RU2433957C1 - Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления - Google Patents

Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления Download PDF

Info

Publication number
RU2433957C1
RU2433957C1 RU2010105778/05A RU2010105778A RU2433957C1 RU 2433957 C1 RU2433957 C1 RU 2433957C1 RU 2010105778/05 A RU2010105778/05 A RU 2010105778/05A RU 2010105778 A RU2010105778 A RU 2010105778A RU 2433957 C1 RU2433957 C1 RU 2433957C1
Authority
RU
Russia
Prior art keywords
suspension
solution
sea water
vacuum chamber
water
Prior art date
Application number
RU2010105778/05A
Other languages
English (en)
Other versions
RU2010105778A (ru
Inventor
Виктор Дорофеевич Лапшин (RU)
Виктор Дорофеевич Лапшин
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Дальневосточный государственный технический рыбохозяйственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Дальневосточный государственный технический рыбохозяйственный университет" filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Дальневосточный государственный технический рыбохозяйственный университет"
Priority to RU2010105778/05A priority Critical patent/RU2433957C1/ru
Publication of RU2010105778A publication Critical patent/RU2010105778A/ru
Application granted granted Critical
Publication of RU2433957C1 publication Critical patent/RU2433957C1/ru

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Изобретение относится к холодильной технике и касается способа получения льдосодержащей суспензии из морской воды и установки для его осуществления. Установка реализует предлагаемый способ следующим образом. Морскую воду подают в вакуумную камеру из резервуара. В камере при давлении 600 Па и температуре от -2°С до
-4,5°С морская вода закипает и образует кристаллы. Генератор ультразвуковых колебаний создает в резервуаре с кипящей морской водой акустическое поле, характеризующееся наличием волн, т.е. колебаний с частотой 60…65 кГц. Воздействие акустического поля, указанных параметров, приводит к образованию кристаллов сферической формы диаметром от 0,1 до 0,5 мм. Высококонцентрированный крепкий раствор бромида лития стекает по боковой поверхности вакуумной камеры и поглощает образовавшиеся пары воды. Насос постоянно удаляет водный раствор бромида лития в отсек слабого раствора генератора восстановления концентрации бромида лития, где его концентрация восстанавливается за счет выпаривания воды низкопотенциальной теплотой. Крепкий водный раствор бромида лития с восстановленной концентрацией насосом перекачивают в отсек крепкого раствора. Из отсека крепкого раствора насосом раствор подают в вакуумную камеру, замыкая цикл, а испарившуюся из раствора воду удаляют в окружающую среду через конденсатор. Суспензию с концентрацией твердой фазы 50% удаляют из вакуумной камеры в резервуар хранения суспензии. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к холодильной технике, в частности к способам получения льдосодержащих суспензий из морской воды, установкам для получения льда, и может быть использовано в пищевой промышленности, а также в рыбной отрасли для сохранения улова.
Известен способ получения льдосодержащих суспензий, заключающийся в выделении твердой фазы из находящейся под вакуумом воды или водных растворов различных солей (NaCl, CaCl2) (Маринюк Б.Т. Вакуумно-сублимационная установка для получения водного льда. - Холодильная техника., 2008, №3, с.36). Метод адиабатного расширения за счет отвода внутренней энергии жидкой фазы вакуум-компрессором реализован сразу двумя способами: дискретно организованным послойным намораживанием отдельных порций жидкой фазы в вакуумном испарителе и непрерывным распылением кристаллизующейся в полете жидкой фазы в вакуумный испаритель через распылительные форсунки.
Основное преимущество перед традиционными: «образование льда идет практически на поверхности раздела вода-пар и термосопротивление слоя водяного льда не оказывает отрицательного влияния на интенсивность его образования». Однако повышенное термическое сопротивление тепловому потоку приводит к необходимости увеличивать температурный напор между средами, участвующими в теплообмене, что влечет за собой повышение расхода энергии.
Известен также способ получения твердой фазы методом ее выделения из морской воды в вакуумной камере опреснительной установки абсорбционного типа. Компания «Carrier Corporation» в 1959 году ввела в эксплуатацию опреснитель, представляющий собой бромисто-литиевую абсорбционную холодильную машину, в вакуумной камере 1 которой (фигура 1), проходили одновременно процессы кипения и кристаллизации морской воды (Mechanical Engineering University of Nevada Reno, Nevada «Desalination and Water Purification Research and Development». Program Final Report No. 78. November 2003 - прототип). В теплоизолированной (адиабатной) вакуумной камере происходило снижение температуры морской воды за счет испарения водяного пара с ее поверхности. Испарение водяного пара, в свою очередь, проходило за счет разрежения, которое создавалось абсорбцией (поглощением) водяного пара из объема вакуумной камеры в пленку «крепкого» раствора бромида лития, стекающего по боковой поверхности вакуумной камеры. По мере испарения водяных паров с поверхности морской воды ее температура снижалась, т.к. процесс испарения проходит с поглощением теплоты (2500 кДж/кг). В зависимости от степени разрежения испарение могло переходить в кипение. Кипение - это объемное испарение, т.е. по своей физической сути тот же процесс, но отличающейся только интенсивностью. Как только температура морской воды достигала «-2°C» (морская вода является раствором с концентрацией 0,035, что определяет ее пониженную по сравнению с чистой водой температуру кристаллизации), т.е. криоскопической точки, из нее выделялся первый кристалл с концентрацией ноль, т.е. состоящий из чистой воды. Именно в этот момент состояние морской воды достигало тройной точки, т.к. в кипящей жидкости появлялась твердая фаза. За счет выделения из морской воды кристаллов с концентрацией ноль, концентрация оставшейся в резервуаре морской воды, т.е. раствора, повышалась. К моменту выделения из морской воды кристаллов в количестве 50% от начального количества температура процесса выделения кристаллов (криоскопическая температура) снижалась до «-4,5°C».
Таким образом, в теплоизолированной вакуумной камере абсорбционной машины проходит кипение морской воды за счет ее же кристаллизации. Процесс кипения требует подвода теплоты в количестве 2500 кДж/кг (при давлении 600 Па), а процесс кристаллизации - отвода теплоты в количестве 335 кДж/кг (при давлении 600 Па). За счет разрежения, создаваемого водным раствором бромида лития, в вакуумной камере абсорбционной машины при давлении 600 Па (тройная точка воды) проходят одновременно процессы кипения и кристаллизации. Испарение 1 кг приводит к кристаллизации 7,5 кг, в результате чего кипящая вода в вакуумной камере превращается в суспензию, представляющую собой смесь жидкой фазы и кристаллов льда. В опреснителе компании «Carrier Corporation» после получения суспензии от нее отделяли твердую фазу, т.е. кристаллы пресного льда, плавили и получали пресную воду как готовый продукт.
Недостатком известного способа является отсутствие механизмов целенаправленного воздействия на процесс фазового превращения жидкость - твердое тело и, соответственно, на его удельные энергетические затраты.
Задачей заявляемого изобретения является получение льдосодержащей суспензии заданных свойств (низкой вязкости) за счет получения кристаллов сферической формы и размерами от 0,1 до 0,5 мм.
Поставленная задача решается тем, что в способе получения льдосодержащей суспензии из морской воды, включающем вакуумирование, кипение морской воды, испарение водяного пара и поглощение его раствором бромида лития, кристаллизацию морской воды с образованием суспензии, представляющей собой смесь жидкой фазы и кристаллов льда, морскую воду в процессе вакуумирования на стадии образования суспензии дополнительно подвергают воздействию ультразвуковых колебаний до образованием суспензии с кристаллами льда сферической формы диаметром 0,1-0,5 мм с последующим отводом в резервуар хранения для использования суспензии как хладоносителя в качестве криоконсерванта для сохранения гидробионтов.
Поставленная задача решается также тем, что установка для получения льдосодержащей суспензии, содержащая теплоизолированную вакуумную камеру, генератор восстановления концентрации бромида лития с последующим удалением водяного пара в окружающую среду и содержащая резервуар для хранения морской воды, дополнительно снабжена генератором ультразвуковых колебаний с функцией подключения к боковой поверхности вакуумной камеры и снабжена резервуаром хранения суспензии.
Суспензию, образовавшуюся в вакуумной камере абсорбционной установки, как хладоноситель можно использовать в рыбной промышленности в качестве криоконсерванта для сохранения гидробионтов от момента их извлечения из орудий лова до переработки. Суспензии, применяемые в рыбной промышленности для сохранения гидробионтов, должны иметь низкую вязкость для того, чтобы их возможно было перекачивать насосом по трубопроводам. Вязкость суспензии зависит от формы кристаллов, которые входят в ее состав. Кристаллы небольших размеров и имеющие сферическую форму создают суспензии низкой вязкости, и наоборот, крупные кристаллы (диаметр более 1 мм) разветвленной (дендритной) структуры образуют суспензии повышенной вязкости, перекачивание которых по трубопроводам приводит к перерасходу электроэнергии. С целью снижения вязкости суспензии на боковой поверхности вакуумной камеры установлен генератор ультразвуковых колебаний. Акустические колебания в диапазоне от 60 до 65 кГц формируют в вакуумной камере абсорбционной установки небольшие по размеру (0,1…0,5 мм) кристаллы сферической формы. Предлагаемая абсорбционная установка реализует предлагаемый способ.
Следовательно, способ получения льдосодержащей суспензии и установка для его осуществления объединены единым изобретательским замыслом, на решение которого они направлены, т.к. только посредством всей совокупности существенных признаков заявленных способа и устройства для его осуществления достигается единый технический результат - получение кристаллов сферической формы диаметром 0,1-0,5 мм. Кроме этого, абсорбционная установка потребляет энергию теплоты, а не электроэнергию, как холодильные машины других принципов действия. Данное обстоятельство может быть значимым при дефиците электроэнергии на рыбоперерабатывающих предприятиях островных территорий Дальнего Востока РФ. В качестве теплоты, поступающей в установку, возможно использовать пар низкого давления (с температурой около 100°С), который выходит из автоклавов рыбоконсервных линий. Таким образом, суспензия, необходимая рыбокомбинату для сохранения улова, может быть получена за счет низкопотенциальной тепловой энергии, сбрасываемой обычно в окружающую среду.
Совокупность существенных признаков заявленных способа получения льдосодержащей суспензии из морской воды и установки для его осуществления имеют причинно-следственную связь с достигнутым техническим результатом, т.е. благодаря данной совокупности существенных признаков способа и устройства стало возможным решить поставленную техническую задачу.
На основании изложенного можно заключить, что заявленные способ получения льдосодержащей суспензии из морской воды и установка для его осуществления являются новыми, обладают изобретательским уровнем, т.е. они явным образом не следуют из уровня техники и пригодны для промышленного применения.
Сущность заявленных способа получения льдосодержащей суспензии из морской воды и установка для его осуществления поясняется чертежом, на котором приведена принципиальная схема установки получения льдосодержащей суспензии. Установка содержит вакуумную камеру 1; генератор восстановления концентрации бромида лития 2; резервуар для хранения морской воды 3; насосы для перекачивания раствора бромида лития 4, 5, 6; конденсатор 7; генератор ультразвуковых колебаний 8; резервуар хранения льдосодержащей суспензии 9.
Способ получения льдосодержащей суспензии из морской воды осуществляют следующим образом.
Насос подает в вакуумную камеру «крепкий», т.е. высококонцентрированный, раствор бромида лития, который, стекая по боковой поверхности вакуумной камеры, поглощает пары морской воды. Морская вода в результате создавшегося вакуума, равного 600 Па, кипит при температуре «-2°C» с одновременным выделением кристаллов. Генератор ультразвуковых колебаний создает в резервуаре с кипящей морской водой акустическое поле, характеризующееся наличием волн, т.е. колебаний с частотой 60…65 кГц. Воздействие акустического поля, указанных параметров, приводит к образованию кристаллов сферической формы и диаметром от 0,1 до 0,5 мм. Раствор бромида лития, потерявший свою концентрацию по причине поглощения паров воды, удаляют из вакуумной камеры насосом в отсек «слабого» раствора генератора для восстановления концентрации бромида лития. В отсек «слабого» раствора подается теплота десорбции для восстановления концентрации раствора. Раствор с восстановленной концентрацией бромида лития подают насосом в отсек «крепкого» раствора, из которого насосом подают его в вакуумную камеру по замкнутому циклу. Водяной пар, испарившийся из раствора в генераторе восстановления концентрации бромида лития, подают в конденсатор, где он конденсируется за счет охлаждения и выводится в окружающую среду, реализуя разомкнутый цикл. Как было сказано выше, движение водного раствора бромида лития осуществляется по замкнутому циклу, а движение воды, испарившейся из морской воды в вакуумной камере, осуществляется по разомкнутому циклу, т.е. с выводом в окружающую среду из конденсатора. Полученная в вакуумной камере суспензия, с кристаллами сферической формы, отправляется в резервуар хранения, а в вакуумную камеру, по мере необходимости, поступает морская вода из резервуара.
Работа установки осуществляется следующим образом.
Морскую воду подают в вакуумную камеру 1 из резервуара 3, в вакуумной камере 1 при давлении 600 Па и температуре от «-2°C» до «-4,5°C» морская вода закипает и одновременно образует кристаллы. Генератор ультразвуковых колебаний 8 создает в резервуаре с кипящей морской водой акустическое поле, характеризующееся наличием волн, т.е. колебаний с частотой 60…65 кГц. Воздействие акустического поля, указанных параметров, приводит к образованию кристаллов сферической формы диаметром от 0,1 до 0,5 мм. Высококонцентрированный «крепкий» раствор бромида лития, который является высокоэффективным абсорбентом водяных паров, стекает по боковой поверхности вакуумной камеры 1 и поглощает образовавшиеся пары воды. Насос 4 постоянно удаляет водный раствор бромида лития в отсек «слабого» раствора генератора восстановления концентрации бромида лития 2, где его концентрация восстанавливается за счет выпаривания воды низкопотенциальной теплотой. «Крепкий» водный раствор бромида лития с восстановленной концентрацией насосом 5 перекачивают в отсек «крепкого» раствора. Из отсека «крепкого» раствора насосом 6 раствор подают в вакуумную камеру 1, замыкая цикл, а испарившуюся из раствора воду удаляют в окружающую среду через конденсатор 7. Суспензию с концентрацией твердой фазы 50% удаляют из вакуумной камеры 1 в резервуар хранения суспензии 9.

Claims (2)

1. Способ получения льдосодержащей суспензии из морской воды, включающий вакуумирование, кипение морской воды, испарение водяного пара и поглощение его раствором бромида лития, кристаллизацию морской воды с образованием суспензии, представляющей собой смесь жидкой фазы и кристаллов льда, отличающийся тем, что морскую воду в процессе вакуумирования на стадии образования суспензии дополнительно подвергают воздействию ультразвуковых колебаний до образования суспензии с кристаллами льда сферической формы диаметром 0,1-0,5 мм с последующим отводом ее в резервуар хранения для использования в качестве хладоносителя, как криоконсерванта для сохранения гидробионтов.
2. Установка для получения льдосодержащей суспензии, содержащая теплоизолированную вакуумную камеру, генератор для восстановления концентрации бромида лития с последующим удалением водяного пара в окружающую среду и резервуар для хранения морской воды, отличающаяся тем, что установка дополнительно снабжена генератором ультразвуковых колебаний с функцией подключения к боковой поверхности вакуумной камеры, и установлен резервуар хранения суспензии.
RU2010105778/05A 2010-02-17 2010-02-17 Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления RU2433957C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010105778/05A RU2433957C1 (ru) 2010-02-17 2010-02-17 Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010105778/05A RU2433957C1 (ru) 2010-02-17 2010-02-17 Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления

Publications (2)

Publication Number Publication Date
RU2010105778A RU2010105778A (ru) 2011-08-27
RU2433957C1 true RU2433957C1 (ru) 2011-11-20

Family

ID=44756237

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010105778/05A RU2433957C1 (ru) 2010-02-17 2010-02-17 Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления

Country Status (1)

Country Link
RU (1) RU2433957C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374757A (zh) * 2018-10-30 2019-02-22 中国海洋石油集团有限公司 应用声波幅度定量化处理评价火成岩储层有效性的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240083776A1 (en) * 2021-02-22 2024-03-14 Khalifa University of Science and Technology Integrated thermoacoustic freeze desalination systems and processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374757A (zh) * 2018-10-30 2019-02-22 中国海洋石油集团有限公司 应用声波幅度定量化处理评价火成岩储层有效性的方法

Also Published As

Publication number Publication date
RU2010105778A (ru) 2011-08-27

Similar Documents

Publication Publication Date Title
Kalista et al. Current development and future prospect review of freeze desalination
JP5855682B2 (ja) 脱塩システム
CN201589481U (zh) 利用海水制取流化冰的系统
CA2847237C (en) Evaporative treatment method for aqueous solution
Janajreh et al. Freeze desalination: current research development and future prospects
JP4049221B2 (ja) 電解海水氷生成システム、電解海水生成装置、及び鮮魚保存方法
Shin et al. Optimization of simplified freeze desalination with surface scraped freeze crystallizer for producing irrigation water without seeding
CN107062723A (zh) 一种利用超声波促进海水流化冰成核的装置及其方法
RU2433957C1 (ru) Способ получения льдосодержащей суспензии из морской воды и установка для его осуществления
CN106219647A (zh) 一种高效海水淡化装置
CN104006594B (zh) 淡水/海水两用的管状冰制冰机及其制冰工艺
CN100450572C (zh) 一种界面渐进冷冻浓缩方法
RU2009122348A (ru) Система и способ охлаждения устройства на борту воздушного судна
CN201569202U (zh) 降幕式冷水机制冷控制装置
Altohamy et al. An experimental study of a newly designed freezing desalination unit equipped with reversed vapor compression cycle
Rahman et al. Freezing‐Melting Desalination Process
Rashad et al. An experimental investigation on a crushing and washing-free freezing desalination system based on brine extraction during melting
RU2454616C1 (ru) Генератор льда и способ генерирования льда
Hongfen et al. Vacuum ice-making technology and characteristic analysis
RU2553880C2 (ru) Устройство и способ для опреснения морской воды
CN205634959U (zh) 一种连续式冷冻法间接海水淡化装置
Rashad et al. Single-stage freezing desalination study with slurry pressing piston and enhanced vacuum for brine extraction
CN209726591U (zh) 一种超小型片冰机蒸发器
Pamitran et al. A review paper of sea-water ice slurry generator and its application on Indonesian traditional fishing
KR101772281B1 (ko) 해수를 담수와 소금으로 분리하는 분리장치 및 그 방법