JPH102326A - Composite bearing - Google Patents
Composite bearingInfo
- Publication number
- JPH102326A JPH102326A JP17410196A JP17410196A JPH102326A JP H102326 A JPH102326 A JP H102326A JP 17410196 A JP17410196 A JP 17410196A JP 17410196 A JP17410196 A JP 17410196A JP H102326 A JPH102326 A JP H102326A
- Authority
- JP
- Japan
- Prior art keywords
- roller
- bearing
- peripheral surface
- ring
- retainer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/045—Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/047—Sliding-contact bearings for exclusively rotary movement for axial load only with fixed wedges to generate hydrodynamic pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C21/00—Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、転動体を用いて転がり
支持する転がり軸受けにおいて、ラジアル荷重とスラス
ト荷重を支持できる複合型の転がり軸受けに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing of a composite type capable of supporting a radial load and a thrust load in a rolling bearing which uses a rolling element to support the rolling.
【0002】[0002]
【従来の技術】従来のラジアルローラベアリングではリ
テーナにより分離保持された複数のころが内輪と外輪の
間にリテーナにより分離整列されて保持され、内輪ある
いは外輪の回転に伴って、ころが内輪の外周面及び外輪
の内周面を転がり、主に半径方向の荷重を支持しながら
回転していた。2. Description of the Related Art In a conventional radial roller bearing, a plurality of rollers separated and held by a retainer are held by being separated and aligned by a retainer between an inner ring and an outer ring. Rolled on the surface and the inner peripheral surface of the outer ring, and rotated while supporting mainly the load in the radial direction.
【0003】[0003]
【発明が解決しようとする問題点】従来のローラベアリ
ングの場合、半径方向のみの荷重を支持することがで
き、スラスト荷重を受けようとする場合には、別にスラ
スト軸受けを設けねばならず、部品点数の増加と構造が
複雑化するという問題があった。これを回避し1個のベ
アリングにより半径方向荷重とスラスト方向荷重を受け
るものに転動体としてテーパローラを用いたアンギュラ
ベアリングがあるが、形状が複雑で高精度の加工ができ
ず回転精度に限界があることや、また使用回転数も高く
できないなどの問題があった。さらにボールを傾斜した
転動面で挟み込むアンギュラベアリングもあるが、剛性
が小さく、大きなスラスト荷重を受けることが困難であ
った。In the case of a conventional roller bearing, it is possible to support a load only in the radial direction, and when a thrust load is to be received, a separate thrust bearing must be provided. There was a problem that the number of points increased and the structure became complicated. Angular bearings that use tapered rollers as rolling elements are used to avoid this and receive a radial load and a thrust load by one bearing, but the shape is complicated and high-precision machining is not possible, and there is a limit in rotational accuracy. And that the number of revolutions cannot be increased. Further, there is an angular bearing in which the ball is sandwiched between inclined rolling surfaces, but the rigidity is small and it is difficult to receive a large thrust load.
【0004】[0004]
【問題点を解決するための手段】ローラベアリングにお
いて、ベアリングの内輪の側面にその外周面から外側へ
フランジ部を設け、外輪の側面にその内周面より内側へ
フランジ部を設け、ローラを支持するリテーナの両側面
にヘリングボーン溝あるいはテーパ状の段差を成形し、
該内輪及び外輪のフランジ部とリテーナの両側面におい
て、流体動圧軸受けを構成しスラスト軸受けとする。あ
るいはローラの両側面にスパイラル溝を成形し、外輪及
び内輪の側面とで動圧軸受けを構成する。Means for Solving the Problems In a roller bearing, a flange portion is provided on the side surface of the inner ring of the bearing from the outer peripheral surface to the outside, and a flange portion is provided on the side surface of the outer ring from the inner peripheral surface thereof to support the roller. Forming a herringbone groove or tapered step on both sides of the retainer
Fluid dynamic pressure bearings are formed on the flanges of the inner ring and the outer ring and on both side surfaces of the retainer to form thrust bearings. Alternatively, spiral grooves are formed on both side surfaces of the roller, and the side surfaces of the outer ring and the inner ring form a dynamic pressure bearing.
【0005】[0005]
【0006】ラジアル荷重をローラで支持し、スラスト
荷重はリテーナ側面と内輪及び外輪のフランジ面とで構
成したスラストベアリングにより支持されるので、1個
でラジアル荷重とスラスト荷重の両方を支持することが
できる。[0006] Since the radial load is supported by rollers and the thrust load is supported by a thrust bearing formed by the side surfaces of the retainer and the flange surfaces of the inner ring and the outer ring, it is possible to support both the radial load and the thrust load by one piece. it can.
【0008】[0008]
【実施例】以下、図示した実施例に基づき本発明を説明
する。図1は、本発明の複合軸受けで、外輪1にはその
側面に内側へ伸びるフランジ部8が、内輪2にその側面
に外側へ伸びるフランジ部9が設けてある。外輪1の内
周面と内輪2の外周面の間にはリテーナ4で分離し持さ
れた多数個のローラ3が挿入されている。ローラ3を保
持するリテーナ4は、その厚みがローラの直径よりわず
かに小さく仕上げられており、図1に示すように、その
両側面にはヘリングボーン溝が成形されている。リテー
ナ4の両側面のヘリングボーン溝の向きは、互いに逆向
きである。リテーナ4は、一方の側面が外輪のフランジ
部8と対面し、もう一方の側面が内輪のフランジ部9と
対面しており、その間に潤滑流体を充填して動圧軸受け
が構成される。今、軸(図示せず)が回転しこれに嵌合
している内輪2が図2に示す矢印aの方向へ回転する
と、ローラ3が回転し外輪の内面上を転がる。これに伴
いリテーナ4も内輪の回りを図2に示す矢印bの方向へ
回転運動する。このときのリテーナ4の回転速度は内輪
の回転速度のおよそ半分である。したがって、リテーナ
側面と外輪のフランジ部8及びリテーナ側面と内輪のフ
ランジ部9は相対速度を持つことになり、流体の流れに
よる動圧が発生する。この力によりスラスト力を支持す
る。ラジアル方向の荷重はローラが支持するので、ラジ
アル及びスラストの両方向の荷重が1個のベアリングで
支持できる。内輪が固定され外輪が回転する場合も同様
である。図2はリテーナ4の側面にヘリングボーン溝の
代わりにテーパ状の段差を設けた場合の例を示したもの
である。この場合、流体のくさび効果により動圧が発生
すしスラスト加重を支持する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows a composite bearing of the present invention, in which an outer ring 1 is provided with a flange portion 8 extending inward on a side surface thereof, and an inner ring 2 is provided with a flange portion 9 extending outward on a side surface thereof. Between the inner peripheral surface of the outer race 1 and the outer peripheral surface of the inner race 2, a number of rollers 3 separated and held by a retainer 4 are inserted. The thickness of the retainer 4 holding the roller 3 is slightly smaller than the diameter of the roller, and herringbone grooves are formed on both side surfaces as shown in FIG. The directions of the herringbone grooves on both sides of the retainer 4 are opposite to each other. The retainer 4 has one side surface facing the flange portion 8 of the outer ring, and the other side surface facing the flange portion 9 of the inner ring, between which a lubricating fluid is filled to constitute a dynamic pressure bearing. Now, when the shaft (not shown) rotates and the inner ring 2 fitted thereto rotates in the direction of arrow a shown in FIG. 2, the roller 3 rotates and rolls on the inner surface of the outer ring. Along with this, the retainer 4 also rotates around the inner ring in the direction of arrow b shown in FIG. The rotation speed of the retainer 4 at this time is about half of the rotation speed of the inner ring. Therefore, the retainer side surface and the flange portion 8 of the outer ring and the retainer side surface and the flange portion 9 of the inner ring have a relative speed, and a dynamic pressure is generated by the flow of the fluid. This force supports the thrust force. Since the load in the radial direction is supported by the roller, the load in both the radial and thrust directions can be supported by one bearing. The same applies to the case where the inner ring is fixed and the outer ring rotates. FIG. 2 shows an example in which a tapered step is provided on the side surface of the retainer 4 instead of the herringbone groove. In this case, a dynamic pressure is generated by the wedge effect of the fluid, and the thrust load is supported.
【0009】図3は、本発明の第2実施例で、上記第1
実施例の場合、支持できるスラスト荷重の方向がフラン
ジ面が互いに押しつけ合う一方向に限られるが、両方向
のスラスト荷重を支持できるようにしたものである。内
輪22に中央フランジ部25を設け、この中央フランジ
部25の両面から、第1実施例と同様のローラ3、
3’、リテーナ4、4’及び外輪1、1’を押しつける
ように挟み込んでいる。作用は上記第1実施例と同様で
ある。本実施例では、左右2方向のスラスト荷重を受け
ることができる。FIG. 3 shows a second embodiment of the present invention.
In the case of the embodiment, the direction of the thrust load that can be supported is limited to one direction in which the flange surfaces press against each other, but the thrust load can be supported in both directions. A central flange portion 25 is provided on the inner ring 22.
3 ′, retainers 4, 4 ′ and outer rings 1, 1 ′ are pressed and pressed. The operation is the same as in the first embodiment. In the present embodiment, it is possible to receive a thrust load in two left and right directions.
【0010】図4は本発明の第3実施例で、ローラの代
わりにボールを用いたものである。ラジアル荷重が小さ
く、軸受けの転がり摩擦を小さくしたいときに有効であ
る。内輪32にはボールが転がる転動溝37が成形して
あり、この溝内を転がるようにボール33がその両端面
にテーパ状段差あるいはヘリングボーン溝を成形したリ
テーナ34により支持されている。内輪32及び外輪3
1にはそれぞれフランジ部39、38形成されており、
リテーナ34の側面とスラスト動圧軸受けを構成してい
る。この場合、ボールにはラジアル加重しか作用せず、
スラスト力を受けるための接触面の傾きが無く、ボール
にジャイロモーメントが作用しないので、ボールと転動
面との滑りが生ぜず、寿命が延びる効果がある。その他
の効果は第1実施例と同様である。FIG. 4 shows a third embodiment of the present invention, in which balls are used instead of rollers. This is effective when the radial load is small and it is desired to reduce the rolling friction of the bearing. A rolling groove 37 for rolling the ball is formed in the inner race 32, and the ball 33 is supported by a retainer 34 having a tapered step or a herringbone groove formed on both end surfaces so as to roll in the groove. Inner ring 32 and outer ring 3
1 are formed with flange portions 39 and 38, respectively.
A side surface of the retainer 34 and a thrust dynamic pressure bearing are formed. In this case, only radial loading acts on the ball,
Since there is no inclination of the contact surface for receiving the thrust force and no gyro moment acts on the ball, there is no sliding between the ball and the rolling surface, and the life is extended. Other effects are the same as those of the first embodiment.
【0011】図5は本発明の第4の実施例である。上記
第1、第2の実施例の場合、ローラをリテーナの中に軸
方向において包み込んでいるため、リテーナの長さがロ
ーラより長くなり、結果として、軸受けの全長が長くな
るため、もっと狭いスペースで使用したい場合に適す
る。両側面に図7に示すスパイラル溝を成形したローラ
23を、図6に示すようにケージ24により保持し、直
接外輪11及び内輪12のフランジ部16及び17とス
ラスト動圧軸受けを構成している。ケージ14は断面が
図6に示す金属あるいはプラスチックからなる薄板で両
端が内輪2及び外輪1の隙間に入っている。内輪2ある
いは外輪1の回転にともなってローラ23も回転するた
め、側面において動圧が発生し、スラスト荷重を支持す
る。この場合軸受けを小型化できる効果がある。FIG. 5 shows a fourth embodiment of the present invention. In the case of the first and second embodiments, since the roller is wrapped in the retainer in the axial direction, the length of the retainer is longer than that of the roller. As a result, the overall length of the bearing is longer, so that a smaller space is required. Suitable when you want to use with. Rollers 23 having spiral grooves formed on both sides as shown in FIG. 7 are held by cages 24 as shown in FIG. 6, and directly constitute the thrust dynamic pressure bearings with the flange portions 16 and 17 of the outer ring 11 and the inner ring 12. . The cage 14 is a thin plate made of metal or plastic having a cross section shown in FIG. 6 and has both ends in the gap between the inner ring 2 and the outer ring 1. Since the roller 23 also rotates with the rotation of the inner ring 2 or the outer ring 1, a dynamic pressure is generated on the side surface, and the thrust load is supported. In this case, there is an effect that the bearing can be downsized.
【0012】[0012]
【発明の効果】本発明によれば、1個の軸受けでラジア
ル荷重及びスラスト荷重を支持することができる。According to the present invention, a single bearing can support a radial load and a thrust load.
【図1】本発明の第1実施例の複合軸受けの要部断面斜
視図。FIG. 1 is a sectional perspective view of a main part of a composite bearing according to a first embodiment of the present invention.
【図2】本発明の第1実施例の変形例の複合軸受けの要
部断面斜視図FIG. 2 is a sectional perspective view of a main part of a composite bearing according to a modification of the first embodiment of the present invention.
【図3】本発明の第2実施例の複合軸受けの要部断面
図。FIG. 3 is a sectional view of a main part of a composite bearing according to a second embodiment of the present invention.
【図4】本発明の第3実施例の複合軸受けの要部断面斜
視図FIG. 4 is a sectional perspective view of a main part of a composite bearing according to a third embodiment of the present invention.
【図5】本発明の第4実施例の複合軸受けの要部断面斜
視図。FIG. 5 is a sectional perspective view of a main part of a composite bearing according to a fourth embodiment of the present invention.
【図6】本発明の第4実施例の複合軸受けの要部断面
図。FIG. 6 is a sectional view of a main part of a composite bearing according to a fourth embodiment of the present invention.
【図7】本発明の第4実施例のローラ端面のスパイラル
溝図FIG. 7 is a spiral groove diagram of a roller end face according to a fourth embodiment of the present invention.
1,1’,31 外輪 2,22,32 内
輪 3,3’,13,23 ローラ 4,14,34 リ
テーナ 8,8’,9,18,28,38,39 フランジ部 5, ヘリングボーン溝 15,15’ テー
パ状段差 24 ケージ 25 スパイラル溝 26 中央フランジ部 33 ボール 37 ボール転動溝1, 1 ', 31 Outer ring 2, 22, 32 Inner ring 3, 3', 13, 23 Roller 4, 14, 34 Retainer 8, 8 ', 9, 18, 28, 38, 39 Flange 5, Herringbone groove 15 , 15 'Tapered step 24 Cage 25 Spiral groove 26 Central flange 33 Ball 37 Ball rolling groove
Claims (2)
面と外輪内周面をころがる転がり軸受けにおいて、ロー
ラまたはボールを保持するリテーナの厚みをこれが保持
する転動体の直径よりやや薄くし、両端面にヘリングボ
ーン溝あるいはテーパー状の段差を成形し、内輪にその
外周面から外側へフランジ部を設け、外輪にその内周面
より内側へフランジ部を設け、該内輪及び外輪のフラン
ジ部とリテーナの両側面において、流体動圧軸受けを構
成することを特徴とする複合軸受け。In a rolling bearing in which a roller or a ball rolls on an outer peripheral surface of an inner ring and an inner peripheral surface of an outer ring as a rolling element, the thickness of a retainer holding the roller or the ball is made slightly smaller than the diameter of the rolling element held by the roller. A herringbone groove or a tapered step is formed on the inner ring, a flange portion is provided on the inner ring from the outer peripheral surface to the outer side, and a flange portion is provided on the outer ring from the inner peripheral surface on the inner side. A composite bearing comprising a fluid dynamic pressure bearing on both sides.
周面をころがる転がり軸受けにおいて、ローラの両側面
にスパイラル溝を成形し、内輪にその外周面から外側へ
フランジ部を設け、外輪にその内周面より内側へフラン
ジ部を設け、該内輪及び外輪のフランジ部とローラの両
側面において、流体動圧軸受けを構成することを特徴と
する複合軸受け。2. A rolling bearing in which a roller as a rolling element rolls on an outer peripheral surface of an inner race and an inner peripheral surface of an outer race. A composite bearing, wherein a flange portion is provided inside the inner peripheral surface, and fluid dynamic pressure bearings are formed on the flange portions of the inner ring and the outer ring and on both side surfaces of the roller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17410196A JPH102326A (en) | 1996-06-12 | 1996-06-12 | Composite bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17410196A JPH102326A (en) | 1996-06-12 | 1996-06-12 | Composite bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH102326A true JPH102326A (en) | 1998-01-06 |
Family
ID=15972672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17410196A Pending JPH102326A (en) | 1996-06-12 | 1996-06-12 | Composite bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH102326A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1696144A2 (en) * | 2005-02-25 | 2006-08-30 | Audi Ag | Cage of a rolling element bearing with lubricating pockets and grooves |
WO2019015753A1 (en) * | 2017-07-19 | 2019-01-24 | Konzelmann Gmbh | Hydrodynamic bearing |
WO2020158564A1 (en) * | 2019-01-29 | 2020-08-06 | Ntn株式会社 | Ball bearing |
JP2020122493A (en) * | 2019-01-29 | 2020-08-13 | Ntn株式会社 | Ball bearing |
JP2020133770A (en) * | 2019-02-20 | 2020-08-31 | Ntn株式会社 | Ball bearing |
JP2020133769A (en) * | 2019-02-20 | 2020-08-31 | Ntn株式会社 | Ball bearing |
-
1996
- 1996-06-12 JP JP17410196A patent/JPH102326A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1696144A2 (en) * | 2005-02-25 | 2006-08-30 | Audi Ag | Cage of a rolling element bearing with lubricating pockets and grooves |
EP1696144A3 (en) * | 2005-02-25 | 2014-08-27 | Audi Ag | Cage of a rolling element bearing with lubricating pockets and grooves |
WO2019015753A1 (en) * | 2017-07-19 | 2019-01-24 | Konzelmann Gmbh | Hydrodynamic bearing |
US11047420B2 (en) | 2017-07-19 | 2021-06-29 | Konzelmann Gmbh | Hydrodynamic bearing |
WO2020158564A1 (en) * | 2019-01-29 | 2020-08-06 | Ntn株式会社 | Ball bearing |
JP2020122493A (en) * | 2019-01-29 | 2020-08-13 | Ntn株式会社 | Ball bearing |
US11828328B2 (en) | 2019-01-29 | 2023-11-28 | Ntn Corporation | Ball bearing |
JP2020133770A (en) * | 2019-02-20 | 2020-08-31 | Ntn株式会社 | Ball bearing |
JP2020133769A (en) * | 2019-02-20 | 2020-08-31 | Ntn株式会社 | Ball bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4787757A (en) | Bearing construction with a cage provided with lubrication grooves | |
JP3477835B2 (en) | Spherical roller bearing with cage | |
JPH08296653A (en) | Automatic aligning roller bearing having cage | |
JP4476286B2 (en) | Compound rolling bearing | |
JP2003336631A (en) | Self-aligning bearing | |
JP2004245251A (en) | Automatic centering rolling bearing | |
JPS62270819A (en) | Roller bearing | |
JPH102326A (en) | Composite bearing | |
JP2006200677A (en) | Thrust ball bearing | |
JP2599906Y2 (en) | Tapered roller bearing | |
JP4090085B2 (en) | Double-row tapered roller bearings with a centering mechanism for rotating the central axis of rolling mill rolls | |
JP2006070909A (en) | Ball bearing | |
JP2006342830A (en) | Preload applying method of double-row tapered roller bearing unit | |
JPH09126233A (en) | Cross roller bearing | |
JP2006125604A (en) | Thrust roller bearing | |
JP3453701B2 (en) | Rolling bearing | |
JPH11132229A (en) | Multi-row taper-roller bearing structure | |
JPH1182522A (en) | Touchdown bearing for magnetic bearing device | |
JPH081294Y2 (en) | Cross roller bearing for turning | |
JP3823375B2 (en) | Rolling bearing | |
JP2000087972A (en) | Press-type cage for roller bearing | |
JP2002188628A (en) | Automatic aligning roller bearing device | |
WO2024116552A1 (en) | Radial and thrust bearing | |
JP2001099146A (en) | Self-aligning roller bearing | |
JPS5855362B2 (en) | Bidirectional load type ball bearing |