JP2023160080A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2023160080A
JP2023160080A JP2022070148A JP2022070148A JP2023160080A JP 2023160080 A JP2023160080 A JP 2023160080A JP 2022070148 A JP2022070148 A JP 2022070148A JP 2022070148 A JP2022070148 A JP 2022070148A JP 2023160080 A JP2023160080 A JP 2023160080A
Authority
JP
Japan
Prior art keywords
roller
ring
self
rollers
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022070148A
Other languages
Japanese (ja)
Inventor
翔悟 田畑
Shogo Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2022070148A priority Critical patent/JP2023160080A/en
Publication of JP2023160080A publication Critical patent/JP2023160080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide a self-aligning roller bearing which includes a ring body being between rollers in two rows for guiding the roller in each row in the peripheral direction, with the roller end face on one side of the roller having a convex spherical part to be guided by the ring body, for improving the handling property by eliminating the need to manage the direction of the roller.SOLUTION: Roller end faces 32, 32 on both sides are shaped in plane symmetry to a virtual plane Vp2 perpendicular to a central axis L1 of a roller 30.SELECTED DRAWING: Figure 1

Description

この発明は、自動調心ころ軸受に関する。 The present invention relates to spherical roller bearings.

一般に、自動調心ころ軸受は、凹球面状の軌道面を有する外輪と、二列の軌道面を有する内輪と、前記内輪と外輪との間に介在する二列のころと、前記ころを保持する保持器とを備える。自動調心ころ軸受は、主にラジアル荷重を負荷し、ある程度のアキシアル荷重も負荷可能であり、所定の調心性を有する。 Generally, a self-aligning roller bearing includes an outer ring having a concave spherical raceway surface, an inner ring having two rows of raceway surfaces, two rows of rollers interposed between the inner ring and the outer ring, and holding the rollers. and a retainer. Spherical roller bearings mainly bear radial loads, can also bear some axial loads, and have a predetermined alignment property.

中でも、案内輪又は内輪の中つばからなる環体を二列のころの列間に設け、ころの一方側のころ端面を環体で周方向に案内するように構成された自動調心ころ軸受においては、軸受運転中の環体ところ間での発熱を抑制し、アキシアル荷重負荷能力を高めるため、一方のころ端面のうち、環体に周方向に滑り接触する部分を凸球面状に形成することが行われている(例えば、特許文献1)。 Among these, self-aligning roller bearings are constructed in such a way that an annular body consisting of a guide ring or inner ring is provided between two rows of rollers, and the end face of the rollers on one side of the rollers is guided in the circumferential direction by the annular body. In order to suppress heat generation between the ring body and increase the axial load carrying capacity during bearing operation, the part of one roller end face that slides into contact with the ring body in the circumferential direction is formed into a convex spherical shape. This has been done (for example, Patent Document 1).

特開2006-105208号公報Japanese Patent Application Publication No. 2006-105208

しかしながら、特許文献1のようなころは、環体側のころ端面と、これとは反対側の他方のころ端面との形状が相違するため、自動調心ころ軸受の組み立て工程等においてころの向きを管理することが必要であるため、取り扱い性に劣る問題がある。 However, in the rollers disclosed in Patent Document 1, the shape of the roller end face on the annular body side and the other roller end face on the opposite side is different, so it is difficult to change the direction of the rollers during the assembly process of a self-aligning roller bearing. Since it is necessary to manage the method, there is a problem that it is not easy to handle.

上述の背景に鑑み、この発明が解決しようとする課題は、自動調心ころ軸受のころの向き管理を不要にして取り扱い性を向上させることにある。 In view of the above-mentioned background, an object of the present invention is to improve the ease of handling by eliminating the need to manage the orientation of the rollers of a self-aligning roller bearing.

[構成1]
上記の課題を達成するため、この発明は、凹球面状の軌道面を有する外輪と、二列の軌道面を有する内輪と、前記内輪と外輪との間に介在する二列のころと、前記二列のころ間に設けられ各列のころを周方向に案内する環体と、前記ころを保持する保持器と、を備え、前記ころが、転動面と、両側のころ端面とを有し、一方側のころ端面が、前記環体に案内される凸球面状部を有する自動調心ころ軸受において、前記両側のころ端面が、前記ころの中心軸に直角な仮想平面に関して面対称な形状である構成を採用した。
[Configuration 1]
In order to achieve the above object, the present invention provides an outer ring having a concave spherical raceway surface, an inner ring having two rows of raceway surfaces, two rows of rollers interposed between the inner ring and the outer ring, and the The ring body is provided between two rows of rollers and guides each row of rollers in the circumferential direction, and the cage holds the rollers, and the rollers have a rolling surface and roller end surfaces on both sides. In a self-aligning roller bearing in which one roller end surface has a convex spherical portion guided by the annular body, the roller end surfaces on both sides are plane symmetrical with respect to an imaginary plane perpendicular to the central axis of the roller. We adopted a configuration that has a certain shape.

上記構成1によれば、両側のころ端面がころの中心軸に直角な仮想平面に関して面対称形状であるので、いずれ側のころ端面を環体側に向けて組み立てても、環体ところ間での発熱を抑制し、アキシアル荷重負荷能力を高めることが可能となり、ひいては、組み立て工程等においてころの向きの管理を不要にして取り扱い性を向上させることができる。 According to configuration 1, the roller end faces on both sides are plane symmetrical with respect to the virtual plane perpendicular to the central axis of the roller, so even if the roller end faces on either side are assembled toward the ring body, there will be no problem between the ring body and the roller end face. It becomes possible to suppress heat generation and increase the axial load carrying capacity, and in turn, it becomes unnecessary to manage the orientation of the rollers in the assembly process, etc., thereby improving the ease of handling.

[構成2]
上記構成1において、前記両側のころ端面が、それぞれの中心部に研削逃げ部を有するとよい。このようにすると、各ころ端面の中心部の研削加工が不要となるので、加工時間を短縮することができると共に、加工残りの懸念を無くすことができる。
[Configuration 2]
In the above configuration 1, it is preferable that the roller end faces on both sides have a grinding relief part at the center of each. In this way, it is not necessary to grind the center portion of each roller end face, so that the machining time can be shortened and there is no need to worry about machining remaining.

[構成3]
上記構成2において、前記研削逃げ部が、前記環体と接触不可な位置に形成されているとよい。このようにすると、研削逃げ部と凸球面状部の境界となるエッジが環体に接触しないため、接触する場合に比して発熱や荷重負荷能力の低下を抑制することができる。
[Configuration 3]
In the above configuration 2, it is preferable that the grinding relief portion is formed at a position where it cannot come into contact with the ring body. In this way, the edge serving as the boundary between the grinding relief part and the convex spherical part does not come into contact with the annular body, so that heat generation and a decrease in load carrying capacity can be suppressed compared to the case where the edge is in contact with the annular body.

[構成4]
上記構成2又は3において、前記内輪が、前記環体とは反対側のころ端面の凸球面状部を周方向に案内する外つばを有し、前記研削逃げ部が、前記外つばと接触不可な位置に形成されているとよい。このようにすると、研削逃げ部と凸球面状部の境界となるエッジが外つばに接触しないため、接触する場合に比して発熱や荷重負荷能力の低下を抑制することができる。
[Configuration 4]
In the above structure 2 or 3, the inner ring has an outer flange that circumferentially guides a convex spherical portion of the roller end face opposite to the annular body, and the grinding relief portion cannot come into contact with the outer flange. It is good if it is formed in a suitable position. In this case, since the edge serving as the boundary between the grinding relief part and the convex spherical part does not come into contact with the outer rib, heat generation and a decrease in load carrying capacity can be suppressed compared to the case where the edge is in contact with the outer rib.

[構成5]
上記構成1から4のいずれか1つにおいて、前記内輪が、前記環体とは反対側のころ端面の凸球面状部を周方向に案内する外つばを有し、前記外つばが、径方向に対して傾斜角をもって前記凸球面状部と向き合う外つば面を有し、前記傾斜角が、前記ころと前記外輪の軌道面の接触角よりも大きいとよい。このようにすると、外つば面の外周であるエッジところ端面が接触しにくくなるので、接触する場合に比して発熱を抑制することができる。
[Configuration 5]
In any one of the above configurations 1 to 4, the inner ring has an outer flange that circumferentially guides a convex spherical portion of the roller end surface opposite to the annular body, and the outer flange has a radial direction. It is preferable that the outer flange face has an outer flange face facing the convex spherical portion at an inclination angle relative to the outer ring, and the inclination angle is larger than a contact angle between the roller and the raceway surface of the outer ring. In this way, the edge, which is the outer periphery of the outer flange surface, is less likely to come into contact with the end face, so that heat generation can be suppressed compared to the case where they are in contact.

[構成6]
上記構成1から5のいずれか1つにおいて、前記保持器と前記環体側のころ端面間の隙間よりも前記環体と前記環体側のころ端面間の隙間の方が狭いとよい。このようにすると、比較的不安定な保持器で先にころを案内する場合に比して、比較的安定な環体が先にころを案内するので、ころの姿勢安定性(スキューやチルトの抑制)を向上させ、結果的に摩擦や発熱を抑制することができる。
[Configuration 6]
In any one of configurations 1 to 5 above, it is preferable that the gap between the ring body and the roller end face on the ring body side is narrower than the gap between the cage and the roller end face on the ring body side. In this way, compared to the case where the relatively unstable cage guides the rollers first, the relatively stable ring body guides the rollers first, which improves the posture stability of the rollers (no skew or tilt). control), and as a result, friction and heat generation can be suppressed.

上述のように、この発明は、上記構成の採用により、自動調心ころ軸受のころの向き管理を不要にして取り扱い性を向上させることができる。 As described above, by employing the above configuration, the present invention can eliminate the need to manage the orientation of the rollers of a self-aligning roller bearing, thereby improving the ease of handling.

この発明の実施形態に係る自動調心ころ軸受を示す断面図A sectional view showing a self-aligning roller bearing according to an embodiment of the invention 図1の環体付近の拡大図Enlarged view of the vicinity of the ring in Figure 1 図1の外つば側のころ端面の母線形状を示す断面図A cross-sectional view showing the generatrix shape of the roller end face on the outer rib side in Figure 1 図1の外つば付近の拡大図Enlarged view of the area near the outer brim in Figure 1

この発明の一例としての実施形態に係る自動調心ころ軸受を添付図面に基づいて説明する。 A self-aligning roller bearing according to an exemplary embodiment of the present invention will be described based on the accompanying drawings.

図1に示すこの自動調心ころ軸受は、凹球面状の軌道面11を有する外輪10と、二列の軌道面21を有する内輪20と、軌道面11と軌道面21,21との間に配置された二列のころ30と、二列のころ30間に設けられ各列のころ30を周方向に案内する環体40と、ころ30を保持する保持器50と、を備える。 This self-aligning roller bearing shown in FIG. It includes two rows of rollers 30 arranged, an annular body 40 that is provided between the two rows of rollers 30 and guides each row of rollers 30 in the circumferential direction, and a cage 50 that holds the rollers 30.

ここで、図1は、外輪10、内輪20、環体40及び保持器50が同心に位置し、各列のころ30が内外輪の軌道面11,21と理想的に接触する設計上の理想状態を示している。以下、この自動調心ころ軸受の設計上の回転中心である軸受中心軸(図示省略)に沿った方向のことを「軸方向」という。また、その軸受中心軸に直角な方向のことを「径方向」という。また、その軸受中心軸周りの円周方向のことを「周方向」という。また、ころの自転軸である中心軸L1に沿った方向のことを「ころ軸方向」といい、ころの中心軸L1に直角な方向のことを「ころ径方向」といい、ころの中心軸L1周りの円周方向のことを「ころ周方向」という。 Here, FIG. 1 shows an ideal design in which the outer ring 10, the inner ring 20, the annular body 40, and the retainer 50 are located concentrically, and the rollers 30 in each row are in ideal contact with the raceway surfaces 11, 21 of the inner and outer rings. Indicates the condition. Hereinafter, the direction along the bearing center axis (not shown), which is the designed rotation center of this self-aligning roller bearing, will be referred to as the "axial direction." Also, the direction perpendicular to the bearing center axis is referred to as the "radial direction." Further, the circumferential direction around the bearing center axis is referred to as the "circumferential direction." Also, the direction along the center axis L1, which is the axis of rotation of the roller, is called the "roller axial direction," and the direction perpendicular to the roller center axis L1 is called the "roller radial direction," and the direction along the center axis L1 of the roller is called the "roller radial direction." The circumferential direction around L1 is referred to as the "roller circumferential direction."

外輪10は、軸受中心軸上に中心をおいた凹球面状の軌道面11を内周に有する環状の軸受部品からなる。 The outer ring 10 is an annular bearing component having a concave spherical raceway surface 11 centered on the bearing center axis on its inner periphery.

内輪20は、外周側に二列一対の軌道面21を外周に有する環状の軸受部品からなる。内輪20は、その幅中央を通り、かつ径方向に沿った仮想平面Vp1に関して面対称な形状になっている。図示例の内輪20は、内輪20の外周の軸方向両端部にそれぞれ形成された外つば22をさらに有する。 The inner ring 20 is an annular bearing component having a pair of raceway surfaces 21 in two rows on the outer periphery. The inner ring 20 has a plane-symmetrical shape with respect to a virtual plane Vp1 passing through the center of its width and extending in the radial direction. The illustrated inner ring 20 further includes outer flanges 22 formed at both ends of the outer periphery of the inner ring 20 in the axial direction.

ころ30は、凸面状の転動面31と、両側のころ端面32と、ころ端面32と転動面31を繋ぐ両側の面取り部33とを有する転動体からなる。また、転動面31は、凹球面状の軌道面11に沿う曲面形状からなる。 The roller 30 is a rolling element having a convex rolling surface 31, roller end surfaces 32 on both sides, and chamfered portions 33 on both sides connecting the roller end surface 32 and the rolling surface 31. Further, the rolling surface 31 has a curved shape along the concave spherical raceway surface 11.

二列のころ30のうち、第一列のころ30は、第一の軌道面21と軌道面11間に介在し、第二列のころ30は、第二の軌道面21と軌道面11間に介在する。軸受回転中、二列のころ30の転動面31が軌道面11と二列の軌道面21,21間を転がることにより、所定の調心性が発揮されるようになっている。 Of the two rows of rollers 30, the first row of rollers 30 are interposed between the first raceway surface 21 and raceway surface 11, and the second row of rollers 30 are interposed between the second raceway surface 21 and raceway surface 11. intervene. During bearing rotation, the rolling surfaces 31 of the two rows of rollers 30 roll between the raceway surface 11 and the two rows of raceway surfaces 21, 21, thereby achieving a predetermined alignment.

環体40は、内輪20とは別体に設けられた案内輪からなる。環体40は、その幅中央を通り、かつ径方向に沿った仮想平面(図1において仮想平面Vp1相当)に関して面対称な形状になっている。なお、案内輪に代えて、内輪と一体に中つばを設け、その中つばを環体とすることも可能である。 The ring body 40 consists of a guide ring provided separately from the inner ring 20. The annular body 40 has a shape that is plane symmetrical with respect to a virtual plane (corresponding to the virtual plane Vp1 in FIG. 1) that passes through the center of its width and extends in the radial direction. In addition, instead of the guide ring, it is also possible to provide a middle collar integrally with the inner ring and to make the middle collar a ring.

保持器50は、軌道面11と軌道面21間でころ30の周方向間隔を均等に保持する環状の軸受部品からなる。図示例の保持器50は、二列のころ30を保持するくし形もみ抜き保持器になっている。保持器50と各ころ30との間には、軸方向、径方向及び周方向の隙間が設定されている。保持器50は、環体40によって径方向に案内される。 The retainer 50 is made of an annular bearing component that maintains equal circumferential spacing between the rollers 30 between the raceway surfaces 11 and 21. The illustrated cage 50 is a comb-shaped machined cage that holds two rows of rollers 30. Between the cage 50 and each roller 30, gaps are set in the axial direction, radial direction, and circumferential direction. The retainer 50 is guided radially by the annulus 40.

図2に示すように、保持器50と環体40側のころ端面32間の隙間δ1に比して、環体40と環体40側のころ端面32間の隙間δ2の方が狭い。隙間δ1は、図示の状態において保持器50と環体40側のころ端面32との間でのころ軸方向の最短距離に相当する。隙間δ2は、図示の状態において環体40と環体40側のころ端面32との間でのころ軸方向の最短距離に相当する。隙間δ1>隙間δ2の設定により、環体40側のころ端面32が環体40に接近する方へ変位した際、当該ころ端面32が保持器50よりも先に環体40によって案内されるようになっている。 As shown in FIG. 2, the gap δ2 between the ring body 40 and the roller end face 32 on the ring body 40 side is narrower than the gap δ1 between the cage 50 and the roller end face 32 on the ring body 40 side. The gap δ1 corresponds to the shortest distance in the roller axial direction between the cage 50 and the roller end surface 32 on the ring body 40 side in the illustrated state. The gap δ2 corresponds to the shortest distance in the roller axial direction between the ring body 40 and the roller end surface 32 on the side of the ring body 40 in the illustrated state. By setting the gap δ1>gap δ2, when the roller end face 32 on the ring body 40 side is displaced toward the ring body 40, the roller end face 32 is guided by the ring body 40 before the cage 50. It has become.

ころ30の転動面31の最大径は、図1に示すように、ころ30の長さをころ軸方向に二等分する中央上でころ30の中心軸に直角な仮想平面Vp2上に位置する。ころ30の全体は、その仮想平面Vp2に関して面対称な形状になっている。したがって、両側のころ端面32は、その仮想平面Vp2に関して面対称な形状である。 As shown in FIG. 1, the maximum diameter of the rolling surface 31 of the roller 30 is located on a virtual plane Vp2 perpendicular to the central axis of the roller 30 at the center that bisects the length of the roller 30 in the roller axial direction. do. The entire roller 30 has a plane-symmetrical shape with respect to its virtual plane Vp2. Therefore, the roller end surfaces 32 on both sides have a plane-symmetrical shape with respect to the virtual plane Vp2.

各ころ端面32は、面取り部33に連続する凸球面状部32aと、ころ径方向の中心部に形成された研削逃げ部32bとで構成されている。 Each roller end face 32 includes a convex spherical portion 32a continuous to the chamfered portion 33, and a grinding relief portion 32b formed at the center in the radial direction of the roller.

ころ30の中心軸L1を含む仮想平面上の断面において、片側のころ端面32が有する形状(すなわち、ころ端面32の母線の形状)を図3に示す。図示のころ端面32の母線をころ周方向に一周させることによって当該ころ端面32の全面が完成することになる。なお、図3に示すころ端面32とは反対側のころ端面32の母線形状は、図3を左右反転させた形状になるだけなので、その図示説明を省略する。 FIG. 3 shows the shape of one roller end surface 32 (that is, the shape of the generatrix of the roller end surface 32) in a cross section on a virtual plane including the central axis L1 of the roller 30. By making the generatrix of the illustrated roller end surface 32 go around once in the roller circumferential direction, the entire surface of the roller end surface 32 is completed. Note that the generatrix shape of the roller end surface 32 on the opposite side to the roller end surface 32 shown in FIG. 3 is only a shape obtained by horizontally inverting the shape of FIG.

凸球面状部32aは、その外周において面取り部33に連続し、その内周において研削逃げ部32bに連続している。凸球面状部32aは、仮想凸球面上に位置する表面部であり、ころ端面32の母線上においては、位置P1と位置P2を通る単一の仮想円弧線上に位置する線分部である。位置P1,P2は、それぞれ面取り部33との境界上の位置であって、外輪10側の位置P1は外輪10の軌道面11に最も近い位置となり、内輪20側の位置P2は内輪20の軌道面21に最も近い位置となる。凸球面状部32aは、回転砥石によって研削加工されている。 The convex spherical portion 32a is continuous with the chamfered portion 33 on its outer periphery, and continuous with the grinding relief portion 32b on its inner periphery. The convex spherical portion 32a is a surface portion located on an imaginary convex spherical surface, and is a line segment portion located on a single imaginary arc line passing through positions P1 and P2 on the generatrix of the roller end face 32. Positions P1 and P2 are respectively on the boundary with the chamfered portion 33, and position P1 on the outer ring 10 side is the closest to the raceway surface 11 of the outer ring 10, and position P2 on the inner ring 20 side is on the orbit of the inner ring 20. This is the position closest to surface 21. The convex spherical portion 32a is ground using a rotating grindstone.

研削逃げ部32bは、位置P1と位置P2を通る単一仮想円弧線で規定された仮想凸球面よりもころ軸方向に仮想平面Vp2側に近い位置にあるころ端面32の中心部である。研削逃げ部32bは、かつころ30の中心軸L1からころ径方向に所定の幅をもっている。研削逃げ部32bは、回転砥石によって研削加工されていない。 The grinding relief portion 32b is a central portion of the roller end face 32 located closer to the virtual plane Vp2 in the roller axis direction than the virtual convex spherical surface defined by a single virtual arc passing through the positions P1 and P2. The grinding relief portion 32b has a predetermined width in the roller radial direction from the center axis L1 of the roller 30. The grinding relief portion 32b is not ground by a rotating grindstone.

ころ30を回転加工する際、凸球面状部32aを規定する仮想球面の頂点(中心軸L1上)においてころ周方向の周速がゼロになり、頂点に近い程、周速が遅くなる。このため、ころ端面32の全面を凸球面状にした場合、中心部の研削加工に時間を要したり、中心軸L1上に加工残りが発生したりする問題がある。両側のころ端面32の中心部に研削逃げ部32bを形成する場合、これらの問題を避けることが可能になる。 When rotating the roller 30, the peripheral speed in the roller circumferential direction becomes zero at the apex (on the central axis L1) of the virtual spherical surface defining the convex spherical portion 32a, and the closer to the apex, the slower the peripheral speed becomes. For this reason, when the entire surface of the roller end face 32 is made into a convex spherical shape, there are problems in that it takes time to grind the center part and that unprocessed parts are left on the center axis L1. When the grinding relief portions 32b are formed at the center of the roller end faces 32 on both sides, these problems can be avoided.

図示例の研削逃げ部32bは、研削逃げ部32bと凸球面状部32aの境界であるエッジe1からころ軸方向に凹んだ形状としたが、ころ30の中心軸L1に直角な平坦面状に形成することも可能である。 The grinding relief portion 32b in the illustrated example has a shape recessed in the roller axis direction from the edge e1 that is the boundary between the grinding relief portion 32b and the convex spherical portion 32a, but it has a flat surface shape perpendicular to the central axis L1 of the roller 30. It is also possible to form

図1に示すころ30の両側のころ端面32,32のうち、いずれか一方側のころ端面32の凸球面状部32aは、軸受運転中、環体40によって周方向に案内される部位となる。 Among the roller end surfaces 32, 32 on both sides of the roller 30 shown in FIG. 1, the convex spherical portion 32a of the roller end surface 32 on one side becomes a portion guided in the circumferential direction by the ring body 40 during bearing operation. .

凸球面状部32aは、軸受運転中の環体40ところ30間での発熱を抑制し、アキシアル荷重負荷能力を高める目的で形成する部位であるため、軸受運転中に環体40と摩擦が生じ得る領域に形成されていれば十分である。 The convex spherical portion 32a is a portion formed for the purpose of suppressing heat generation between the ring bodies 40 and 30 during bearing operation and increasing the axial load carrying capacity, so friction with the ring body 40 occurs during bearing operation. It is sufficient if it is formed in the area to be obtained.

研削逃げ部32bは、環体40側に向けて配置された場合に環体40と接触不可な位置に形成されている。また、研削逃げ部32bは、外つば22側に向けて配置された場合に外つば22と接触不可な位置に形成されている。研削逃げ部32bと凸球面状部32aの境界であるエッジe1は、環体40側となる場合、環体40よりも径方向に外輪10側へ寄った位置となり、外つば22側となる場合、外つば22よりも径方向に外輪10側へ寄った位置となる。 The grinding relief portion 32b is formed at a position where it cannot come into contact with the ring body 40 when it is disposed toward the ring body 40 side. Further, the grinding relief portion 32b is formed at a position where it cannot come into contact with the outer flange 22 when it is disposed toward the outer flange 22 side. When the edge e1 that is the boundary between the grinding relief part 32b and the convex spherical part 32a is on the ring body 40 side, it is at a position closer to the outer ring 10 side than the ring body 40 in the radial direction, and when it is on the outer rib 22 side , the position is closer to the outer ring 10 in the radial direction than the outer flange 22.

外つば22は、径方向に対して傾斜角θ1をもって凸球面状部32aところ軸方向に向き合う外つば面22aを有する。傾斜角θ1は、ころ30と外輪10の軌道面11の接触角θ2よりも大きい。ここで、接触角θ2は、ころ30の転動面31と外輪10の軌道面11との接触点における法線が軸受中心軸に直角な仮想平面(図1において仮想平面Vp1相当)となす角度である。傾斜角θ1の分、外つば面22aの外周であるエッジe2が外つば22側のころ端面32から遠ざかるので、外つば面22aのエッジe2と外つば22側のころ端面32を接触しにくくすることができる。参考として、図4に従来例の外つば形状を二点鎖線で示し、実線の外つば22の形状と比較して示す。二点鎖線で示す従来例の場合、従来例の外つば面の外周のエッジところ端面32間が外つばところ端面32間における最短距離となり、当該エッジがころ端面32に接触することが分かる。 The outer flange 22 has an outer flange surface 22a facing in the axial direction and a convex spherical portion 32a having an inclination angle θ1 with respect to the radial direction. The inclination angle θ1 is larger than the contact angle θ2 between the rollers 30 and the raceway surface 11 of the outer ring 10. Here, the contact angle θ2 is the angle that the normal line at the point of contact between the rolling surface 31 of the rollers 30 and the raceway surface 11 of the outer ring 10 makes with a virtual plane (corresponding to the virtual plane Vp1 in FIG. 1) perpendicular to the bearing center axis. It is. Since the edge e2, which is the outer periphery of the outer flange surface 22a, moves away from the roller end surface 32 on the outer flange 22 side by the inclination angle θ1, it becomes difficult for the edge e2 of the outer flange surface 22a to come into contact with the roller end surface 32 on the outer flange 22 side. be able to. For reference, FIG. 4 shows the shape of the outer flange of a conventional example using a chain double-dashed line and compares it with the shape of the outer flange 22 shown as a solid line. In the case of the conventional example shown by the two-dot chain line, it can be seen that the distance between the edge and the end surface 32 on the outer periphery of the outer flange surface of the conventional example is the shortest distance between the outer flange and the end surface 32, and the edge contacts the roller end surface 32.

図1~図4に示すこの自動調心ころ軸受は、上述のようなものであり、凹球面状の軌道面11を有する外輪10と、二列の軌道面21,21を有する内輪20と、内輪20と外輪10との間に介在する二列のころ30と、二列のころ30間に設けられ各列のころ30を周方向に案内する環体40と、ころ30を保持する保持器50と、を備え、ころ30が転動面31と、両側のころ端面32とを有し、一方側のころ端面32が環体40に案内される凸球面状部32aを有するものである。 This self-aligning roller bearing shown in FIGS. 1 to 4 is as described above, and includes an outer ring 10 having a concave spherical raceway surface 11, an inner ring 20 having two rows of raceway surfaces 21, 21, Two rows of rollers 30 interposed between the inner ring 20 and the outer ring 10, an annular body 40 that is provided between the two rows of rollers 30 and guides each row of rollers 30 in the circumferential direction, and a cage that holds the rollers 30. 50, the roller 30 has a rolling surface 31 and roller end surfaces 32 on both sides, and the roller end surface 32 on one side has a convex spherical portion 32a guided by the ring body 40.

特に、この自動調心ころ軸受は、両側のころ端面32,32がころ30の中心軸L1に直角な仮想平面Vp2に関して面対称な形状であることにより、いずれの側のころ端面32を環体40側に向けて組み立てても、環体40と凸球面状部32aが接触することになるので、環体40ところ30間での発熱を抑制し、アキシアル荷重負荷能力を高めることが可能となる。したがって、この自動調心ころ軸受は、組み立て工程等においてころ30のころ軸方向に関する向きの管理を不要として取り扱い性を向上させることができる。 In particular, in this self-aligning roller bearing, the roller end surfaces 32, 32 on both sides are plane symmetrical with respect to the virtual plane Vp2 perpendicular to the central axis L1 of the rollers 30, so that the roller end surfaces 32 on either side can be connected to the annular body. Even when assembled toward the 40 side, the ring body 40 and the convex spherical portion 32a will come into contact with each other, so it is possible to suppress heat generation between the ring bodies 40 and 30 and increase the axial load carrying capacity. . Therefore, this self-aligning roller bearing eliminates the need to manage the orientation of the rollers 30 in the roller axial direction during the assembly process, etc., and can improve the ease of handling.

また、この自動調心ころ軸受は、両側のころ端面32,32がそれぞれの中心部に研削逃げ部32b,32bを有することにより、各ころ端面32の中心部の研削加工が不要となるので、加工時間を短縮することができると共に、加工残りの懸念を無くすことができる。 In addition, in this self-aligning roller bearing, since the roller end surfaces 32 on both sides have grinding relief portions 32b, 32b at the center of each roller end surface, grinding of the center of each roller end surface 32 is not necessary. The machining time can be shortened and there is no need to worry about machining remaining.

また、この自動調心ころ軸受は、研削逃げ部32bが環体40と接触不可な位置に形成されていることにより、研削逃げ部32bと凸球面状部32aの境界であるエッジe1が環体40に接触しないため、接触する場合に比して発熱や荷重負荷能力の低下を抑制することができる。 In addition, in this self-aligning roller bearing, the grinding relief portion 32b is formed at a position where it cannot come into contact with the ring body 40, so that the edge e1, which is the boundary between the grinding relief portion 32b and the convex spherical portion 32a, is on the ring body. 40, it is possible to suppress heat generation and a decrease in load carrying capacity compared to the case where there is contact.

また、この自動調心ころ軸受は、内輪20が環体40とは反対側のころ端面32の凸球面状部32aを周方向に案内する外つば22を有し、研削逃げ部32bが外つば22と接触不可な位置に形成されていることにより、研削逃げ部32bと凸球面状部32aの境界であるエッジe1が外つば22に接触しないため、接触する場合に比して発熱や荷重負荷能力の低下を抑制することができる。 Further, in this self-aligning roller bearing, the inner ring 20 has an outer flange 22 that circumferentially guides a convex spherical portion 32a of the roller end face 32 on the opposite side of the annular body 40, and a grinding relief portion 32b is formed on the outer flange. Since the edge e1, which is the boundary between the grinding relief part 32b and the convex spherical part 32a, does not come into contact with the outer flange 22, heat generation and load load are reduced compared to the case where the edge e1 is in contact with the outer flange 22. Decline in ability can be suppressed.

また、この自動調心ころ軸受は、内輪20が環体40とは反対側のころ端面32の凸球面状部32aを周方向に案内する外つば22を有し、外つば22が径方向に対して傾斜角θ1をもって凸球面状部32aと向き合う外つば面22aを有し、傾斜角θ1がころ30と外輪10の軌道面11の接触角θ2よりも大きいことにより、外つば面22aの外周であるエッジe2ところ端面32が接触しにくくなるので、接触する場合に比して発熱を抑制することができる。 Further, in this self-aligning roller bearing, the inner ring 20 has an outer flange 22 that circumferentially guides a convex spherical portion 32a of the roller end face 32 on the opposite side from the annular body 40, and the outer flange 22 radially extends. On the other hand, it has an outer flange surface 22a facing the convex spherical portion 32a at an inclination angle θ1, and since the inclination angle θ1 is larger than the contact angle θ2 between the rollers 30 and the raceway surface 11 of the outer ring 10, the outer periphery of the outer flange surface 22a Since the end face 32 is less likely to come into contact with the edge e2, heat generation can be suppressed compared to the case where the end face 32 contacts the edge e2.

また、この自動調心ころ軸受は、保持器50と環体40側のころ端面32間の隙間δ1よりも環体40と環体40側のころ端面32間の隙間δ2の方が狭いことにより、比較的不安定な保持器50で先にころ30を案内する場合に比して、比較的安定な環体40がころ30を先に案内するので、ころ30の姿勢安定性(スキューやチルトの抑制)を向上させ、結果的に摩擦や発熱を抑制することができる。 Further, in this self-aligning roller bearing, the gap δ2 between the ring body 40 and the roller end face 32 on the ring body 40 side is narrower than the gap δ1 between the cage 50 and the roller end face 32 on the ring body 40 side. Compared to the case where the relatively unstable cage 50 guides the rollers 30 first, the comparatively stable ring body 40 guides the rollers 30 first, so the posture stability of the rollers 30 (skew and tilt) is improved. ), and as a result, friction and heat generation can be suppressed.

今回開示された各実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Each embodiment disclosed this time should be considered to be illustrative in all respects and not restrictive. Therefore, the scope of the present invention is indicated by the claims, and it is intended that all changes within the meaning and range equivalent to the claims are included.

10 外輪
11 軌道面
20 内輪
21 軌道面
22 外つば
22a 外つば面
30 ころ
31 転動面
32 ころ端面
32a 凸球面状部
32b 研削逃げ部
33 面取り部
40 環体
50 保持器
10 Outer ring 11 Raceway surface 20 Inner ring 21 Raceway surface 22 Outer flange 22a Outer flange surface 30 Roller 31 Rolling surface 32 Roller end surface 32a Convex spherical portion 32b Grinding relief portion 33 Chamfered portion 40 Ring body 50 Cage

Claims (6)

凹球面状の軌道面を有する外輪と、二列の軌道面を有する内輪と、前記内輪と外輪との間に介在する二列のころと、前記二列のころ間に設けられ各列のころを周方向に案内する環体と、前記ころを保持する保持器と、を備え、前記ころが、転動面と、両側のころ端面とを有し、一方側のころ端面が、前記環体に案内される凸球面状部を有する自動調心ころ軸受において、
前記両側のころ端面が、前記ころの中心軸に直角な仮想平面に関して面対称な形状であることを特徴とする自動調心ころ軸受。
an outer ring having a concave spherical raceway surface, an inner ring having two rows of raceway surfaces, two rows of rollers interposed between the inner ring and the outer ring, and each row of rollers provided between the two rows of rollers. an annular body that guides the roller in the circumferential direction, and a cage that holds the roller, the roller has a rolling surface and roller end surfaces on both sides, and one roller end surface is connected to the annular body. In a spherical roller bearing having a convex spherical portion guided by
A self-aligning roller bearing, wherein the roller end faces on both sides have a plane-symmetrical shape with respect to an imaginary plane perpendicular to the central axis of the roller.
前記両側のころ端面が、それぞれの中心部に研削逃げ部を有する請求項1に記載の自動調心ころ軸受。 The self-aligning roller bearing according to claim 1, wherein the roller end faces on both sides have a grinding relief portion at the center of each. 前記研削逃げ部が、前記環体と接触不可な位置に形成されている請求項2に記載の自動調心ころ軸受。 The self-aligning roller bearing according to claim 2, wherein the grinding relief portion is formed at a position where it cannot come into contact with the ring body. 前記内輪が、前記環体とは反対側のころ端面の凸球面状部を周方向に案内する外つばを有し、前記研削逃げ部が、前記外つばと接触不可な位置に形成されている請求項2又は3に記載の自動調心ころ軸受。 The inner ring has an outer flange that circumferentially guides a convex spherical portion on an end surface of the roller opposite to the annular body, and the grinding relief portion is formed at a position where it cannot come into contact with the outer flange. A self-aligning roller bearing according to claim 2 or 3. 前記内輪が、前記環体とは反対側のころ端面の凸球面状部を周方向に案内する外つばを有し、前記外つばが、径方向に対して傾斜角をもって前記凸球面状部と向き合う外つば面を有し、前記傾斜角が、前記ころと前記外輪の軌道面の接触角よりも大きい請求項1から3のいずれか1項に記載の自動調心ころ軸受。 The inner ring has an outer rib that circumferentially guides a convex spherical portion on the end surface of the roller opposite to the annular body, and the outer rib has an inclination angle with respect to the radial direction to guide the convex spherical portion on the side opposite to the annular body. The self-aligning roller bearing according to any one of claims 1 to 3, wherein the self-aligning roller bearing has outer rib surfaces facing each other, and the inclination angle is larger than the contact angle between the roller and the raceway surface of the outer ring. 前記保持器と前記環体側のころ端面間の隙間よりも前記環体と前記環体側のころ端面間の隙間の方が狭い請求項1から3のいずれか1項に記載の自動調心ころ軸受。 The self-aligning roller bearing according to any one of claims 1 to 3, wherein a gap between the ring body and the roller end face on the ring body side is narrower than a gap between the cage and the roller end face on the ring body side. .
JP2022070148A 2022-04-21 2022-04-21 Self-aligning roller bearing Pending JP2023160080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022070148A JP2023160080A (en) 2022-04-21 2022-04-21 Self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022070148A JP2023160080A (en) 2022-04-21 2022-04-21 Self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2023160080A true JP2023160080A (en) 2023-11-02

Family

ID=88515846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022070148A Pending JP2023160080A (en) 2022-04-21 2022-04-21 Self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2023160080A (en)

Similar Documents

Publication Publication Date Title
US11035409B2 (en) Bearing unit with retaining cage
JP2003097564A (en) Four point contact ball bearing
JP5911688B2 (en) Double row tapered roller bearing
WO2013051696A1 (en) Rolling bearing
JP2015059645A (en) Rolling bearing
US11149787B2 (en) Thrust roller bearing
JP2012202453A (en) Self-aligning roller bearing
JP2023160080A (en) Self-aligning roller bearing
JP2001173665A (en) Roller bearing
JP6544000B2 (en) Self-aligning roller bearing
JP5929481B2 (en) Spherical roller bearings and rotating equipment
JP4090085B2 (en) Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls
GB2362928A (en) Roller bearing assemblies
JP2021116922A (en) Roller bearing
JP6696610B2 (en) Cage cage for rolling bearings
US10883537B2 (en) Tapered roller bearing
JP2003130057A (en) Roller bearing
JP2009008240A (en) Tapered roller bearing
JP2022150800A (en) Self-aligning roller bearing
JP2002098137A (en) Tapered roller bearing
JP7259402B2 (en) thrust roller bearing
JPS62110018A (en) Automatic center adjusting roller bearing
JP2021148128A (en) Cross roller bearing
WO2023037918A1 (en) Needle roller bearing
JP2013053716A (en) Self-aligning roller bearing and turning wheel support structure