JP4090085B2 - Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls - Google Patents

Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls Download PDF

Info

Publication number
JP4090085B2
JP4090085B2 JP02032097A JP2032097A JP4090085B2 JP 4090085 B2 JP4090085 B2 JP 4090085B2 JP 02032097 A JP02032097 A JP 02032097A JP 2032097 A JP2032097 A JP 2032097A JP 4090085 B2 JP4090085 B2 JP 4090085B2
Authority
JP
Japan
Prior art keywords
ring
outer ring
aligning
peripheral surface
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02032097A
Other languages
Japanese (ja)
Other versions
JPH10220467A (en
Inventor
希 錦織
三千男 鈴木
富次郎 久保
信孝 後藤
琢也 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
NSK Ltd
Original Assignee
JFE Steel Corp
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, NSK Ltd filed Critical JFE Steel Corp
Priority to JP02032097A priority Critical patent/JP4090085B2/en
Publication of JPH10220467A publication Critical patent/JPH10220467A/en
Application granted granted Critical
Publication of JP4090085B2 publication Critical patent/JP4090085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/084Ball or roller bearings self-adjusting by means of at least one substantially spherical surface sliding on a complementary spherical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係る圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受は、大きなラジアル荷重の他にスラスト荷重が加わり、しかも軸の長さ寸法が大きく、荷重による軸の変形(曲がり)が比較的大きい、圧延機用ロールの中心軸を支持する為に利用する。特に、本発明の圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受は、上記圧延機用ロールの中心軸が傾斜する傾向となった場合にも、構成各部にエッヂロード等の局部荷重が加わる事を防止し、回転支持部の信頼性及び耐久性の向上を図るものである。
【0002】
【従来の技術】
大きなラジアル荷重を支承する圧延機用ロールの中心軸の回転支持部に組み込む為の転がり軸受としては、何れも負荷容量の大きな、円筒ころ軸受、テーパころ軸受、自動調心ころ軸受が広く使用されている。又、円筒ころ軸受を構成する外輪の周囲に調心輪を設けた、調心輪付円筒ころ軸受も、従来から知られている。調心輪付円筒ころ軸受の場合には、この調心輪の中心軸と外輪の中心軸とが不一致になる傾向になると、外輪と調心輪とが相対的に揺動変位し、この不一致に基づいて上記円筒ころ軸受の一部に、エッヂロード等の局部荷重が加わる事を防止する。
【0003】
【発明が解決しようとする課題】
上述した様な従来の転がり軸受の場合には、大きなラジアル荷重の他にスラスト荷重を支承し、しかも回転軸が傾斜する傾向となった場合にも、構成各部にエッヂロード等の局部荷重が加わる事を防止する事が難しかったり、或はコストが嵩む事が避けられなかった。
【0004】
先ず、一般的な円筒ころ軸受、並びにテーパころ軸受の場合には、外輪、内輪両軌道、並びにころの転動面が何れも単なる円筒面或は円すい曲面である為、回転軸が傾斜した場合、転動面の両端部と外輪、内輪両軌道との当接部にエッヂロードが加わる。そして、このエッヂロードに基づいて、これら転動面と外輪、内輪両軌道との当接部に過大な面圧が作用し、ころ軸受の耐久性を損なうだけでなく、著しい場合にはかじりや焼き付き等の損傷を発生する原因となる。
【0005】
又、自動調心ころ軸受の場合には、上記エッヂロードの発生を防止し、しかも或る程度の大きさのスラスト荷重を支承できる反面、ころとして球面ころを使用する為、差動滑りにより軌道面が局部摩耗する可能性があるだけでなく、球面ころの製作が面倒で、コストが嵩む事が避けられない。更に、円筒ころ軸受の周囲に調心輪を設けた調心輪付円筒ころ軸受の場合には、スラスト荷重を支承する機能が殆どない。この為、圧延機用ロール等、非常に大きなラジアル荷重を支承する必要がある回転支持部に使用すると、負荷容量が不足する場合がある。
本発明の圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受は、上述の様な事情に鑑みて、大きなラジアル荷重の他に大きなスラスト荷重を支承し、しかも回転軸が傾斜する傾向となった場合にも、構成各部にエッヂロード等の局部荷重が加わる事を防止できる構造を安価に得るべく発明したものである。
【0006】
【課題を解決するための手段】
本発明の圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受は、1個の外輪と、1対の内輪と、複数の円すいころと、調心輪とを備える。
このうちの外輪は、複列の外輪軌道を内周面に形成している。これら各外輪軌道は、それぞれが円すい凹面状で互いに逆方向に、且つそれぞれが開口部に向かう程内径が大きくなる方向に傾斜している。
又、上記1対の内輪は、円すい凸面状の内輪軌道をそれぞれの外周面に形成している。それぞれをこの様に形成した1対の内輪は、上記各内輪軌道の小径側となる端面同士を対向させた状態で、上記外輪の内側に配置された状態で、圧延機用ロールの中心軸に外嵌固定される
又、上記複数の円すいころは、上記各外輪軌道と上記各内輪軌道との間に、それぞれ複数個ずつ設けている。
更に、上記調心輪は、上記外輪の周囲に配置された状態でハウジングに内嵌支持される。この調心輪の内周面はこの調心輪の中心軸上の点をその中心とする球状凹面であり、上記外輪の外周面はこの外輪の中心軸上の点をその中心とする球状凸面である。そして、これら調心輪の内周面と上記外輪の外周面とを、これら調心輪と外輪との揺動変位を自在としてがたつきなく嵌合させる事により、調心機能を持たせている。
【0007】
【作用】
上述の様に構成する本発明の圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受によれば、大きなラジアル荷重の他にスラスト荷重を支承できる。即ち、複数の円すいころを複列に配置している為、これら複数の円すいころによるラジアル方向の負荷容量を大きくできる。又、外輪と内輪との間にスラスト荷重が加わった場合でも、何れかの列の円すいころが、外輪軌道と内輪軌道との間でスラスト方向に挟持される事により、上記スラスト荷重を支承する。
更に、1対の内輪を外嵌支持した圧延機用ロールの中心軸が、調心輪を内嵌支持したハウジングに対し傾斜する傾向となった場合には、この調心輪の内側で上記外輪が揺動変位する事により、上記傾斜分を補償し、外輪の中心軸と内輪の中心軸とを一致させたままの状態とする。この結果、複列円すいころ軸受の本体部分を構成する、外輪内周面の外輪軌道及び内輪外周面の内輪軌道と各円すいころの転動面との当接部に、エッヂロード等の局部荷重が加わる事を防止できる。
しかも、本発明の構造を構成する円すいころは、転動面が単純な円すい曲面である為、自動調心ころ軸受を構成する球面ころの様に製造が面倒ではない。従って、製作費が嵩む事もない。
【0008】
【発明の実施の形態】
図1は、本発明の実施の形態の第1例を示している。調心機構付複列円すいころ軸受1は、1個の外輪2と、1対の内輪3、3と、複数の円すいころ4、4と、1個の調心輪12とを備える。このうちの外輪2は、複列の外輪軌道5、5を内周面に形成している。これら各外輪軌道5、5は、それぞれが円すい凹面状で、互いに逆方向に、且つそれぞれが開口部に向かう程内径が大きくなる方向に傾斜している。従って、上記外輪2の内径は、中央部で最も小さく、両端開口部に向かう程漸次大きくなる。
【0009】
又、上記1対の内輪3、3は、円すい凸面状の内輪軌道6、6を、それぞれの外周面に形成している。又、上記各内輪3、3の一端部(図1の左右端部)外周面で上記内輪軌道6の大径側端部に位置する部分には、外向フランジ状の大径側鍔部7を、同じく他端部(図1の中央端部)外周面で上記内輪軌道6の小径側端部に位置する部分には、同じく外向フランジ状の小径側鍔部8を、それぞれ形成している。それぞれをこの様に形成した、上記1対の内輪3、3は、上記各内輪軌道6、6の小径側となる端面同士、即ち、小径側鍔部8、8同士を対向させた状態で、上記外輪2の内側に配置している。尚、図示の例の場合には、これら1対の内輪3、3の端面同士の間に、間座9を挟持している。
【0010】
又、上記複数の円すいころ4、4は、上記各外輪軌道5、5と上記各内輪軌道6、6との間にそれぞれ複数個ずつ、それぞれ保持器10、10のポケット11内に転動自在に保持した状態で設けている。
【0011】
更に、上記調心輪12は、上記外輪2の周囲に配置している。この調心輪12の内周面13は、この調心輪12の中心軸X上の点Oをその中心とする球状凹面としている。又、上記外輪2の外周面14は、やはりこの外輪2の中心軸X上の点Oをその中心とする球状凸面としている。図示の例では、これら各点Oは、上記調心輪12及び外輪2の軸方向中央位置に設けている。従って、上記内周面13の内径、並びに上記外周面14の外径は、上記調心輪12或は外輪2の軸方向中央部で最も大きい。尚、これら内周面13と外周面14との曲率半径は、互いに等しい。又、上記調心輪12の外周面は、単なる円筒面としている。
【0012】
それぞれの内外両周面を上述の様に形成した、調心輪12及び外輪2は、調心輪12の内周面13と外輪2の外周面14とを、これら調心輪12と外輪2との揺動変位を自在として、がたつきなく嵌合させる。この様な嵌合作業を可能にすべく、上記調心輪12には、円周方向の1又は2個所に、割り(=軸方向両端面同士を連続させる割れ目。図示省略。)を形成している。嵌合作業時には、この割りの幅を大きくする(割りを開く)事で上記調心輪12の内径を大きくし、この調心輪12の内側に上記外輪2を挿入する。この様に調心輪12の内側に上記外輪2を挿入し、調心輪12の内周面13と外輪2の外周面14とを密着させた状態では、この外輪2は調心輪12の内側に揺動変位自在に、がたつきなく支持される。この結果、外輪2の中心軸と前記内輪3、3の中心軸とがずれる傾向となった場合にこれを補償する、所謂調心機能を持つ。
【0013】
尚、割りを1個所のみ設けるのは、調心輪12の内径に比べて幅寸法が小さく、この調心輪12の内径を使用状態に比べてあまり大きくしなくても、この調心輪12の内側に外輪2を挿入できる場合とする。これに対して、割りを2個所設けるのは、調心輪12の内径に比べて幅寸法が大きく、この調心輪12の内径を使用状態に比べて十分に大きくしなければ、この調心輪12の内側に外輪2を挿入できない場合とする。何れにしても、調心輪12の内側に外輪2を嵌合させた後、前記調心機構付複列円すいころ軸受1を、圧延機用ロールの中心軸の回転支持部に組み付ける際に、上記割りは、ラジアル荷重の負荷圏(大きなラジアル荷重が加わる範囲)から外れた部分に位置させる。
【0014】
上述の様に構成する本発明の調心機構付複列円すいころ軸受1によれば、大きなラジアル荷重の他にスラスト荷重を支承できる。即ち、複数の円すいころ4、4を複列に配置している為、これら複数の円すいころ4、4によるラジアル方向の負荷容量を大きくできる。又、上記外輪2と内輪3、3との間にスラスト荷重が加わった場合でも、何れかの列の円すいころ4が、何れかの外輪軌道5と何れかの内輪軌道6との間でスラスト方向に挟持される事により、上記スラスト荷重を支承する。
【0015】
更に、上記1対の内輪3、3を外嵌支持した、図示しない圧延機用ロールの中心軸が、調心輪12を内嵌支持した、やはり図示しないハウジングに対し傾斜する傾向となった場合には、この調心輪12の内側で上記外輪2が揺動変位する。そして、この揺動変位に基づいて、上記傾斜分を補償し、上記外輪2の中心軸と上記1対の内輪3、3の中心軸とを一致させたままの状態とする。この結果、調心機構付複列円すいころ軸受1の本体部分を構成する、上記外輪2の内周面に設けた外輪軌道5、5及び内輪3、3の外周面に設けた内輪軌道6、6と、上記各円すいころ4、4の転動面との当接部に、エッヂロード等の局部荷重が加わる事を防止できる。
【0016】
しかも、本発明の調心機構付複列円すいころ軸受1を構成する円すいころ4、4は、転動面が単純な円すい面である為、従来から知られている自動調心ころ軸受を構成する球面ころの様に製造が面倒ではない。従って、製作費が嵩む事もない。
【0017】
次に、図2〜3は、本発明の実施の形態の第2例を示している。本例の場合には、調心輪12aの片半部(図2の右半部)の直径方向反対側2個所位置に、それぞれ入れ溝15を形成している。これら各入れ溝15は、上記調心輪12aの軸方向端面に開口し、この調心輪12aの軸方向中央部にまで達している。又、これら各入れ溝15の幅寸法W15は、外輪2の幅寸法W2 よりも僅かに大きく(W15>W2 )している。上記調心輪12aには、この様な入れ溝15を形成する代わりに、上述した第1例の構造の様な割りは形成しない。
【0018】
上述の様な調心輪12aに外輪2を内嵌するには、この調心輪12aの中心軸と外輪2の中心軸とが直交する状態でこれら両部材12a、2同士を配置する。そして、この状態のまま、上記外輪2の直径方向反対側2個所位置を、上記入れ溝15に挿入し、この外輪2の直径方向反対側2個所位置を上記調心輪12aの軸方向中央部に位置させる。次いで、上記外輪2を90度回転させて、上記調心輪12aに外輪2を内嵌する。本例の場合、調心機構付複列円すいころ軸受1aを、圧延機用ロールの中心軸の回転支持部に組み付ける際に、上記入れ溝15を、ラジアル荷重の負荷圏から外れた部分に位置させる。その他の構成及び作用は、上述した第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
【0019】
【発明の効果】
本発明の圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受は、以上に述べた通り構成され作用する為、大きなラジアル荷重の他スラスト荷重が加わり、しかも、軸受ハウジングに対して回転軸が傾斜する可能性がある圧延機用ロールの中心軸の回転支持部に組み込んで、この回転支持部の耐久性及び信頼性の向上を図れる。更に、転動体として加工が面倒な球面ころを使用しない為、コストが嵩む事もない。
【図面の簡単な説明】
【図1】 本発明の実施の形態の第1例を示す半部断面図。
【図2】 同第2例を示す半部断面図。
【図3】 第2例に組み込む調心輪のみを取り出して、その一部を図2の右方から見た図。
【符号の説明】
1、1a 調心機構付複列円すいころ軸受
2 外輪
3 内輪
4 円すいころ
5 外輪軌道
6 内輪軌道
7 大径側鍔部
8 小径側鍔部
9 間座
10 保持器
11 ポケット
12、12a 調心輪
13 内周面
14 外周面
15 入れ溝
[0001]
BACKGROUND OF THE INVENTION
The double row tapered roller bearing with a centering shaft rotation support centering mechanism for a rolling mill roll according to the present invention is subjected to a thrust load in addition to a large radial load, and the shaft length is large, and the shaft is deformed by the load. It is used to support the central axis of a rolling mill roll having a relatively large (bend). In particular, the double-row tapered roller bearing with a centering mechanism for supporting the rotation of the central axis of the rolling mill roll of the present invention has an edge load on each component even when the central axis of the rolling mill roll tends to be inclined. It is intended to prevent application of local loads such as, and to improve the reliability and durability of the rotation support portion.
[0002]
[Prior art]
Cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings with large load capacities are widely used as rolling bearings for incorporation into the rotation support part of the center shaft of a rolling mill roll that supports large radial loads. ing. A cylindrical roller bearing with a centering ring in which a centering ring is provided around an outer ring constituting the cylindrical roller bearing is also known. In the case of a cylindrical roller bearing with an aligning ring, if the center axis of the aligning ring and the center axis of the outer ring tend to be inconsistent, the outer ring and the aligning ring are relatively oscillated and displaced. Therefore, a local load such as an edge load is prevented from being applied to a part of the cylindrical roller bearing.
[0003]
[Problems to be solved by the invention]
In the case of the conventional rolling bearing as described above, when a thrust load is supported in addition to a large radial load and the rotation shaft tends to tilt, a local load such as an edge load is applied to each component part. It was difficult to prevent this, or it was inevitable that the cost was high.
[0004]
First, in the case of general cylindrical roller bearings and tapered roller bearings, the outer ring, the inner ring raceways, and the rolling surfaces of the rollers are all simply cylindrical surfaces or conical curved surfaces, so that the rotation axis is inclined. Edge load is applied to the contact portion between both ends of the rolling surface and both the outer ring and the inner ring raceway. Based on this edge load, excessive contact pressure acts on the contact portion between these rolling surfaces and the outer ring and inner ring raceways, which not only impairs the durability of the roller bearing, but also causes galling in severe cases. It may cause damage such as burn-in.
[0005]
In the case of a self-aligning roller bearing, the above-mentioned edge load can be prevented and a certain amount of thrust load can be supported. In addition to the possibility of local wear on the surface, it is inevitable that the production of spherical rollers is cumbersome and costly. Further, in the case of a cylindrical roller bearing with an aligning ring provided with an aligning ring around the cylindrical roller bearing, there is almost no function of supporting a thrust load. For this reason, when it is used for a rotation support portion that needs to support a very large radial load such as a roll for a rolling mill, the load capacity may be insufficient.
The double-row tapered roller bearing with a centering mechanism for supporting the rotation of the center axis of the roll for rolling mills of the present invention supports a large thrust load in addition to a large radial load in view of the circumstances as described above, and the rotation shaft has a rotating shaft. The present invention has been invented in order to obtain a structure that can prevent a local load such as an edge load from being applied to each component even when it tends to be inclined.
[0006]
[Means for Solving the Problems]
The double row tapered roller bearing with a centering rotation support centering mechanism for a roll for a rolling mill according to the present invention includes one outer ring, a pair of inner rings, a plurality of tapered rollers, and a centering ring.
Of these, the outer ring forms a double-row outer ring raceway on the inner peripheral surface. Each of these outer ring raceways has a conical concave shape and is inclined in directions opposite to each other, and in a direction in which the inner diameter increases toward each opening.
Each of the pair of inner rings has a conical convex inner ring raceway formed on each outer peripheral surface. The pair of inner rings formed in this way are arranged on the inner axis of the outer ring with the end faces on the small diameter side of the inner ring raceways facing each other, and are arranged on the central axis of the roll for a rolling mill. The outer fitting is fixed .
The plurality of tapered rollers are respectively provided between the outer ring raceways and the inner ring raceways.
Further, the aligning ring is fitted and supported by the housing in a state of being arranged around the outer ring. The inner peripheral surface of the aligning ring is a spherical concave surface centered on a point on the central axis of the aligning ring, and the outer peripheral surface of the outer ring is a spherical convex surface centered on a point on the central axis of the outer ring. It is. Then, by aligning the inner peripheral surface of these aligning wheels and the outer peripheral surface of the outer ring with the swinging displacement of these aligning wheels and outer ring freely and without rattling, a centering function is provided. Yes.
[0007]
[Action]
According to the double-row tapered roller bearing with a centering rotation support centering mechanism for a rolling mill roll of the present invention configured as described above, a thrust load can be supported in addition to a large radial load. That is, since the plurality of tapered rollers are arranged in a double row, the radial load capacity of the plurality of tapered rollers can be increased. Even if a thrust load is applied between the outer ring and the inner ring, the tapered load in any row is held in the thrust direction between the outer ring raceway and the inner ring raceway, thereby supporting the thrust load. .
Further, when the central axis of the roll for a rolling mill that externally supports the pair of inner rings tends to be inclined with respect to the housing that internally supports the aligning ring, the outer ring is placed inside the aligning ring. By swinging and displacing, the above-mentioned inclination is compensated, and the center axis of the outer ring and the center axis of the inner ring are kept matched. As a result, local load such as edge load is formed on the outer ring raceway on the inner peripheral surface of the outer ring and the contact portion between the inner ring raceway on the outer peripheral surface of the inner ring and the rolling surface of each tapered roller, which constitutes the main body portion of the double row tapered roller bearing. Can be prevented from being added.
Moreover, since the tapered roller constituting the structure of the present invention has a simple conical curved surface, the production is not troublesome as the spherical roller constituting the self-aligning roller bearing. Therefore, production costs are not increased.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first example of an embodiment of the present invention. The double-row tapered roller bearing 1 with a centering mechanism includes a single outer ring 2, a pair of inner rings 3 and 3, a plurality of tapered rollers 4 and 4, and a single aligning ring 12. Of these, the outer ring 2 has double-row outer ring raceways 5 and 5 formed on the inner peripheral surface. Each of the outer ring raceways 5 and 5 has a conical concave shape, and is inclined in directions opposite to each other and in a direction in which the inner diameter becomes larger toward the opening. Accordingly, the inner diameter of the outer ring 2 is the smallest at the central portion and gradually increases toward the opening at both ends.
[0009]
The pair of inner rings 3 and 3 form conical convex inner ring raceways 6 and 6 on their outer peripheral surfaces. Further, a large-diameter side flange portion 7 having an outward flange shape is provided at a portion located on the large-diameter side end portion of the inner ring raceway 6 on the outer peripheral surface of one end portion (left and right end portions in FIG. 1) of each inner ring 3, 3. Similarly, on the outer peripheral surface of the other end portion (center end portion in FIG. 1), a small-diameter side flange portion 8 having an outward flange shape is formed on a portion located on the small-diameter side end portion of the inner ring raceway 6. Each of the pair of inner rings 3 and 3 formed in this manner is such that the end surfaces on the small diameter side of the respective inner ring raceways 6 and 6, that is, the small diameter side flanges 8 and 8 face each other. It is arranged inside the outer ring 2. In the illustrated example, a spacer 9 is sandwiched between the end faces of the pair of inner rings 3 and 3.
[0010]
The plurality of tapered rollers 4, 4 can roll into the pockets 11 of the cages 10, 10, respectively, between the outer ring raceways 5, 5 and the inner ring raceways 6, 6. It is provided in the state held in
[0011]
Further, the aligning ring 12 is disposed around the outer ring 2. The inner peripheral surface 13 of the aligning ring 12 is a spherical concave surface having a point O on the center axis X of the aligning ring 12 as its center. Further, the outer peripheral surface 14 of the outer ring 2 is a spherical convex surface having a point O on the central axis X of the outer ring 2 as its center. In the illustrated example, each point O is provided at the axial center position of the aligning ring 12 and the outer ring 2. Therefore, the inner diameter of the inner peripheral surface 13 and the outer diameter of the outer peripheral surface 14 are the largest at the axially central portion of the aligning ring 12 or the outer ring 2. Note that the radii of curvature of the inner peripheral surface 13 and the outer peripheral surface 14 are equal to each other. The outer peripheral surface of the aligning ring 12 is a simple cylindrical surface.
[0012]
The aligning ring 12 and the outer ring 2 in which both inner and outer peripheral surfaces are formed as described above, the inner peripheral surface 13 of the aligning ring 12 and the outer peripheral surface 14 of the outer ring 2 are connected to the aligning ring 12 and the outer ring 2. It is possible to make the rocking displacement freely. In order to enable such a fitting operation, the aligning ring 12 is formed with splits (= cracks in which both end surfaces in the axial direction are continuous, not shown) at one or two places in the circumferential direction. ing. At the time of fitting work, the inner diameter of the aligning ring 12 is increased by increasing the width of the split (opening the split), and the outer ring 2 is inserted inside the aligning ring 12. When the outer ring 2 is inserted inside the aligning ring 12 and the inner peripheral surface 13 of the aligning ring 12 and the outer peripheral surface 14 of the outer ring 2 are brought into close contact with each other, the outer ring 2 is connected to the aligning ring 12. It is supported on the inside so that it can swing and displace, without rattling. As a result, when the center axis of the outer ring 2 and the center axis of the inner rings 3 and 3 tend to shift, a so-called aligning function is provided to compensate for this.
[0013]
It should be noted that the provision of only one split has a smaller width than the inner diameter of the aligning ring 12, and the aligning ring 12 can be provided even if the inner diameter of the aligning ring 12 is not so large as compared to the use state. It is assumed that the outer ring 2 can be inserted inside. On the other hand, providing two splits has a width that is larger than the inner diameter of the aligning ring 12, and this alignment is required unless the inner diameter of the aligning ring 12 is sufficiently large compared to the operating state. It is assumed that the outer ring 2 cannot be inserted inside the ring 12. In any case, after fitting the outer ring 2 inside the aligning ring 12, when assembling the double row tapered roller bearing 1 with the aligning mechanism to the rotation support portion of the central axis of the roll for the rolling mill , The above-mentioned split is positioned at a portion that is out of the load range of the radial load (a range in which a large radial load is applied).
[0014]
According to the double-row tapered roller bearing 1 with the alignment mechanism of the present invention configured as described above, it is possible to support a thrust load in addition to a large radial load. That is, since the plurality of tapered rollers 4 and 4 are arranged in a double row, the load capacity in the radial direction by the plurality of tapered rollers 4 and 4 can be increased. Even when a thrust load is applied between the outer ring 2 and the inner rings 3, 3, the tapered rollers 4 in any row are thrust between any outer ring raceway 5 and any inner ring raceway 6. The thrust load is supported by being clamped in the direction.
[0015]
Furthermore, when the center axis of a roll for a rolling mill ( not shown) that supports and fits the pair of inner rings 3 and 3 tends to be inclined with respect to a housing (not shown) that supports and fits the aligning ring 12 The outer ring 2 is oscillated and displaced inside the aligning ring 12. Then, based on this swing displacement, the inclination is compensated so that the central axis of the outer ring 2 and the central axes of the pair of inner rings 3 and 3 remain aligned. As a result, the outer ring raceways 5 and 5 provided on the inner peripheral surface of the outer ring 2 and the inner ring raceway 6 provided on the outer peripheral surfaces of the inner rings 3 and 3 constituting the main body portion of the double-row tapered roller bearing 1 with a centering mechanism, 6 and a local load such as an edge load can be prevented from being applied to the contact portion between the tapered roller 4 and the rolling surface of each of the tapered rollers 4 and 4.
[0016]
Moreover, since the tapered rollers 4 and 4 constituting the double row tapered roller bearing 1 with the aligning mechanism of the present invention are simple tapered surfaces, they constitute a conventionally known self-aligning roller bearing. Manufacturing is not troublesome like spherical rollers. Therefore, production costs are not increased.
[0017]
Next, FIGS. 2 to 3 show a second example of the embodiment of the present invention. In the case of this example, insertion grooves 15 are formed at two positions on the diametrically opposite side of one half of the aligning ring 12a (the right half of FIG. 2). Each insertion groove 15 opens to the axial end surface of the aligning ring 12a and reaches the axial center of the aligning ring 12a. Further, the width W 15 of the grooving 15 is in slightly larger (W 15> W 2) than the width W 2 of the outer ring 2. Instead of forming the insertion groove 15 in the aligning ring 12a, a split like the structure of the first example described above is not formed.
[0018]
In order to fit the outer ring 2 into the aligning ring 12a as described above, both the members 12a and 2 are arranged with the center axis of the aligning ring 12a and the center axis of the outer ring 2 orthogonal to each other. Then, in this state, the two positions opposite to the diametrical direction of the outer ring 2 are inserted into the insertion groove 15, and the two positions opposite to the diametrical direction of the outer ring 2 are inserted in the axially central portion of the aligning ring 12a. To be located. Next, the outer ring 2 is rotated 90 degrees, and the outer ring 2 is fitted into the aligning ring 12a. In the case of this example, when the double-row tapered roller bearing 1a with a centering mechanism is assembled to the rotation support portion of the central axis of the roll for a rolling mill , the groove 15 is positioned at a portion that is out of the radial load range. Let Since other configurations and operations are the same as those in the case of the first example described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.
[0019]
【The invention's effect】
Since the double row tapered roller bearing with a centering mechanism for supporting the rotation of the center axis of the roll for rolling mill of the present invention is configured and operates as described above, a thrust load is applied in addition to a large radial load, and the bearing housing On the other hand, it is possible to improve the durability and reliability of the rotary support part by incorporating it into the rotary support part of the central axis of the roll for a rolling mill where the rotary axis may be inclined. Furthermore, since spherical rollers that are difficult to process are not used as rolling elements, the cost does not increase.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a half sectional view showing the second example.
FIG. 3 is a view in which only the aligning ring incorporated in the second example is taken out and a part thereof is viewed from the right side of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a Double row tapered roller bearing with alignment mechanism 2 Outer ring 3 Inner ring 4 Tapered roller 5 Outer ring raceway 6 Inner ring raceway 7 Large diameter side flange 8 Small diameter side flange 9 Spacer 10 Retainer 11 Pocket 12, 12a Alignment ring 13 Inner peripheral surface 14 Outer peripheral surface 15 Groove

Claims (1)

それぞれが円すい凹面状で互いに逆方向に、且つそれぞれが開口部に向かう程内径が大きくなる方向に傾斜した複列の外輪軌道を内周面に形成した外輪と、円すい凸面状の内輪軌道をそれぞれの外周面に形成し、各内輪軌道の小径側となる端面同士を対向させて上記外輪の内側に配置された状態で、圧延機用ロールの中心軸に外嵌固定される1対の内輪と、上記各外輪軌道と上記各内輪軌道との間にそれぞれ複数個ずつ設けた円すいころと、上記外輪の周囲に配置された状態でハウジングに内嵌支持される調心輪とを備え、この調心輪の内周面はこの調心輪の中心軸上の点をその中心とする球状凹面であり、上記外輪の外周面はこの外輪の中心軸上の点をその中心とする球状凸面であり、これら調心輪の内周面と外輪の外周面とが、これら調心輪と外輪との揺動変位を自在としてがたつきなく嵌合している圧延機用ロールの中心軸回転支持用調心機構付複列円すいころ軸受。An outer ring formed on the inner circumferential surface of a double row outer ring raceway, each of which has a conical concave shape and is inclined in a direction opposite to each other and an inner diameter increases toward the opening, and a conical convex inner ring raceway, respectively. A pair of inner rings that are externally fitted and fixed to the central axis of the rolling mill roll, with the end faces on the small diameter side of each inner ring raceway facing each other and arranged inside the outer ring. A plurality of tapered rollers provided between each outer ring raceway and each inner ring raceway, and a centering ring that is fitted around and supported by the housing while being arranged around the outer ring. The inner peripheral surface of the core ring is a spherical concave surface centered on a point on the center axis of the aligning ring, and the outer peripheral surface of the outer ring is a spherical convex surface centered on a point on the central axis of the outer ring. The inner peripheral surface of these aligning rings and the outer peripheral surface of the outer ring Wheel and the outer ring and the central shaft for supporting the aligning double row tapered roller bearing with mechanisms not fitted rolling mill rolls are rattling swing displacement as freely.
JP02032097A 1997-02-03 1997-02-03 Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls Expired - Lifetime JP4090085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02032097A JP4090085B2 (en) 1997-02-03 1997-02-03 Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02032097A JP4090085B2 (en) 1997-02-03 1997-02-03 Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls

Publications (2)

Publication Number Publication Date
JPH10220467A JPH10220467A (en) 1998-08-21
JP4090085B2 true JP4090085B2 (en) 2008-05-28

Family

ID=12023847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02032097A Expired - Lifetime JP4090085B2 (en) 1997-02-03 1997-02-03 Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls

Country Status (1)

Country Link
JP (1) JP4090085B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349100A (en) * 2005-06-17 2006-12-28 Hirano Tecseed Co Ltd Bearing structure of roll
DE102006028200A1 (en) * 2006-06-20 2007-12-27 Schaeffler Kg Angle adjustable rolling bearing
WO2008097204A1 (en) * 2007-02-08 2008-08-14 Ivan Kupcok Self-adjusting two row tapered roller bearing for concrete mixing apparatus
RU2596898C1 (en) * 2015-09-10 2016-09-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Radial inter-shaft turbomachine rotor support
CN105822666A (en) * 2016-05-11 2016-08-03 浙江天马轴承有限公司 Double row tapered roller bearing and installing structure thereof
DE102018121055A1 (en) * 2018-08-29 2020-03-05 Schaeffler Technologies AG & Co. KG Bearing arrangement
CN110479768A (en) * 2019-08-05 2019-11-22 上海大学 A kind of operation roll of mill bearing aligning device

Also Published As

Publication number Publication date
JPH10220467A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JPH08296653A (en) Automatic aligning roller bearing having cage
JP3477835B2 (en) Spherical roller bearing with cage
JP4090085B2 (en) Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls
US20050058381A1 (en) Roller bearing
JP2009074600A (en) Roller bearing
JP3480000B2 (en) Rolling bearing
EP1160469A2 (en) Bearing assemblies incorporating roller bearings
JP2006112555A (en) Roller bearing with aligning ring
JPH09126233A (en) Cross roller bearing
JP2501729B2 (en) Sliding rolling bearing with rolling elements
JPH102326A (en) Composite bearing
JPH081294Y2 (en) Cross roller bearing for turning
JP2000055056A (en) Roller bearing
JP3430333B2 (en) Rolling bearing
JPWO2006112378A1 (en) Cylindrical roller bearing
US20020009247A1 (en) High-speed rolling bearing, in particular, angular ball bearing
JP2004028139A (en) Double-row tapered roller bearing with aligning ring
JPH11132229A (en) Multi-row taper-roller bearing structure
JP2002188628A (en) Automatic aligning roller bearing device
JP2003343553A (en) Double row cone roller bearing with aligning ring
JP2004225766A (en) Roller bearing with aligning mechanism
WO2024116552A1 (en) Radial and thrust bearing
JPS5855362B2 (en) Bidirectional load type ball bearing
JP2009180235A (en) Automatic self-aligning roller bearing
JPH11101229A (en) Roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term