空間容積Vを求めることができる。 As a method of calculating the space volume V r , for example, Boyle's law can be used. That is, it is possible to use a relationship in which the increase ΔP s of the internal pressure when supplying the gas with the predetermined integrated supply amount Q 1 is proportional to the amount of iron powder in the container 2 and inversely proportional to the space volume V r . For example, the increase ΔP smax of the internal pressure in the container 2 when the gas of the integrated supply amount Q 1 is supplied to the space volume V rmin in a state where the maximum weight (maximum volume) of iron powder is put in the container 2 is previously set. Check it out. Then, an integrated supply amount Q 1 of gas is supplied into the container 2 that actually performs pressurization, and the internal pressure increase ΔP s in the container 2 is measured by the pressure gauge 10. Then, the space volume V r can be obtained from the relationship of V r = ΔP smax × V rmin / ΔP s .

また,制御部6には,作業者によってON状態とOFF状態とが切り換えられる開始スイッチ91と終了スイッチ92が設けられている。開始スイッチ91がON状態に入力されると,制御部6の制御によるガス供給工程の自動運転が開始される。終了スイッチ92がON状態に入力されると,制御部6の制御によるガス供給工程の自動運転が停止される。   In addition, the control unit 6 is provided with a start switch 91 and an end switch 92 that can be switched between an ON state and an OFF state by an operator. When the start switch 91 is input to the ON state, automatic operation of the gas supply process under the control of the control unit 6 is started. When the end switch 92 is input to the ON state, the automatic operation of the gas supply process under the control of the control unit 6 is stopped.

次に,以上のように構成されたガス供給用システム1を用いたガス供給方法について説明する。先ず,作業者により,容器2の供給口13aに接続具15が取り付けられ,開閉弁22が閉じられた状態で,開閉弁7aが開かれる。そして,入出口7から容器2内に鉄粉が投入された後,開閉弁7aが閉じられ,貯蔵空間2aが密閉状態にされる。このように容器2内に鉄粉が投入される際は,容器2内はガス(例えば窒素ガスN)によってパージされた状態に維持され,容器2内に大気を進入させることなく,鉄粉を入出口7に投入することができる。 Next, a gas supply method using the gas supply system 1 configured as described above will be described. First, the connection tool 15 is attached to the supply port 13a of the container 2 by the operator, and the on-off valve 7a is opened with the on-off valve 22 closed. And after iron powder is thrown in in the container 2 from the inlet / outlet 7, the on-off valve 7a is closed and the storage space 2a is sealed. Thus, when iron powder is thrown into the container 2, the inside of the container 2 is maintained in a state purged with a gas (for example, nitrogen gas N 2 ), and the iron powder is not allowed to enter the container 2 without entering the atmosphere. Can be introduced into the inlet / outlet 7.

こうして鉄粉が貯蔵された密閉状態の容器2において,作業者は,接続具15の入口端部にホース3の出口端部を取り付ける。即ち,接続具15を介して,容器2内にガス供給路3aを接続させる。接続具15にホース3を取り付けたら,作業者の手動により開閉弁22を開き,容器2内とガス供給路3aとを連通させる。そして,開始スイッチ91をON状態にし,制御部6に対して自動運転を開始させる指令を与える。   In the sealed container 2 in which the iron powder is thus stored, the operator attaches the outlet end of the hose 3 to the inlet end of the connector 15. That is, the gas supply path 3 a is connected to the container 2 through the connection tool 15. When the hose 3 is attached to the connection tool 15, the opening / closing valve 22 is opened manually by the operator, and the inside of the container 2 and the gas supply path 3a are communicated. Then, the start switch 91 is turned on, and a command for starting the automatic operation is given to the control unit 6.

自動運転開始の指令が与えられると,制御部6は,先ず,ガス供給用システム1の起動条件,即ち,ガス供給用システム1に異常があるか否かを確認する(図3においてステップS1)。具体的には,例えば,各開閉弁47,71,73が閉じられているか否か,また,圧力計10,ガス供給路用圧力計45,積算流量計64の各測定値がそれぞれ所定の範囲内にあるか否か等を判断する。起動条件が満たされている(開閉弁47,71,73が総て閉じられており,圧力計10,ガス供給路用圧力計45,積算流量計64の各測定値がそれぞれ所定の範囲内にある)と判断された場合は,次のステップS2が実行される。一方,起動条件が満たされていないと判断された場合は,制御部6は,信号灯81又はブザー82に対して警報を発生させる命令を与える(ステップS3)。これにより,信号灯81又はブザー82による警報が発生させられ,ガス供給用システム1に異常があることが警報により作業者に知らされる。   When a command to start automatic operation is given, the control unit 6 first confirms whether the gas supply system 1 has a start condition, that is, whether there is an abnormality in the gas supply system 1 (step S1 in FIG. 3). . Specifically, for example, whether or not each of the on-off valves 47, 71, 73 is closed, and the measured values of the pressure gauge 10, the gas supply path pressure gauge 45, and the integrated flow meter 64 are within a predetermined range, respectively. It is judged whether it is in. The starting condition is satisfied (the on-off valves 47, 71, 73 are all closed, and the measured values of the pressure gauge 10, the gas supply path pressure gauge 45, and the integrated flow meter 64 are within predetermined ranges, respectively. If it is determined that there is, the next step S2 is executed. On the other hand, when it is determined that the activation condition is not satisfied, the control unit 6 gives a command for generating an alarm to the signal lamp 81 or the buzzer 82 (step S3). Accordingly, an alarm is generated by the signal lamp 81 or the buzzer 82, and the operator is notified by the alarm that there is an abnormality in the gas supply system 1.

ステップS2においては,圧力計10の圧力測定値が制御部6に検知され,制御部6において,圧力測定値(容器2の内圧)が予め定められた設定値以下であるか否かが判断される。圧力測定値が設定値以下である場合は,容器2内を安全に加圧できる正常な状態と判断され,前期ガス供給工程(ステップS4)が実行される。一方,圧力測定値が設定値より高い場合は,異常な状態と判断され,非常停止を行うステップS5(図5参照)が実行される。このステップS5については,後に詳細に説明する。このように,容器2内にガスを供給する前に,容器2内の内圧が設定値以下であるか否かを確認することで,すでに加圧された状態の容器2に対してガスが過剰に供給されることを防止できる。従って,容器2に過剰な内圧が発生して容器2が破損することを防止できる。   In step S2, the pressure measurement value of the pressure gauge 10 is detected by the control unit 6, and the control unit 6 determines whether or not the pressure measurement value (internal pressure of the container 2) is equal to or less than a predetermined set value. The When the measured pressure value is less than or equal to the set value, it is determined that the container 2 can be safely pressurized and the first gas supply step (step S4) is executed. On the other hand, when the pressure measurement value is higher than the set value, it is determined that the state is abnormal, and step S5 (see FIG. 5) for performing an emergency stop is executed. Step S5 will be described in detail later. Thus, before supplying gas into the container 2, it is possible to check whether the internal pressure in the container 2 is equal to or lower than the set value. Can be prevented. Therefore, it is possible to prevent the container 2 from being damaged due to excessive internal pressure generated in the container 2.

前期ガス供給工程S4においては,制御部6から開閉弁71を開く命令が与えられる。即ち,開閉弁73が閉じられたまま,開閉弁71が開かれる。これにより,ガス供給源48から供給されたガスが主導入路50,流路51,ガス供給路3aの順に通過し,容器2内に高圧の供給圧PS1で供給される。ガスが供給圧PS1で供給される間,制御部6は,積算流量計64の測定値を検知し,前期ガス供給工程S4におけるガスの供給を開始してからの積算流量を監視する。そして,ガスの供給を開始してからの積算流量が所定の値Qに達すると,制御部6は,開閉弁71を閉じる命令を与え,ガスの供給を停止させる。即ち,前期ガス供給工程S4を終了させる。こうして,容器2内に所定の積算供給量Q分のガスが供給されることにより,容器2内が前期ガス供給工程S4の前よりも加圧された状態になる。 In the first gas supply step S4, a command to open the on-off valve 71 is given from the control unit 6. That is, the on-off valve 71 is opened while the on-off valve 73 is closed. As a result, the gas supplied from the gas supply source 48 passes through the main introduction path 50, the flow path 51, and the gas supply path 3a in this order, and is supplied into the container 2 at a high supply pressure PS1 . While the gas is supplied at the supply pressure PS1 , the control unit 6 detects the measurement value of the integrated flow meter 64 and monitors the integrated flow rate from the start of gas supply in the previous gas supply step S4. When the cumulative flow from the start of the supply of gas reaches a predetermined value Q 1, the control unit 6, an opening and closing valve 71 is closed giving instructions to stop the supply of gas. That is, the previous gas supply step S4 is terminated. Thus, by a predetermined cumulative supply quantity Q 1 minute gas is supplied into the container 2, a state where the container 2 is pressurized than the previous year gas supply step S4.

前期ガス供給工程S4が終了すると,圧力計10によって容器2内の内圧が測定され,圧力測定値が制御部6に検知され(ステップS6),制御部6において,圧力測定値が所定の目標値Pc2以上であるか否かが判断される(ステップS7)。圧力測定値が目標値Pc2より低い場合は,さらにガスの供給を行う必要があると判断され,次の追加積算供給量Qを計算するステップS10が実行される。一方,圧力測定値が目標値Pc2以上である場合は,それ以上のガスの供給を行う必要はないと判断され,ステップS11が実行される。ステップS11においては,圧力測定値が正常値の範囲内にあるか否かが判断され,正常値の範囲内にある場合は,ガス供給工程が正常に終了され,後述する圧力保持工程のステップS24(図4参照)が実行される。正常値の範囲内にない場合は,過剰に加圧された異常な状態と判断され,非常停止を行うステップS5(図5参照)が実行される。 When the first gas supply step S4 is completed, the internal pressure in the container 2 is measured by the pressure gauge 10, the pressure measurement value is detected by the control unit 6 (step S6), and the pressure measurement value is set to a predetermined target value in the control unit 6. It is determined whether or not it is greater than or equal to Pc2 (step S7). If the pressure measurement value is lower than the target value P c2, it is determined that there is a need for further supply of gas, step S10 of calculating the following additional cumulative supply quantity Q 2 is performed. On the other hand, when the pressure measurement value is equal to or greater than the target value Pc2 , it is determined that it is not necessary to supply more gas, and step S11 is executed. In step S11, it is determined whether or not the pressure measurement value is within a normal value range. If the pressure measurement value is within the normal value range, the gas supply process is terminated normally, and step S24 of the pressure holding process described later is performed. (See FIG. 4) is executed. If it is not within the range of the normal value, it is determined that the pressure is excessively abnormal, and step S5 (see FIG. 5) for performing an emergency stop is executed.

ステップS10においては,容器2内の内圧を目標値Pc2まで加圧させるための追加積算供給量Qが計算される。即ち,制御部6の演算により,前期ガス供給工程S4で供給された積算供給量Qより,容器2内の空間容積Vが求められ,さらに,空間容積Vから,追加積算供給量Qが求められる。そして,次の後期ガス供給工程(ステップS21,図4参照)が実行される。 In step S10, additional cumulative supply quantity Q 2 for pressurized the pressure inside the container 2 to the target value P c2 are calculated. That is, the calculation of the control unit 6 determines the space volume V r in the container 2 from the integrated supply amount Q 1 supplied in the previous gas supply step S4, and further calculates the additional integrated supply amount Q from the space volume V r. 2 is required. Then, the next late gas supply step (step S21, see FIG. 4) is executed.

後期ガス供給工程S21においては,先ず,ガスを容器2内に第一の供給圧PS1で供給する第一の後期ガス供給工程S21aが行われ,次に,ガスを容器2内に第二の供給圧PS2(PS2<PS1)で供給する第二の後期ガス供給工程S21bが行われる。 In the late gas supply step S21, firstly, to supply at a first supply pressure P S1 first late gas supply step S21a is performed a gas into the container 2, then, the second gas into the container 2 A second late gas supply step S21b that is supplied at the supply pressure P S2 (P S2 <P S1 ) is performed.

第一の後期ガス供給工程S21aにおいては,制御部6から開閉弁71を開く命令が与えられ,開閉弁73が閉じられたまま,開閉弁71が開かれる。これにより,ガス供給源48から供給されたガスが主導入路50,流路51,ガス供給路3aの順に通過し,容器2内に高圧の供給圧PS1で供給される。ガスが供給圧PS1で供給される間,制御部6は,積算流量計64の測定値を検知し,ガスの供給を開始してからの積算流量を監視する。そして,第一の後期ガス供給工程S21aにおけるガスの供給を開始してからの積算流量がQ2a(Q2a<Q)に達したら,開閉弁71を閉じる命令を与え,ガスの供給を停止させる。即ち,第一の後期ガス供給工程S21aを終了させる。こうして,容器2内に所定の積算供給量(第一の積算供給量)Q2a分のガスが供給されることにより,容器2内が第一の後期ガス供給工程S21aの前よりも加圧された状態になる。なお,第一の後期ガス供給工程S21aにおいて供給するガスの積算供給量Q2aは,追加積算供給量Qの大部分の量,例えば約90%前後であっても良く,例えば約85%〜90%程度(Q2a=0.8Q〜0.95Q)であっても良い。そして,残りの追加積算供給量Qから積算供給量Q2aを差し引いた残りの積算供給量(第二の積算供給量)Q2b(Q2b=Q−Q2a)を,次の第二の後期ガス供給工程S21bによって供給することが好ましい。 In the first latter gas supply step S21a, a command to open the on-off valve 71 is given from the control unit 6, and the on-off valve 71 is opened while the on-off valve 73 is closed. As a result, the gas supplied from the gas supply source 48 passes through the main introduction path 50, the flow path 51, and the gas supply path 3a in this order, and is supplied into the container 2 at a high supply pressure PS1 . While the gas is supplied at the supply pressure PS1 , the control unit 6 detects the measurement value of the integrated flow meter 64, and monitors the integrated flow rate after the gas supply is started. When the integrated flow rate after starting the gas supply in the first latter gas supply step S21a reaches Q 2a (Q 2a <Q 2 ), an instruction to close the on-off valve 71 is given to stop the gas supply. Let That is, the first late gas supply step S21a is terminated. Thus, given integration supply amount into the container 2 (first cumulative supply quantity) by Q 2a amount of gas is supplied, the container 2 is pressurized than the previous first late gas supply step S21a It becomes a state. The accumulated supply amount Q 2a of the gas supplied in the first latter gas supply step S21a may be a large amount of the additional integrated supply amount Q 2 , for example, about 90%, for example, about 85% to It may be about 90% (Q 2a = 0.8Q 2 to 0.95Q 2 ). The remaining integrated supply amount obtained by subtracting the cumulative supply quantity Q 2a from the rest of the additional accumulated supply quantity Q 2 a (second cumulative supply quantity) Q 2b (Q 2b = Q 2 -Q 2a), the following second It is preferable to supply in the latter gas supply step S21b.

第一の後期ガス供給工程S21aが終了したら,次に,第二の後期ガス供給工程S21bを開始させる。第二の後期ガス供給工程S21bにおいては,制御部6から開閉弁73を開く命令が与えられ,開閉弁71が閉じられたまま,開閉弁73が開かれる。これにより,ガス供給源48から供給されたガスが主導入路50,流路52,ガス供給路3aの順に通過し,容器2内に低圧の供給圧PS2で供給される。ガスが供給圧PS2で供給される間,制御部6は,積算流量計64の測定値を検知し,ガスの供給を開始してからの積算流量を監視する。そして,第二の後期ガス供給工程S21bにおけるガスの供給を開始してからの積算流量がQ2bに達したら,開閉弁73を閉じる命令を与え,ガスの供給を停止させる。即ち,第二の後期ガス供給工程S21bを終了させるとともに,後期ガス供給工程S21を終了させる。こうして,容器2内に所定の積算供給量Q2b分のガスが供給されることにより,容器2内が第二の後期ガス供給工程S21bの前よりもさらに高圧に,ほぼ目標値Pc2の内圧になるまで加圧される。 When the first late gas supply step S21a is completed, the second late gas supply step S21b is then started. In the second late gas supply step S21b, a command to open the on-off valve 73 is given from the control unit 6, and the on-off valve 73 is opened while the on-off valve 71 is closed. As a result, the gas supplied from the gas supply source 48 passes through the main introduction path 50, the flow path 52, and the gas supply path 3a in this order, and is supplied into the container 2 at a low supply pressure PS2 . While the gas is supplied at the supply pressure PS2 , the control unit 6 detects the measurement value of the integrated flow meter 64, and monitors the integrated flow rate after the gas supply is started. The integrated flow from the start of the supply of gas in the second late gas supply step S21b is reached the Q 2b, the on-off valve 73 is closed giving instructions to stop the supply of gas. That is, the second late gas supply step S21b is finished and the late gas supply step S21 is finished. Thus, by a predetermined cumulative supply quantity Q 2b amount of gas is supplied into the container 2, more pressure than the previous container 2 has a second late gas supply step S21b, substantially pressure target value P c2 Pressurize until.

以上のように,第一の後期ガス供給工程S21aと第二の後期ガス供給工程S21bが行われることにより,容器2内にステップS10にて計算された追加積算供給量Qのガスが供給される。すると,容器2内の内圧がほぼ目標値Pc2に達する。かかる後期ガス供給工程S21によれば,追加積算供給量Qの大部分(積算供給量Q2a)を高圧で供給することで,容器2内を迅速に加圧でき,後期ガス供給工程S21に要する時間を短縮できる。また,残りの少量分(積算供給量Q2b)を低圧で供給することにより,容器2内が過剰に加圧されることを防止できる。即ち,追加積算供給量Q分のガスを総て高圧で供給する工程にすると,仮に制御部6の計算に誤差があって追加積算供給量Qが多めに算出された場合に,その誤った追加積算供給量Qが容器2内に高圧で過剰に供給されることで,容器2が破損したり爆発したりするおそれがあるが,積算供給量Q2b分を低圧で供給することで,そのような事故を未然に防止できる。従って,容器2内を安全に加圧できる。なお,追加積算供給量Qの計算における誤差の要因としては,圧力計10による圧力測定値の誤差,温度計63による温度測定値の誤差等が考えられる。 As described above, by the first late gas supply step S21a and the second late gas supply step S21b is carried out, additional cumulative supply quantity Q 2 of the gas calculated in step S10 in the container 2 is supplied The Then, the internal pressure in the container 2 substantially reaches the target value Pc2 . According to the latter gas supply step S21, the majority of the additional accumulated supply quantity Q 2 a (cumulative supply quantity Q 2a) By supplying a high pressure, quickly pressing the inside of the container 2, the later gas supply step S21 The time required can be shortened. Further, by supplying the remaining small amount (integrated supply amount Q 2b ) at a low pressure, the inside of the container 2 can be prevented from being excessively pressurized. That is, when the step of supplying at all additional cumulative supply quantity Q 2 minutes of gas pressure, if when additional cumulative supply quantity Q 2 there is an error in the calculation of the control unit 6 is larger amount calculated incorrectly that additional cumulative supply quantity Q 2 by being excessively supplied at high pressure into the container 2, there is a risk that the container 2 or explode damaged, the cumulative supply quantity Q 2b minute to supply at low pressure , Such an accident can be prevented in advance. Therefore, the inside of the container 2 can be safely pressurized. As the cause of the error in the calculation of additional integrated supply quantity Q 2, errors in pressure measurements by the pressure gauge 10, error of the temperature measurement value by the thermometer 63 can be considered.

第二の後期ガス供給工程S21bが終了すると,圧力計10の圧力測定値が測定され,制御部6に容器2内の内圧が検知され(ステップS22),制御部6において,圧力測定値が所定の範囲内にあるか否かが判断される(ステップS23)。圧力測定値が正常値の範囲内にある場合は,正常と判断され,次の圧力保持工程(ステップS24)が実行される。一方,圧力測定値が正常値の範囲内にない場合は,過剰に加圧された異常な状態と判断され,非常停止を行うステップS5が実行される。   When the second late gas supply step S21b is completed, the pressure measurement value of the pressure gauge 10 is measured, the internal pressure in the container 2 is detected by the control unit 6 (step S22), and the pressure measurement value is predetermined by the control unit 6. It is determined whether it is within the range (step S23). When the pressure measurement value is within the normal value range, it is determined as normal, and the next pressure holding step (step S24) is executed. On the other hand, when the pressure measurement value is not within the range of the normal value, it is determined that the pressure is excessively increased, and an emergency stop step S5 is executed.

圧力保持工程S24においては,制御部6は,ガス供給路用圧力計45によって測定される圧力測定値を常に監視し,ガス供給路用圧力計45の圧力測定値が所定の設定値より低下した場合は,開閉弁73を開き,流路52,ガス供給路3aにガスを流すようにする。ガス供給路用圧力計45の圧力測定値が所定の設定値より高ければ,開閉弁73は閉じたままにしておく。このように,ガス供給路用圧力計45の圧力測定値を常に監視することで,接続具15からホース3が外された場合に,ガス供給路用圧力計45の圧力測定値が低下することにより,接続具15からホース3が外されたことを検知できる。さらに,その場合にはガスを流すことで,ガス供給路3aの出口端部からガス供給路3a内に外気が侵入することを防止できる。従って,ガス供給路3a,流路51,52,主導入路50内が不活性のガスによってパージされた状態を維持でき,次の容器2にガスの供給を行う際に,ガス供給路3aから容器2内に外気が侵入することを防止できる。   In the pressure holding step S24, the control unit 6 constantly monitors the pressure measurement value measured by the gas supply path pressure gauge 45, and the pressure measurement value of the gas supply path pressure gauge 45 has decreased below a predetermined set value. In this case, the on-off valve 73 is opened so that gas flows through the flow path 52 and the gas supply path 3a. If the pressure measurement value of the gas supply path pressure gauge 45 is higher than a predetermined set value, the on-off valve 73 is kept closed. Thus, by constantly monitoring the pressure measurement value of the gas supply path pressure gauge 45, the pressure measurement value of the gas supply path pressure gauge 45 decreases when the hose 3 is removed from the connector 15. Thus, it can be detected that the hose 3 has been removed from the connector 15. Further, in this case, it is possible to prevent the outside air from entering the gas supply path 3a from the outlet end of the gas supply path 3a by flowing the gas. Therefore, the gas supply path 3a, the flow paths 51 and 52, and the main introduction path 50 can be maintained in the purged state with the inert gas, and when the gas is supplied to the next container 2, the gas supply path 3a It is possible to prevent outside air from entering the container 2.

こうして,ガス供給システム1は,作業者によって終了スイッチ92がON状態にされるまで,圧力保持工程S23を実施しながら待機する(ステップS25)。作業者は,ガスの供給が正常に終了したことを確認したら,終了スイッチ92をON状態に入力する。終了スイッチ92がON状態に入力されたことが制御部6において確認されると,ガス供給システム1の自動運転が停止される。以上のようにして,一連のガス供給工程が終了する。   Thus, the gas supply system 1 stands by while performing the pressure holding step S23 until the end switch 92 is turned on by the operator (step S25). When the operator confirms that the gas supply has been completed normally, the operator inputs the end switch 92 to the ON state. When the control unit 6 confirms that the end switch 92 has been input to the ON state, the automatic operation of the gas supply system 1 is stopped. As described above, a series of gas supply steps is completed.

次に,非常停止を行うステップS5について説明する。このステップS5においては,制御部6は,信号灯81又はブザー82に対して警報を発生させる命令を与える。これにより,信号灯81又はブザー82による警報が発生させられ,ガス供給用システム1に異常があることが警報により作業者に知らされる。また,制御部6により,各開閉弁47,71,73を総て閉じる命令が与えられる。その後,上記圧力保持工程S24と同様のステップS31が実施される。ガス供給システム1は,作業者によって終了スイッチ92がON状態にされるまで,圧力保持工程S24を実施しながら待機する(ステップS32)。作業者は,異常があったことを確認し,各部の点検等を行った後,終了スイッチ92をON状態に入力する。終了スイッチ92がON状態に入力されたことが制御部6において確認されると,ガス供給システム1の自動運転が停止される。以上のようにして,ガス供給工程が中止される。   Next, step S5 for performing an emergency stop will be described. In step S <b> 5, the control unit 6 gives a command for generating an alarm to the signal lamp 81 or the buzzer 82. Accordingly, an alarm is generated by the signal lamp 81 or the buzzer 82, and the operator is notified by the alarm that there is an abnormality in the gas supply system 1. Further, the control unit 6 gives a command to close all the on-off valves 47, 71, 73. Thereafter, step S31 similar to the pressure holding step S24 is performed. The gas supply system 1 stands by while performing the pressure holding step S24 until the end switch 92 is turned on by the operator (step S32). The operator confirms that there is an abnormality, inspects each part, and then inputs the end switch 92 to the ON state. When the control unit 6 confirms that the end switch 92 has been input to the ON state, the automatic operation of the gas supply system 1 is stopped. As described above, the gas supply process is stopped.

かかるガス供給システム1によれば,制御部6の制御により,容器2内へのガスの供給を自動的に行うことができる。容器2内にガスが過剰に供給されることを防止できる。供給圧PS1でガスを供給した後,供給圧をPS2に下げて供給することにより,容器2内の過剰加圧,容器2の破損を防止でき,自動供給を安全に行うことができる。 According to the gas supply system 1, the gas can be automatically supplied into the container 2 under the control of the control unit 6. An excessive supply of gas into the container 2 can be prevented. After supplying the gas at the supply pressure PS1 , the supply pressure is lowered to PS2, and the overpressure in the container 2 and the breakage of the container 2 can be prevented, and automatic supply can be performed safely.

また,予め積算供給量Qや追加積算供給量Qを決め,これら積算供給量Q,Qに基づいてガスの供給停止のタイミングを判断することにより,容器2内を確実に加圧できる。例えば,ガスの供給を開始してからの経過時間に基づいて,ガスの供給停止のタイミングを判断しようとすると,容器2内の空間容積Vが異なる場合に対応できず,容器2内の内圧を正確に調整できなくなるおそれがある。また,フィルタ35の目開きの大きさが異なる場合,フィルタ35が目詰まりを起こしている場合なども,容器2へのガスの流入速度が変化するため,経過時間に基づいた判断では,ガスの供給を十分に行えなくなるおそれがある。これに対し,ガス供給システム1によれば,容器2内の空間容積Vに応じて,フィルタ35の目開きの大きさ,フィルタ35の目詰まりの状態などに関わらず,容器2内を正確に加圧できる。 Further, predetermined the integrated supply quantity Q 1 and add the integrated supply quantity Q 2, by determining the timing of the supply stop of gas on the basis of these cumulative supply quantity Q 1, Q 2, to ensure the container 2 pressure it can. For example, if an attempt is made to determine the timing of gas supply stop based on the elapsed time from the start of gas supply, it cannot cope with the case where the space volume V r in the container 2 differs, and the internal pressure in the container 2 May not be accurately adjusted. In addition, when the opening of the filter 35 is different or when the filter 35 is clogged, the flow rate of the gas into the container 2 changes. There is a risk that the supply cannot be sufficiently performed. On the other hand, according to the gas supply system 1, the inside of the container 2 is accurately adjusted according to the space volume V r in the container 2 regardless of the size of the opening of the filter 35 and the clogging state of the filter 35. Can be pressurized.

以上,本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば,ステップS2の後,前期ガス供給工程S4を行う前に,温度計63によるガスの温度測定値に基づいて,前期ガス供給工程S4で供給する積算供給量Qの値を補正するステップを実施しても良い。即ち,ガスの温度が低いほど,積算供給量Qを多くしても良い。このようにガスの温度に応じて積算供給量Qを補正すれば,前期ガス供給工程S4においてより多くのガスを供給できる。従って,後に行われる後期ガス供給工程S21に要する時間を短縮でき,効率的である。 For example, after step S2, before performing the year gas supply step S4, on the basis of the temperature measurements of the gas by the thermometer 63, the step of correcting the value of the integrated supply quantity Q 1 is supplied with the previous term gas supply step S4 You may carry out. That is, as the temperature of the gas is low, may increase the cumulative supply quantity Q 1. Thus corrected cumulative supply quantity Q 1 in accordance with the temperature of the gas can be supplied more gas in the previous term gas supply step S4. Therefore, the time required for the later gas supply step S21 performed later can be shortened, which is efficient.

前期ガス供給工程S4においては,ガス供給路3aに供給されるガスの流速を測定し,流速が所定の範囲にない場合,ガスの供給を停止させるようにしても良い。例えば制御部6において,積算流量計64の測定値より,主導入路50におけるガスの流速を検知し,この流速測定値が所定の範囲内にあるか否かを判断する。流速が所定の範囲より遅い場合は,フィルタ35の目詰まりなどにより,ガスの供給が妨げられている可能性がある。また,流速が所定の範囲より速い場合は,例えば接続具15からホース3が外れているおそれや,ホース3やフィルタ35が破損しているおそれがある。従って,流速が所定の範囲内にない場合は,制御部6の命令によりステップ5を実施させ,警報を発生させ,作業者に知らせるようにすることが好ましい。   In the first gas supply step S4, the flow rate of the gas supplied to the gas supply path 3a is measured, and when the flow rate is not within a predetermined range, the gas supply may be stopped. For example, the control unit 6 detects the flow velocity of the gas in the main introduction path 50 from the measurement value of the integrated flow meter 64, and determines whether or not this flow velocity measurement value is within a predetermined range. When the flow rate is slower than the predetermined range, there is a possibility that gas supply is hindered by clogging of the filter 35 or the like. Further, when the flow velocity is faster than a predetermined range, for example, the hose 3 may be detached from the connector 15 or the hose 3 or the filter 35 may be damaged. Therefore, when the flow velocity is not within the predetermined range, it is preferable to execute step 5 by an instruction from the control unit 6 to generate an alarm and notify the operator.

ステップS6においては,圧力計10による圧力測定値を検出する前に,制御部6の命令により開閉弁47を開き,排出路46によってガス供給路3aからガスを排出させるようにしても良い。即ち,ガス供給路3aからガスを抜き,ガス供給路3a内の圧力を減圧させることで,容器2内の内圧をより正確に測定することができる。従って,次の追加積算供給量Qをより正確に測定し,容器2内を適切に加圧できる。 In step S6, before the pressure measurement value by the pressure gauge 10 is detected, the on-off valve 47 may be opened by a command from the control unit 6, and the gas may be discharged from the gas supply path 3a by the discharge path 46. That is, the internal pressure in the container 2 can be measured more accurately by extracting gas from the gas supply path 3a and reducing the pressure in the gas supply path 3a. Thus, by measuring the following additional cumulative supply quantity Q 2 more accurately, the container 2 can be suitably pressurized.

第二の後期ガス供給工程S21bにおいては,例えば制御部6において経過時間を検知,監視し,第二の後期ガス供給工程S21bを開始させてからの経過時間に応じて,第二の後期ガス供給工程S21bを中止させるようにしても良い。即ち,第二の後期ガス供給工程S21bが所定の経過時間内に終了しない場合は,例えばフィルタ35の目詰まりなどの異常が発生して,ガスの供給が妨げられている可能性がある。そのため,制御部6の命令によりステップ5を実施させ,ガスの供給を停止させ,警報を発生させ,作業者に知らせるようにすることが好ましい。   In the second late gas supply step S21b, for example, the controller 6 detects and monitors the elapsed time, and according to the elapsed time since the second late gas supply step S21b is started, the second late gas supply step S21b is performed. Step S21b may be stopped. In other words, if the second late gas supply step S21b does not end within a predetermined elapsed time, there is a possibility that an abnormality such as clogging of the filter 35 has occurred and the gas supply is hindered. For this reason, it is preferable to execute step 5 according to a command from the control unit 6, stop the gas supply, generate an alarm, and notify the operator.

以上の実施形態では,容器2に貯蔵される粉体は鉄粉であるとしたが,粉体はかかるものに限定されない。また,ガスは窒素ガスを例示したが,かかるものに限定されず,例えばアルゴンガス(Ar)などの不活性ガスであっても良い。   In the above embodiment, the powder stored in the container 2 is iron powder, but the powder is not limited to this. Moreover, although nitrogen gas illustrated the gas, it is not limited to this, For example, inert gas, such as argon gas (Ar), may be sufficient.

本発明者らは,容積V=4000[L](4[m])の容器2内を所定の内圧に加圧するために必要な窒素ガスの積算供給量Qを,気体の状態方程式を用いて試算した。なお,窒素ガスの気体定数は,R=0.082[L・atm/mol・K]とした。また,1mol=22.4[L]とした。 The inventors of the present invention have determined an integrated supply amount Q x of nitrogen gas necessary for pressurizing the inside of the container 2 having a volume V c = 4000 [L] (4 [m 3 ]) to a predetermined internal pressure, and a gas equation of state Was used for estimation. The gas constant of nitrogen gas was R = 0.082 [L · atm / mol · K]. Further, 1 mol = 22.4 [L] was set.

(試算1)
鉄粉が貯蔵されていない空の容器2において,ガスの温度T=273[K](0℃)であるとき,容器2内の内圧Pを,1[atm]から1.24[atm](0[MPa]から0.025[MPa](ゲージ圧))まで上昇させる場合について試算した。
加圧前の容器2内のガスのモル数nx1は,
x1=P/RT=178.68[mol]
加圧後の容器2内のガスのモル数nx2は,
x2=P/RT=221.57[mol]
従って,容器2内に供給しなければならない積算供給量Qは,
=nx2−nx1=42.89[mol]×22.4[L]
=960.74[L]
以上より,容器2内に960.74[L]のガスを供給すれば,内圧Pを1[atm]から1.24[atm]に加圧できることがわかる。
(Estimation 1)
In an empty container 2 in which iron powder is not stored, when the gas temperature T o = 273 [K] (0 ° C.), the internal pressure P c in the container 2 is changed from 1 [atm] to 1.24 [atm. ] (0 [MPa] to 0.025 [MPa] (gauge pressure)).
The number of moles n x1 of gas in the container 2 before pressurization is
n x1 = P c V c / RT o = 178.68 [mol]
Moles n x2 of the gas in the container 2 after pressing,
n x2 = P c V c / RT o = 221.57 [mol]
Therefore, the cumulative supply amount Q x that must be supplied into the container 2 is
Q x = n x2 −n x1 = 42.89 [mol] × 22.4 [L]
= 960.74 [L]
From the above, it can be seen that the internal pressure Pc can be increased from 1 [atm] to 1.24 [atm] by supplying 960.74 [L] gas into the container 2.

(試算2)
試算1と同様に,鉄粉が貯蔵されていない空の容器2において,ガスの温度T=313[K](40℃)であるときに,容器2内の内圧Pを,1[atm]から1.24[atm]まで上昇させる場合について試算すると,加圧前の容器2内のガスのモル数nx1=155.85[mol],加圧後のモル数nx2=193.25[mol]より,容器2内に供給しなければならない積算供給量Qは,837.76[L]である。
(Estimation 2)
As in the trial calculation 1, in the empty container 2 in which the iron powder is not stored, when the gas temperature T o = 313 [K] (40 ° C.), the internal pressure P c in the container 2 is set to 1 [atm ] To 1.24 [atm], the number of moles of gas in the container 2 before pressurization n x1 = 155.85 [mol], the number of moles after pressurization n x2 = 193.25 From [mol], the cumulative supply amount Q x that must be supplied into the container 2 is 837.76 [L].

(試算3)
鉄粉が最大貯蔵量の体積V=2500[L]だけ貯蔵されている容器2において,ガスの温度T=273[K]であるとき,容器2内の内圧Pを,1[atm]から1.24[atm]まで上昇させる場合について試算した。
加圧前の容器2内のガスのモル数nx1は,
x1=P(V−V)/RT=67.01[mol]
加圧後の容器2内のガスのモル数nx2は,
x2=P(V−V)/RT=83.09[mol]
従って,容器2内に供給しなければならない積算供給量Qは,
=nx2−nx1=16.08[mol]×22.4[L]
=360.19[L]
以上より,容器2内に360.19[L]のガスを供給すれば,内圧Pを1[atm]から1.24[atm]に加圧できることがわかる。
(Trial calculation 3)
In the container 2 in which the iron powder is stored for the maximum storage volume V p = 2500 [L], when the gas temperature T o = 273 [K], the internal pressure P c in the container 2 is set to 1 [atm ] To 1.24 [atm].
The number of moles n x1 of gas in the container 2 before pressurization is
n x1 = P c (V c -V p) / RT o = 67.01 [mol]
Moles n x2 of the gas in the container 2 after pressing,
n x2 = P c (V c -V p) / RT o = 83.09 [mol]
Therefore, the cumulative supply amount Q x that must be supplied into the container 2 is
Q x = n x2 -n x1 = 16.08 [mol] × 22.4 [L]
= 360.19 [L]
From the above, it can be seen that the internal pressure Pc can be increased from 1 [atm] to 1.24 [atm] by supplying 360.19 [L] gas into the container 2.

(試算4)
試算3と同様に,体積V=2500[L]の鉄粉が貯蔵されている容器2において,ガスの温度T=313[K]であるとき,容器2内の内圧Pを,1[atm]から1.24[atm]まで上昇させる場合について試算すると,加圧前の容器2内のガスのモル数nx1=58.44[mol],加圧後の容器2内のガスのモル数nx2=72.47[mol]より,容器2内に供給しなければならない積算供給量Qは,314.27[L]である。
(Estimation 4)
Similar to estimate 3, in volume V p = 2500 container 2 iron powder is stored in [L], when the temperature T o = 313 gas [K], the internal pressure P c in the container 2, 1 When calculating from the case of increasing from [atm] to 1.24 [atm], the number of moles of gas in the container 2 before pressurization n x1 = 58.44 [mol], From the number of moles n x2 = 72.47 [mol], the integrated supply amount Q x that must be supplied into the container 2 is 314.27 [L].

以上の試算1〜4より,容積が4000[L],鉄粉の最大貯蔵量が2500[L]の容器2においては,少なくとも約300[L](0.3[m])以上のガスを供給する必要があることがわかる。換言すれば,約300[L]程度までなら,比較的高い供給圧で供給しても,容器2が破損するおそれはなく,余裕を持って安全に供給できると考えられる。また,約300[L]程度のガスを供給した後,さらに追加するべき追加積算供給量を計算すれば,効率的であることが分かる。例えば,本実施形態の前期ガス供給工程S4における積算供給量Qは,約300[L]程度にすればよく,その後,追加積算供給量Qを計算して,後期ガス供給工程S21において追加供給すれば良いと考えられる。 From the above trial calculations 1 to 4, in the container 2 having a volume of 4000 [L] and a maximum storage amount of iron powder of 2500 [L], at least about 300 [L] (0.3 [m 3 ]) or more gas It turns out that it is necessary to supply. In other words, if it is up to about 300 [L], it can be considered that the container 2 is not damaged even if it is supplied at a relatively high supply pressure, and can be safely supplied with a margin. Further, it is understood that it is efficient if an additional integrated supply amount to be added is calculated after supplying about 300 [L] of gas. For example, the integrated supply amount Q1 in the first- stage gas supply step S4 of the present embodiment may be about 300 [L], and then the additional integrated supply amount Q2 is calculated and added in the second- stage gas supply step S21. It is thought that it should be supplied.

(実施例)
容器2の全容積Vは約4000[L],鉄粉の最大貯蔵量は約2500[L]とし,容器2内の内圧の目標値Pは約0.02[MPa]〜0.025[MPa](ゲージ圧)とする。前期ガス供給工程S4においては,積算供給量Qは約300[L]とし,ガスの供給圧は約0.5[MPa]とする。第一の後期ガス供給工程S21aにおいて,積算供給量Q2aは約0.8Q〜0.95Qとし,第一の供給圧PS1は約0.5[MPa]とする。第二の後期ガス供給工程S21bにおいては,積算供給量Q2bは約0.15Q〜0.2Qとし,第二の供給圧PS2は,約0.03[MPa]とする。これにより,容器2内を安全に加圧できる。
(Example)
The total volume V c of the container 2 to about 4000 [L], the maximum storage amount of the iron powder was about 2500 [L], the target value P c of the internal pressure in the container 2 to about 0.02 [MPa] to 0.025 [MPa] (gauge pressure). In year gas supply step S4, the integrated supply quantity Q 1 is set to about 300 [L], the supply pressure of the gas is about 0.5 [MPa]. In the first late gas supply step S21a, the integrated supply quantity Q 2a is about 0.8Q 2 ~0.95Q 2, the first supply pressure P S1 is about 0.5 [MPa]. In a second late gas supply step S21b, cumulative supply quantity Q 2b was approximately 0.15Q 2 ~0.2Q 2, the second supply pressure P S2 is approximately 0.03 [MPa]. Thereby, the inside of the container 2 can be safely pressurized.

本発明は,容器にガスを供給して所望の内圧に調節するためのガス供給用システム,及び,ガス供給方法に適用できる。   The present invention can be applied to a gas supply system and a gas supply method for supplying gas to a container and adjusting the internal pressure to a desired value.

本実施の形態にかかるガス供給用システムの構成を示した説明図である。It is explanatory drawing which showed the structure of the system for gas supply concerning this Embodiment. 接続筒体と接続具の構成を示した部分断面図である。It is the fragmentary sectional view which showed the structure of the connection cylinder and the connection tool. ガス供給方法のフロー図である。It is a flowchart of a gas supply method. ガス供給方法のフロー図である。It is a flowchart of a gas supply method. ガス供給方法のフロー図である。It is a flowchart of a gas supply method.

符号の説明Explanation of symbols

1 ガス供給用システム
2 容器
3a ガス供給路
5 供給圧調節機構
6 制御部
10 圧力計
50 主導入路
51 第一の流路
52 第二の流路
64 積算流量計
71,73 開閉弁
DESCRIPTION OF SYMBOLS 1 Gas supply system 2 Container 3a Gas supply path 5 Supply pressure adjustment mechanism 6 Control part 10 Pressure gauge 50 Main introduction path 51 1st flow path 52 2nd flow path 64 Integrated flowmeter 71,73 On-off valve

Claims (11)

粉体を貯蔵する容器にガスを供給するためのシステムであって,
前記容器内にガスを供給するガス供給路と,
前記ガス供給路によって前記容器内に供給されるガスの供給圧を切り換える供給圧調節機構と,
前記供給圧調節機構を制御する制御部とを備え,
前記制御部は,前記ガスを前記容器内に第一の供給圧で供給させた後,前記ガスの供給圧を前記第一の供給圧よりも低い第二の供給圧にして,前記容器内が所定の内圧になるまで,前記ガスを前記容器内に供給させる制御を行うことを特徴とする,容器へのガス供給用システム。
A system for supplying gas to a container for storing powder,
A gas supply path for supplying gas into the container;
A supply pressure adjusting mechanism for switching the supply pressure of the gas supplied into the container by the gas supply path;
A control unit for controlling the supply pressure adjusting mechanism,
The control unit supplies the gas into the container at a first supply pressure, and then sets the gas supply pressure to a second supply pressure lower than the first supply pressure, A system for supplying gas to a container, wherein control is performed to supply the gas into the container until a predetermined internal pressure is reached.
前記制御部は,前記容器内に供給したガスの積算供給量及び前記容器内の内圧より,前記容器内の全容積から前記容器内に貯蔵された粉体の体積を差し引いた空間容積を検知する機能と,前記空間容積の内圧を所定の値に加圧するために必要な追加積算供給量を計算する機能とを有することを特徴とする,請求項1に記載の容器へのガス供給用システム。 The control unit detects a spatial volume obtained by subtracting the volume of the powder stored in the container from the total volume in the container based on an integrated supply amount of the gas supplied into the container and an internal pressure in the container. The system for supplying gas to a container according to claim 1, comprising a function and a function of calculating an additional integrated supply amount required to pressurize the internal pressure of the space volume to a predetermined value. 前記供給圧調節機構は,前記ガスをガス供給源から加圧して供給する主導入路と,前記主導入路から前記ガス供給路に前記ガスを前記第一の供給圧で供給する第一の流路と,前記主導入路から前記ガス供給路に前記ガスを前記第二の供給圧で供給する第二の流路とを備え,
前記第一の流路には,前記第一の流路を連通及び遮断させる第一の開閉弁が設けられ,
前記第二の流路には,前記第二の流路を通過するガスの供給圧を前記第二の供給圧に減圧する圧力調整弁と,前記第二の流路を連通及び遮断させる第二の開閉弁とが設けられていることを特徴とする,請求項1又は2に記載の容器へのガス供給用システム。
The supply pressure adjusting mechanism includes a main introduction path that supplies the gas under pressure from a gas supply source, and a first flow that supplies the gas from the main introduction path to the gas supply path at the first supply pressure. And a second flow path for supplying the gas from the main introduction path to the gas supply path at the second supply pressure,
The first flow path is provided with a first on-off valve for communicating and blocking the first flow path,
The second flow path includes a pressure regulating valve that reduces the supply pressure of the gas passing through the second flow path to the second supply pressure, and a second flow path that connects and blocks the second flow path. The system for supplying gas to a container according to claim 1 or 2, wherein an on-off valve is provided.
前記ガス供給路に供給されるガスの積算流量を測定する積算流量計が設けられていることを特徴とする,請求項1〜3のいずれかに記載の容器へのガス供給用システム。 The system for supplying gas to a container according to any one of claims 1 to 3 , further comprising an integrated flow meter for measuring an integrated flow rate of gas supplied to the gas supply path. 前記容器内の内圧を測定する圧力計が設けられていることを特徴とする,請求項1〜4のいずれかに記載の容器へのガス供給用システム。 The system for supplying gas to a container according to any one of claims 1 to 4, further comprising a pressure gauge for measuring an internal pressure in the container. 粉体を貯蔵する容器にガスを供給する方法であって,
前記ガスを前記容器内に第一の供給圧で供給し,
その後,前記ガスの供給圧を前記第一の供給圧よりも低い第二の供給圧にして,前記ガスを前記容器内に供給し,前記容器内を所定の内圧にすることを特徴とする,容器へのガス供給方法。
A method of supplying gas to a container for storing powder,
Supplying the gas into the container at a first supply pressure;
Thereafter, the gas supply pressure is set to a second supply pressure lower than the first supply pressure, the gas is supplied into the container, and the inside of the container is set to a predetermined internal pressure, Gas supply method to the container.
前記ガスを前記第一の供給圧で供給する前に,前記ガスを前記容器内に供給し,
その後,前記容器内の内圧を測定し,
前記容器内に供給した積算供給量,及び,前記測定した内圧より,前記容器内の全容積から前記容器内に貯蔵された粉体の体積を差し引いた空間容積を計算し,
前記空間容積より,前記容器内を前記所定の内圧まで加圧するために必要な追加積算供給量を求め,
前記追加積算供給量のうち第一の積算供給量を,前記第一の供給圧で供給し,
前記追加積算供給量から前記第一の積算供給量を差し引いた第二の積算供給量を,前記第二の供給圧で供給することを特徴とする,請求項6に記載の容器へのガス供給方法。
Before supplying the gas at the first supply pressure, supplying the gas into the container;
Then measure the internal pressure in the container,
Calculate the volume of space obtained by subtracting the volume of the powder stored in the container from the total volume in the container from the integrated supply amount supplied into the container and the measured internal pressure.
From the space volume, an additional integrated supply amount required to pressurize the container to the predetermined internal pressure is obtained,
A first integrated supply amount of the additional integrated supply amount is supplied at the first supply pressure;
The gas supply to the container according to claim 6, wherein a second integrated supply amount obtained by subtracting the first integrated supply amount from the additional integrated supply amount is supplied at the second supply pressure. Method.
前記容器内の内圧を測定する前に,前記容器内にガスを供給するガス供給路からガスを排出し,前記ガス供給路内の圧力を減圧させることを特徴とする,請求項7に記載の容器へのガス供給方法。 8. The method according to claim 7, wherein before measuring the internal pressure in the container, the gas is discharged from a gas supply path that supplies gas into the container, and the pressure in the gas supply path is reduced. Gas supply method to the container. 前記容器内に供給されるガスの流速が所定の範囲内にない場合,前記容器内へのガスの供給を停止し,警報を発生させることを特徴とする,請求項6〜8のいずれかに記載の容器へのガス供給方法。 9. The apparatus according to claim 6, wherein when the flow rate of the gas supplied into the container is not within a predetermined range, the supply of the gas into the container is stopped and an alarm is generated. The gas supply method to the container of description. 前記第二の供給圧による供給が所定の経過時間内に終了しない場合,前記容器内へのガスの供給を停止し,警報を発生させることを特徴とする,請求項6〜9のいずれかに記載の容器へのガス供給方法。 The supply of the gas into the container is stopped and the alarm is generated when the supply by the second supply pressure does not end within a predetermined elapsed time. The gas supply method to the container of description. 前記第二の供給圧による供給が終了した後,前記容器内にガスを供給するガス供給路内の圧力が低下した場合,前記ガス供給路にガスを供給することを特徴とする,請求項6〜10のいずれかに記載の容器へのガス供給方法。 The gas is supplied to the gas supply path when the pressure in the gas supply path for supplying the gas into the container is lowered after the supply by the second supply pressure is completed. The gas supply method to the container in any one of -10.
JP2005310180A 2005-10-25 2005-10-25 Gas supply system to container and gas supply method to container Expired - Fee Related JP4779137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310180A JP4779137B2 (en) 2005-10-25 2005-10-25 Gas supply system to container and gas supply method to container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310180A JP4779137B2 (en) 2005-10-25 2005-10-25 Gas supply system to container and gas supply method to container

Publications (2)

Publication Number Publication Date
JP2007118956A JP2007118956A (en) 2007-05-17
JP4779137B2 true JP4779137B2 (en) 2011-09-28

Family

ID=38143223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310180A Expired - Fee Related JP4779137B2 (en) 2005-10-25 2005-10-25 Gas supply system to container and gas supply method to container

Country Status (1)

Country Link
JP (1) JP4779137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651785B2 (en) * 2015-10-16 2020-02-19 三菱瓦斯化学株式会社 Granular material storage method, granular material storage and transport container, and extrusion molding method using them

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364817A (en) * 1976-11-22 1978-06-09 Idemitsu Kosan Co System for sealing tanks at low pressure
JPS6311396U (en) * 1986-07-04 1988-01-25
JP4751014B2 (en) * 2003-09-26 2011-08-17 トキコテクノ株式会社 Gas filling device

Also Published As

Publication number Publication date
JP2007118956A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US9759381B2 (en) Method and device for filling a tank with liquefied gas
EP1806530B1 (en) Diagnostic method and apparatus for a pressurized gas supply system
JP2007024152A (en) Gas supply device
TWI460570B (en) Gas flow monitoring system
EP2635381B1 (en) Pneumatic liquid dispensing apparatus and method
US11754227B2 (en) Gas charging device
JP6122722B2 (en) Gas supply device
JP2017504389A (en) Automatic detection and adjustment of pressure pod diaphragm
EP3991855B1 (en) Glue dispensing control apparatus and glue outlet control method therefor
WO2008039314A3 (en) Pump system for negative pressure wound therapy
JP2017053459A (en) Gas filling method
US9765931B2 (en) Method and device for filling a tank with liquefied gas
JP5107007B2 (en) Valve open / close counting method in automatic liquid supply device
JP5387846B2 (en) Gas station and gas filling system
JP2004280688A (en) Massflow controller
JP4779137B2 (en) Gas supply system to container and gas supply method to container
JP6645796B2 (en) Gas filling equipment
JP2017180748A (en) Fuel gas filling device
JP6826616B2 (en) High-pressure container system and fuel cell vehicle
JP2004225620A (en) Liquid discharging device
JP2008281108A (en) Gas supply device
JP6429085B2 (en) Gas supply device
JPH10103595A (en) Gas feeder
US20180236286A1 (en) System and method for testing a fire suppression system
JP4688539B2 (en) Gas supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees