JP4048856B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4048856B2
JP4048856B2 JP2002208566A JP2002208566A JP4048856B2 JP 4048856 B2 JP4048856 B2 JP 4048856B2 JP 2002208566 A JP2002208566 A JP 2002208566A JP 2002208566 A JP2002208566 A JP 2002208566A JP 4048856 B2 JP4048856 B2 JP 4048856B2
Authority
JP
Japan
Prior art keywords
conductivity type
well region
region
drift layer
type well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208566A
Other languages
English (en)
Other versions
JP2004063479A (ja
Inventor
大輔 岸本
龍 斎藤
岳志 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002208566A priority Critical patent/JP4048856B2/ja
Publication of JP2004063479A publication Critical patent/JP2004063479A/ja
Application granted granted Critical
Publication of JP4048856B2 publication Critical patent/JP4048856B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thyristors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、トレンチゲート構造を有する電力用半導体装置に関し、特にトレンチ形状およびトレンチを埋め込むゲート電極形状のばらつきに起因する電気特性のばらつきを防止して、均一な電気特性の得られる電力用半導体装置の製造方法に関する。
【0002】
【従来の技術】
高耐圧半導体素子の一つとしてトレンチゲート構造を持つ絶縁ゲート電界効果トランジスタ(以下MOSFETと記す)がある。
図10は、従来のトレンチゲート型MOSFETの要部断面図である。実際のMOSFETでははるかに多いトレンチが設けられているが、図面が煩雑になるのを避けるため3本だけ示している。なお、以下でn、またはpを冠した層または領域は、それぞれ電子、正孔を多数キャリアとする層または領域を意味し、+-はそれぞれ比較的不純物濃度の高い、或いは低いことを意味している。
【0003】
高比抵抗のnドリフト層1の表面層に選択的にpウェル領域3が形成され、そのpウェル領域3の表面からnドリフト層1に達するトレンチ5が掘り下げられ、その内部にゲート絶縁膜7を介してゲート電極8が埋め込まれている。二つのトレンチ5間に挟まれたpウェル領域3の表面層には、n+ソース領域11とそれより深いp+コンタクト領域12が形成されていて、n+ソース領域11とp+コンタクト領域12との表面に共通に接触するソース電極14が設けられている。2は例えば高濃度のn+ドレイン領域であり、その裏面にドレイン電極15が設けられている。ゲート電極8に対向するpウェル領域3の領域が電流制御がおこなわれるチャネル部である。なお、pウェル領域3内には、濃淡が見られるが、p型不純物の濃度が高い程黒く示されており、最も不純物濃度の高い領域20は、表面直下である。また図示しない断面でゲート電極8に接触する金属ゲート電極が設けられる。
【0004】
図10において、2を高濃度のp+コレクタ領域とすれば、トレンチゲート型IGBT(絶縁ゲートバイポーラトランジスタ)となる。
【0005】
【発明が解決しようとする課題】
しかし、これまでのトレンチゲート型MOSFETの製造技術、特にトレンチの形成技術によれば、開口部の形状をはじめとするトレンチ形状の制御が十分にできないため、形状に数10〜数100nmオーダーの面内ばらつきが発生する問題があった。
【0006】
例えば図10のMOSFETでは少し誇張した表現をしているが、トレンチ5内に埋め込まれたゲート電極8の上部の形状が一様でなく、そのゲート電極8をマスクにして選択的に形成されたn+ソース領域11の深さ(d11)がばらついている。
このようにトレンチ形状やトレンチ開口部形状のばらつきは、ゲート絶縁膜の厚さ、ゲート絶縁膜への不純物吸い出しによる不純物濃度プロファイルの変化、第1導電型のソース領域の探さ(d11)などのばらつきを招く。これらの形状ばらつきは、電気特性に大きな影響を与えるため、電気特性のばらつきが避けられなかった。たとえばMOSFETの閾値電圧(Vth)のウェハー面内ばらつきが10%を超えることもあった。
【0007】
発明者らは、電気特性が形状の影響を受け易い最大の原因が、pウェル領域3の不純物濃度のピーク位置20が表面付近に存在することにあることを見いだした。
図4(a)は図10のA−A'断面に沿った不純物濃度を深さ方向にプロットした濃度プロフィル図である。
【0008】
pウェル領域3のもともとの不純物濃度のピーク位置は、表面直下にありn+ソース領域11の不純物によって覆い隠される形になる。このとき、電気特性は両者の不純物濃度を相殺した値で決まるので、n+ソース領域11の不純物の拡散深さがわずかに変化するだけで、pウェル領域3の不純物濃度の相殺後のピーク位置21およびその点の不純物濃度が変化し、電気特性が大幅に変化することになる。
【0009】
以上の問題に鑑み本発明の目的は、現状のトレンチ形成技術により、加工形状に面内ばらつきが生じても、これが電気特性に影響をおよぼさないような半導体装置の構造と、その製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するため本発明は、トレンチゲート型MOSFETにおいて、電気的特性に大きな影響を与えるチャネル部を構成する第2導電型ウェル領域の不純物濃度のピーク位置を深くして、トレンチ形成時の形状ばらつき等に起因する電気特性のばらつき、および加工形状のばらつきに起因する不純物濃度のばらつきを介しての電気特性のばらつき等が生じることのないようにするものである。
【0011】
すなわち、高抵抗の第1導電型ドリフト層と、該第1導電型ドリフト層の表面層に形成された第2導電型ウェル領域と、該第2導電型ウェル領域の表面層に形成され、第1導電型ドリフト層に接続しない第1導電型ソース領域と、第1導電型ソース領域の表面から第2導電型ウェル領域を貫通して前記第1導電型ドリフト層に達するトレンチと、該トレンチの内壁に形成されたゲート絶縁膜と、該ゲート絶縁膜を介して第2導電型ウェル領域に対向するゲート電極層とを有する半導体装置において、第2導電型ウェル領域の第2導電型不純物のピーク濃度の深さd20が、第1導電型ソース領域の深さd11よりも深いものとし、第2導電型ウェル領域をエピタキシャル成長法によって形成する。
【0012】
そのようにすれば、電気的特性に大きな影響を与えるチャネル部を構成する第2導電型ウェル領域のピークの不純物濃度が変動しないので、トレンチ形成時の形状ばらつき等の影響を低減でき、安定した特性が得られる。
特に、第2導電型ウェル領域の表面層に、第2導電型不純物の濃度のピーク深さd20に達する第2導電型コンタクト領域を形成するものとすれ、第2導電型ウェル領域を流れる正孔電流に対する抵抗が低減されるので、特性が一層安定化する。
【0013】
更に、d20が前記トレンチの深さd5の1/3以上の探さであるものとすれば、一般的に第1導電型ソース領域の深さd11よりも十分深く、第1導電型ソース領域の不純物の影響を受けない位置になる。
また、d20が1μm以上の深さであれば、一般的に第1導電型ソース領域の深さd11よりも深く、第1導電型ソース領域の不純物の影響を受けない位置になる。
【0014】
そして、上記のようなエピタキシャル成長法による半導体装置の製造方法以外に、イオン注入時のチャネリング効果を利用して第2導電型ウェル領域を形成することもできるが、本願発明はエピタキシャル成長法を適用する。
イオン注入により、深い不純物領域を形成するには、加速電圧を高くしなければならず困難であるとともに、結晶欠陥を増やす原因となる。チャネリング効果を利用すれば加速電圧をそれほど高くしなくても、深い不純物領域を形成できる。
【0015】
また、下記のような方法でエピタキシャル成長法によって第2導電型ウェル領域を形成することもできる。
例えば、第1導電型ドリフト層の表面に絶縁性マスクを形成する工程と、該絶縁性マスクに窓あけを行い第1導電型ドリフト層の表面の一部を露出させる工程と、その露出した表面領域をエッチングする工程と、エッチングにより除去された領域に第2導電型ウェル領域をエピタキシャル成長したり、第1導電型ドリフト層の表面上にエピタキシャル成長法により全面に第2導電型ウェル領域を形成した後、その一部を除去し、そこに再び第1導電型の半導体層をエピタキシャル成長により形成することもできる。
【0016】
何れの方法でも深いイオン注入が不要であり、またエピタキシャル成長時の不純物濃度の制御が容易である。
エピタキシャル成長終了後、絶縁性マスクを除去する工程と、絶縁性マスクの端部に発生したポリシリコンポリシングにより除去するものとする。
表面に絶縁性マスクやポリシリコンが残ると悪影響を与えるので除去する。
【0017】
【発明の実施の形態】
以下、この発明の実施形態について図面を参照して説明する。本発明はトレンチゲート構造を有するMOSFETにおいて、後述するpウェル領域3の不純物濃度分布とその形成方法にかかわるもので、ソース構造およびドレイン構造は任意である。また、MOSFETだけでなく、表面にトレンチゲート構造を持つIGBTや絶縁ゲート型サイリスタなどの各デバイスにも適用される。また、トレンチパターンはストライプ形状のものを例示するが、必ずしもストライプ形状である必要はなく、ドーナツ状パターン、格子状パターン、円形パターンであっても構わない。〔第1の実施形態〕
図1は、この発明の第1の実施形態に係るトレンチゲート型MOSFETの要部断面図である。他に耐圧構造部が主に周縁部に設けられるが、その部分は他の一般の高耐圧半導体装置と同様で良いので省略する。なお、以下の説明では、nチャネル型のトレンチゲート型MOSFETを例示する。図10と同じ部分には同じ記号が付されている。図面が煩雑になるのを避けるため3本だけ示している。また、pウェル領域3内には、図10と同様にp型不純物、例えばほう素(以下Bと記す)の濃度が高い程黒く示されている。
【0018】
図10の従来のMOSFETとの違いは、pウェル領域3のBのピーク濃度の領域20が(表面からの深さd20)、n+ソース領域11の深さ(d11)より深い位置にある点である(d20>d11)。例えばトレンチ5の深さ(d5)が3μmの場合、d20はその1/3である1μm以上となるようにイオン注入や熱処理条件を調整することが望ましい。
【0019】
このような構造とすれば、トレンチ5の形成時のばらつきや、或いはゲート電極層8をマスクとしたn+ソース領域11の形成をおこなってその深さd11がばらついても、pウェル領域3のBのピーク濃度は変化せず、MOSFETの電気的特性が安定する。図1において、切断線B−B'に沿って不純物濃度のプロファイルを深さ方向にグラフにすると、図4(b)に示すようになる。図4(b)において、点線は、n+ソース領域11が形成される前のpウェル領域3の不純物濃度を示している。また、図4(a)と比較するとpウェル領域3の不純物濃度のピーク位置d20が非常に深い位置にあることがわかる。そして、n+ソース領域11の深さd11が変動しても、d20におけるpウェル領域3の不純物濃度ピークは不変である。
【0020】
従って、電気特性のばらつきは、イオン打ち込み工程および酸化拡散工程における面内均一性によって決定されることがわかる。これらの面内均一性は1 σ(統計上の分散)で2%以内であり、トレンチ形状の面内均一性に比べれば十分高い。従って、トレンチ形状に面内ばらつきがあっても、電気特性はほとんどばらつかないMOSFETを製造することが可能となる。
【0021】
図2(a)〜(d)および図3(a)、(b)は、図1のトレンチゲート型MOSFETを主要な製造工程ごとに示した断面図である。以下、図の順に従って製造方法を説明する。
まず、低抵抗のn+ドレイン領域2と高抵抗のnドリフト層1をもつ半導体基板を準備する〔図2(a)〕。例えばn+ドレイン領域2上にnドリフト層1を成長したエピタキシャルウェハを使用すれば良い。但しn+ レイン領域2の形成は必ずしも最初に行う必要はなく、高抵抗のウエハを用いて、以下に述べる工程の途中で形成しても良いし、最後に形成しても良い。
【0022】
次に、図示しないマスクを使って、nドリフト層1の表面領域のうち、耐圧構造部を除く領域に、例えばイオン注入および熱処理によりpウェル領域3を形成する〔同図(b)〕。nドリフト層1の材料がシリコンである場合、通常はBをイオン注入する。このとき、Bが表面より深く、B濃度のピーク位置20が存在する深さd20が、後述するトレンチ5の深さの1/3以上となるように調整することが望ましい。なおこの図では、pウェル領域3の不純物濃度の高低を濃淡で表していて、黒い所程不純物濃度が高いことを示している。従って濃度のピーク位置は、最も黒い部分である。
【0023】
たとえばトレンチ5の深さが3μmのときは、d20は1μm以上であることが望ましい。
ただし、このpウェル領域3は、本イオン打ち込み工程後にゲート酸化工程などの多数の熱履歴を経るので、探さd20はその熱履歴中の拡散現象や吸い出し現象により少しずつ変化する。従って、最終的に製品が完成した段階でd20が1μm以上であればよい。
【0024】
Bイオンを深く侵入させるための手段として2種類の方法がある。一つ目は、イオン注入時の加速電圧を高める方法である。二つ目はイオンを半導体基板の表面に対して垂直に近い角度で打ち込み、チャネリング効果を利用してイオンを深く侵入させる方法である。
前者の方法では、イオン注入角度7度以上で加速電圧を50keV〜100keV程度とする。ただし、加速電圧が大きい結果、結晶にダメージを与えやすい問題がある。後者の方法では、イオン打ち込み角度を0度〜7度の範囲とし、加速電圧は50keV以下でよい。ただし、打ち込み角度がずれたときに、イオン濃度分布が大幅に変わってしまう問題があるので、注意が必要である。
【0025】
イオン注入後、ドライブと熱酸化を行い、pウェル領域3において不純物イオンを活性化させつつ拡散させる。続いて、pウェル領域3の表面領域に絶縁性マスク4を形成する〔同図(c)〕。絶縁性マスク4は通常、熱酸化膜を使うが、熱酸化工程において、pウェル領域3を形成するBイオンの一部は、酸化膜中に吸い出される。この過程でも、pウェル領域3を深さ方向に見た不純物濃度のプロファイルは変化し、表面付近の不純物濃度が引き下げられる結果、ピーク位置20は深い方向に移動する傾向がある。その後の結果として、d20が1μm以上という条件を達成できればよい。
【0026】
次いで、図示しないマスクを使って絶縁性マスク4にストライプ状の窓あけを行い、開口4部をドライエッチングまたは異方性ウェットエッチングを利用してエッチングし、トレンチ5を形成する〔同図(d)〕。
次いで、トレンチ5の内壁に洗浄工程とダメージ除去工程を施す。続いて絶縁性マスク4を除去し、ゲート酸化膜7を形成する〔図3(a)〕。
【0027】
これらの、洗浄からゲート酸化膜7の形成にいたる一連の工程において、トレンチ開口部が丸くなり、面取り部6が現れる。面取り部6は、滑らかな形状を作り出しゲート耐圧を上げるなど、良い効果を持つ。しかしながら、図3(a)に示すように、面取り形状6を十分に制御することは難しく、数10nm〜数100nmオーダーのばらつきが生じることがある。
【0028】
このように、面取り形状6にウェハー面内ばらつきが生じる結果、これより後の工程でゲート酸化膜7の厚さがばらつき、さらにpウェル領域3からゲート酸化膜7に吸い出される不純物量もばらつく。従って、トレンチ開口部付近ではpウェル領域3のキャリア密度もばらつく。
さらに、トレンチ内に例えばポリシリコンを堆積し、余分な部分を除去してゲート電極8を形成する。ゲート電極8をマスクとしてn+ソース領域11を形成し、p+コンタクト領域12を形成する[ 同図(b)〕。
【0029】
その際のゲート電極8の加工形状も、面取り形状6の影響を受けて、ウェハー面内ばらつきをもつ。続いて形成されるn+ソース領域11は、ゲート電極8をマスクとして形成されるため、その形状ばらつきの影響を受けてn+ソース領域11の深さd11も面内でばらつく。
これらのばらつきの発生は、現在のトレンチ形成技術では避けられないものである。特に、pウェル領域3の不純物濃度がばらつくことは、MOSFETの閾電圧(Vth)やオン抵抗をはじめとする電気特性の大きなばらつきをもたらす。
【0030】
しかし、n+ソース領域11の深さd11を、pウェル領域3の不純物ピークが存在する深さd20に達しないように形成すれば、例えばd20がトレンチ深さに対して1/3以上の大きさであれば、現在の加工技術でもd11<d20の条件を達成することは可能である。〔第2の実施形態〕
図5は、この発明の第2の実施形態にかかるトレンチゲート型MOSFETの要部断面図である。
【0031】
第1の実施形態との違いは、p+コンタクト領域12が深く形成されていて、殆どpウェル領域3のピーク濃度の深さd20に達している点である。通常p+コンタクト領域12は、n+ソース領域11と同程度の深さまで形成されるので、pウェル領域3において、p型不純物濃度はピークと比較すれば低めになる。そして、p型不純物濃度が低い結果として、正孔電流に対するpウェル領域3の抵抗が大きくなり、ターンオフ動作時にラッチアップしやすくなり誘導負荷耐量が下がってしまう。
【0032】
本実施例のように、p+コンタクト領域12の下端がd20に達するように形成すると、正孔電流に対する抵抗値が低いパスが形成されるため、誘導負荷耐量を高く維持することができる。
〔第3の実施形態〕
図6は、この発明の第3の実施形態にかかるトレンチゲート型MOSFETの要部断面図である。
【0033】
第1の実施形態との違いは、pウェル領域3の形成方法が異なり、形状がやや異なる点である。
本発明では、pウェル領域3を形成する際、不純物をnドリフト層1の表面より極めて深い場所まで届けなければならない。第1の実施形態では、イオン注入技術による方法を示したが、面内ばらつきやウェハー間ばらつきを軽減し、安定したプロセスとするためには、エピタキシャル成長を使う方法も考えられる。
【0034】
図7(a)〜(c)は、図6のトレンチゲート型MOSFETを主要な製造工程ごとに示した断面図である。以下、図の順に従って製造方法を説明する。
まず、第1の実施形態と同じ低抵抗のn+ドレイン領域2と高抵抗のnドリフト層1をもつ半導体基板を準備し、次にnドリフト層1の表面領域に絶縁性マスク30を形成する〔図7(a)〕。
【0035】
次に、図示しないマスクを使って絶縁性マスク30に窓あけし、続いてドライエッチングまたはウェットエッチングによって、開口部をエッチングする〔同図(b)〕。このとき、エッチングされた領域の底部は丸みがついているのが望ましい。丸みがついていると、その部分での電界集中が防がれるため、pウェル領域3を形成したとき、pウェル領域3とnドリフト層1との間のpn接合の逆耐圧を高く保つことができる利点がある。
【0036】
次いで、pウェル領域3をエピタキシャル成長によって形成する〔同図(c)〕。このとき、不純物濃度のピーク位置が深くなるように、ドーピングプロファイルを調整する。エピタキシャル成長法は、量産性とドーピング制御性を上げるため、CVD(Chemical Vapor Deposition)法とするのがよい。このとき、絶縁性マスク30にポリシリコンが付着しないよう、CVD成長中は塩素(以下Clと記す)などのハロゲンを供給するのが望ましい。ハロゲンの供給方法は、ジクロロシランなどのように成長ガスの分子にClを含ませておいてもよいし、塩酸ガスHClや塩素ガスCl2を別途供給してもよい。
【0037】
また、ハロゲンを供給しても、図7(c)に示すように絶縁性マスク30の端部にポリシリコン31が発生することは避けられない場合がある。このような場合は、絶縁性マスク30を除去したのち、表面領域にポリシングをかけて、図2(b)のような表面形状を得る。
これに続く工程は、第1の実施形態に示したものと同様である。
〔第4の実施形態〕
図8は、この発明の第4の実施形態にかかるトレンチゲート型MOSFETの要部断面図である。
【0038】
第1の実施形態との違いは、pウェル領域3の形成方法が異なり、形状がやや異なる点である。
図2(a)の平坦なウェハーの状態で、nドリフト層1の表面領域にエピタキシャル成長により、pウェル領域3を形成する〔図9(a)〕。このとき、第3の実施形態と同様にドーピングプロファイルを制御する。
【0039】
続いて、pウェル領域3の表面領域に絶縁性マスク30を形成する〔同図(b)〕。
次いで、図示しないマスクにより絶縁性マスク30に窓あけを行う。ここで、窓あけを行う領域は、チップ周辺部の耐圧構造として機能する。次に、露出したpウェル領域3をドライエッチングまたはウェットエッチングによりエッチングし、nドリフト層1に達するまでエッチングする〔同図(c)〕。
【0040】
続いて、エッチングして除去した領域に再度エピタキシャル成長により高抵抗の第二nドリフト層1bを形成する〔同図(d)〕。
この後、絶縁性マスク30を除去し、表面にポリシングをかけて図2(b)のような表面形状を得る。これに続く工程は、第1の実施形態に示したものと同様である。
【0041】
本実施形態によれば、pウェル領域3のエピタキシャル成長を平坦なウェハー上で行うことができるため、面内均一性やドーピング制御性が最も良くなる。しかし、工程数が増え、また半導体領域3の底部の隅の形状が尖った形になるため、MOSFETとしては耐圧が低くなる問題がある。
【0042】
【発明の効果】
以上説明したように本発明によれば、トレンチゲート構造を持つ電力用半導体装置において、電気的特性に大きな影響を与えるチャネル部を構成する第2導電型ウェル領域の不純物濃度のピーク位置を深くすることによって、トレンチ形成時の形状ばらつき等に起因する電気特性のばらつき、および加工形状のばらつきに起因する不純物濃度のばらつきを介した電気特性のばらつき等を抑え、安定した特性の半導体装置を得ることができる。
【0043】
そして、そのような半導体装置の製造方法についてエピタキシャル成長法による場合の要点を示した。これにより、加工制御のコストを低く抑えつつ、電気特性がそろった電力用半導体装置を、高い良品率で量産することが可能となる。
【図面の簡単な説明】
【図1】 第1の実施形態にかかるトレンチゲート型MOSFETの要部断面図
【図2】 (a)〜(d)は、図1のトレンチゲート型MOSFETを主要な製造工程ごとに示した断面図
【図3】 (a)、(b)は、図2(d)に続く主要な製造工程ごとに示した断面図
【図4】 (a)は図10のA−A'線に沿った濃度プロフィル図、(b)は図1のB−B'線に沿った濃度プロフィル図
【図5】 第2の実施形態にかかるトレンチゲート型MOSFETの要部断面図
【図6】 第3の実施形態にかかるトレンチゲート型MOSFETの要部断面図
【図7】 (a)〜(c)は、図6のトレンチゲート型MOSFETを主要な製造工程ごとに示した断面図
【図8】 第4の実施形態にかかるトレンチゲート型MOSFETの要部断面図
【図9】 (a)〜(d)は、図8のトレンチゲート型MOSFETを主要な製造工程ごとに示した断面図
【図10】 従来のトレンチゲート型MOSFETの要部断面図
【符号の説明】
1 ・・・nドリフト層
1b・・・第二nドリフト層
2 ・・・n+ドレイン領域
4 ・・・マスク絶縁膜
3 ・・・p+ウェル領域
5 ・・・トレンチ
7 ・・・ゲート絶縁膜
8 ・・・ゲート電極
10・・・レジスト
11・・・n+ソース領域
12・・・p+コンタクト領域
14・・・ソース電極
15・・・ドレイン電極
21・・・p+ウェル領域の不純物濃度の相殺後のピーク位置
30・・・マスク絶縁膜
31・・・ポリシリコン

Claims (5)

  1. 高抵抗の第1導電型ドリフト層と、該第1導電型ドリフト層の表面層に形成された第2導電型ウェル領域と、該第2導電型ウェル領域の表面層に形成され、第1導電型ドリフト層に接続しない第1導電型ソース領域と、第1導電型ソース領域の表面から第2導電型ウェル領域を貫通して前記第1導電型ドリフト層に達するトレンチと、該トレンチの内壁に形成されたゲート絶縁膜と、該ゲート絶縁膜を介して第2導電型ウェル領域に対向するゲート電極層とを有し、第2導電型ウェル領域の第2導電型不純物のピーク濃度の深さd20が、第1導電型ソース領域の深さd11よりも深い位置にある半導体装置の製造方法であって、エピタキシャル成長法によって第2導電型ウェル領域を形成することを特徴とする半導体装置の製造方法。
  2. 第1導電型ドリフト層の表面に絶縁性マスクを形成する工程と、該絶縁性マスクに窓あけを行い第1導電型ドリフト層の表面の一部を露出させる工程と、その露出した表面領域をエッチングする工程と、エッチングにより除去された領域に第2導電型ウェル領域をエピタキシャル成長法により形成する工程とを含むことを特徴とする請求項に記載の半導体装置の製造方法。
  3. 第1導電型ドリフト層の表面上にエピタキシャル成長法により第2導電型ウェル領域を形成する工程と、その第2導電型ウェル領域の表面上に絶縁性マスクを形成する工程と、該絶縁性マスクに窓あけを行い第2導電型ウェル領域の表面の一部を露出させる工程と、該露出した第2導電型ウェル領域の表面部分を少なくとも第1導電型ドリフト層に達するまでエッチングする工程と、エッチングにより除去された領域に再び第1導電型の半導体層をエピタキシャル成長により形成する工程とを含むことを特徴とする請求項に記載の半導体装置の製造方法。
  4. 高抵抗の第1導電型ドリフト層と、該第1導電型ドリフト層の表面層に形成された第2導電型ウェル領域と、該第2導電型ウェル領域の表面層に形成され、第1導電型ドリフト層に接続しない第1導電型ソース領域と、第1導電型ソース領域の表面から第2導電型ウェル領域を貫通して前記第1導電型ドリフト層に達するトレンチと、該トレンチの内壁に形成されたゲート絶縁膜と、該ゲート絶縁膜を介して第2導電型ウェル領域に対向するゲート電極層とを有し、第2導電型ウェル領域の第2導電型不純物のピーク濃度の深さd 20 が、第1導電型ソース領域の深さd 11 よりも深い位置にある半導体装置の製造方法であって、第1導電型ドリフト層の表面に絶縁性マスクを形成する工程と、該絶縁性マスクに窓あけを行い第1導電型ドリフト層の表面の一部を露出させる工程と、その露出した表面領域をエッチングする工程と、エッチングにより除去された領域に第2導電型ウェル領域をエピタキシャル成長法により形成する工程と、エピタキシャル成長終了後、絶縁性マスクを除去する工程と、絶縁性マスクの端部に発生したポリシリコンをポリシングにより除去する工程とを含むことを特徴とする半導体装置の製造方法。
  5. 高抵抗の第1導電型ドリフト層と、該第1導電型ドリフト層の表面層に形成された第2導電型ウェル領域と、該第2導電型ウェル領域の表面層に形成され、第1導電型ドリフト層に接続しない第1導電型ソース領域と、第1導電型ソース領域の表面から第2導電型ウェル領域を貫通して前記第1導電型ドリフト層に達するトレンチと、該トレンチの内壁に形成されたゲート絶縁膜と、該ゲート絶縁膜を介して第2導電型ウェル領域に対向するゲート電極層とを有し、第2導電型ウェル領域の第2導電型不純物のピーク濃度の深さd 20 が、第1導電型ソース領域の深さd 11 よりも深い位置にある半導体装置の製造方法であって、第1導電型ドリフト層の表面上にエピタキシャル成長法により第2導電型ウェル領域を 形成する工程と、その第2導電型ウェル領域の表面上に絶縁性マスクを形成する工程と、該絶縁性マスクに窓あけを行い第2導電型ウェル領域の表面の一部を露出させる工程と、該露出した第2導電型ウェル領域の表面部分を少なくとも第1導電型ドリフト層に達するまでエッチングする工程と、エッチングにより除去された領域に再び第1導電型の半導体層をエピタキシャル成長により形成する工程と、エピタキシャル成長終了後、絶縁性マスクを除去する工程と、絶縁性マスクの端部に発生したポリシリコンをポリシングにより除去する工程とを含むことを特徴とする半導体装置の製造方法。
JP2002208566A 2002-06-04 2002-07-17 半導体装置の製造方法 Expired - Fee Related JP4048856B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208566A JP4048856B2 (ja) 2002-06-04 2002-07-17 半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002162595 2002-06-04
JP2002208566A JP4048856B2 (ja) 2002-06-04 2002-07-17 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004063479A JP2004063479A (ja) 2004-02-26
JP4048856B2 true JP4048856B2 (ja) 2008-02-20

Family

ID=31949292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208566A Expired - Fee Related JP4048856B2 (ja) 2002-06-04 2002-07-17 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4048856B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319282A (ja) * 2005-05-16 2006-11-24 Fuji Electric Device Technology Co Ltd 半導体装置の製造方法
JP5026801B2 (ja) * 2007-01-17 2012-09-19 株式会社日立製作所 半導体装置の製造方法
JP5089191B2 (ja) 2007-02-16 2012-12-05 三菱電機株式会社 半導体装置およびその製造方法
JP5809877B2 (ja) * 2010-08-26 2015-11-11 新電元工業株式会社 トレンチゲート型パワー半導体装置の製造方法
JP6119577B2 (ja) * 2013-11-26 2017-04-26 三菱電機株式会社 半導体装置
JP6479615B2 (ja) 2015-09-14 2019-03-06 株式会社東芝 半導体装置の製造方法
JP6814965B2 (ja) * 2017-03-06 2021-01-20 パナソニックIpマネジメント株式会社 半導体エピタキシャルウェハ、半導体素子、および半導体素子の製造方法

Also Published As

Publication number Publication date
JP2004063479A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
US10763351B2 (en) Vertical trench DMOSFET having integrated implants forming enhancement diodes in parallel with the body diode
US8421151B2 (en) Semiconductor device and process for production thereof
JP2017139499A (ja) 炭化珪素半導体装置の製造方法
JP6880669B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US8089124B2 (en) Lateral DMOS device and method for fabricating the same
JP5774261B2 (ja) 炭化シリコン自己整合エピタキシャルmosfetおよびその製造方法
CN107039268B (zh) 碳化硅半导体装置及碳化硅半导体装置的制造方法
JP2006066439A (ja) 半導体装置およびその製造方法
JPWO2010044226A1 (ja) 半導体装置およびその製造方法
JP4842527B2 (ja) 半導体装置の製造方法
US8748980B2 (en) U-shape RESURF MOSFET devices and associated methods of manufacturing
US20060194400A1 (en) Method for fabricating a semiconductor device
US11605732B2 (en) Power device with graded channel
US9825125B2 (en) Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
JP4048856B2 (ja) 半導体装置の製造方法
JP2023110083A (ja) グリッドを製造するための方法
CN108231886B (zh) 制造半导体器件的方法以及半导体器件
KR20090066488A (ko) 수직형 트랜지스터 및 그의 제조방법
TW202234712A (zh) 具有縮短溝道長度和高Vth的碳化矽金屬氧化物半導體場效電晶體
KR102217856B1 (ko) 트렌치 게이트 하부에 쉴드를 형성하는 방법
US11024502B2 (en) Semiconductor devices and methods for forming semiconductor devices
EP3998638A1 (en) Laterally diffused metal oxide semiconductor device and manufacturing method therefor
CN116387348B (zh) 一种精确控制短沟道的平面型SiC MOSFET及其制造方法
US20230049926A1 (en) Epitaxial field stop region for semiconductor devices
US20230327014A1 (en) TRENCH SiC POWER SEMICONDUCTOR DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees