JP4040160B2 - Double row tapered roller bearing - Google Patents

Double row tapered roller bearing Download PDF

Info

Publication number
JP4040160B2
JP4040160B2 JP07261198A JP7261198A JP4040160B2 JP 4040160 B2 JP4040160 B2 JP 4040160B2 JP 07261198 A JP07261198 A JP 07261198A JP 7261198 A JP7261198 A JP 7261198A JP 4040160 B2 JP4040160 B2 JP 4040160B2
Authority
JP
Japan
Prior art keywords
tapered roller
crowning
raceway surface
inner ring
contact point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07261198A
Other languages
Japanese (ja)
Other versions
JPH11270553A (en
Inventor
寿志 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP07261198A priority Critical patent/JP4040160B2/en
Priority to US09/270,529 priority patent/US6126322A/en
Priority to FR9903437A priority patent/FR2776237B1/en
Publication of JPH11270553A publication Critical patent/JPH11270553A/en
Application granted granted Critical
Publication of JP4040160B2 publication Critical patent/JP4040160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は複列円すいころ軸受に関するもので、より詳しくは、クラウニング形状を改良することによってころのスキューを防止し、軸受の寿命を向上させたものである。ここに、ころのスキューとは、ころが正規の自転軸に対して傾くことをいう。
【0002】
【従来の技術】
クラウニングとは、軌道輪ところとの接触部に生ずる集中荷重(エッジロード)を防ぐことを主な目的として軌道又はころの母線にごくわずかに曲率をもたせることをいい、軸受の技術分野においてはよく知られている。たとえば自動車のアクスルユニット用円すいころ軸受は、高モーメント負荷による軌道面のエッジロードを避けるため、軌道面および円すいころの転動面にクラウニングを設けている。
【0003】
図3(A)に示すように、特に面圧の高い内輪の軌道面(母線長さを符号Lで示す。)には、中央部のクラウニング(C)に加えて、さらに両端部にもカットクラウニング(CL,CS)を設けてある。図3(A)において、大径側のカットクラウニング(CL)は、幅をWL、クラウニング量をHLで表してあり、小径側のカットクラウニング(CS)は、幅をWS、クラウニング量をHSで表してある。そして、面圧分布を考慮して、小径側のカットクラウニング(CS)に比べて大径側のカットクラウニング(CS)のクラウニング量を大きく設定するのが一般的である(HL>HS)。このため、円すいころの転動面と内輪の軌道面との接触点(Pi)および円すいころの転動面と外輪の軌道面との接触点(Po)が、符号eで示すように、円すいころの軸線(X−X)方向にずれる。言い換えれば、外輪の軌道面と円すいころの転動面との接触点(Po)が円すいころの転動面の中心線上に位置するのに対し、内輪の軌道面と円すいころの転動面との接触点(Pi)は、円すいころの転動面の中心線よりも円すいころの小径側に位置している。なお、接触点(Pi)は、内輪の軌道面における中央部のクラウニング(C)の中心線上に位置し、この意味でクラウニング(C)は対称である。これに対して両端部のカットクラウニング(CL,CS)は非対称である。
【0004】
【発明が解決しようとする課題】
上述の内・外輪の軌道面と円すいころの転動面との接触点(Pi,Po)のズレは円すいころのスキューの原因となる。
そこで、この発明の目的は、軌道面および円すいころの転動面にクラウニングを設けた複列円すいころ軸受において、円すいころのスキューを防止して軸受の寿命を一層向上させることにある。
【0005】
【課題を解決するための手段】
この発明は、外輪の軌道面のクラウニング頂点を小径側に移動させ、内・外輪の軌道面と円すいころの転動面との接触点の円すいころの軸線方向における位置を一致させることによって課題を解決したものである。
【0006】
すなわち、請求項1の発明は、内輪の軌道面の中央部にクラウニングを形成するとともに両端部に非対称のカットクラウニングを形成し、外輪の軌道面にフルクラウニングを形成し、かつ、円すいころの転動面にフルクラウニングを形成してなり、円すいころの転動面と内輪の軌道面との接触点と、円すいころの転動面と外輪の軌道面との接触点を、円すいころの軸方向長さの中央より小径側の軸線方向で一致させたことを特徴とする。
【0007】
このような構成を採用したことによって、軸受回転時に円すいころが内輪軌道面および外輪軌道面から受ける力の作用点が円すいころの軸線すなわち自転軸上で一致し、しかも、円すいころの軸線(自転軸)から外輪軌道面との接触点および内輪軌道面との接触点までの距離(半径)が等しくなるため、円すいころの軸線を傾けようとするモーメントが作用せず、ころのスキューが生じにくくなる。
【0008】
非対称のカットクラウニングというときは、クラウニングの幅および/または量に関して、小径側と大径側とで異なることを意味する。実際には当該複列円すいころ軸受の用途や設計仕様等に応じて定められるものであるが、複列円すいころ軸受の場合、内輪の大径側のカットクラウニングのクラウニング量を小径側よりも大きく設定するのが一般的である。
【0009】
内輪の軌道面の両端部に非対称のカットクラウニングを配置することから、中央部のクラウニングの母線方向長さの中心線は、軌道面全体の母線方向長さの中心線とは一致しないこととなるが、中央部のクラウニングの全域にわたって荷重を分布させるうえで、円すいころの転動面と内輪の軌道面との接触点を中央部のクラウニングの母線方向長さの中心線上に配置するのが好ましい。
【0010】
【発明の実施の形態】
図1に示す複列円すいころ軸受(10)は、それぞれ軌道面(22)を備えた一対の内輪(20)と、複列の軌道面(32)を備えた複列外輪(30)と、内・外輪(20,30)の軌道面(22,32)間に転動自在に組み込まれた複列の円すいころ(40)と、各列の円すいころ(40)を円周方向に等間隔に保つための保持器(50)と、内・外輪(20,30)間に形成された軸受空間を密封するためのシール(60)とで構成されている。
【0011】
図2(A)に示すように、円すいころ(40)の転動面(42)には対称なクラウニングを設けてあり、大端面(44)は内輪(20)の大つば(24)によって接触案内される。なお、図2(A)は図1の一部を拡大したものであるが、理解を容易にするためクラウニング部分を誇張したものであり、また、内輪(20)の軌道面(22)のクラウニング寸法に関しては図3と変わるところがないので符号を省略してある。
【0012】
内輪(20)は軸方向の両端に大つば(24)と小つば(26)を有し、これらのつば(24,26)の間に軌道みぞ(28)が画成されている。軌道みぞ(28)の底面にあたる軌道面(22)は、その母線長さの中央部のクラウニング(C)と、両端部のカットクラウニング(CL,CS)とで構成される。図3に関連して既に述べたとおり、大径側のカットクラウニング(CL)については幅をWL、クラウニング量をHLとし、小径側のカットクラウニング(CS)については、幅をWS、クラウニング量をHSとする。図2(A)および図3(A)から明らかなように、大径側のカットクラウニング(CL)の方が小径側のカットクラウニング(CS)よりも幅、クラウニング量共に大きく設定されている(WL>WS,HL>HS)。符号Piは軌道面(22)と円すいころ(40)との接触点を表し、中央部のクラウニング(C)の母線方向長さの中心線上に位置する。
【0013】
外輪(30)の軌道面(32)にもクラウニングを設けてあるが、クラウニングの頂点すなわち円すいころ(40)との接触点を符号Poで表してある。この接触点(Po)は、内輪(20)の軌道面(22)と円すいころ(40)の転動面(42)との接触点(Pi)を通り、円すいころ(40)の軸線(X−X)に垂直な直線上に位置する。言い換えるならば、図3の場合と比べて、接触点(Po)を円すいころ(40)の軸線(X−X)に沿って小径側に移動させたものといえる。
【0014】
両接触点(Pi,Po)の円すいころ(40)の軸線(X−X)方向における位置が一致しているため、図2(B)に示すように軸受回転時に円すいころ(40)が内輪(20)および外輪(30)から受ける力の作用点が一致し、円すいころ(40)の軸線(X−X)から各接触点(Pi,Po)までの距離(半径)も等しくなる(図2(C)参照)。したがって、円すいころ(40)の軸線(自転軸)を傾けようとするモーメントが作用せず、円すいころ(40)が正規の軸線を維持してスキューを起こすことなく転動することができる。
【0015】
【発明の効果】
以上説明したように、この発明によれば、円すいころの軸線方向において、内輪の軌道面と円すいころの転動面との接触点の位置と、外輪の軌道面と円すいころの転動面との接触点とを、円すいころの軸方向長さの中央より小径側で一致させたことにより、軸受回転時に円すいころが内輪の軌道面および外輪の軌道面から受ける力の作用点が円すいころの軸線(自転線)方向で一致し、しかも、円すいころの軸線(自転線)から内輪の軌道面および外輪の軌道面との接触点までの距離(半径)が等しくなる。したがって、従来のように軸受回転時に円すいころの軸線を傾けようとするモーメントが作用することはない。その結果、円すいころのスキューが生じにくくなり、軸受寿命の一層の向上が図られる。
【図面の簡単な説明】
【図1】複列円すいころ軸受の半断面図である。
【図2】(A)は図1の部分拡大図、(B)は(A)における円すいころの平面略図、(C)は(A)における円すいころの横断面略図である。
【図3】(A)は図2(A)と類似の部分拡大図、(B)は(A)における円すいころの平面略図、(C)は(A)における円すいころの横断面略図である。
【符号の説明】
20 内輪
22 軌道面
C 中央部のクラウニング
CS 小径側のカットクラウニング
CL 大径側のカットクラウニング
Pi 接触点(内輪軌道面と円すいころの)
Po 接触点(外輪軌道面と円すいころの)
24 大つば
26 小つば
28 軌道みぞ
30 外輪
32 軌道面
40 円すいころ
42 転動面
44 大端面
X−X 円すいころの軸線(自転軸)
50 保持器
60 シール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a double-row tapered roller bearing, and more specifically, by improving the crowning shape, roller skew is prevented and the life of the bearing is improved. Here, the roller skew means that the roller is inclined with respect to the normal rotation axis.
[0002]
[Prior art]
Crowning is to make the raceway or roller busbar have a slight curvature mainly for the purpose of preventing concentrated load (edge load) generated at the contact part with the raceway ring, and is often used in the technical field of bearings. Are known. For example, tapered roller bearings for axle units of automobiles are provided with crowning on the raceway surface and the rolling surface of the tapered roller in order to avoid edge loading of the raceway surface due to a high moment load.
[0003]
As shown in FIG. 3 (A), the inner ring raceway surface having a high surface pressure (the bus bar length is indicated by a symbol L) is cut at both ends in addition to the crowning (C) at the center. Crowning (CL, CS) is provided. In FIG. 3A, the cut crowning (CL) on the large diameter side is represented by WL as the width and the crowning amount is represented by HL, and the cut crowning (CS) on the small diameter side is represented by WS as the width and HS as the crowning amount. It is represented. In consideration of the surface pressure distribution, it is common to set the crowning amount of the large-diameter side cut crowning (CS) larger than that of the small-diameter side cut crowning (CS) (HL> HS). Therefore, the contact point (Pi) between the rolling surface of the tapered roller and the raceway surface of the inner ring and the contact point (Po) between the rolling surface of the tapered roller and the raceway surface of the outer ring are indicated by a symbol e. It deviates in the direction of the roller axis (XX). In other words, the contact point (Po) between the raceway surface of the outer ring and the rolling surface of the tapered roller is located on the center line of the rolling surface of the tapered roller, whereas the raceway surface of the inner ring and the rolling surface of the tapered roller are The contact point (Pi) is located on the smaller diameter side of the tapered roller than the center line of the rolling surface of the tapered roller. The contact point (Pi) is located on the center line of the central crowning (C) on the raceway surface of the inner ring. In this sense, the crowning (C) is symmetrical. On the other hand, the cut crowning (CL, CS) at both ends is asymmetric.
[0004]
[Problems to be solved by the invention]
The deviation of the contact point (Pi, Po) between the raceway surface of the inner / outer ring and the rolling surface of the tapered roller causes skewing of the tapered roller.
Therefore, an object of the present invention is to further improve the life of the bearing by preventing the skew of the tapered roller in a double row tapered roller bearing in which crowning is provided on the raceway surface and the rolling surface of the tapered roller.
[0005]
[Means for Solving the Problems]
This invention has a problem by moving the crowning apex of the raceway surface of the outer ring to the smaller diameter side, and matching the position of the contact point between the raceway surface of the inner / outer ring and the rolling surface of the tapered roller in the axial direction of the tapered roller. It has been solved.
[0006]
That is, the invention of claim 1 forms a crowning at the center of the raceway surface of the inner ring, forms asymmetric cut crowning at both ends, forms a full crowning on the raceway surface of the outer ring, and rolls the tapered roller. A full crowning is formed on the moving surface, and the contact point between the rolling surface of the tapered roller and the raceway surface of the inner ring and the contact point between the rolling surface of the tapered roller and the raceway surface of the outer ring are determined in the axial direction of the tapered roller. It is characterized by matching in the axial direction on the small diameter side from the center of the length .
[0007]
By adopting such a configuration, the point of action of the force that the tapered roller receives from the inner ring raceway surface and the outer ring raceway surface when the bearing rotates coincides on the axis of the tapered roller, that is, the rotation axis, and the axis of the tapered roller (rotation) Since the distance (radius) from the contact point to the outer ring raceway surface and the contact point to the inner ring raceway surface becomes equal, the moment to tilt the tapered roller axis does not act, and roller skew is unlikely to occur. Become.
[0008]
The term “asymmetric cut crowning” means that the width and / or amount of crowning is different between the small diameter side and the large diameter side. Actually, it is determined according to the application and design specifications of the double row tapered roller bearing, but in the case of double row tapered roller bearings, the crowning amount of the cut crowning on the large diameter side of the inner ring is larger than that on the small diameter side. It is common to set.
[0009]
Since the asymmetric cut crowning is disposed at both ends of the raceway surface of the inner ring, the centerline of the length in the busbar direction of the centering crowning does not coincide with the centerline of the length in the busbar direction of the entire raceway surface. However, in order to distribute the load over the entire area of the central crowning, it is preferable to arrange the contact point between the rolling surface of the tapered roller and the raceway surface of the inner ring on the center line of the length in the generatrix direction of the central crowning. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A double-row tapered roller bearing (10) shown in FIG. 1 includes a pair of inner rings (20) each having a raceway surface (22), a double-row outer ring (30) having a double-row raceway surface (32), The double row tapered rollers (40), which are rotatably incorporated between the raceway surfaces (22, 32) of the inner and outer rings (20, 30), and the tapered rollers (40) in each row are equally spaced in the circumferential direction. And a seal (60) for sealing a bearing space formed between the inner and outer rings (20, 30).
[0011]
As shown in FIG. 2A, the rolling surface (42) of the tapered roller (40) is provided with a symmetrical crowning, and the large end surface (44) is contacted by the large collar (24) of the inner ring (20). Guided. FIG. 2A is an enlarged view of a part of FIG. 1, but the crowning portion is exaggerated for easy understanding, and the crowning of the raceway surface (22) of the inner ring (20). Since the dimensions are the same as in FIG. 3, the reference numerals are omitted.
[0012]
The inner ring (20) has a large collar (24) and a small collar (26) at both ends in the axial direction, and a track groove (28) is defined between these collars (24, 26). The track surface (22) corresponding to the bottom surface of the track groove (28) is composed of a crowning (C) at the center of the bus bar length and cut crowning (CL, CS) at both ends. As already described in connection with FIG. 3, the width is set to WL and the crowning amount is set to HL for the large diameter cut crowning (CL), and the width is set to WS and the crowning amount is set for the cut crowning (CS) on the small diameter side. Let it be HS. As is clear from FIGS. 2A and 3A, both the width and crowning amount of the cut crowning (CL) on the large diameter side are set larger than the cut crowning (CS) on the small diameter side ( WL> WS, HL> HS). The symbol Pi represents the contact point between the raceway surface (22) and the tapered roller (40), and is located on the center line of the length in the generatrix direction of the central crowning (C).
[0013]
Although the crowning is also provided on the raceway surface (32) of the outer ring (30), the apex of the crowning, that is, the contact point with the tapered roller (40) is indicated by the symbol Po. This contact point (Po) passes through a contact point (Pi) between the raceway surface (22) of the inner ring (20) and the rolling surface (42) of the tapered roller (40), and the axis (X) of the tapered roller (40). Located on a straight line perpendicular to -X). In other words, it can be said that the contact point ( Po ) is moved to the smaller diameter side along the axis (XX) of the tapered roller (40) as compared with the case of FIG.
[0014]
Since the positions of both contact points (Pi, Po) in the direction of the axis (XX) of the tapered roller (40) coincide with each other, the tapered roller (40) is moved to the inner ring during bearing rotation as shown in FIG. The point of action of the force received from (20) and the outer ring (30) coincides, and the distance (radius) from the axis (XX) of the tapered roller (40) to each contact point (Pi, Po) is also equal (FIG. 2 (C)). Therefore, the moment which tries to incline the axis (rotation axis) of the tapered roller (40) does not act, and the tapered roller (40) can roll without causing a skew while maintaining a normal axis.
[0015]
【The invention's effect】
As described above, according to the present invention, in the axial direction of the tapered roller, the position of the contact point between the raceway surface of the inner ring and the rolling surface of the tapered roller, the raceway surface of the outer ring, and the rolling surface of the tapered roller, The contact point of the tapered roller on the smaller diameter side from the center of the axial length of the tapered roller, the point of action of the force that the tapered roller receives from the raceway surface of the inner ring and the raceway surface of the outer ring during bearing rotation is In addition, the distances (radius) from the axial line (spinning line) of the tapered roller to the contact point between the raceway surface of the inner ring and the raceway surface of the outer ring are equal. Therefore, a moment for tilting the axis of the tapered roller does not act during rotation of the bearing as in the prior art. As a result, the tapered roller is less likely to be skewed, and the bearing life is further improved.
[Brief description of the drawings]
FIG. 1 is a half sectional view of a double row tapered roller bearing.
2A is a partially enlarged view of FIG. 1, FIG. 2B is a schematic plan view of a tapered roller in FIG. 1A, and FIG. 2C is a schematic cross-sectional view of the tapered roller in FIG.
3A is a partially enlarged view similar to FIG. 2A, FIG. 3B is a schematic plan view of the tapered roller in FIG. 2A, and FIG. 3C is a schematic cross-sectional view of the tapered roller in FIG. .
[Explanation of symbols]
20 Inner ring 22 Track surface C Centering crown CS Small-diameter side cut crown CL Large-diameter side cut crown Pi Contact point (inner ring raceway surface and tapered roller)
Po contact point (outer ring raceway surface and tapered roller)
24 Large brim 26 Small brim 28 Track groove 30 Outer ring 32 Race surface 40 Tapered roller 42 Rolling surface 44 Large end surface XX Tapered roller axis (spindle axis)
50 Cage 60 Seal

Claims (3)

内輪の軌道面の中央部にクラウニングを形成するとともに両端部に非対称のカットクラウニングを形成し、外輪の軌道面にフルクラウニングを形成し、かつ、円すいころの転動面にフルクラウニングを形成してなり、円すいころの転動面と内輪の軌道面との接触点と、円すいころの転動面と外輪の軌道面との接触点を、円すいころの軸方向長さの中央より小径側の軸線方向で一致させたことを特徴とする複列円すいころ軸受。Forming a crowning at the center of the raceway surface of the inner ring, forming asymmetric cut crowning at both ends, forming a full crowning on the raceway surface of the outer ring, and forming a full crowning on the rolling surface of the tapered roller Therefore, the contact point between the rolling surface of the tapered roller and the raceway surface of the inner ring and the contact point between the rolling surface of the tapered roller and the raceway surface of the outer ring are set to the axis on the smaller diameter side from the center of the axial length of the tapered roller. Double row tapered roller bearing characterized by matching in direction. 内輪の大径側のカットクラウニングのクラウニング量が小径側のカットクラウニングのクラウニング量よりも大きいことを特徴とする請求項1の複列円すいころ軸受。The double row tapered roller bearing according to claim 1, wherein the crowning amount of the cut crowning on the large diameter side of the inner ring is larger than the crowning amount of the cut crowning on the small diameter side. 円すいころの転動面と輪の軌道面との接触点を、内輪の軌道面における中央部のクラウニングの母線方向長さの中心線上に配置したことを特徴とする請求項1の複列円すいころ軸受。The contact point between the rolling surface and the inner ring raceway surface of the tapered rollers, double row claim 1, characterized in that arranged on the center line of the generating line direction length of the crowning of the middle portion of the inner ring raceway surface conical Roller bearing.
JP07261198A 1998-03-20 1998-03-20 Double row tapered roller bearing Expired - Lifetime JP4040160B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP07261198A JP4040160B2 (en) 1998-03-20 1998-03-20 Double row tapered roller bearing
US09/270,529 US6126322A (en) 1998-03-20 1999-03-17 Vehicle wheel supporting structure
FR9903437A FR2776237B1 (en) 1998-03-20 1999-03-19 VEHICLE WHEEL SUPPORT STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07261198A JP4040160B2 (en) 1998-03-20 1998-03-20 Double row tapered roller bearing

Publications (2)

Publication Number Publication Date
JPH11270553A JPH11270553A (en) 1999-10-05
JP4040160B2 true JP4040160B2 (en) 2008-01-30

Family

ID=13494373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07261198A Expired - Lifetime JP4040160B2 (en) 1998-03-20 1998-03-20 Double row tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4040160B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089553A (en) * 2000-09-12 2002-03-27 Nsk Ltd Rolling bearing for continuous casting machine
EP1471271A3 (en) 2003-04-25 2005-11-30 Koyo Seiko Co., Ltd. Tapered roller bearing and final reduction gear
JP2007139019A (en) * 2005-11-16 2007-06-07 Ntn Corp Conical roller bearing
DE102005058149A1 (en) * 2005-12-06 2007-07-05 Schaeffler Kg Tapered roller bearings with curved raceways
JP4936739B2 (en) * 2006-02-07 2012-05-23 Ntn株式会社 Wheel bearing device
DE102006052044A1 (en) * 2006-11-04 2008-05-08 Ab Skf Tapered rolling element and tapered roller bearing with the rolling elements
KR101383270B1 (en) * 2012-11-16 2014-04-08 주식회사 베어링아트 Taper roller bearing
US10677290B2 (en) * 2017-10-13 2020-06-09 General Electric Company Wind turbine pitch bearing with line contact rolling elements
CN112253619A (en) * 2020-11-25 2021-01-22 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Large-cone-angle double-row tapered roller bearing for wind power main shaft

Also Published As

Publication number Publication date
JPH11270553A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP4040160B2 (en) Double row tapered roller bearing
JP2004522923A5 (en)
JP5911688B2 (en) Double row tapered roller bearing
JP2001173665A (en) Roller bearing
JPH09236131A (en) Roller bearing
JP2012202453A (en) Self-aligning roller bearing
JP2000074075A (en) Roller bearing
JP5929481B2 (en) Spherical roller bearings and rotating equipment
JP4090085B2 (en) Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls
JP2002098137A (en) Tapered roller bearing
JP2007139019A (en) Conical roller bearing
JP2010151244A (en) Roller bearing
JP4127268B2 (en) Rolling roll support structure
US9168583B2 (en) Non-rotating shaft for a continuous casting machine
JP2005163873A (en) Rolling bearing
JP2009068530A (en) Automatically aligning roller bearing
JP2006316836A (en) Rolling stock axle supporting structure
JP5182068B2 (en) Rolling bearing
JP3789698B2 (en) Spherical roller bearing
JP2013053716A (en) Self-aligning roller bearing and turning wheel support structure
JP2021148128A (en) Cross roller bearing
JP4345304B2 (en) Differential
JPH0227214Y2 (en)
JP2023160080A (en) Self-aligning roller bearing
JP2007032785A (en) Conical roller bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19980409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term