JP4042821B2 - Manufacturing method for high-strength humidity building materials - Google Patents

Manufacturing method for high-strength humidity building materials Download PDF

Info

Publication number
JP4042821B2
JP4042821B2 JP2004029637A JP2004029637A JP4042821B2 JP 4042821 B2 JP4042821 B2 JP 4042821B2 JP 2004029637 A JP2004029637 A JP 2004029637A JP 2004029637 A JP2004029637 A JP 2004029637A JP 4042821 B2 JP4042821 B2 JP 4042821B2
Authority
JP
Japan
Prior art keywords
humidity
building material
strength
producing
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004029637A
Other languages
Japanese (ja)
Other versions
JP2005219969A (en
Inventor
靖雄 芝崎
雅喜 前田
嘉伸 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004029637A priority Critical patent/JP4042821B2/en
Publication of JP2005219969A publication Critical patent/JP2005219969A/en
Application granted granted Critical
Publication of JP4042821B2 publication Critical patent/JP4042821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Building Environments (AREA)
  • Drying Of Gases (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、高強度調湿建材及びその製造方法に関するものであり、更に詳しくは、水酸化アルミニウムの焼成物の調湿性を維持しつつ、アノーサイト(CaAl2Si28)結晶の生成・焼結によって形成される高強度なフレームを有する高強度調湿建材の製造方法及びこの製造方法により製造された高強度調湿建材に関するものである。
本発明は、建材自体に調湿機能を持たせた調湿建材及びその製造方法の技術分野において、従来の調湿建材は、例えば、軽量化等の改良が求められている状況の中で、更なる高機能性と高強度を有する新素材・新製品の開発が強く要請されていることを踏まえ、すぐれた吸放湿機能を有し、しかも、これまでの調湿建材に無い高強度を有する新しいタイプの高強度調湿建材を製造することを可能とする新規な高強度調湿建材の製造技術及びその製品を提供するものである。
本発明は、例えば、粘土キラ等の産業廃棄物を再資源化し、新しいタイプの調湿建材として再利用することを可能とする新規高強度調湿建材の生産技術とその製品を提供し、当技術分野における新産業の創出を実現化するものとして有用である。
The present invention relates to a high-strength humidity building material and a method for producing the same, and more specifically, generation of anorthite (CaAl 2 Si 2 O 8 ) crystals while maintaining the humidity conditioning properties of the calcined aluminum hydroxide. The present invention relates to a method for producing a high-strength humidity building material having a high-strength frame formed by sintering, and a high-strength humidity building material produced by this production method.
The present invention is a humidity control building material having a humidity control function in the building material itself, and the conventional humidity control building material in the technical field of its manufacturing method, for example, in a situation where improvements such as weight reduction are required, Based on the strong demand for the development of new materials and products with even higher functionality and strength, it has an excellent moisture absorption and release function, yet has high strength not found in conventional humidity control building materials. The present invention provides a novel high-strength humidity-control building material manufacturing technology and its products that make it possible to manufacture a new type of high-strength humidity-control building material.
The present invention provides, for example, a new high-strength humidity building material production technology and its product that can recycle industrial waste such as clay glitter and reuse it as a new type of humidity building material. It is useful for realizing the creation of new industries in the technical field.

日本は、夏季に、南に行く程高温多湿であるため、屋内は冷房が必要とされるが、相対湿度が15%減少すると、体感温度は1℃低くなると言われ、その分、屋内で冷房に要するエネルギーも減少させることができる。室内冷房において、空調機器の設定温度を1℃高く設定することができれば、条件にもよるが、電気代として、約10%節約することができる。また、人間の成人一人は、一日約1リットルの水を水蒸気として体外に出すので、冬季には、特に、高気密住宅で、室内に居る人の数が増えるだけでも、結露などの原因になる。更に、屋内の湿度が高くなると、黴、腐朽菌或いはダニの繁殖の原因になり、延いてはアレルギー或いはアトピー性疾患を引き起こすことにもなり、一方、室内が過乾燥になっても、ハウスダストの増加を来たすと共に、皮膚疾患、呼吸器障害の原因となる。   In Japan, it is hot and humid as it goes to the south in summer, so indoor cooling is required. However, if the relative humidity decreases by 15%, the perceived temperature is said to decrease by 1 ° C. The energy required for this can also be reduced. If the set temperature of the air-conditioning equipment can be set higher by 1 ° C. in the room cooling, it is possible to save about 10% as an electricity bill depending on conditions. In addition, one human adult releases about 1 liter of water out of the body as water vapor every day, so in winter, especially in an airtight house, even if the number of people in the room increases, it can cause condensation. Become. In addition, high indoor humidity can lead to the growth of moths, decaying fungi or ticks, which in turn can lead to allergies or atopic diseases. As well as causing an increase in skin diseases, respiratory disorders.

そこで、室内空間における快適湿度の維持、美術品等の保存などのため、更には、省エネルギー上の必要性から、屋内の湿度を調整する機能を有する調湿建材が、例えば、壁材、床材、床下材、天井材、屋根裏材、内装仕上材などとして用いられるようになり、2002年8月には、調湿建材の調湿能力の評価基準を標準化するため、吸放湿性能を相互比較する方法のJIS規格として、「調湿建材の吸放湿性試験方法」(JIS A1470)が制定されるに至った。なお、その規格では、調湿により省エネルギー効果を期待できる調湿建材を「環境調和型建材」としている。   Therefore, for the purpose of maintaining comfortable humidity in indoor spaces, preserving artworks, etc., further, humidity control building materials having a function of adjusting indoor humidity from the need for energy saving include, for example, wall materials and floor materials. In August 2002, in order to standardize the evaluation standards for the humidity control capacity of humidity control building materials, the moisture absorption and desorption performances were compared with each other. As a JIS standard for the method to do this, the “Method for testing moisture absorption and desorption of moisture-controlled building materials” (JIS A1470) has been established. According to the standard, humidity-controlled building materials that can be expected to save energy by humidity control are called “environmentally conscious building materials”.

これまで、建材自体に調湿機能を持たせることにより、空調設備や電力などを必要とせずに、室内の湿度調整を行い、室内での黴繁殖、結露などを防ぐことができる調湿建材の開発が行われてきた。そして、それらの主なものとして、アロフェン系調湿建材(例えば、特許文献1参照)、ゼオライト系調湿建材(例えば、特許文献2参照)、珪藻土系調湿建材(例えば、特許文献3参照)或いはその他の調湿建材が開発されている。また、水酸化アルミニウム粉末を加熱処理して製造した多孔質アルミナが、吸放湿性を有することが知られており(例えば、特許文献4参照)、この特性を利用したものとして、アルミナ系調湿建材が、既に開発されている(例えば、特許文献5及び特許文献6参照)。   Up to now, by providing humidity control function to the building material itself, humidity control of the humidity control building material can be achieved by adjusting the humidity in the room without the need for air conditioning equipment or electric power, and preventing indoor propagation of moths and condensation. Development has been done. And as those main things, allophane type moisture-conditioning building materials (for example, refer to patent documents 1), zeolite type humidity-conditioning building materials (for example, refer to patent documents 2), diatomaceous earth type humidity-conditioning building materials (for example, refer to patent documents 3). Alternatively, other humidity conditioning materials have been developed. In addition, it is known that porous alumina produced by heat-treating aluminum hydroxide powder has moisture absorption / release properties (see, for example, Patent Document 4). Building materials have already been developed (see, for example, Patent Document 5 and Patent Document 6).

特許第3041348号公報Japanese Patent No. 3041348 特開平3−109244号公報JP-A-3-109244 特開平4−354514号公報JP-A-4-354514 特開平11−11939号公報Japanese Patent Laid-Open No. 11-11939 特開2001−122657号公報JP 2001-122657 A 特許第3469208号公報Japanese Patent No. 3469208

このように、従来、様々のタイプの調湿建材の開発が種々試みられているが、当技術分野では、建材としての性能や、調湿性、防露性、防黴性等の機能性の点から、更なる高性能化が強く求められている。例えば、従来の上記調湿建材は、建材として使用できる最低限の強度を有してはいる。しかし、昨今、建材としての軽量化等が求められており、更なる高強度化が望まれている。このような状況下にあって、本発明者らは、上記従来技術に鑑みて、上記従来技術の諸課題を抜本的に解決することを可能とする、高い調湿機能等の高機能性を有し、しかも、建材として優れた諸特性を有する新しい調湿建材を開発することを目標として鋭意研究を積み重ねた結果、カオリナイト族鉱物を主原料として使用して作製した調湿建材が、優れた吸放湿機能と高い強度を有すること、それにより、新しいタイプの調湿建材となり得ること、を見出し、更に研究を重ね、本発明を完成するに至った。
本発明は、吸放湿機能に優れ、しかも、これまでの従来製品にない高い強度を有する調湿建材及びその製造方法を提供することを目的とするものである。
As described above, various types of humidity-controlling building materials have been developed in the past. However, in this technical field, performance as a building material and functionality such as humidity-controlling, dew-proofing, and anti-molding properties. Therefore, there is a strong demand for higher performance. For example, the conventional humidity conditioning building material has a minimum strength that can be used as a building material. However, in recent years, there is a demand for weight reduction as a building material, and further enhancement of strength is desired. Under such circumstances, the present inventors, in view of the above prior art, have high functionality such as a high humidity control function that makes it possible to drastically solve the problems of the above prior art. In addition, as a result of intensive research aimed at developing new moisture-conditioning building materials with various characteristics as building materials, humidity-controlled building materials produced using kaolinite minerals as the main raw material are excellent. It has been found that it has a high moisture absorption and release function and high strength, and that it can be a new type of humidity control building material, and further research has been made to complete the present invention.
An object of the present invention is to provide a humidity control building material having an excellent moisture absorption / release function and having a high strength not found in conventional products, and a method for producing the same.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)優れた吸放湿特性を有し、かつ高強度が付与された調湿建材を製造する方法であって、カオリナイト族鉱物、水酸化アルミニウム及びカルシウム原料を、混合・粉砕し、成形して、焼成することを特徴とするアノーサイト−アルミナ系高強度調湿建材の製造方法。
(2)カオリナイト族鉱物として、それを含有する産業廃棄物を利用することを特徴とする、前記(1)に記載の高強度調湿建材の製造方法。
(3)上記産業廃棄物が、粘土キラであることを特徴とする、前記(2)に記載の高強度調湿建材の製造方法。
(4)水酸化アルミニウムとして、それを含有する産業廃棄物を利用することを特徴とする、前記(1)に記載の高強度調湿建材の製造方法。
(5)上記産業廃棄物が、アルミスラッジであることを特徴とする、前記(4)に記載の高強度調湿建材の製造方法。
(6)焼成温度が、800〜1200℃であることを特徴とする、前記(1)に記載の高強度調湿建材の製造方法。
(7)前記(1)から(6)のいずれかに記載の製造方法により製造されてなる、優れた吸放湿特性を有し、かつ高強度が付与された調湿建材であって、水酸化アルミニウムが脱水反応を起こして変化した調湿性を有する多孔質アルミナとカオリナイト族鉱物とカルシウム原料の反応により生成される強度を付与するアノーサイト結晶とからなることを特徴とするアノーサイト−アルミナ系高強度調湿建材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a humidity control building material having excellent moisture absorption and desorption characteristics and imparted with high strength, wherein kaolinite group mineral, aluminum hydroxide and calcium raw materials are mixed, pulverized, and molded. And firing the anorthite-alumina-based high-strength humidity building material.
(2) The method for producing a high-strength humidity-controlled building material according to (1), wherein an industrial waste containing the kaolinite group mineral is used as the kaolinite group mineral.
(3) The method for producing a high-strength humidity-controlled building material according to (2), wherein the industrial waste is clay glitter.
(4) The method for producing a high-strength humidity-controlled building material as described in (1) above, wherein industrial waste containing aluminum hydroxide is used as aluminum hydroxide.
(5) The method for producing a high-strength humidity-controlled building material according to (4), wherein the industrial waste is aluminum sludge.
(6) The method for producing a high-strength humidity-controlled building material according to (1) above, wherein the firing temperature is 800 to 1200 ° C.
(7) A humidity control building material produced by the production method according to any one of (1) to (6), having excellent moisture absorption and desorption characteristics and imparted with high strength, wherein water anorthite, characterized in that the aluminum oxide consists of a porous alumina with a humidity conditioning was changed to cause a dehydration reaction, and anorthite crystals imparting intensity produced by the reaction of kaolinite group mineral and calcium material - Alumina-based high-strength humidity building material.

次に、本発明について更に詳細に説明する。
本発明の方法は、カオリナイト族鉱物と、水酸化アルミニウム及びカルシウム原料を配合し、混合・粉砕し、成形して、焼成し、カオリナイト族鉱物とカルシウム原料との反応によってアノーサイトを生成・焼結させることで、高強度を発現させると共に、水酸化アルミニウムの脱水後の多孔質アルミナを共存させることによって吸放湿機能も同時に有する固化体を得ること、それによって、調湿機能と共に高強度を発現するアノーサイト−アルミナ系調湿建材を製造することを特徴とするものである。
Next, the present invention will be described in more detail.
The method of the present invention comprises a kaolinite group mineral, an aluminum hydroxide and a calcium raw material, mixed, pulverized, molded, fired, and anorthite is produced by the reaction of the kaolinite group mineral and the calcium raw material. Sintering gives a solidified body that exhibits high strength and also has a moisture absorption / release function at the same time by coexisting porous alumina after dehydration of aluminum hydroxide. Anorthite-alumina-based humidity-conditioning building material is produced.

本発明では、原料として、カオリナイト族鉱物、水酸化アルミニウム及びカルシウム原料が用いられる。これらのうち、カオリナイト族鉱物としては、例えば、カオリナイト、ハロイサイト、ディッカイト、もしくはナクライト、及び風化長石に含まれる鉱物群(例えば、加水ハロイサイト、アロフェン、イモゴライト等)等が好適なものとして挙げられる。これらについて、特に産地等を限定するものではない。また、本発明で用いるカオリナイト族鉱物としては、例えば、愛知県瀬戸地方における廃棄物である粘土キラ(粘土原鉱から、微細粒の粘土と粗粒の珪砂を取り除いた後の、窯業原料としては不要の部分)を用いることも可能であり、また、これと同効、もしくは類似のものであれば同様に使用することができる。   In the present invention, kaolinite group minerals, aluminum hydroxide and calcium raw materials are used as raw materials. Among these, preferable examples of the kaolinite group mineral include kaolinite, halloysite, dickite, or nacrite, and mineral groups contained in weathered feldspar (for example, hydrous halloysite, allophane, imogolite, etc.). . There are no particular restrictions on the production area. In addition, as kaolinite group minerals used in the present invention, for example, clay killer that is waste in the Seto district of Aichi Prefecture (as a raw material for ceramics after removing fine clay and coarse silica sand from clay ore) Can be used as long as it is effective or similar to this.

また、カルシウム原料としては、例えば、炭酸カルシウム粉末、塩基性炭酸カルシウム粉末、水酸化カルシウム粉末、もしくは酸化カルシウム粉末等が好適なものとして挙げられる。更に、水酸化アルミニウムとしては、例えば、粉末状の水酸化アルミニウムが好適なものとして挙げられるが、これに限らず、これと同効、もしくは類似のもの、例えば、アルミサッシ等の製造工程から出る副産物のアルミスラッジ等を利用することもできる。   Moreover, as a calcium raw material, a calcium carbonate powder, a basic calcium carbonate powder, a calcium hydroxide powder, a calcium oxide powder etc. are mentioned as a suitable thing, for example. Further, as the aluminum hydroxide, for example, powdered aluminum hydroxide may be mentioned as a suitable one, but is not limited to this, and the same effect or similar, for example, from the manufacturing process of aluminum sash, etc. By-product aluminum sludge can also be used.

これらの原料を所定の割合で配合し、混合・粉砕した後、成形する。この場合、原料を粉砕し、混合する方法、原料を混合するのと同時に粉砕する方法、原料を混合し、粉砕する方法等、適宜の混合・粉砕方法が採用される。本発明において、上記原料の混合方法、粉砕方法、及び成形方法は、特に限定されるものではなく、適宜の方法を使用することができる。成形方法としては、好適には、例えば、プレス成形、押し出し成形等を採用することができる。次いで、この成形体を、必要に応じて乾燥した後、好ましくは800〜1200℃、より好ましくは、900〜1050℃にて焼成する。この場合、焼成方法及び手段については、特に制限されない。更に、本発明において、カオリナイト族鉱物、水酸化アルミニウム及びカルシウム原料の配合割合は、作製する調湿建材の種類、その使用目的等に応じて、任意に設定することができる。これにより、水酸化アルミニウムの焼成物の調湿性を維持しつつ、しかも、アノーサイト結晶の生成・焼成によって高い強度を付与することが可能となる。   These raw materials are blended at a predetermined ratio, mixed and pulverized, and then molded. In this case, an appropriate mixing and pulverizing method such as a method of pulverizing and mixing the raw materials, a method of pulverizing at the same time as mixing the raw materials, and a method of mixing and pulverizing the raw materials are adopted. In the present invention, the raw material mixing method, pulverization method, and molding method are not particularly limited, and an appropriate method can be used. As the molding method, for example, press molding, extrusion molding, or the like can be employed. Next, the molded body is dried as necessary, and then preferably fired at 800 to 1200 ° C, more preferably 900 to 1050 ° C. In this case, the firing method and means are not particularly limited. Furthermore, in this invention, the compounding ratio of a kaolinite group mineral, aluminum hydroxide, and a calcium raw material can be arbitrarily set according to the kind of humidity-control building material to produce, its purpose of use, etc. This makes it possible to impart high strength by maintaining and maintaining the humidity control properties of the fired product of aluminum hydroxide, and by generating and firing anorthite crystals.

そのメカニズムについて更に説明すると、焼成過程においては、まず250℃程度から水酸化アルミニウムが脱水反応を起こして調湿性を有する多孔質アルミナに変化する。次に、800℃程度からカオリナイト族鉱物とカルシウム原料の反応が始まり、焼成温度の上昇と共にアノーサイト結晶が徐々に生成されていき、高強度が発現し、更に、900℃以上の温度域で一層高強度なフレームを作り上げる。また、このときに、多孔質アルミナは、調湿性を失うことなくアノーサイト結晶と共存することとなるが、850℃以上の温度域、特に、1050℃程度を超える温度域では、焼成温度の上昇と共にその調湿機能が徐々に低下していくため、調湿建材として使用するためには、1050℃以下の焼成が好ましい。これらの温度域については、調湿建材の種類、その使用目的等に応じて、好適な範囲が適宜選択される。このような焼成過程を経て、アノーサイト−アルミナ系高強度調湿建材が得られる。   The mechanism will be further described. In the firing process, aluminum hydroxide first undergoes a dehydration reaction from about 250 ° C., and changes to porous alumina having humidity control properties. Next, the reaction between the kaolinite group mineral and the calcium raw material starts from about 800 ° C., and the anorthite crystals are gradually generated as the firing temperature rises to develop high strength. Further, in the temperature range of 900 ° C. or higher. Create a stronger frame. Further, at this time, the porous alumina coexists with the anorthite crystal without losing the humidity control property. However, in the temperature range of 850 ° C. or higher, particularly in the temperature range higher than about 1050 ° C., the firing temperature is increased. At the same time, the humidity control function gradually decreases, and therefore, firing at 1050 ° C. or lower is preferable for use as a humidity control building material. About these temperature ranges, a suitable range is suitably selected according to the kind of humidity-control building material, its use purpose, etc. Through such a firing process, an anosite-alumina-based high-strength humidity building material is obtained.

本発明の方法により作製される高強度調湿建材は、高い吸放湿機能(例えば、150g/m2 以上)と、これまでの調湿建材にない高い強度(例えば、20MPa程度)を有しており,例えば、壁材、床材、天井材、屋根裏材、内装仕上材などの他、床下材、クローゼット、家具などでの材料としても好適に用いることができるものである。   The high-strength moisture-conditioning building material produced by the method of the present invention has a high moisture absorption / release function (for example, 150 g / m 2 or more) and a high strength (for example, about 20 MPa) that is not found in conventional humidity-conditioning building materials. For example, in addition to wall materials, floor materials, ceiling materials, attic materials, interior finishing materials, etc., they can also be suitably used as materials for under floor materials, closets, furniture, and the like.

本発明により、1)優れた吸放湿性を有し、しかも、これまでにない高強度を有する調湿建材を提供することができる、2)高機能性を有し、かつ、高強度化された新しいタイプの高強度調湿建材を製造し、提供できる、3)本発明の方法では、例えば、粘土キラ等の産業廃棄物を有効に活用できるため、環境問題にも貢献できる、4)高性能の調湿建材を、比較的低コストで製造することができる、5)水酸化アルミニウムの焼成物の調湿性を維持しつつ、アノーサイト結晶の生成・焼結によって高強度なフレームが形成される、という格別の効果が奏される。   According to the present invention, it is possible to provide a humidity control building material having 1) excellent moisture absorption / release properties and high strength that has never been achieved, and 2) high functionality and high strength. 3) The method of the present invention can effectively use industrial waste such as clay glitter, and can contribute to environmental problems. 4) High High-performance humidity-control building materials can be manufactured at a relatively low cost. 5) A high-strength frame is formed by the formation and sintering of anorthite crystals while maintaining the humidity-controllability of the sintered product of aluminum hydroxide. This is an exceptional effect.

次に、本発明を、実施例及び比較例に基づいて具体的に説明するが、本発明は、これらの実施例等によって何ら限定されるものではない。   Next, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.

本実施例では、カオリナイト族鉱物、水酸化アルミニウム及びカルシウム原料を用いて、調湿建材を作製し、その特性を調べた。
(1)原料
カオリナイト族鉱物としては、粘土キラを、105℃で乾燥後、乳鉢で解砕し、16meshの篩掛けをしたものを用いた。カルシウム原料としては、炭酸カルシウム試薬(純度99.5%グレード)を用いた。水酸化アルミニウムとしては、アルミスラッジを105℃で乾燥したものを用いた。
(2)試料の作製
上記のカオリナイト族鉱物44重量部、カルシウム原料16重量部及び水酸化アルミニウム40重量部を、ボールミルで湿式粉砕、混合した後、105℃で乾燥させてから、70meshで篩掛けをして、粉末状とした。この粉末100gに対して、蒸留水10gを添加し、よく混合した後、その10gを秤量して、34mm×34mmの金型に投入し、3tの荷重をかけてプレス成形を行い、成形体を得た。これを800℃から1200℃の間で、基本的に50℃毎の焼成を行い、試料片を得た。これらの試料片を、X線回折、吸放湿試験及び曲げ強度試験に供した。
In this example, humidity control building materials were prepared using kaolinite group minerals, aluminum hydroxide and calcium raw materials, and the characteristics thereof were examined.
(1) Raw material As a kaolinite group mineral, clay clay was dried at 105 ° C., crushed in a mortar, and sieved with 16 mesh. As the calcium raw material, a calcium carbonate reagent (purity 99.5% grade) was used. As aluminum hydroxide, aluminum sludge dried at 105 ° C. was used.
(2) Sample preparation 44 parts by weight of the kaolinite group mineral, 16 parts by weight of calcium raw material and 40 parts by weight of aluminum hydroxide were wet-ground and mixed in a ball mill, dried at 105 ° C, and then sieved at 70 mesh. It was hung and made into powder. After adding 10 g of distilled water to 100 g of this powder and mixing well, weigh 10 g, put it into a 34 mm × 34 mm mold, press-mold it with a load of 3 t, Obtained. This was baked between 800 ° C. and 1200 ° C. at every 50 ° C. to obtain sample pieces. These sample pieces were subjected to X-ray diffraction, moisture absorption / release test and bending strength test.

(3)測定結果
(X線回折)
上記試料のX線回折の結果を、図1に示す。900℃以上の焼成において、アノーサイトのピークがみられる。また、多孔質アルミナについては、既報(文献:久保亮五外3名編,「岩波 理化学辞典 第3版増補版」,1985年2月15日株式会社岩波書店発行,第508頁「酸化アルミニウム」の項)に記載されている、ρ型、η型、δ型、γ型等のアルミナのピークは、充分に同定できなかった。なお、X線チャートには、粘土キラに由来する石英等のピークも現れる。
(3) Measurement results (X-ray diffraction)
The result of the X-ray diffraction of the sample is shown in FIG. In the firing at 900 ° C. or higher, an anorthite peak is observed. As for porous alumina, the previous report (reference: Ryogo Kubo, 3 editions, “Iwanami Rikagaku Dictionary 3rd edition supplement edition”, published by Iwanami Shoten Co., Ltd. on February 15, 1985, page 508 “Aluminum oxide” The peaks of alumina such as ρ-type, η-type, δ-type, γ-type and the like described in the item (5)) could not be sufficiently identified. In the X-ray chart, peaks such as quartz derived from clay glitter also appear.

(吸放湿試験)
上記試料の吸放湿試験については、前処理として、試料片をアルミシールで5面シール加工した後、25℃、相対湿度50%の条件下で、吸湿飽和させた。この前処理済の試料片を、25℃、相対湿度90%の条件下で、24時間保持した(吸湿過程)後、25℃、相対湿度50%に変化させて、24時間保持する(放湿過程)というサイクルを、2回繰り返して行った。そして、2サイクル目の、吸湿過程の終了時と放湿過程の終了時における試料片の重量差を吸放湿面積で割った値を、吸放湿機能(g/m2)とした。測定結果を、図2に示す。吸放湿機能(g/m2)は、焼成温度850℃で、最高値を示しており、それ以上の高温の焼成では、緩やかに低下している。
(Moisture absorption / release test)
In the moisture absorption / release test of the sample, as a pretreatment, the sample piece was subjected to 5-side sealing with an aluminum seal, and then saturated with moisture absorption under conditions of 25 ° C. and a relative humidity of 50%. This pretreated sample piece was held for 24 hours under the conditions of 25 ° C. and 90% relative humidity (moisture absorption process), then changed to 25 ° C. and 50% relative humidity and held for 24 hours (moisture release). The process cycle was repeated twice. And the value which divided the weight difference of the sample piece in the 2nd cycle at the time of completion | finish of a moisture absorption process and a moisture release process by the moisture absorption / release area was made into the moisture absorption / release function (g / m < 2 >). The measurement results are shown in FIG. The moisture absorption / release function (g / m 2 ) shows a maximum value at a firing temperature of 850 ° C., and gradually decreases at higher temperatures.

(曲げ強度試験)
上記試料の3点曲げ強度試験は、n数=2、荷重速度=0.5mm/m、支点距離=20mmの各条件で行った。測定結果を、図3に示す。試料の曲げ強度は、焼成温度800℃から900℃の間で上昇し、20MPa程度に達している。
(Bending strength test)
The three-point bending strength test of the sample was performed under the following conditions: n number = 2, load speed = 0.5 mm / m, and fulcrum distance = 20 mm. The measurement results are shown in FIG. The bending strength of the sample increases between a firing temperature of 800 ° C. and 900 ° C. and reaches about 20 MPa.

比較例1
市販の調湿建材について、本発明の実施例1と同様の方法で、吸放湿機能(g/m2)を測定した。測定結果を、表1に示す。市販の調湿建材の吸放湿機能は、94.1〜149.7g/m2の値を示した。本発明の実施例1においては、1050℃以下の焼成において、150g/m2を超えた吸放湿機能を示しており、本発明の調湿建材は、市販の調湿建材よりも、優れた調湿性を有していることが分かる。
Comparative Example 1
The moisture absorption and desorption function (g / m 2 ) of the commercially available humidity conditioning building material was measured in the same manner as in Example 1 of the present invention. The measurement results are shown in Table 1. The moisture absorption / release function of the commercially available humidity conditioning building material showed a value of 94.1 to 149.7 g / m 2 . In Example 1 of the present invention, the moisture absorbing / releasing function exceeding 150 g / m 2 was exhibited in firing at 1050 ° C. or lower, and the humidity control building material of the present invention was superior to the commercially available humidity control building material. It turns out that it has humidity control.

Figure 0004042821
Figure 0004042821

比較例2
市販の調湿建材について、本発明の実施例1と同様の方法で、3点曲げ強度を測定した。測定結果を、表2に示す。市販の調湿建材の曲げ強度は、5.5〜13.1MPaの値を示した。一方、本発明の実施例1においては、900℃以上の焼成において、20MPa程度の値を示しており、本発明の調湿建材は、市販の調湿建材(13.1MPa以下)よりも、高い強度を有していることが分かる。
Comparative Example 2
With respect to a commercially available humidity conditioning building material, the three-point bending strength was measured in the same manner as in Example 1 of the present invention. The measurement results are shown in Table 2. The bending strength of the commercially available humidity conditioning building material showed a value of 5.5 to 13.1 MPa. On the other hand, in Example 1 of this invention, in the baking above 900 degreeC, the value of about 20 MPa is shown, and the humidity control building material of this invention is higher than a commercially available humidity control building material (13.1 MPa or less). It can be seen that it has strength.

Figure 0004042821
Figure 0004042821

以上詳述したように、本発明は、高強度調湿建材及びその製造方法に係るものであり、本発明により、優れた吸放湿性を有し、しかも、これまでの調湿建材に無い高強度を有している高強度調湿建材を作製し、提供することができる。本発明の方法により、水酸化アルミニウムの焼成物の調湿性を維持しつつ、アノーサイト結晶の生成・焼結により形成される高強度なフレームを有する調湿建材を提供できる。また、本発明の製造方法では、例えば、粘土キラ等の産業廃棄物を再資源化し、新しいタイプの調湿建材として再利用することで、産業廃棄物を有効に活用できるため、環境問題にも貢献できる。更に、本発明により、高性能の調湿建材を、比較的低コストで製造することができる。本発明は、新規調湿建材の生産技術とその製品を提供し、当技術分野おける新産業の創出を実現化するものとして有用である。   As described above in detail, the present invention relates to a high-strength humidity control building material and a method for producing the same, and according to the present invention, the present invention has excellent moisture absorption and desorption properties and is not found in conventional humidity control building materials. A high-strength humidity building material having strength can be produced and provided. By the method of the present invention, it is possible to provide a humidity-control building material having a high-strength frame formed by generation and sintering of anorthite crystals while maintaining the humidity-control property of the sintered product of aluminum hydroxide. In addition, in the manufacturing method of the present invention, for example, by recycling industrial waste such as clay glitter and reusing it as a new type of humidity-control building material, industrial waste can be effectively used. Can contribute. Furthermore, according to the present invention, a high-performance humidity building material can be produced at a relatively low cost. INDUSTRIAL APPLICABILITY The present invention is useful as a technology for producing new humidity-conditioning building materials and products thereof, and realizing the creation of new industries in this technical field.

各焼成温度とした場合の、本発明の調湿建材のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the humidity-control building material of this invention when it is set as each calcination temperature. 各焼成温度とした場合の、本発明の調湿建材の吸放湿機能(g/m2)を示す図である。It is a figure which shows the moisture absorption / release function (g / m < 2 >) of the humidity-control building material of this invention when it is set as each calcination temperature. 各焼成温度とした場合の、本発明の調湿建材の曲げ強度(MPa)を示す図である。It is a figure which shows the bending strength (MPa) of the humidity-control building material of this invention when it is set as each calcination temperature.

Claims (7)

優れた吸放湿特性を有し、かつ高強度が付与された調湿建材を製造する方法であって、カオリナイト族鉱物、水酸化アルミニウム及びカルシウム原料を、混合・粉砕し、成形して、焼成することを特徴とするアノーサイト−アルミナ系高強度調湿建材の製造方法。   A method for producing a humidity control building material having excellent moisture absorption and desorption characteristics and imparted with high strength, which comprises mixing, pulverizing and molding kaolinite group minerals, aluminum hydroxide and calcium raw materials, A method for producing an anodite-alumina-based high-strength humidity building material, characterized by firing. カオリナイト族鉱物として、それを含有する産業廃棄物を利用することを特徴とする、請求項1に記載の高強度調湿建材の製造方法。   The method for producing a high-strength humidity-controlled building material according to claim 1, wherein industrial waste containing the kaolinite group mineral is used. 上記産業廃棄物が、粘土キラであることを特徴とする、請求項2に記載の高強度調湿建材の製造方法。   The method for producing a high-strength humidity-controlled building material according to claim 2, wherein the industrial waste is clay glitter. 水酸化アルミニウムとして、それを含有する産業廃棄物を利用することを特徴とする、請求項1に記載の高強度調湿建材の製造方法。   2. The method for producing a high-strength humidity-controlled building material according to claim 1, wherein industrial waste containing aluminum hydroxide is used as aluminum hydroxide. 上記産業廃棄物が、アルミスラッジであることを特徴とする、請求項4に記載の高強度調湿建材の製造方法。   The method for producing a high-strength humidity-controlled building material according to claim 4, wherein the industrial waste is aluminum sludge. 焼成温度が、800〜1200℃であることを特徴とする、請求項1に記載の高強度調湿建材の製造方法。   The method for producing a high-strength humidity-controlled building material according to claim 1, wherein the firing temperature is 800 to 1200 ° C. 請求項1から6のいずれかに記載の製造方法により製造されてなる、優れた吸放湿特性を有し、かつ高強度が付与された調湿建材であって、水酸化アルミニウムが脱水反応を起こして変化した調湿性を有する多孔質アルミナとカオリナイト族鉱物とカルシウム原料の反応により生成される強度を付与するアノーサイト結晶とからなることを特徴とするアノーサイト−アルミナ系高強度調湿建材。 A humidity control building material produced by the production method according to any one of claims 1 to 6, having excellent moisture absorption and desorption characteristics and imparted with high strength, wherein the aluminum hydroxide undergoes a dehydration reaction. a porous alumina with altered humidity caused, anorthite characterized by comprising the anorthite crystals imparting intensity produced by the reaction of kaolinite group mineral and calcium material - alumina high strength humidity Building materials.
JP2004029637A 2004-02-05 2004-02-05 Manufacturing method for high-strength humidity building materials Expired - Lifetime JP4042821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029637A JP4042821B2 (en) 2004-02-05 2004-02-05 Manufacturing method for high-strength humidity building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029637A JP4042821B2 (en) 2004-02-05 2004-02-05 Manufacturing method for high-strength humidity building materials

Publications (2)

Publication Number Publication Date
JP2005219969A JP2005219969A (en) 2005-08-18
JP4042821B2 true JP4042821B2 (en) 2008-02-06

Family

ID=34995898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029637A Expired - Lifetime JP4042821B2 (en) 2004-02-05 2004-02-05 Manufacturing method for high-strength humidity building materials

Country Status (1)

Country Link
JP (1) JP4042821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736444A (en) * 2013-12-31 2014-04-23 常州大学 Preparation method and application of hydrothermally solidified attapulgite clay filtering material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040949A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Alumina-based ceramic wiring substrate, and production method therefor
CN115724652A (en) * 2022-12-21 2023-03-03 中钢集团洛阳耐火材料研究院有限公司 Preparation method of low-density high-strength calcium feldspar heat insulation material for hydrogen metallurgy field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736444A (en) * 2013-12-31 2014-04-23 常州大学 Preparation method and application of hydrothermally solidified attapulgite clay filtering material

Also Published As

Publication number Publication date
JP2005219969A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
CN102400527B (en) Environment-friendly mineral wool board with functions of humidity adjustment and air purification and production method thereof
CN105669152B (en) Indoor wall basalis, which is used, has the levelling mud of purification function and preparation, construction method
Pridobivanje et al. Utilization of geopolymerization for obtaining construction materials based on red mud
CN105985071B (en) A kind of environment-friendlymineral mineral wool board and preparation method thereof
Kramar et al. Mechanical and microstructural characterization of geopolymer synthesized from low calcium fly ash
JP7079049B2 (en) Coal ash mixed cement composition and manufacturing method
EP2878585A1 (en) Method for the manufacturing of cementitious C-S-H seeds
WO2014081277A1 (en) Volcano ash solid geopolymer composite and a method of producing the same
CN103936382B (en) A kind of semi-hydrated gypsum and application with photocatalytic activity
CN108358579A (en) A kind of photocatalysis concrete and preparation method thereof prepared with ardealite base hydraulicity composite gel material
CN103553485B (en) Preparation method of healthful environment-friendly diatomite wall material powder with temperature adjustment function
JP4042821B2 (en) Manufacturing method for high-strength humidity building materials
JP2003112960A (en) Zeolite mortar and production method therefor
CN101711972B (en) Material with humidifying function and preparation method thereof
CN110845209A (en) Waterproof type assembled gypsum wallboard capable of releasing negative oxygen ions, preparation method and building
KR101899115B1 (en) composition
Maneewan et al. Incorporating black dust into autoclaved aerated concrete wall for heat transfer reduction
CN100424043C (en) Microsphere ceramic ceramisite material possessing light-weight and high strength function
CN104230371A (en) Hollow aerated brick taking phosphate tailing as main ingredient and preparation method of hollow aerated brick
KR101909079B1 (en) Composition including stone dust used for manufacturing porous ceramic panel and porous ceramic panel manufactured using the same
CN103922752B (en) Method for preparing beta-SiAlON multiphase material by using fly ash
KR101447989B1 (en) Loess composition, method for manufacturing loess construction materials and loess construction materials manufactured by thereof
JP3979592B2 (en) Method for producing humidity conditioning building material using allophane or imogolite-containing composition
CN109704699B (en) Ceramic sheet synthesized by ceramic non-polishing waste at low temperature and having humidity regulating function
CN112142425A (en) High-temperature-resistant wall material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4042821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term