JP4049221B2 - 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法 - Google Patents

電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法 Download PDF

Info

Publication number
JP4049221B2
JP4049221B2 JP2006320703A JP2006320703A JP4049221B2 JP 4049221 B2 JP4049221 B2 JP 4049221B2 JP 2006320703 A JP2006320703 A JP 2006320703A JP 2006320703 A JP2006320703 A JP 2006320703A JP 4049221 B2 JP4049221 B2 JP 4049221B2
Authority
JP
Japan
Prior art keywords
seawater
ice
electrolytic
electrolyzed
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006320703A
Other languages
English (en)
Other versions
JP2007175699A (ja
Inventor
英敏 櫻井
圭三 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Chugoku Electric Manufacturing Co Ltd
Original Assignee
Nihon University
Chugoku Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Chugoku Electric Manufacturing Co Ltd filed Critical Nihon University
Priority to JP2006320703A priority Critical patent/JP4049221B2/ja
Publication of JP2007175699A publication Critical patent/JP2007175699A/ja
Application granted granted Critical
Publication of JP4049221B2 publication Critical patent/JP4049221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、電解海水氷生成システム、電解海水生成装置及び電解海水氷生成システムにより生成した電解海水氷を用いた鮮魚保存方法に関するものである。
魚介類の鮮度を保持するための手法として海水を製氷した海水氷が広く利用されているが、バナール・ファウラーの法則により、製氷時に氷の中には塩分を始めとした不純物は入り込めない。氷点が−1.9℃である海水は、共晶点である−23℃まで、図5に示すような真水氷101と濃縮海水(2水塩(Nacl・2H2O))102の固液混合物となり、それ以下の温度で固体化する。このため、海水を製氷する製氷装置においては、製氷部の温度を−25℃としたものが多く存在している。また、このような海水を製氷する製氷装置は、一般にコンプレッサにより冷媒を圧縮し液化した後、冷却器の中で急激に膨張させることにより冷却器の周囲から気化熱を奪って冷却する方式を取っている。
なお、特許文献1には、冷媒により冷却した製氷板に接する製氷用水を冷却して製氷した後、製氷板を熱媒によりに温めて離氷するようにした製氷装置であって、冷媒とともに液化天然ガスを熱交換器に導入し、この熱交換器で液化天然ガスによって冷媒を冷却し、この冷却した冷媒により製氷板を冷却し製氷するようにした技術が開示されている。
特開2003−172561公報
ところで、従来から捕獲した魚介類を食用に供する際には、如何に鮮度良く長期に亘って保存するかが重要な課題になっている。魚介類の鮮度を保つための必要条件としては、魚体の速やかな初期冷却、低温の維持、魚体への浸透圧の調整、腐敗細菌の増殖抑制等が挙げられる。
魚介類を冷却して鮮度を保持するために海水を製氷した海水氷を用いる試みがなされている。特に、海水氷を用いた保存方法では、魚体への浸透圧の調整と、腐敗細菌の増殖抑制が期待されている。
しかしながら、近年、海水を電気分解することにより得られるイオン水を製氷化した電解水氷を鮮度保存に用いる試みがなされているが、海洋深層水の利用による効果が実証されているものは極めて少なかった。
そこで、本願発明者は魚の鮮魚を長期に亘って維持することができる海洋深層イオン水及び海洋深層イオン水氷並びに鮮魚方法を提案した(特願2004−166591)が、このような海洋深層イオン水を生成する実用レベルの生成装置は存在していないのが現状であった。
本発明はこのような点を鑑みてなされたものであり、海水から電解海水を製氷する電解海水氷生成システム、電解海水生成装置及び電解海水氷生成方法により生成したアルカリ性電解海水氷又は/及び、前記酸性電解海水氷を用いた鮮魚保存方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、海水を電気分解することによりアルカリ性電解海水と酸性電解海水とを生成する電解海水生成装置と、前記アルカリ性電解海水と前記酸性電解海水とを夫々冷却してアルカリ性電解海水氷と酸性電解海水氷とを製氷する製氷装置と、を備えた電解海水氷生成システムであって、前記電解海水生成装置は、前記海水をアルカリ性電解海水及び酸性電解海水に電気分解する主電解セルと、前記主電解セルに対して並列に接続され、電気分解によって発生する水素ガス及び酸素ガスを生成して前記主電解セルに流入する海水に含有させる補助電解セルと、を備えたことを特徴する。
請求項2に記載の発明は、請求項1に記載の電解海水氷生成システムにおいて、前記製氷装置は、前記液化天然ガスの冷熱を利用して製氷を行うことを特徴とする。
請求項3に記載の発明は、請求項1に記載の電解海水氷生成システムにおいて、前記製氷装置は、コンプレッサにより圧縮し液化した冷媒を膨張させたときの膨張潜熱を利用して製氷を行うことを特徴とする。
請求項4に記載の発明は、請求項1に記載の電解海水氷生成システムにおいて、前記電解海水生成装置は、前記アルカリ性電解海水に電気分解によって発生する水素ガスを含有させる水素ガス含有手段を備えていること特徴とする。
請求項に記載の発明は、請求項1に記載の電解海水氷生成システムにおいて、前記電解海水生成装置は、前記酸性電解海水に電気分解によって発生する酸素ガスを含有させる酸素ガス含有手段を備えていることを特徴とする。
請求項に記載の発明は、請求項2又は3に記載の電解海水氷生成システムにおいて、前記製氷装置は、前記冷熱又は前記膨張潜熱を二次冷媒へ二次変換した冷熱体を冷媒とした製氷ドラムと、該製氷ドラムの表面に氷結した前記アルカリ性電解海水氷、又は/及び、前記酸性電解海水氷を剥離・粉砕する剥離粉砕手段と、を備えたことを特徴とする。
請求項に記載の発明は、請求項1乃至の何れか1項に記載の電解海水氷生成システムにおいて、前記海水にミネラル成分を添加するミネラル添加手段を備えたことを特徴とする。
請求項に記載の発明は、海水をアルカリ性電解海水と酸性電解海水に電気分解する主電解セルと、前記主電解セルに対して並列に接続され、電気分解によって発生する水素ガス及び酸素ガスを生成して前記主電解セルに流入する海水に含有させる補助電解セルと、を備えた電解海水生成装置特徴とする。
請求項9に記載の発明は、請求項1乃至の何れか1項に記載の電解海水氷生成システムにより生成したアルカリ性電解海水氷、又は/及び、酸性電解海水氷を用いて鮮魚を冷却保存する鮮魚保存方法を特徴とする。
本発明の電解海水氷生成システムによれば、還元作用をより高めたアルカリ性電解海水と殺菌作用をより高めた酸性電解海水とを生成し、製氷装置によりアルカリ性電解海水と酸性電解海水とを夫々冷却することで、還元作用をより高めたアルカリ性電解海水氷と殺菌作用をより高めた酸性電解海水氷を簡単に製氷することが可能になる。
また本発明の電解海水生成装置によれば、還元作用をより高めたアルカリ性電解海水と殺菌作用をより高めた酸性電解海水とを生成することが可能になる
また本発明の鮮魚保存方法では、本発明の電解海水氷生成システムにより生成したアルカリ性電解海水氷、又は/及び、酸性電解海水氷を用いて鮮魚を冷却保存するようにしているので、鮮魚の鮮度を長期に亘って良好に維持することができる。
以下、図面を参照しながら本発明の実施形態について説明する。
図1は本発明の第1の実施形態に係る電解海水氷生成システムの構成を示した図である。なお、第1の実施形態では発電所の発電設備を利用したシステムを例に挙げて説明する。
図1に示す電解海水氷生成システム1は、給水ポンプ2、フィルタ3、電解槽(電解海水生成装置)4、紫外線殺菌装置5a、5b、製氷装置6、及びミネラル添加装置7により構成される。
給水ポンプ2は、例えば図示しない発電所等の構内に引き込まれた海水取水管から海水を取り込むポンプである。フィルタ3は、給水ポンプ2を介して取り込んだ海水を濾過して、海水に含まれるゴミなどの不純物を取り除くために設けられている。
電解槽4は、フィルタ3により不純物を取り除いた海水を電気分解することにより、アルカリ性電解海水と酸性電解海水という異なる性質を持った海水を生成する海水生成装置である。電解槽4において生成されたアルカリ性電解海水には抗酸化物質を豊富に含むミネラル分及び還元電位を高める水素ガスが含まれ、酸性電解海水には殺菌作用のある酸素ガス、HCLO、CLO、CL2等が含まれる。なお、電解槽4の構造については後述する。
紫外線殺菌装置5a、5bは、電解槽4により生成されたアルカリ性電解海水と酸性電解海水を夫々紫外線により殺菌する殺菌装置である。
製氷装置6は、液化天然ガス(LNG)発電に使用するLNGの冷熱を利用した装置であり、LNGタンク11内のLNGを気化して発電用タービン12に供給する際に発生する−162℃の冷熱を利用して、紫外線殺菌装置5a、5bから供給された酸性電解海水とアルカリ性電解海水を瞬時に冷却して夫々アルカリ性電解海水氷と酸性電解海水氷を製氷する。なお、製氷装置6の構造についても後述する。
ミネラル添加装置7は、フィルタ3により濾過した海水にミネラル成分を添加する装置であり、例えば海水取水管により取り込んだ海水が表層海水の場合には、各種の抗酸化用ミネラル(P、Si等)等の安価な鉱物ミネラルをイオン化して海水に含有させるようにしている。このようにすると、電解槽4において表層海水から深層海水とほぼ同等の成分を有する電解海水を生成することができる。
このように第1の実施形態の電解海水氷生成システム1においては、海水取水管から取り込んだ海水をフィルタ3により濾過した後、濾過した海水を電解槽4において電気分解することによりアルカリ性電解海水と酸性電解海水とを生成する。
そして、これらアルカリ性電解海水と酸性電解海水とを紫外線殺菌装置5a、5bによりに殺菌した後、製氷装置6により瞬時に冷却してアルカリ性電解海水氷と酸性電解海水氷を製氷する。これにより、アルカリ性電解海水氷と酸性電解海水氷とを簡単に製氷できる電解海水氷生成システムを提供することが可能になる。
図2は電解海水氷生成システム1の電解槽4の構造例を示した図である。
この図2に示す電解槽4は、海水をアルカリ性電解海水と酸性電解海水に電気分解する主電解セル21と、主電解セル21に対して並列に接続され、電気分解で発生する水素ガス(H2ガス)及び酸素ガス(O2ガス)を生成して主電解セル21に流れ込む海水に含有させる2つの補助電解セル22−1、22−2とが設けられている。
即ち、本実施形態の電解槽4は、アルカリ性電解海水に水素ガスを含有させる水素ガス含有手段及び酸性電解海水に酸素ガスを含有させる酸素ガス含有手段としての補助電解セル22−1、22−2とを備えている。なお、本実施形態では主電解セル21に2つの補助電解セル22−1、22−2が並列に接続されている構造を例に挙げて説明したが、補助電解セルは1つ、或いは3つ以上でも良い事は言うまでもない。
主電解セル21の内部には、陰電極31、陽電極32、及びイオン交換膜33が設けられており、陰電極31と陽電極32とを通電することにより、陰電極31側の領域34では取水管23から流入する海水をアルカリ性電解海水に電気分解して出水管24から出水する。また陽電極32側の領域35では取水管25から流入する海水を酸性電解海水に電気分解して出水管26から出水する。
一方、補助電解セル22−1、22−2の内部にも、陰電極31、陽電極32、及びイオン交換膜33が夫々設けられているが、補助電解セル22−1、22−2の内部では、陰電極31と陽電極32とを通電することにより、陰電極31側の領域34において出水管24から流入するアルカリ性電解海水を電気分解して水素ガス(H2ガス)を生成する。また陽電極32側の領域35において出水管26から流入する酸性電解海水を電気分解して酸素ガス(O2ガス)を生成する。そして、この補助電解セル22−1、22−2において生成したH2ガスを、バルブ27を介して取水管23の海水に含ませるようにする。また補助電解セル22−1、22−2において生成したO2ガスを、バルブ28を介して取水管25を通過する海水に含ませるようにしている。
このように電解槽4においては、酸化・還元作用を高めるために、主電解セル21と並列に複数の補助電解セル22−1、22−2を設け、これらの補助電解セル22−1、22−2において還元作用(抗酸化作用)のあるH2ガスと、殺菌作用のあるO2ガスを夫々生成して主電解セル21に流入する海水に含有させるようにしている。これにより、電解槽4からは還元作用をより高めたアルカリ性電解海水と殺菌作用をより高めた酸性電解海水とを出水することが可能になる。
なお、特開2002−153874公報には、次亜塩素酸の濃度を高めることを目的として、有膜方式により1段目の電解槽で生成された酸性、アルカリ性電解水を混合して、有膜式の2段目の電解槽でさらに電解するようにした殺菌水製造装置が開示されているが、1段目の電解槽を無膜方式にした場合でも同様な効果が得られる。
これに対して、本実施形態の電解槽4は主電解セル21に対して並列に補助電解セル22を設け、この補助電解セル22において、酸性は酸性、アルカリ性はアルカリ性に分離し、さらに補助電解セル22では、還元電位を高めるために電気分解により発生するH2ガス、酸化・殺菌を目的とした酸化電位を高めるために電気分解により発生するO2ガスの生成に特化した機能を持たせるようにしており、特開2002−153874公報に記載されている殺菌水製造装置とは原理、考え方の構造が異なることを付記しておく。
次に、本実施形態の製氷装置6について説明する。
本実施形態の電解海水氷生成システム1では、電解槽4において海水を電気分解することで、アルカリ性と酸性の性質を有する海水を生成するようにしているが、これらの性質は時間の経過と共に原水性質に戻るため、その前に素早く氷にする必要がある。このため、本実施形態では、LNG発電を行う際に発生する−162℃の冷熱を利用してアルカリ性電解海水と酸性電解海水とを急冷することで、電解海水が特質を失う前にアルカリ性電解海水氷と酸性電解海水氷を製氷するようにしている。
図3は、製氷装置6の構造例を示した図であり、(a)は正面図、(b)は側面図である。
この図3に示す製氷装置6は、製氷ドラム41と、この製氷ドラム41の表面に電解海水を噴霧するためのノズル42、42と、製氷ドラム41の表面に氷結した電解海水氷を粉砕して離氷する掻き取り刃(剥離粉砕手段)43とを備えて構成される。製氷ドラム41の内部には、冷媒となる−162℃のLNGが流れる冷媒管44が製氷ドラムの内面に沿って多数配置されている。なお、本実施形態ではLNGを冷媒とした製氷装置を例に挙げて説明したが、これはあくまでも一例であり、LNGの冷熱を空気等他の二次冷媒へ二次変換した冷熱体を冷媒として用いる事も可能である。
また本実施形態の製氷装置6においては、1つの製氷ドラム41によりアルカリ性電解海水氷と酸性電解海水氷との両方の海水氷を製氷するために、製氷ドラム41の中央に仕切板45を設けるようにしている。そして、この仕切板45により仕切られた一方のドラム面にはノズル42によりアルカリ性電解海水を噴霧すると共に、他方のドラム面にはノズル42により酸性電解海水を噴霧することで、製氷ドラム41の表面にアルカリ性電解海水と酸性電解海水を氷結させるようにしている。これにより、1つの製氷ドラム41によりアルカリ性と酸性の電解海水氷46を同時に製氷するようにしている。
この後、製氷ドラム41を回転させることで、製氷ドラム41の表面に氷結した電解海水氷46が遠心力によりドラム表面から剥離し、さらに固定した掻き取り刃43により製氷ドラム41の表面に氷結した電解海水氷46を掻き取ることで、アルカリ性と酸性の電解海水氷46を同時に得るようにしている。勿論、別々の製氷ドラムを用いてアルカリ性電解海水氷と酸性電解海水氷を製氷しても良いことは言うまでもない。
イオン水は時間と共にその性質が原水の性質に戻るため、素早く製氷する必要があるが、従来の製氷装置ではイオン水氷が製氷されるまでに時間がかかるため、イオン水としての性質が失われてしまうが、本実施形態のように製氷装置6を構成すると、従来の冷却方式では得られない−162℃という冷却温度により電解海水を急冷することができるため、電解海水の特質が低減する前に製氷が可能になる。
また、−162℃の冷却温度により製氷する場合は、氷結と言うよりも気中の水蒸気が瞬時に凍結して粉雪のような雪状氷となり成長する。このため、例えば一般的な製氷装置のように、製氷ドラムの内部に海水を噴射して製氷した氷を、製氷ドラム内において回転する掻き取り刃にて掻き取ろうとした場合は氷が掻き取り刃に付着して採取できないという不具合がある。これに対して、本実施形態の製氷装置6は、製氷ドラム41を回転させたときの遠心力と、固定した掻き取り刃43により製氷ドラム41の表面に製氷された電解海水氷46を採取するようにしているので、製氷ドラムの内部に回転式の掻き取り刃を設けた時のように、掻き取った氷が掻き取り刃43に付着して採取できないという不具合を解消することができる。
さらに従来の製氷ドラム(冷却ドラム)は、縦型の中空円筒形ドラムで、その内面側に海水を噴射して製氷ドラムの内面に氷結した氷を掻き取り刃で掻き落とす構造が主流であるため、氷結時に塩分を含むミネラル成分が製氷ドラムより落下し、製氷時の性状が原水に比べ変化するという問題があった。これに対して、本実施形態の製氷ドラム41は、図3(b)に示すように、中空円筒形である製氷ドラム41を横向きに配置し、製氷ドラム41の外側上面に海水を噴射することにより、塩分を含むミネラル成分が製氷ドラム41に長く留まり氷結しやすい構造にしている。これにより、原水の性状が変化することなく、製氷することが可能になる。また離氷もドラムの遠心力を利用するため、剥離し易くなるという利点がある。
図4は、本発明の第2の実施形態に係る電解海水氷生成システムの構成を示した図である。なお、図1と同一部位には同一符号を付して説明を省略する。
図2に示す電解海水氷生成システム10は、給水ポンプ2、フィルタ3、電解槽4、紫外線殺菌装置5、製氷装置6、及びミネラル添加装置7により構成される。
紫外線殺菌装置5は海水取水管と給水ポンプ2との間に配置され、給水ポンプ2により汲み上げた海水を殺菌するようにしている。
製氷装置6は、コンプレッサにより冷媒を圧縮し液化した後、急激に膨張させて、周辺熱を奪う膨張潜熱を利用して製氷を行う装置である。従って、製氷装置6ではコンプレッサにより圧縮し液化した冷媒を膨張させたときの膨張潜熱を利用して電解槽4において生成された酸性電解海水とアルカリ性電解海水を瞬時に冷却して夫々アルカリ性電解海水氷と酸性電解海水氷とを製氷するようにしている。
このように構成される第2の実施形態の電解海水氷生成システム10においては、海水取水管から取り込んだ海水を紫外線殺菌装置5によりに殺菌し、フィルタ3により濾過した後、電解槽4において電気分解することによりアルカリ性電解海水と酸性電解海水とを生成する。そして、これらアルカリ性電解海水と酸性電解海水とを製氷装置6により瞬時に冷却してアルカリ性電解海水氷と酸性電解海水氷を製氷する。これにより、アルカリ性電解海水氷と酸性電解海水氷とを簡単に製氷できる電解海水氷生成システムを提供することが可能になる。
また、このような電解海水氷生成システム10は、コンプレッサを利用した既存の製氷装置6を利用できるため、図1に示したLNGの冷熱を利用する製氷装置に比べて、低コストで実現することができるという利点がある。
また、製氷ドラム41は、先に図3(b)を用いて説明したように、中空円筒形である製氷ドラム41を横向きに配置し、製氷ドラム41の外側上面に海水を噴射することにより、塩分を含むミネラル成分が製氷ドラム41に長く留まり氷結しやすい構造としている。これにより、製氷装置6がコンプレッサによる冷却方式でも原水の性状が変化することなく、製氷することが可能になる。また離氷もドラムの遠心力を利用するため、剥離し易くなる。
また、第2の実施形態においては、電解槽4と製氷装置6との間に配置されたミネラル添加装置7においてアルカリ性電解海水にミネラルを添加するようにしているが、図1に示すようにフィルタ3と電解槽4との間にミネラル添加装置7を配置して海水にミネラルを含有させるようにすることも可能である。
また第2の実施形態では、海水取水管とポンプ3との間に紫外線殺菌装置5を配置しているが、図1に示すように電解槽4のアルカリ性電解海水及び酸性電解海水の吐水側に配置することも可能である。但し、海水取水管とポンプ3との間に紫外線殺菌装置5を配置した場合は紫外線殺菌装置5が1台で済むのに対して、電解槽4のアルカリ性電解海水及び酸性電解海水の吐水側に配置する場合は紫外線殺菌装置5が2台必要になるため、コスト的には海水取水管とポンプ3との間に紫外線殺菌装置5を配置するほうが好ましい。
また、第2の実施形態では、コンプレッサにより圧縮し液化した冷媒を膨張させたときの膨張潜熱を利用した製氷装置を例に挙げて説明したが、これはあくまでも一例であり、前記膨張潜熱を空気等他の二次冷媒へ二次変換した冷熱体を冷媒として用いる事も可能である。
以下、本実施形態の電解海水氷生成システムにより生成したアルカリ性電解海水氷又は酸性電解海水氷、或いはアルカリ性電解海水氷及び酸性電解海水氷を用いた鮮魚保存方法に説明する。
一般に鮮魚を保存する場合には鮮度判定指標であるK値の上昇を低く抑えることで魚の鮮度を維持できることが知られている。
ここで、K値とは、魚の鮮度判定指数のことである。詳細には、魚肉のアデノシン三リン酸(ATP)は、酵素により分解して、アデノシン二リン酸(ADP)、アデニル酸(AMP)、イノシン酸(IMP)、イノシン(HxR)、及びヒポキサンチン(Hx)の順に反応が進む。このような魚肉のATP分解反応は、死後直ちに開始する。このことから、魚類の生きの良さを示す鮮度については、一般的に、ATP分解過程を目安として、下記数式1によって求められる「K値」(鮮度判定指数)で表される。なお、魚類は、イノシン酸が多いほど旨みを増し、イノシンやヒポキサンチンが多くなるにつれて鮮度が低下する事が知られている。
そこで、本願発明者らは本実施形態の電解海水氷生成システムにより生成したアルカリ性電解海水氷と酸性電解海水氷を用いて鮮魚の保存を行った。
その結果、本実施形態の電解海水氷生成システムにより生成したアルカリ性電解海水氷と酸性電解海水氷とを用いて鮮魚を保存すると、魚の鮮度を長期に亘って良好に維持することができることがわかった。特に、最初に酸性電解氷で外部腐敗菌を殺菌し、その後はアルカリ電解氷で鮮度保持を行うと、魚の鮮度をより長期に亘って良好に維持することができた。
さらに、ミネラル添加装置7によりミネラルを添加することにより海面の表層付近から採取した表層海水を、水深500m以下の深層から採取した深層海水の成分に近づけた海水を製氷し、この製氷したアルカリ性電解海水氷と酸性電解海水氷を用いて鮮魚の保存を行うことで魚の鮮度を長期に亘って良好に維持できることがわかった。
これはアルカリ性電解海水には、抗酸化物質を豊富に含むミネラル分及び還元電位を高める水素ガスが含まれるため、pHの上昇と共に浸透圧が上昇し、魚体への浸透圧調整にも作用することによる。また酸性電解海水には殺菌作用のあるHCLO、CLO、CL2等が大量に生成され、腐敗細菌などの増殖抑制が図られることによる。従って、アルカリ性電解海水を製氷したアルカリ性電解海水または酸性電解海水を製氷した酸性電解海水氷、或いは、酸性電解海水氷とアルカリ性電解海水氷との両方を使用して鮮魚を保存することで、捕獲した鮮魚の鮮度を長期に亘って良好に維持することができるようになる。
ここで、魚の鮮度を長期に亘って保存するのに好適な海水について説明しておくと、魚を長期に亘って保存するうえで好適な海水としては、例えば、静岡県の下田沖合で水深500mから取水した海洋深層水が挙げられる。
表1は下田沖合取水の水深0m、100m、300m、400m、500mの各海水に含まれる元素濃度(μg/ml)を示す。
Figure 0004049221
表1に示すように、水深500mの海洋深層水は、例えば、表層水(水深0m)と比べて、カルシウム(Ca)、亜鉛(Zn)、テルル(Te)等の各元素濃度が大きい。このように、鮮魚の保存に好適な海洋深層水は、カルシウム、亜鉛、テルル等が豊富に含まれている。また、この特定の海洋深層水は、リン脂質やトリフェノール等の抗酸化物質も含んでいる。
そこで、本実施形態の電解海水氷生成システム1では、アルカリ性電解海水氷と酸性電解海水氷を生成する場合に、海面表層から取り込んだ海水の成分を水深500m以下の海洋深層水の成分に近づけるようにした。これにより、K値の上昇を長期に亘って低く抑えることができるようになった。このようK値の上昇が低く抑えられたのは、上述したATP分解反応の渦程、特にイノシン酸が分解してイノシンが生成される過程において、海洋深層イオン水に含まれるイオン化した抗酸化物質やカルシウム、亜鉛、テルル等が作用し、イノシシ酸の分解反応を遅らせることができたためと考えられる。
特に、このような特定の海洋深層水には一般的な水深200〜400m程度の海洋深層水や表層水と比べて、カルシウムや亜鉛、テルル等の元素濃度が高い。このため、このような特定の海洋深層水を電気分解した、海洋深層アルカリ性イオン水には、カルシウムや亜鉛、テルル等が豊富に含まれており、魚の鮮度を保持する効果を高めていると考えられる。
なお、鮮魚の保存環境については、例えば、10℃以下、好ましくは5℃以下の低温とするのが好ましい。また、少なくとも電解海水氷を用いて鮮魚を保存する際には、所望のタイミングで電解海水氷を補充するのが好ましい。
第1の実施形態に係る電解海水氷生成システムの構成を示した図。 本実施形態の電解槽4の構造を示した図。 本実施形態の製氷装置6の構造を示した図。 第2の実施形態に係る電解海水氷生成システムの構成を示した図。 海水氷の構造を示した図。
符号の説明
1、10…電解海水氷生成システム、2…給水ポンプ、3…フィルタ、4…電解槽、5a、5b…紫外線殺菌装置、6…製氷装置、7…ミネラル添加装置、11…LNGタンク、12…タービン、21…主電解セル、22…補助電解セル、23、25…取水管、24、26…出水管、27、28…バルブ、31…陰電極、32…陽電極、33…イオン交換膜、41…製氷ドラム、42…ノズル、43…掻き取り刃、44…冷媒管、45…仕切板

Claims (9)

  1. 海水を電気分解することによりアルカリ性電解海水と酸性電解海水とを生成する電解海水生成装置と、前記アルカリ性電解海水と前記酸性電解海水とを夫々冷却してアルカリ性電解海水氷と酸性電解海水氷とを製氷する製氷装置と、を備えた電解海水氷生成システムであって、
    前記電解海水生成装置は、前記海水をアルカリ性電解海水及び酸性電解海水に電気分解する主電解セルと、前記主電解セルに対して並列に接続され、電気分解によって発生する水素ガス及び酸素ガスを生成して前記主電解セルに流入する海水に含有させる補助電解セルと、を備えたことを特徴する電解海水氷生成システム。
  2. 請求項1に記載の電解海水氷生成システムにおいて、前記製氷装置は、前記液化天然ガスの冷熱を利用して製氷を行うことを特徴とする電解海水氷生成システム。
  3. 請求項1に記載の電解海水氷生成システムにおいて、前記製氷装置は、コンプレッサにより圧縮し液化した冷媒を膨張させたときの膨張潜熱を利用して製氷を行うことを特徴とする電解海水氷生成システム。
  4. 請求項1に記載の電解海水氷生成システムにおいて、前記電解海水生成装置は、前記アルカリ性電解海水に電気分解によって発生する水素ガスを含有させる水素ガス含有手段を備えていること特徴とする電解海水氷生成システム。
  5. 請求項1に記載の電解海水氷生成システムにおいて、前記電解海水生成装置は、前記酸性電解海水に電気分解によって発生する酸素ガスを含有させる酸素ガス含有手段を備えていることを特徴とする電解海水氷生成システム。
  6. 請求項2又は3に記載の電解海水氷生成システムにおいて、前記製氷装置は、前記冷熱又は前記膨張潜熱を二次冷媒へ二次変換した冷熱体を冷媒とした製氷ドラムと、該製氷ドラムの表面に氷結した前記アルカリ性電解海水氷、又は/及び、前記酸性電解海水氷を剥離・粉砕する剥離粉砕手段と、を備えたことを特徴とする電解海水氷生成システム。
  7. 請求項1乃至6の何れか1項に記載の電解海水氷生成システムにおいて、前記海水にミネラル成分を添加するミネラル添加手段を備えたことを特徴とする電解海水氷生成システム。
  8. 海水をアルカリ性電解海水と酸性電解海水に電気分解する主電解セルと、前記主電解セルに対して並列に接続され、電気分解によって発生する水素ガス及び酸素ガスを生成して前記主電解セルに流入する海水に含有させる補助電解セルと、を備えたことを特徴とする電解海水生成装置。
  9. 請求項1乃至7の何れか1項に記載の電解海水氷生成システムにより生成したアルカリ性電解海水氷、又は/及び、酸性電解海水氷を用いて鮮魚を冷却保存することを特徴とする鮮魚保存方法。
JP2006320703A 2005-12-02 2006-11-28 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法 Active JP4049221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320703A JP4049221B2 (ja) 2005-12-02 2006-11-28 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005350048 2005-12-02
JP2006320703A JP4049221B2 (ja) 2005-12-02 2006-11-28 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法

Publications (2)

Publication Number Publication Date
JP2007175699A JP2007175699A (ja) 2007-07-12
JP4049221B2 true JP4049221B2 (ja) 2008-02-20

Family

ID=38301409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320703A Active JP4049221B2 (ja) 2005-12-02 2006-11-28 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法

Country Status (1)

Country Link
JP (1) JP4049221B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209941A (ja) * 2006-02-13 2007-08-23 Hoshizaki Electric Co Ltd 無菌状態の冷海水生成装置
JP5280796B2 (ja) * 2008-10-23 2013-09-04 株式会社Ihi オゾン氷製造方法及びオゾン氷製造装置
KR101079212B1 (ko) 2009-04-20 2011-11-03 경동대학교 산학협력단 수산물의 신선도 보존용 얼음 및 수산물의 신선도 유지 방법
JP5692715B2 (ja) * 2010-07-08 2015-04-01 有限会社柴田熔接工作所 鮮度保持システム及び鮮度保持方法
JP2013108659A (ja) * 2011-11-18 2013-06-06 Bio Coke Lab Co Ltd 水素含有氷の製造方法
KR101268911B1 (ko) * 2013-01-30 2013-05-29 주식회사 아이스캡 스노우 아이스 제빙기
WO2015141330A1 (ja) * 2014-03-19 2015-09-24 株式会社 東芝 電解水を用いた多相構造の氷
CA3004245C (en) * 2015-11-19 2022-03-15 Blanctec Co., Ltd. Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for ...
KR20180092996A (ko) 2015-11-19 2018-08-20 블랑테크 가부시키가이샤 플레이크 아이스 제조 장치, 플레이크 아이스 제조 시스템, 플레이크 아이스 제조 방법 및 이동체
CN112616726B (zh) * 2020-12-14 2022-09-02 中国农业大学 一种淡水鱼活体微冻保鲜运输方法
CN112629091A (zh) * 2021-01-12 2021-04-09 乳山市创新新能源科技有限公司 Lng冷能回收制冰系统
CN114322384B (zh) * 2021-12-31 2022-10-21 华南理工大学 一种高耦合性的lng冷能制冰工艺及装置

Also Published As

Publication number Publication date
JP2007175699A (ja) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4049221B2 (ja) 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法
El Kadi et al. Desalination by freeze crystallization: an overview
JP6487572B2 (ja) 動植物又はその部分の被冷蔵物の製造方法、動植物又はその部分の冷蔵剤、被冷凍生鮮動植物又はその部分の製造方法、被解凍物又はその加工物、及び生鮮動植物又はその部分の凍結剤
MX2009000887A (es) Metodo y sistema de desalinizacion que usa sistema de remocion de hielo enlodado helicoidal continuo.
WO2017086463A1 (ja) フレークアイス製造装置、フレークアイス製造システム、フレークアイス製造方法、移動体
JP6311191B2 (ja) 一定融点温度の固液混合物を生成する方法・システム
JP2017040467A5 (ja)
JP4435053B2 (ja) 苦汁の除塩方法
JP5664994B2 (ja) 氷の気泡含有率の高いオゾン氷、該オゾン氷の製造方法及び製造装置
JP5692715B2 (ja) 鮮度保持システム及び鮮度保持方法
KR20040041974A (ko) 원심 분리 농축기와 진공동결 건조기를 이용한 담수 및소금 생산방법과 그 장치
JP4909805B2 (ja) 保存機能を備えた濃縮海水の製造方法とその濃縮海水を用いた海産物の保存方法
JP2019024488A (ja) 冷凍牡蠣の製造方法
KR20180053183A (ko) 슬러리형 전해수 얼음제조 시스템
RU2433957C1 (ru) Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления
JP2003311262A (ja) 海洋深層水の脱塩水と塩分濃縮水の生成分離装置
KR200443521Y1 (ko) 해양 심층수로부터 얼음을 만드는 장치
JP2019120480A (ja) 製氷装置
JP2004173539A (ja) 鮮魚の貯蔵に使用するミネラル氷とミネラル氷の製造方法および製造装置
JP2004077105A (ja) 殺菌作用を有するシャーベット氷製造方法
KR20100115635A (ko) 수산물의 신선도 보존용 얼음 및 수산물의 신선도 유지 방법
JP2012057919A (ja) 塩分含有水氷の製造装置
JP2011021866A (ja) 殺菌用水氷製造法
WO2017085946A1 (ja) 生鮮海産物の鮮度保持方法
JP2010233560A (ja) 殺菌シャーベット状氷又は砕氷

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

R150 Certificate of patent or registration of utility model

Ref document number: 4049221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250