JP4049774B2 - 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法 - Google Patents

多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法 Download PDF

Info

Publication number
JP4049774B2
JP4049774B2 JP2004367846A JP2004367846A JP4049774B2 JP 4049774 B2 JP4049774 B2 JP 4049774B2 JP 2004367846 A JP2004367846 A JP 2004367846A JP 2004367846 A JP2004367846 A JP 2004367846A JP 4049774 B2 JP4049774 B2 JP 4049774B2
Authority
JP
Japan
Prior art keywords
nanostructure
porous
porous member
air cleaning
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004367846A
Other languages
English (en)
Other versions
JP2006167695A (ja
Inventor
幹宏 山中
圭太 原
淳 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004367846A priority Critical patent/JP4049774B2/ja
Priority to US11/258,065 priority patent/US7927567B2/en
Publication of JP2006167695A publication Critical patent/JP2006167695A/ja
Application granted granted Critical
Publication of JP4049774B2 publication Critical patent/JP4049774B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法に関し、特に有害物質を効率的に除去することができる多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法に関する。
近年では、工場やクリーンルームなどで工業的に発生する悪臭、汚染物質または有害化学物質などによる従来からの環境汚染の問題に加えて、最近のアメニティ志向の高まりに伴い、一般生活空間、たとえば室内や自動車内などにおける悪臭、有害化学物質、花粉、浮遊塵または浮遊細菌などの有害物質による室内環境汚染の問題が注目されており、これらの有害物質の除去に対するニーズが急速に高まっている。その代表的な理由としては、化学物質過敏症にかかる人口が年々増加しており、現時点では10人に1人の割合となっていることが挙げられる。
環境中の悪臭や有害化学物質などの有害物質の除去方法としては、活性炭やゼオライトなどの多孔性物質からなる吸着剤による吸着除去が一般的である。しかしながら、従来の活性炭は、比表面積が100〜数100m2/g程度と小さいため、一定量の有害物質を吸着すると除去性能が著しく低下する、あるいは、周囲の温度や有害物質の濃度如何では一度吸着した有害物質が離脱してしまうという問題があった。そのため、繊維状にして比表面積を増加した活性炭(一般的に比表面積が1500〜1700m2/g)が開発されている(たとえば、特許文献1および特許文献2参照)。
特開2002−212838号公報 特開2001−164430号公報 特開2004−148305号公報
繊維状の活性炭を吸着剤として有害化学物質の除去に用いる場合、従来の活性炭に比べて吸着速度は改善されているものの、化学物質過敏症が問題となるppbオーダでの有害化学物質濃度領域では、その除去能力は満足できるものではなかった。すなわち、1000m2/gを超える比表面積のうち、単位質量当たりに吸着することができるホルムアルデヒドの質量は数mg以下であることから、有害化学物質の吸着に利用することができる面積は非常に小さい。また吸着速度も、吸着剤1g当たり有害化学物質を毎分0.2〜0.001mg程度しか捕集できず、この時の有害化学物質の濃度は数10〜数ppmまでしか低下しない。
また、繊維状の活性炭の寿命は一年以下と著しく短いため、頻繁な取替えが必要であった。また、繊維状の活性炭は再生することができず、さらにコストも高いという問題があった。
また、吸着剤の比表面積の増加により、有害化学物質などの有害物質の吸着性能の向上に繋がることが期待されるが、比表面積が2500m2/gを超えた場合には吸着剤自体の強度が低下してしまい、吸着剤自体からダストなどの有害物質が発生することが問題となってくる。また、吸着剤をフィルタとして用いた空気清浄装置などにおいては、吸着剤の比表面積の増加は圧力損失を招くため、空気清浄装置の消費電力の上昇や空気清浄装置から発生する騒音の増大という新たな問題も生じてくる。
また、活性炭の数nm程度の細孔を化学修飾することは、その注入圧力を考慮すると非常に困難であり、たとえば、水銀細孔計での測定では、細孔直径が20nmの場合には水銀の注入圧力は700atm程度必要となり、さらに細孔直径が4nmの場合には水銀の注入圧力は3500atm程度必要となる。したがって、これだけの高い注入圧力が必要となるので、基材である活性炭の機械的強度は高くなくてはならず、ここからも比表面積を大きくすることへの課題が生じている。
一方、特許文献3に示されているように、酸化チタンのような光触媒を利用した有害物質の除去という手段も利用可能ではある。しかしながら、光触媒によって有害物質を分解して除去することができるのは、光触媒の極表面近傍の反応に限られるため、有害物質を除去できる部位が非常に少ない。また、光触媒表面で有害物質を分解した場合にはその分解により生成した有機物が光触媒表面を覆ってしまう被毒現象が生じる。また、光触媒表面に塵や埃が付着した場合に触媒活性が起こらないといった問題や触媒活性を発生させるための光源が別途必要になり装置上の制約が生じるといった問題もある。
本発明の目的は、有害物質を効率的に除去することができる多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法を提供することにある。
本発明は、複数の孔を有する多孔質部材と、多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、ナノ構造体は多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子を保持しながら成長して形成されたものであることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解する空気清浄方法である。また、本発明は、複数の孔を有する多孔質部材と、多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、ナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子が付着していることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解する空気清浄方法である。
ここで、本発明の空気清浄方法において、触媒粒子は、Fe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdおよびDyからなる群から選択された少なくとも1種の金属からなり得る。
また、本発明の空気清浄方法において、多孔質部材は200℃以上の耐熱性を有し得る。
また、本発明は、多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を成長させる工程と、過熱水蒸気を含む分散ガス中に触媒粒子を含有させる工程と、触媒粒子を含有した分散ガスをナノ構造体の表面に吹き付けてナノ構造体の表面に触媒粒子を付着させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解する空気清浄方法である。ここで、ナノ構造体を成長させる工程は、ナノ構造体を生成するための生成触媒を多孔質部材の表面の少なくとも一部にコーティングする工程と、生成触媒をナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながらナノ構造体を成長させる工程とを含んでいてもよい。また、本発明は、多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を生成するための生成触媒をコーティングする工程と、生成触媒をナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながらナノ構造体を成長させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解する空気清浄方法である。
さらに、本発明空気清浄方法においては、過熱水蒸気を含む雰囲気にエタノールを含有するドライエアを導入してもよい。
また、本発明は、複数の孔を有する多孔質部材と、多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、ナノ構造体は多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子を保持しながら成長して形成されたものであることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で多孔質フィルタに吸着された有害物質を分解する空気清浄方法である。また、本発明は、複数の孔を有する多孔質部材と、多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、ナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子が付着していることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で多孔質フィルタに吸着された有害物質を分解する空気清浄方法である。ここで、本発明の空気清浄方法において、触媒粒子は、Fe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdおよびDyからなる群から選択された少なくとも1種の金属からなり得る。また、本発明の空気清浄方法において、多孔質部材は200℃以上の耐熱性を有し得る。また、本発明は、多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を成長させる工程と、過熱水蒸気を含む分散ガス中に触媒粒子を含有させる工程と、触媒粒子を含有した分散ガスをナノ構造体の表面に吹き付けてナノ構造体の表面に触媒粒子を付着させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で多孔質フィルタに吸着された有害物質を分解する空気清浄方法である。ここで、ナノ構造体を成長させる工程は、ナノ構造体を生成するための生成触媒を多孔質部材の表面の少なくとも一部にコーティングする工程と、生成触媒をナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながらナノ構造体を成長させる工程とを含んでいてもよい。また、本発明は、多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を生成するための生成触媒をコーティングする工程と、生成触媒をナノ構造体の多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながらナノ構造体を成長させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で多孔質フィルタに吸着された有害物質を分解する空気清浄方法である。ここで、過熱水蒸気を含む雰囲気にアルコール類および酸素の少なくとも一方が含まれていてもよい。また、過熱水蒸気およびエタノールを含む雰囲気下で多孔質フィルタに吸着された有害物質を分解してもよい。
本発明によれば、有害物質を効率的に除去することができる多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法を提供することができる。
以下、本発明の実施の形態について説明する。なお、本願の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
図1に、本発明の多孔質フィルタの好ましい一例の模式的な斜視透視図を示す。この多孔質フィルタは、複数の孔3aを有する多孔質部材3と、その多孔質部材3を貫通する孔3aの内部に形成されている繊維状のナノ構造体1と、ナノ構造体1の表面に付着するとともにナノ構造体1の先端に保持されている触媒粒子2とを含む。
ここで、ナノ構造体1は内部が中空であってもよく、中空でなくてもよい。また、ナノ構造体1を構成する材料としては、たとえば内部が中空であるカーボンナノチューブ、内部が中空でないカーボンファイバー若しくはカーボンナノワイヤ(カーボンファイバーよりも微細な繊維状のもの)などの炭素系材料、Au、Ag若しくはNiなどの金属系材料、TiO2またはSiなどの材料を用いることができる。また、本発明において、ナノ構造体は、幅、長さまたは直径などの少なくとも1つの寸法が1nm以上1000nm未満である構造体のことをいう。なお、図1においては、ナノ構造体1は孔3aの内面のみから形成されているが、孔3aの内面だけでなく多孔質部材3の外面から形成されていてもよい。
多孔質部材3を構成する材料としては、たとえばAl23、TiO2、ZrO2、Nb25、SnO2、HfO2若しくはAlPO4などの金属酸化物系材料、SiO2・Al23、SiO2・TiO2、SiO2・V25、SiO2・B23若しくはSiO2・Fe23などのシリケート系材料、Pt、Ag若しくはAuなどからなる金属系材料、Siなどからなる半導体系材料、活性炭若しくは有機高分子などからなる炭素系材料、珪藻土若しくはホタテ貝殻などの生体由来系材料またはSiO2などを用いることができる。ここで、多孔質部材3の表面にナノ構造体1を形成する際には多孔質部材3の温度が200℃以上に加熱されることが多いため、多孔質部材3は200℃以上の耐熱性を有していることが好ましい。なお、本発明において「200℃以上の耐熱性を有している」とは、1気圧下で多孔質部材3の温度が200℃以上になるように多孔質部材3を加熱したときに多孔質部材3の形状が変形しないことをいう。また、多孔質部材3の形状は特に限定されず、多孔質部材3の形状としてはたとえばハニカム状などが挙げられる。
また、多孔質部材3を貫通する孔3aの開口部の口径は多孔質部材3を構成する材料によって異なるが、多孔質部材3がたとえば粒径2μm〜500μm程度の珪藻土からなる場合にはたとえば0.1μm〜100μm程度になり得る。
また、触媒粒子2を構成する材料としては、ナノ構造体1が上記の炭素系材料からなる場合にはたとえばFe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdまたはDyなどの金属を用いることができる。なお、触媒粒子2の直径は繊維状のナノ構造体1の直径を制御する傾向にあり、触媒粒子2の直径が小さいほど直径の小さい繊維状のナノ構造体1をプラズマCVD法などの気相成長法によって形成することができる傾向にある。なお、図1においては、ナノ構造体1の先端に保持されている触媒粒子2のみが記載されているが、触媒粒子2はナノ構造体1の先端以外の表面および多孔質部材3の表面(孔3aの内面を含む)にも付着していてもよい。
このような本発明の多孔質フィルタの一方の表面に対して、図1に示す矢印の方向に有害物質4が流入する。ここで、有害物質4は気体または液体に含有されている。このような有害物質4は、多孔質フィルタの孔3aの内面に形成されているナノ構造体1に吸着されて除去される。そして、有害物質4が除去されて清浄された気体または液体が流入した側と反対側の多孔質フィルタの表面から流出する。なお、有害物質4としては、たとえばホルムアルデヒドなどのアルデヒド類、トルエンやキシレンなどのVOC(Volatile Organic Compound;揮発性有機化合物)、一酸化炭素、二酸化炭素、酢酸、アンモニアまたは硫黄含有物質などが挙げられる。
このような本発明の多孔質フィルタによる有害物質4の除去は効率的であると考えられる。
すなわち、従来から用いられている活性炭はその内部に形成された微細な細孔内に分子を取り込む必要があるため、たとえば有害物質を含む気体がある一定の速度で循環された場合には、流速を持つ気体または液体と単位時間当たりで接触して反応を起こす表面積は限りなく小さい。これに対し、本発明の多孔質フィルタに形成されているナノ構造体の表面は、有害物質を含む気体または液体と直接接触可能な領域がほとんどであるため、有害物質とより多く接触でき、その吸着速度も著しく速くなる。
さらに、本発明の多孔質フィルタに形成されているナノ構造体は、活性炭の細孔のように気体または液体の流路を遮る形状に形成されていないため、本発明の多孔質フィルタを空気清浄装置などのデバイスに用いた場合には圧力損失が大きく低下する。
また、本発明の多孔質フィルタに形成されているナノ構造体はそれ自体強固であり、多孔質部材とも強固に結合しているため、比表面積を大きくした活性炭のように強度が問題とならず、多孔質フィルタ自身の破壊によるダストの発生などの二次汚染も発生しにくい。
このような本発明の多孔質フィルタはたとえば以下のようにして作製される。まず、図2に示すように、触媒粒子を含む液状の試薬11を容器5内に収容し、さらに多孔質部材3をこの容器5内に収容する。そして、これらを容器5内で攪拌することにより、多孔質部材3の外面および孔3aの内面に触媒粒子がコーティングされる。
ここで、たとえば超音波などを用いて多孔質部材3と試薬11とを容器5内で攪拌することによって、多孔質部材3の外面だけでなく孔3aの内面にも触媒粒子をコーティングすることが可能になる。また、触媒粒子を過熱水蒸気中に分散させた後に多孔質部材3に吹き付けることによって、多孔質部材3の外面および孔3aの内面に均一に触媒粒子をコーティングすることもできる。ここで、本発明において過熱水蒸気とは1気圧下において100℃よりも高い温度を有する水蒸気のことである。この過熱水蒸気はたとえば気化した水分子を1気圧の下で熱源により100℃よりも高い温度に過熱することによって生成することができる。なお、触媒粒子のコーティング方法としては、たとえば真空蒸着法、電子ビーム蒸着法または無電解メッキ法などを用いることができるが、簡便的には上記の攪拌による方法を用いることが好ましい。
また、多孔質部材3を試薬11を収容している容器5内に浸漬させる前に多孔質部材3を紫外線にて洗浄し、多孔質部材3の表面に付着している不純物を除去する工程を含んでいてもよい。この場合、紫外線の光源としてたとえばXe2誘電体バリア放電エキシマランプ装置を用い、中心波長146nmの紫外光を放射照度10mW/cm2で1時間程度照射することが好ましい。
次に、上記のようにして触媒粒子がコーティングされた多孔質部材3をたとえばプラズマCVD装置内に設置し、ナノ構造体の原料となるガスをこの装置内に流入し、装置内に流入したガスのプラズマを生成させることによって図1に示すナノ構造体1を成長させる。また、上記したプラズマCVD法だけでなく熱CVD法などによってもナノ構造体1の形成は可能である。このようにして形成されるナノ構造体1は触媒粒子をその先端に保持して成長する傾向にある。
続いて、図3の模式的斜視透視図に示すように、過熱水蒸気噴射装置6から過熱水蒸気7を放出して触媒粒子を含む液状の試薬11に対して過熱水蒸気7を吹き付けることによって過熱水蒸気7を含む分散ガス中に触媒粒子を含有させる。そして、触媒粒子を含有した分散ガスが上記のナノ構造体1が成長した多孔質部材3の表面に吹き付けられて、ナノ構造体1の表面に分散ガス中の触媒粒子が付着する。これにより、本発明の多孔質フィルタが形成される。ここで、本発明においては、過熱水蒸気を含む分散ガスを用いることに限定されるわけではないが、高い熱エネルギにより触媒粒子を含む液状の試薬の液体成分を熱的に除去することができる観点からは過熱水蒸気を用いることが好ましい。また、試薬11に含まれる触媒粒子としては、たとえばFe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdまたはDyなどの上記のコーティングに用いられたものと同様の金属などを用いることができる。
図4に、本発明の空気清浄装置の好ましい一例の模式的な斜視透視図を示す。ここで、この空気清浄装置は、反応槽13と、過熱水蒸気噴射装置6と、分解促進ガス導入口8と、外気導入口9と、本発明の多孔質フィルタ14と、攪拌器10と、を含んでいる。そして、外気導入口9から反応槽13内に流入した有害物質4は多孔質フィルタ14中のナノ構造体1に高効率で吸着される。しかしながら、時間の経過とともに有害物質4の吸着量および吸着速度がともに飽和してしまう。そこで、過熱水蒸気噴射装置6から過熱水蒸気7を噴射し、この過熱水蒸気7に対して分解促進ガス導入口8から分解促進ガス12を導入して過熱水蒸気7と分解促進ガス12とを含む分解ガスを生成し、この分解ガスを多孔質フィルタ14の表面に吹き付けることによって、多孔質フィルタ14中のナノ構造体1に吸着されている有害物質4を分解して除去することができる。そして、有害物質4の分解物は攪拌器10によって攪拌された後に空気清浄装置の外部(図4に示す矢印の方向)に排出される。
なお、図4に示す空気清浄装置においては、分解促進ガスを用いることなく過熱水蒸気の熱エネルギのみによってナノ構造体に吸着された有害物質を分解することもできるが、空気清浄装置の温度がかなり高温になってしまうと考えられるため、より低温で有害物質を分解する観点から分解促進ガスを用いることが好ましい。ここで、分解促進ガスとしては、たとえばエタノールなどのアルコール類または酸素などを用いることができる。また、図4に示す空気清浄装置における外気導入口9には防塵用のHEPAフィルタなどを備えさせることができる。
(実施例1)
多孔質部材としてアルミニウム膜を酸溶液中で陽極酸化することにより作製された多孔質アルミナ(Whatman社製の「ANODISK47」)を用いた。この多孔質部材は直径43mm、厚さ60μmであって、多孔質部材を貫通する複数の孔の開口部の平均の口径は0.2μm程度であった。
まず、Xe2誘電体バリア放電エキシマランプ装置を用い、中心波長146nmの紫外線を放射照度10mW/cm2でこの多孔質部材の表面に1時間照射して多孔質部材の表面の汚染物質を除去した。
次に、容器内に収容されたアセトン溶媒中に粒径が10nm程度の複数のNi粒子を含むNiペースト(日本ペイント株式会社製)および紫外線照射後の多孔質部材を収容し、その後容器内に超音波を印加することによってこれらを攪拌した。
そして、攪拌後の多孔質部材を取り出し、これを真空チャンバ(マイクロ波プラズマCVD;MPCVD装置内)に移動し、真空チャンバ内の圧力が1×10-5Paになるまで真空ポンプを使って排気した後に600℃で30分間多孔質部材の熱処理を行なった。ここで、別途に行なわれた上記と同一の実験から、上記熱処理後の断面を透過型電子顕微鏡(TEM)により確認したところ、Ni粒子が多孔質部材の表面を50nmの厚みでほぼ均一にコーティングされていることがわかった。
次いで、Ni粒子がコーティングされた多孔質部材の表面にナノ構造体を成長させるプロセスを実施した。ここで、MPCVD装置内に設置された基板の温度は600℃に維持され、真空チャンバ内の圧力が15Torr程度になるように圧力コントロールバルブにて調整しながら、マスフローコントローラを通じて真空チャンバ内にH2ガスを80sccm導入し、次に2.45GHzのマイクロ波(350W)を導入することによってH2ガスをプラズマ化し、5分程度、基板上に設置された多孔質部材の表面をクリーニングした。
続いて、真空チャンバ内にH2ガスを80sccmおよびCH4ガスを20sccm導入し、さらに2.45GHzのマイクロ波(500W)を導入した。これにより、H2ガスおよびCH4ガスからなる原料ガスをプラズマ化して、基板上の多孔質部材をプラズマに10分間曝した。この際、多孔質部材が設置された基板に対して、−100Vのバイアス電圧をかけた。これにより、多孔質部材の外面全体および多孔質部材に形成されている複数の孔の内部から先端にNi粒子を備えた炭素からなる繊維状のナノ構造体が複数成長した。成長したナノ構造体のそれぞれの直径は10〜30nmであって、長さは1〜50μmであった。また、ナノ構造体は、内部が中空でないカーボンファイバーと内部が中空であるカーボンナノチューブとがほぼ1:1の割合で混在して構成されていた。このナノ構造体の様子についてはTEMや走査型電子顕微鏡(SEM)を用いて確認した。この時に用いたNi粒子の量は5mgで、得られたナノ構造体は1.5mgであった。なお、Niペースト中に含まれるNi粒子の量と、成長するナノ構造体の数には相関がある。したがって、成長させるナノ構造体の数を増やして吸着剤の収率を増加するためにはNi粒子の量を増やすことが好ましい。
上記のようにして得られたナノ構造体を有する多孔質部材を過熱水蒸気発生機構を備えたチャンバ内に設置した。ここで、過熱水蒸気発生機構は、小型ボイラで飽和水を飽和水蒸気として生成後、誘電加熱により加熱された金属管の内部にこの飽和水蒸気を通過させて過熱することにより500℃の過熱水蒸気を生成するものであった。このような過熱水蒸気発生機構により生成された500℃の過熱水蒸気を過熱水蒸気噴射装置から2kg/cm2の圧力で噴射させ、上記のNiペースト(日本ペイント株式会社製)を含有したアセトン溶媒をこの過熱水蒸気に導入した後に上記のナノ構造体を有する多孔質部材の表面に10秒間吹き付けて多孔質フィルタを作製した。この多孔質フィルタのナノ構造体の表面をTEMおよびSEMで観察したところ、ナノ構造体の表面にNi粒子が膜状に付着していた。
なお、過熱水蒸気噴射装置における500℃の過熱水蒸気の噴射圧力(噴射時の圧力)をそれぞれ0.1kg/cm2、0.5kg/cm2、1kg/cm2、2kg/cm2、5kg/cm2および10kg/cm2にそれぞれ設定したときにナノ構造体の表面に付着するNi粒子の付着状態をTEMおよびSEMで観察した結果を表1に示す。
Figure 0004049774
表1に示すように、過熱水蒸気噴射装置における過熱水蒸気の噴射圧力が1kg/cm2および2kg/cm2であるときにナノ構造体の表面にNi粒子が膜状に付着する点で好ましいことがわかった。なお、表1において、Ni粒子の付着状態が「凝集」とはNi粒子が1010個/cm2〜10010個/cm2の割合で付着しておりNi粒子の付着量が多すぎてNi粒子が膜状に付着せずに表面の凹凸が大きい粒状に付着している状態のことをいう。また、表1において、Ni粒子の付着状態が「やや疎」とはNi粒子が1個/cm2〜510個/cm2の割合で付着しておりNi粒子の付着量が少ないためNi粒子が膜状に付着していない状態のことをいう。表1において、Ni粒子の付着状態が「疎」とはNi粒子が1個/cm2未満の割合で付着しておりNi粒子の付着量が少なすぎるためNi粒子が膜状に付着していない状態のことをいう。
(実施例2)
図4に示す本発明の空気清浄装置を用いてホルムアルデヒドを含む空気の清浄を行なった。まず、図4に示すように、過熱水蒸気噴射装置6、分解促進ガス導入口8、外気導入口9および攪拌器10を備えたステンレス製の反応槽13の内部に実施例1で得られた多孔質フィルタ14を設置して空気清浄装置を形成した。
そして、ホルムアルデヒドを0.155ppm含んだドライエアを外気導入口9から反応槽13の内部に1cc/minの流速で導入し、多孔質フィルタ14を通した後の気体を10分間捕集管に捕集した。このとき、過熱水蒸気噴射装置6から過熱水蒸気を噴出せず、分解促進ガス導入口8からも分解促進ガスを導入しなかった。この捕集された気体中のホルムアルデヒドの濃度をDNPH誘導体固相吸着/溶媒抽出−高速液体クロマトグラフィ法により算出した。この方法は、DNPHシリカゲルカラムに上記の捕集された気体を通してそのカラムにホルムアルデヒドを固定し、それをアセトニトリル溶剤により溶出して得られた溶液について高速液体クロマトグラフィを用いて溶液中のホルムアルデヒド量の分析を行なう方法である。この方法を用いて捕集された気体中のホルムアルデヒドの濃度を算出した結果0.08ppmであった。すなわち、1.5mgのナノ構造体が90μgのホルムアルデヒドを吸着したこととなり、ナノ構造体1g当たりに換算するとホルムアルデヒド60mg/gの吸着が可能であった。また、ホルムアルデヒドの吸着速度は毎分6mg/g程度となり、活性炭を用いた吸着剤に比べて吸着効率の飛躍的な改善が認められた。
また、別途圧力損失を評価するために、図4に示す反応槽13の内部にドライエアを1m/秒の流速で導入し、入口と出口での圧力差を測定したところ、その圧力差は3Pa程度であった。この圧力差も同一条件で測定した繊維状の活性炭が示す50Paという圧力差を大きく低減していた。
続いて、過熱水蒸気噴射装置6から300℃の過熱水蒸気7を噴射し、分解促進ガス12としてエタノールを0.1ppm含有したドライエアを反応槽13の内部に導入した後、ホルムアルデヒドを0.155ppm含んだドライエアを外気導入口9から反応槽13の内部に1cc/minの流速で導入して、多孔質フィルタ14を通した後の気体を10分間捕集管に捕集した。この捕集された気体中のホルムアルデヒドの濃度を上記のDNPH誘導体固相吸着/溶媒抽出−高速液体クロマトグラフィ法により測定したところ高速液体クロマトグラフィの検出限界以下であった。このことから、ナノ構造体1に付着した触媒粒子、過熱水蒸気7および分解促進ガス12の存在下でホルムアルデヒドは二酸化炭素と水とに分解したと考えられる。
(実施例3)
直径43mm、厚さ60μmである多孔質アルミナを貫通する複数の孔の開口部の平均の口径が200nmの多孔質部材の表面に2kg/cm2の噴射圧力で過熱水蒸気を含む分散ガスを10秒間噴射した。ここで、分散ガスは、上記の過熱水蒸気中に粒径が3nm程度の複数のPt粒子(日本ペイント株式会社製)を含有するトルエン溶媒を20ml導入してPt粒子を分散させたものであった。このように処理された多孔質部材を試料Aとした。
また、同じく直径43mm、厚さ60μmである多孔質アルミナを貫通する複数の孔の開口部の平均の口径が200nmの多孔質部材の孔の内面に炭素からなる繊維状のナノ構造体を1011個/cm2の割合で成長させた多孔質部材の表面に上記と同一の組成の分散ガスを上記と同一の条件で噴射した。このようにして作製された多孔質フィルタを試料Bとした。ここで、試料Bのナノ構造体のそれぞれの直径は10〜30nmであって、長さは1〜50μmであった。
そして、試料Aと試料Bとをそれぞれ1m3の容量の評価チャンバ内に設置されたステンレス製のハウジングにセットした。そして、この評価チャンバ内に300℃の過熱水蒸気を導入するとともに、有害物質としてトルエンを含むドライエアを1cc/minの流速で導入し、評価チャンバの出口側で1分間捕集管に気体を捕集した。この捕集された気体中のトルエンの濃度を固相吸着/加熱脱着法とガスクロマトグラフ/質量分析法との組み合わせによる公知の測定方法を用いて算出した。その結果を表2に示す。
Figure 0004049774
表2に示すように多孔質アルミナを貫通する孔の内面にナノ構造体を形成し、さらにそのナノ構造体の表面に触媒粒子としてPt粒子を付着した試料Bは、ナノ構造体が形成されていない試料Aと比べてトルエンの除去効果が高いことが確認された。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の多孔質フィルタの好ましい一例の模式的な斜視透視図である。 本発明において多孔質部材の表面に触媒粒子をコーティングする方法を図解する模式的な斜視透視図である。 本発明においてナノ構造体の表面に触媒粒子をコーティングする方法を図解する模式的な斜視透視図である。 本発明の空気清浄装置の好ましい一例の模式的な斜視透視図である。
符号の説明
1 ナノ構造体、2 触媒粒子、3 多孔質部材、3a 孔、4 有害物質、5 容器、6 過熱水蒸気噴射装置、7 過熱水蒸気、8 分解促進ガス導入口、9 外気導入口、10 攪拌器、11 試薬、12 分解促進ガス、13 反応槽、14 多孔質フィルタ。

Claims (17)

  1. 複数の孔を有する多孔質部材と、前記多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、前記ナノ構造体は前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子を保持しながら成長して形成されたものであることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解することを特徴とする、空気清浄方法。
  2. 複数の孔を有する多孔質部材と、前記多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子が付着していることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解することを特徴とする、空気清浄方法。
  3. 前記触媒粒子は、Fe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdおよびDyからなる群から選択された少なくとも1種の金属からなることを特徴とする、請求項1または2に記載の空気清浄方法。
  4. 前記多孔質部材は200℃以上の耐熱性を有することを特徴とする、請求項1から3のいずれかに記載の空気清浄方法。
  5. 多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を成長させる工程と、過熱水蒸気を含む分散ガス中に触媒粒子を含有させる工程と、前記触媒粒子を含有した分散ガスを前記ナノ構造体の表面に吹き付けて前記ナノ構造体の表面に前記触媒粒子を付着させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解することを特徴とする、空気清浄方法。
  6. 前記ナノ構造体を成長させる工程は、前記ナノ構造体を生成するための生成触媒を前記多孔質部材の表面の少なくとも一部にコーティングする工程と、前記生成触媒を前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながら前記ナノ構造体を成長させる工程と、を含む、請求項5に記載の空気清浄方法
  7. 多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を生成するための生成触媒をコーティングする工程と、前記生成触媒を前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながら前記ナノ構造体を成長させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解することを特徴とする、空気清浄方法。
  8. 前記過熱水蒸気を含む雰囲気にエタノールを含有するドライエアを導入することを特徴とする、請求項1から7のいずれかに記載の空気清浄方法。
  9. 複数の孔を有する多孔質部材と、前記多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、前記ナノ構造体は前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子を保持しながら成長して形成されたものであることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で前記多孔質フィルタに吸着された有害物質を分解することを特徴とする、空気清浄方法。
  10. 複数の孔を有する多孔質部材と、前記多孔質部材の表面の少なくとも一部に形成されたカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体と、を含み、前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に触媒粒子が付着していることを特徴とする多孔質フィルタが、過熱水蒸気を含む雰囲気下で前記多孔質フィルタに吸着された有害物質を分解することを特徴とする、空気清浄方法。
  11. 前記触媒粒子は、Fe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdおよびDyからなる群から選択された少なくとも1種の金属からなることを特徴とする、請求項9または10に記載の空気清浄方法。
  12. 前記多孔質部材は200℃以上の耐熱性を有することを特徴とする、請求項9から11のいずれかに記載の空気清浄方法。
  13. 多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を成長させる工程と、過熱水蒸気を含む分散ガス中に触媒粒子を含有させる工程と、前記触媒粒子を含有した分散ガスを前記ナノ構造体の表面に吹き付けて前記ナノ構造体の表面に前記触媒粒子を付着させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で前記多孔質フィルタに吸着された有害物質を分解することを特徴とする、空気清浄方法。
  14. 前記ナノ構造体を成長させる工程は、前記ナノ構造体を生成するための生成触媒を前記多孔質部材の表面の少なくとも一部にコーティングする工程と、前記生成触媒を前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながら前記ナノ構造体を成長させる工程と、を含む、請求項13に記載の空気清浄方法
  15. 多孔質部材の表面の少なくとも一部にカーボンナノチューブ、カーボンナノワイヤおよびカーボンファイバーからなる群から選択された少なくとも1種からなるナノ構造体を生成するための生成触媒をコーティングする工程と、前記生成触媒を前記ナノ構造体の前記多孔質部材側とは反対側の先端および外表面の少なくとも一方に保持させながら前記ナノ構造体を成長させる工程と、を含む多孔質フィルタの製造方法により製造された多孔質フィルタが、過熱水蒸気を含む雰囲気下で有害物質を分解することを特徴とする、空気清浄方法。
  16. 前記過熱水蒸気を含む雰囲気にはアルコール類および酸素の少なくとも一方が含まれることを特徴とする、請求項9から15のいずれかに記載の空気清浄方法。
  17. 前記過熱水蒸気およびエタノールを含む雰囲気下で前記多孔質フィルタに吸着された有害物質を分解することを特徴とする、請求項9から16のいずれかに記載の空気清浄方法。
JP2004367846A 2004-12-20 2004-12-20 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法 Expired - Fee Related JP4049774B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004367846A JP4049774B2 (ja) 2004-12-20 2004-12-20 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法
US11/258,065 US7927567B2 (en) 2004-12-20 2005-10-26 Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367846A JP4049774B2 (ja) 2004-12-20 2004-12-20 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法

Publications (2)

Publication Number Publication Date
JP2006167695A JP2006167695A (ja) 2006-06-29
JP4049774B2 true JP4049774B2 (ja) 2008-02-20

Family

ID=36668998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367846A Expired - Fee Related JP4049774B2 (ja) 2004-12-20 2004-12-20 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法

Country Status (1)

Country Link
JP (1) JP4049774B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840736B1 (ko) 2015-12-10 2018-05-04 영남대학교 산학협력단 중금속 흡착용 기능성 섬유의 제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2744179C (en) * 2008-11-21 2014-06-17 Alliance For Sustainable Energy, Llc Porous block nanofiber composite filters
JP5360478B2 (ja) * 2009-05-27 2013-12-04 株式会社Kri 揮発性有害物質除去材
KR101201469B1 (ko) * 2010-08-19 2012-11-14 포항공과대학교 산학협력단 마스크 및 그의 제조 방법
KR101527102B1 (ko) * 2010-11-26 2015-06-10 (주)바이오니아 유해물질 제거 장치
KR101105482B1 (ko) * 2011-04-05 2012-01-13 경기대학교 산학협력단 촉매여과필터 및 그의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840736B1 (ko) 2015-12-10 2018-05-04 영남대학교 산학협력단 중금속 흡착용 기능성 섬유의 제조방법

Also Published As

Publication number Publication date
JP2006167695A (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
US7927567B2 (en) Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter
US7074260B2 (en) Filter using carbon nanotube
CN1832793A (zh) 利用光催化剂净化空气的方法和装置
JP2012245515A (ja) 混合触媒フィルター及びその製造方法
US7883563B2 (en) Honeycomb structure and manufacturing method thereof, and air cleaner and water purifier containing the honeycomb structure
JP4674071B2 (ja) 気体清浄装置
EP4081340A1 (en) Method for manufacturing a photocatalytic device, photocatalytic device, photocatalytic composition and gas depolluting apparatus
JP4528192B2 (ja) フィルター、その製造方法、空気清浄装置
JP3710323B2 (ja) 脱臭装置
JP3402385B2 (ja) 気体の清浄方法及び装置
JP4049774B2 (ja) 多孔質フィルタ、多孔質フィルタの製造方法、空気清浄装置および空気清浄方法
Balayeva et al. Integrated processes involving adsorption, photolysis, and photocatalysis
JP2002159851A (ja) 単層カーボンナノホーンからなる吸着材、触媒および触媒担体
JP4001599B2 (ja) 吸着剤、空気清浄装置および濃度センサ
JP3689754B2 (ja) 光触媒材および空気浄化膜
JP4846245B2 (ja) 空気清浄装置およびエアコン
CN218235209U (zh) 一种电场装置及VOCs气体处理装置
WO2002101800A1 (fr) Procede et appareil de fabrication de semi-conducteurs
JP4514644B2 (ja) 気体の清浄化方法および清浄化装置
TWI492783B (zh) Regeneration method of waste gas filter
EP4331721A1 (en) Catalytic system with photocatalyst and gas depollution apparatus containing the same
JP2006167359A (ja) 有害ガス除去フィルタおよび空気調和機
JP4094874B2 (ja) 光触媒体及び窒素酸化物の処理方法
JP2006280774A (ja) 飛散汚染物質分子除去方法及びその装置並びに脱臭装置
WO2021129957A1 (en) Method for manufacturing a photocatalytic device, photocatalytic device, photocatalytic composition and gas depolluting apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees