JP4031967B2 - Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills - Google Patents

Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills Download PDF

Info

Publication number
JP4031967B2
JP4031967B2 JP2002279813A JP2002279813A JP4031967B2 JP 4031967 B2 JP4031967 B2 JP 4031967B2 JP 2002279813 A JP2002279813 A JP 2002279813A JP 2002279813 A JP2002279813 A JP 2002279813A JP 4031967 B2 JP4031967 B2 JP 4031967B2
Authority
JP
Japan
Prior art keywords
box
ground
shaped bucket
bucket
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002279813A
Other languages
Japanese (ja)
Other versions
JP2003253667A (en
Inventor
章 戸梶
宏二 弘間
広茂 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Kochi Marutaka KK
Original Assignee
Obayashi Corp
Kochi Marutaka KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Kochi Marutaka KK filed Critical Obayashi Corp
Priority to JP2002279813A priority Critical patent/JP4031967B2/en
Publication of JP2003253667A publication Critical patent/JP2003253667A/en
Application granted granted Critical
Publication of JP4031967B2 publication Critical patent/JP4031967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中連続壁の施工方法で用いられる箱形バケットに関し、より詳しくは、柱列式地中連続壁を施工する際に、その内側側面を該連続壁の施工時に平坦化することができ、更に、掘削土が良質のシルトを殆ど含まない廃棄物盛土であっても十分な強度を備えた地中連続壁を造ることができる箱形バケットに関する。
また、既存廃棄物処分場などの廃棄物埋立地盤に新たに遮水壁を構築するための工法に関する。
【0002】
【従来の技術】
従来からよく行われている地中連続壁の施工方法として、多軸オーガにより地中を掘削し、その掘削土を原位置で固化液と攪拌・混合してソイルセメント壁を造る方法がある。
このようにして製造される地中連続壁は、柱列式地中連続壁と称されるものであり、円柱状の柱が軸直角方向に連続して並び、隣り合う柱同士が一部オーバーラップしている。
【0003】
しかしながら、この従来型の柱列式地中連続壁の側部の輪郭は、円弧が連続して並ぶと共に隣り合う円弧の間に谷部が形成された凸凹形状である。柱列式地中連続壁の輪郭がこのような凸凹形状であると、この地中連続壁の内側に地下構造物を造る際に、その凸凹形状の谷部をモルタル等で埋めて、該連続壁の内側側面を平坦にする工事が別途必要となる。このような平坦化工事を連続壁の施工後に行うことは、地下構造物の建設工期を大きく遅延させる原因になる。
【0004】
また、この従来型の柱列式地中連続壁の施工方法は、オーガでセメントミルクと掘削土を攪拌・混合する方法であることが壁体強度確保のための必須条件となる。このため、掘削土が良質のシルトを殆ど含まない廃棄物盛土である場合には、この方法で地中連続壁を造ることは壁体強度確保の面で好ましくない。
【0005】
一方で前記したような地中連続壁が遮水壁として施工されることが多い廃棄物処分場においては、当該遮水壁に要求される基本性能として、現在では壁厚50cm以上、透水係数1×10−6 cm/sといった基準が掲げられている。しかしながら、既存の多くの廃棄物処分場は、そのままでは前記基準に適合しない場合が多々ある。このような遮水性能の基準を満たさない廃棄物処分場では、周辺の環境衛生向上のために遮水壁の追加施工が求められている。
【0006】
また、埋立完了後の処分場の跡地処理として、新たに遮水壁を造成して汚染水の外部への漏洩を完全に封じる場合や、不法投棄により不本意にも形成されてしまった廃棄物埋立地を周囲地盤から隔離する場合なども遮水壁の造成工事が必要となる。
【0007】
ところで、一般的な埋立地盤での遮水壁施工には、地盤内を攪拌しながらセメントを吐出し、現地土と練り混ぜることにより連続的な壁体を造成する、いわゆるソイルセメント工法が多用されている。
【0008】
しかしこの工法を廃棄物埋立地盤に適用しようとする場合には、次に述べる技術課題があった。
【0009】
【発明が解決しようとする課題】
廃棄物埋立地盤は廃棄物を主体としているため、ソイルセメント工法をそのままこの地盤に適用して地盤内の攪拌混合を行うとすると、廃棄物や汚染土壌をセメントの混練に巻込んでしまうこととなる。このため、造成される壁体の強度やその施工精度等は低下し、必要とする性能を充分に発揮できないこととなる。
【0010】
したがって、この工法を廃棄物埋立地盤に適用するには、ソイルセメントの打設位置を予め良質土に置換える作業が必要であり、掘削及び埋め戻しの手間が生じて施工効率の低下とコストの上昇とを招きやすい。また、廃棄物が混合されてしまった掘削土が発生し、施工そのものや排土処理がきわめて面倒となるうえに、土とセメントが混在した泥土を余剰土として排土しなければならないといった問題も生してしまう。
【0011】
本発明は、このような実情に鑑みてなされたもので、柱列式地中連続壁を施工する際に、その内側側面を該連続壁の施工時に平坦化することができ、更に、掘削土が良質のシルトを殆ど含まない廃棄物盛土であっても十分な強度を備えた地中連続壁を造ることができる箱形バケットの提供を目的とする。
【0012】
また、遮水壁の施工に伴う排土の発生がほとんどなく、工事の簡素化に好適な廃棄物埋立地盤における遮水壁工法を提供するものである。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、地中連続壁を構築するために、オーガ式掘削機を用いて形成された先行掘削孔に打ち込まれる箱形バケットであり、この箱形バケットは、少なくとも地中連続壁の内側に対応する側面が平坦面とされた有底筒状の殻体と、この殻体に設けられた隣の箱形バケットとの位置関係を決定する連結部と、前記殻体内に設けられた該殻体の底部に地上からモルタル或いは生コンクリートを導入する導入路と、前記殻体の底部に設けられ前記導入されたモルタル或いは生コンクリートを排出する導入物排出口と、この導入物排出口に設けられ前記導入されたモルタル或いは生コンクリートの導入圧若しくは地上からの操作によって開く弁と、前記殻体上部に設けられ箱形バケットを地中に打ち込むとき及び該バケットを地中から引き抜くときに打ち込み機械或いは引き抜き機械に把持されるチャックとを備え、
前記連結部は前記殻体の外部と内部にそれぞれ設けられており、外部の連結部は、箱形バケットの打ち込み方向に伸びる有底筒状体であると共に、地上からモルタル或いは生コンクリートを該外側連結部の底部に導入する導入路と、該外側連結部の底部に設けられ前記導入されたモルタル或いは生コンクリートを排出する導入物排出口と、この導入物排出口に設けられ前記導入されたモルタル或いは生コンクリートの導入圧若しくは地上からの操作によって開く弁とを備えており、内側の連結部は、前記外側連結部にスライド内嵌可能な無底筒状体であり、前記一方の連結部と隣の箱形バケットの内側連結部をスライド嵌合することにより、隣り合う箱形バケットを連結可能とされていることを特徴とする箱形バケットである。
【0018】
請求項記載の発明は、廃棄物埋立て地盤である遮水壁構築位置を、円柱状のロッドの周囲に鉄筋を螺旋状に巻き付け固定してなり、先端にコニカルビットが設けられたオーガを備えるオーガ式掘削機により掘削してその地盤を弛める工程と、弛んだ前記地盤内に遮水壁厚に相当する断面寸法を備えた箱形バケットを貫入する工程と、前記箱形バケットが着底後に該箱形バケット先端より地盤に遮水壁材料を注入すると共に該箱形バケットを地盤より引抜く工程と、を繰り返し実行することを特徴とする遮水壁工法である。
【0019】
請求項記載の発明は、互いの連結部で連結するよう地盤へ順次貫入され連結した複数の前記箱形バケットのうち所定の箱形バケットについて遮水材の前記注入と前記引き抜きを行う工程と、引き抜いた箱形バケットを次の貫入位置に貫入させる工程とを、隣接する箱形バケット毎に順次繰り返すことを特徴とする請求項に記載の遮水壁工法である。
【0020】
請求項記載の発明は、前記箱形バケットの前記連結部を、箱形バケットの一端における鉛直ガイドブロックと、他端において前記鉛直ガイドブロックに挿通可能なガイド凹部とから構成し、地盤中に残置された箱形バケットにおける前記鉛直ガイドブロックまたはガイド凹部のいずれかを次に貫入する箱形バケットの貫入ガイドとすることを特徴とする請求項記載の遮水工法である。
【0021】
請求項記載の発明は、前記箱形バケットの地盤への貫入に際し、前記地盤における遮水壁支持基盤への箱形バケットの根入れを行うことを特徴とする請求項2〜4のいずれかに記載の遮水壁工法である。
【0023】
【発明の実施の形態】
本発明の実施形態について、図面を参照しつつ説明する。
図1乃至4は、本発明の実施形態における地中連続壁の施工方法を示す図である。図5乃至10は、本実施形態の施工方法で用いられる箱形バケットを示す図である。
【0024】
まず、本発明に係る地中連続壁の施工方法で使用される箱形バケット(1)について説明する。
この箱形バケット(1)は、地中連続壁(10)を構築するために、オーガ式掘削機(2)(図1参照)を用いて形成された先行掘削孔(3)に打ち込まれる箱形バケットである。
箱形バケット(1)は、殻体(4)と、連結部(5)と、導入路(6)と、導入物排出口(7)と、弁(8)と、チャック(9)とを備えている。
【0025】
以下、これら構成要素について説明する。
殻体(4)は、少なくとも地中連続壁(10)の内側を形成する側面が平坦面(11)とされた有底筒状の部材である。この殻体(4)の具体的形状は特に限定されるものではないが、例えば、図示例の如く有底の四角筒状とされる。
【0026】
殻体(4)の底部(12)は地中連続壁(10)(図1参照)の伸長方向(A)から見てV字状に尖った形とされている。このV字の先端部は、タンガロイ等の硬い金属によって補強されている。
【0027】
連結部(5)は、殻体(4)に設けられ、隣の箱形バケット(1)との位置関係を決定する部材である。また、この連結部(5)は、隣の箱形バケット(1)との連結を可能にする部材である。その構造は特に限定されないが、例えば、図5及び6に示す形態のものや、図8に示す形態のものがある。いずれの形態も、箱形バケット(1)の打ち込み方向に沿って設けられており、隣に箱形バケット(1)(後行打ち込みする箱形バケット(1))を打ち込むときに該隣の箱形バケット(1)をガイドする。
【0028】
図5,6に示す例では、連結部(5)は、殻体(4)の外部と内部にそれぞれ設けられている。
外側連結部(5)は、箱形バケット(1)の打ち込み方向に伸びる有底筒状体であると共に、地上からモルタル或いは生コンクリートを該外側連結部(5)の底部(120)に導入する導入路(60)と、該外側連結部(5)の底部(120)に設けられ前記導入物を排出する導入物排出口(70)と、この導入物排出口(70)に設けられ前記導入物の導入圧若しくは地上からの操作によって開く弁(80)とを備えている。
【0029】
一方、内側連結部(5)は、外側連結部(5)に内嵌可能な無底筒状体である。尚、外側連結部(5)は、直線状の固定部(13)を介して殻体(4)に固定されている。内側連結部(5)は、外側連結部(5)の固定部(13)が入り込むスリット(14)を有している。また、外側連結部(5)を鉛直ガイドブロック、内側連結部(5)をガイド凹部と称することも出来る。
【0030】
外側連結部(5)と隣の箱形バケットの内側連結部(5)をスライド嵌合することにより、隣り合う箱形バケット(1)同士を連結することができる。また、連結された箱形バケット(1)の一方を引き上げることにより、その連結状態を解除することができる。
【0031】
図8に示す例では、連結部(5)は殻体(4)の左右両端部にそれぞれ設けられている。一方の連結部(5)は、箱形バケット(1)の打ち込み方向に伸びる2本の雌形係合片であり、他方の連結部(5)は、外側連結部(5)にスライド内嵌可能な2本の雄形係合片である。尚、図8では、導入路の図示を省略している。
【0032】
導入路(6)(60)はそれぞれ、図7及び9に2つの実施例が示される如く、殻体(4)、外側連結部(5)内に設けられている。殻体(4)内に設けられた導入路(6)は、該殻体(4)の底部(12)に地上からモルタル或いは生コンクリートを導入するものである。外側連結部(5)内に設けられた導入路(60)は、該外側連結部(5)の底部(120)に地上からモルタル或いは生コンクリートを導入するものである。
【0033】
これら導入路(6)(60)は、定形性のパイプであってもよいし、或いは、可撓性のホースであってもよい。導入路(6)の一端部は、ポンプ(15)(図1参照)を介してモルタル或いはコンクリートプラント(16)と接続されている。導入路(6)の他端部は、殻体(4)の底部(12)に設けられた導入物排出口(7)に接続されている。外側連結部(5)内の導入路(60)の他端部は、外側連結部(5)の底部(120)に設けられた導入物排出口(70)に接続されている。
【0034】
導入物排出口(7)(70)はそれぞれ、殻体(4)の底部(12)、外側連結部(5)の底部(120)に設けられている。殻体(4)の底部(12)に設けられた導入物排出口(7)は、殻体(4)の底部(12)へ導入されたモルタル或いはコンクリート等の導入物を排出する。外側連結部(5)の底部(120)に設けられた導入物排出口(70)は、外側連結部(5)の底部(120)へ導入されたモルタル或いはコンクリート等の導入物を排出する。
【0035】
弁(8)(80)はそれぞれ、殻体(4)に設けられた導入物排出口(7)、外側連結部(5)に設けられた導入物排出口(70)に設けられるものである。これらの弁(8)(80)は、導入物の導入圧若しくは地上からの遠隔操作によって開くようになっている。弁(8)(80)はいわゆる逆止弁であり、内側から外側へ向けては開くことができるが、外側から内側へ向けては開くことができない。
【0036】
チャック(9)は、殻体(4)上部に設けられている。このチャック(9)は、箱形バケット(1)を地中に打ち込むとき及び該バケット(1)を地中から引き抜くときに、打ち込み機械或いは引き抜き機械に把持される部材である。ここに言う打ち込み機械、引き抜き機械は、例えば、クレーン(17)に吊り下げられたバイブロフォンサ(18)(図1、2参照)である。このバイブロフォンサ(18)は、振動を発生する装置である。このバイブロフォンサ(18)を振動させながら、バイブロフォンサ(18)を吊り下げるフックを下げると、箱形バケット(1)を地中に打ち込むことができ、バイブロフォンサ(18)を振動させながら、バイブロフォンサ(18)を吊り下げるフックを上げると、箱形バケット(1)を地中から引き抜くことができる。
【0037】
尚、本発明に係る箱形バケット(1)は、空気噴射によって地盤を削る噴射掘削手段(26)(図7参照)が設けられていてもよい。この噴射掘削手段(26)は、圧縮空気を発生するコンプレッサ(図示せず)と、このコンプレッサから送られてきた圧縮空気を殻体(4)の底部(12)へ導入する空気導入路(27)と、殻体(4)の底部(12)に設けられ圧縮空気を噴出する空気噴射口(28)と、この空気噴射口(28)を開閉する弁(図示せず)とを備えている。弁は、圧縮空気の噴射時にのみ開くようになっている。
このような噴射掘削手段(26)を設けることにより、箱形バケット(1)の打ち込みをスムースに行うことができる。
【0038】
次に、この箱形バケット(1)を用いた地中連続壁の施工方法について説明する。なお、地中連続壁の施工方法についての説明であるが、廃棄物埋立て地盤における遮水壁工法として置き換えて捉えることもでき、この場合、地中連続壁を形成するのが廃棄物埋立て地盤となる。
【0039】
本実施形態における地中連続壁の施工方法では、まず、オーガ式掘削機(2)を用いて地中を先行掘削する(図1、図3(a)参照、図2では図示せず)。その後、少なくとも地中連続壁(10)の内側側面に対応する側面が平坦面(11)とされた前記有底筒状の箱形バケット(1)を先行掘削孔(3)に打ち込む(図1、図3(b)参照)。このとき、平坦側面(11)が地中連続壁(10)の内側側面と一致するように箱形バケット(1)を打ち込む。
【0040】
尚、箱形バケット(1)の打ち込みを精度良く行うために、地中連続壁(10)の内側側面となる位置に沿って地上にH形鋼等のガイド部材(19)(図1参照)を配置し、このガイド部材(19)に箱形バケット(1)の平坦面(11)を接触させながら打ち込みを行うことが好ましい。
【0041】
また、図1に示す如く、箱形バケット(1)の厚み方向両側に沿ってそれぞれガイド部材(19)を配置し、箱形バケット(1)をこれらガイド部材(19)に接触させた状態で打ち込みを行うことがより好ましい。
【0042】
図10に示す如く、オーガ式掘削機(2)のオーガ(20)としては、円柱状のロッドの周囲に鉄筋(21)を螺旋状に巻き付け固定したものを使用することが好ましい。このようなものを使用すると、地盤が廃棄物盛土であって、ビニル袋等の柔らかい異物が混在していても、これがオーガ(20)に絡みつくことがない。また、オーガ(20)の先端には、鉄等の硬い異物が地盤に混在していてもこれを切断することができるコニカルビット(22)を設けていることが好ましい。更に、箱形バケットの地盤への打ち込み(貫入)に際し、打ち込み対象の地盤における地中連続壁(遮水壁)の支持基盤への箱形バケットの根入れを行うとすれば好適である。
【0043】
次いで、打ち込んだ箱形バケット(1)の中の底部(12)にモルタル或いは生コンクリートを導入しながらこの箱形バケット(1)を引き抜く。この引き抜き作業の際に、箱形バケット(1)の底部に設けられた導入物排出口(7)(70)からモルタル或いは生コンクリート等の導入物を排出する。導入物排出口(7)(70)は、前記導入物の導入圧若しくは地上からの操作によって開く弁(8)(80)を備えており、この弁(8)(80)が開くことによって前記導入物が排出される。
【0044】
全ての引き抜きが完了したら、モルタル或いは生コンクリートが充填された孔内に鉄筋籠や鋼管杭を必要に応じて挿入し、モルタル或いは生コンクリートが固化するのを待つ。
【0045】
本実施形態における地中連続壁の施工方法は基本的にはこのようなものであるが、箱形バケット(1)の打ち込み方法として,図4に例示される以下の方法を採ることが好ましい。
【0046】
箱形バケット(1)は、前記した如く、隣の箱形バケット(1)と連結するための連結部(5)を備えている。好ましい箱形バケット(1)打ち込みの第1段階は、図4(a)に示す如く、複数の箱形バケット(1)を連続して打ち込む工程であって、これら複数の箱形バケットは打ち込み完了後において互いに連結した状態とされる。この第1段階において、複数の箱形バケット(1)は既に連結された状態で同時に打ち込まれてもよいし、或いは、1本ずつ順次打ち込んでいき、その都度、隣の箱形バケット(1)との連結を行ってもよい。
この第1段階で打ち込まれる箱形バケット(1)の本数は特に限定されるものではないが、例えば図示例の如く3本とすることができる。
【0047】
打ち込みの第2段階は、図4(b)に示す如く、一本目の箱形バケット(1)の中の底部(12)(120)にモルタル或いは生コンクリートを導入しながらこの1本目の箱形バケット(1)を引き抜き、この引き抜いた箱形バケット(1)を次の打ち込み予定位置(図示例では4本目の打ち込み予定位置)に打ち込む工程である。
【0048】
打ち込みの第3段階は、図4(c)に示す如く、2本目の箱形バケット(1)の中の底部(12)(120)にモルタル或いは生コンクリートを導入しながらこの2本目の箱形バケット(1)を引き抜き、この引き抜いた箱形バケット(1)を次の打ち込み予定位置に打ち込む工程である。
【0049】
以後は第2、第3段階と同様の工程が繰り返される。各段階において、箱形バケット(1)は隣の箱形バケット(1)と連結されながら打ち込まれる。
【0050】
所定の位置まで箱形バケット(1)を打ち込んだら、全ての箱形バケット(1)を地中から引き抜く。
【0051】
以上により、箱形バケット(1)の打ち込みが完了する。
【0052】
本発明に係る地中連続壁の施工方法で用いられる箱形バケット(1)によれば、柱列式地中連続壁(10)を施工する際に、その内側側面を該連続壁(10)の施工時に平坦化することができる。更に、掘削土が良質のシルトを殆ど含まない廃棄物盛土(24)(図1、2参照)であっても、箱形バケット(1)内にその廃棄物盛土が混入せず、予め準備したモルタル或いは生コンクリートを箱形バケット(1)内に導入するので、十分な強度を備えた地中連続壁(10)を造ることができる。
【0053】
なお、以上の実施形態では、直線状に連続する地中連続壁の施工方法について説明したが、地中連続壁同士が交叉する隅角部を接合する場合には、まず一方の地中連続壁の交叉位置となる端部に壁体を構築し、その後に他方の遮水壁の端部に一方の壁体に交叉してこれに貫入した壁体を構築することで、隅角部の造成と結合を行うことができる。また、この施工方法で十分な止水性を確保できない場合には、交叉位置の隅角部背面側にCCPを増し打ちするなどの処理を行えばよい。
【0054】
【発明の効果】
本発明によれば、柱列式地中連続壁を施工する際に、その内側側面を該連続壁の施工時に平坦化することができる。従って、地中連続壁の内側に地下構造物を造る際に、地下構造物の建設工期を大幅に短縮することができる。
【0055】
更に、掘削土が良質のシルトを殆ど含まない廃棄物盛土であっても、箱形バケット内にその廃棄物盛土が混入せず、予め準備したモルタル或いは生コンクリートを箱形バケット内に導入するので、十分な強度を備えた地中連続壁を造ることができる。
【0056】
また、遮水壁の構築位置における地盤は掘削機により弛められた上で、箱形バケットが貫入されるだけで、排土の発生がほとんどない。したがって、遮水壁の構築対象地盤が廃棄物埋立て地盤であっても、汚染され不要な排土の処理に煩わされることもない。更に、構築された遮水壁の壁体は遮水壁材料のみで構成され、埋立て廃棄物の混入がほとんどないため、設計強度に応じた強度を十分に発現できる。加えて、その施工に際しても、地盤中に残置した箱形バケットを次に観入する箱形バケットの貫入ガイドとして用いることが可能となり、遮水壁の鉛直度及び直線度といった各種施工精度を良好に維持しつつも効率のよい施工を実行することが可能となる。したがって、本発明による廃棄物埋立地盤における遮水壁工法にあっては、遮水壁の施工に伴う排土の発生がほとんどなく、また排土処理が不要となり、工事の簡素化に好適である。
【図面の簡単な説明】
【図1】 本発明の一実施形態における地中連続壁の施工方法を示す図である。
【図2】 本実施形態における地中連続壁の施工方法を示す図である。
【図3】 本実施形態における地中連続壁の施工方法を示す図であり、(a)は、先行掘削の状態を示す平面図、(b)は、先行掘削孔に箱形バケットを打ち込んだ様子を示す平面図である。
【図4】 本発実施形態における地中連続壁の施工方法を、(a)〜(c)にかけて工程順に示す図である。
【図5】 本発明に係る箱形バケットを2個連結した状態で示す斜視図である。
【図6】 本発明に係る箱形バケットの一例を示す平明図である。
【図7】 本発明に係る箱形バケットの先端部の一例を示す縦断面図である。
【図8】 本発明に係る箱形バケットの他の例を示す平面図である。
【図9】 本発明に係る箱形バケットの先端部を他の例を示す縦断面図である。
【図10】 本実施形態における地中連続壁の施工方法で使用されるオーガを示す側面図である。
【符号の説明】
1 箱形バケット
2 オーガ式掘削機
3 先行掘削孔
4 殻体
5 連結部
6 導入路
7 導入物排出口
8 弁
9 チャック
10 地中連続壁
11 平坦側面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a box-shaped buckets used in construction how the diaphragm wall, more specifically, at the time of construction pillars column type continuous underground wall to flatten the inner side during application of the continuous wall it can, further, relates to a box-shaped bucket that can be made the underground continuous wall with sufficient strength even waste embankment excavated soil is substantially free of high-quality silt.
In addition, the present invention relates to a construction method for constructing a new impermeable wall in a waste landfill board such as an existing waste disposal site.
[0002]
[Prior art]
As a method for constructing a continuous underground wall, which has been performed well in the past, there is a method of excavating the ground with a multi-axis auger, and stirring and mixing the excavated soil with a solidified liquid in the original position to form a soil cement wall.
The underground continuous wall produced in this way is called a columnar underground continuous wall. Cylindrical columns are continuously arranged in the direction perpendicular to the axis, and adjacent columns partially overlap each other. Wrapping.
[0003]
However, the outline of the side portion of this conventional columnar underground continuous wall has an uneven shape in which arcs are continuously arranged and valleys are formed between adjacent arcs. If the outline of the columnar underground continuous wall has such an uneven shape, when the underground structure is built inside the underground continuous wall, the uneven valley is filled with mortar, etc. Separate work is required to flatten the inner side of the wall. If such flattening work is performed after the construction of the continuous wall, the construction period of the underground structure will be greatly delayed.
[0004]
In addition, it is an indispensable condition for ensuring the strength of the wall body that the conventional column row underground continuous wall construction method is a method of stirring and mixing cement milk and excavated soil with an auger. For this reason, when the excavated soil is a waste embankment containing almost no high-quality silt, it is not preferable in terms of ensuring the strength of the wall body to make an underground continuous wall by this method.
[0005]
On the other hand, in the waste disposal site where the underground continuous wall as described above is often constructed as a water-impervious wall, the basic performance required for the water-impervious wall is as follows. Standards such as × 10 −6 cm / s are listed. However, many existing waste disposal sites often do not meet the above standards as they are. In waste disposal sites that do not meet the standards for water shielding performance, additional construction of water shielding walls is required to improve the surrounding environmental sanitation.
[0006]
In addition, as a site treatment for landfills after landfill completion, wastewater that has been formed unwillingly due to illegally dumping when a new impermeable wall is created to completely prevent leakage of contaminated water to the outside In order to isolate the landfill from the surrounding ground, it is necessary to construct a water-impervious wall.
[0007]
By the way, the so-called soil cement construction method is often used for construction of impermeable walls in general landfills, in which cement is discharged while agitating the ground and mixed with the local soil to create a continuous wall. ing.
[0008]
However, when this construction method is to be applied to waste landfills, there are the following technical problems.
[0009]
[Problems to be solved by the invention]
Since the waste landfill board is mainly composed of waste, if the soil cement method is applied to this ground as it is and stirring and mixing in the ground is carried out, waste and contaminated soil will be involved in cement kneading. Become. For this reason, the strength of the wall body to be constructed, the construction accuracy thereof, and the like are lowered, and the required performance cannot be sufficiently exhibited.
[0010]
Therefore, in order to apply this construction method to a waste landfill board, it is necessary to replace the soil cement placement position with high-quality soil in advance, which requires labor for excavation and backfilling, resulting in reduced construction efficiency and cost. It is easy to invite a rise. In addition, excavated soil that has been mixed with waste is generated, and the construction itself and the soil removal treatment become extremely troublesome. In addition, mud soil mixed with soil and cement must be discharged as surplus soil. I will be born.
[0011]
The present invention has been made in view of such a situation, and when constructing a columnar wall underground continuous wall, the inner side surface thereof can be flattened when the continuous wall is constructed. there is an object to provide a box-shaped bucket that can be made the underground continuous wall with sufficient strength even waste embankment containing little silt quality.
[0012]
In addition, the present invention provides a water-impervious wall construction method in a waste landfill board that is suitable for simplification of construction because there is almost no generation of soil due to construction of the water-impervious wall.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a box-shaped bucket that is driven into a preceding excavation hole formed using an auger excavator in order to construct an underground continuous wall, and the box-shaped bucket is at least a continuous underground A connecting portion for determining the positional relationship between a bottomed cylindrical shell whose side surface corresponding to the inner side of the wall is a flat surface and an adjacent box-shaped bucket provided in the shell, and provided in the shell. An introduction path for introducing mortar or ready-mixed concrete from the ground to the bottom of the shell, a discharge outlet provided at the bottom of the shell for discharging the introduced mortar or ready-mixed concrete, and A valve provided at the outlet and opened by the introduction pressure of the introduced mortar or ready-mixed concrete or operation from the ground, and when the box-shaped bucket provided at the upper part of the shell is driven into the ground and when the bucket is removed from the ground And a chuck to be grasped by the driving machine or pulling machine when Nuku come,
The connecting portions are provided on the outside and the inside of the shell body, respectively, and the external connecting portions are bottomed cylindrical bodies extending in the driving direction of the box-shaped bucket, and mortar or ready-mixed concrete from the ground. An introduction path to be introduced into the bottom of the connecting portion; an introduction outlet for discharging the introduced mortar or ready-mixed concrete provided at the bottom of the outer connecting portion; and the introduced mortar provided at the introduction outlet. Alternatively, it is provided with a valve that is opened by an introduction pressure of ready-mixed concrete or an operation from the ground, and the inner connecting portion is a bottomless cylindrical body that can be slid into the outer connecting portion, and the one connecting portion It is a box-type bucket characterized in that adjacent box-shaped buckets can be connected by sliding-fitting the inner connecting portion of the adjacent box-shaped bucket .
[0018]
In the invention according to claim 2, the construction of the impermeable wall, which is the waste landfill ground, is fixed by winding a reinforcing bar in a spiral shape around a cylindrical rod and having a conical bit at the tip. A step of digging with an auger-type excavator provided to loosen the ground; a step of penetrating a box-shaped bucket having a cross-sectional dimension corresponding to the thickness of the impermeable wall into the slackened ground; and The water-impervious wall construction method is characterized in that a water-impervious wall material is injected into the ground later from the tip of the box-shaped bucket and the step of pulling out the box-shaped bucket from the ground is repeatedly executed.
[0019]
The invention according to claim 3 is the step of performing the injection and the extraction of the water shielding material with respect to a predetermined box-shaped bucket among the plurality of box-shaped buckets that are sequentially inserted and connected to the ground so as to be connected to each other by a connecting portion. 3. The impermeable wall construction method according to claim 2 , wherein the step of penetrating the pulled-out box bucket into the next penetration position is sequentially repeated for each adjacent box bucket.
[0020]
According to a fourth aspect of the present invention, the connecting portion of the box-shaped bucket includes a vertical guide block at one end of the box-shaped bucket and a guide recess that can be inserted into the vertical guide block at the other end. 4. The water-impervious construction method according to claim 3, wherein either one of the vertical guide block or the guide recess in the remaining box-shaped bucket is used as a penetrating guide for the box-shaped bucket that penetrates next.
[0021]
Invention of claim 5, wherein, upon penetration into the ground of the box-shaped bucket, claim 2, characterized in that performing the embedment box-shaped bucket in the water shield wall support base in the ground The impermeable wall construction method described in 1.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
1 to 4 are views showing a construction method of the underground continuous wall in the embodiment of the present invention. FIG. 5 thru | or 10 is a figure which shows the box-shaped bucket used with the construction method of this embodiment .
[0024]
First, the box-shaped bucket (1) used with the construction method of the underground continuous wall which concerns on this invention is demonstrated.
This box-shaped bucket (1) is a box that is driven into a preceding excavation hole (3) formed using an auger excavator (2) (see FIG. 1) in order to construct an underground continuous wall (10). Shape bucket.
The box-shaped bucket (1) includes a shell (4), a connecting portion (5), an introduction path (6), an introduction discharge port (7), a valve (8), and a chuck (9). I have.
[0025]
Hereinafter, these components will be described.
The shell (4) is a bottomed cylindrical member having at least a flat surface (11) on the side surface forming the inside of the underground continuous wall (10). Although the specific shape of this shell (4) is not specifically limited, For example, it is set as a bottomed square cylinder shape like the example of illustration.
[0026]
The bottom (12) of the shell (4) has a sharp V shape when viewed from the extending direction (A) of the underground continuous wall (10) (see FIG. 1). The V-shaped tip is reinforced with a hard metal such as Tungaloy.
[0027]
A connection part (5) is a member which is provided in a shell (4) and determines the positional relationship with an adjacent box-shaped bucket (1). Moreover, this connection part (5) is a member which enables the connection with an adjacent box-shaped bucket (1). The structure is not particularly limited, but for example, there is a form shown in FIGS. 5 and 6 and a form shown in FIG. Both forms are provided along the driving direction of the box-shaped bucket (1), and the box adjacent to the box-shaped bucket (1) (the box-shaped bucket (1) to be driven downstream) is adjacent to the box-shaped bucket (1). Guide the shaped bucket (1).
[0028]
In the example shown in FIGS. 5 and 6, the connecting portion (5) is provided on the outside and inside of the shell (4), respectively.
The outer connecting portion (5) is a bottomed cylindrical body extending in the driving direction of the box-shaped bucket (1) and introduces mortar or ready-mixed concrete from the ground to the bottom portion (120) of the outer connecting portion (5). An introduction passage (60), an introduction discharge port (70) provided at the bottom (120) of the outer connecting portion (5) for discharging the introduction, and an introduction discharge port (70) provided at the introduction discharge port (70). And a valve (80) that is opened by an introduction pressure of an object or an operation from the ground.
[0029]
On the other hand, the inner connecting portion (5) is a bottomless cylindrical body that can be fitted into the outer connecting portion (5). In addition, the outer side connection part (5) is being fixed to the shell (4) via the linear fixing | fixed part (13). The inner connecting part (5) has a slit (14) into which the fixing part (13) of the outer connecting part (5) enters. The outer connecting portion (5) can also be called a vertical guide block, and the inner connecting portion (5) can be called a guide recess.
[0030]
Adjacent box-shaped buckets (1) can be connected to each other by slidingly fitting the outer connecting portion (5) and the inner connecting portion (5) of the adjacent box-shaped bucket. Moreover, the connected state can be canceled by pulling up one of the connected box-shaped buckets (1).
[0031]
In the example shown in FIG. 8, the connection part (5) is provided in the right-and-left both ends of the shell (4), respectively. One connecting portion (5) is two female engaging pieces extending in the driving direction of the box-shaped bucket (1), and the other connecting portion (5) is slide-fit into the outer connecting portion (5). Two possible male engagement pieces. In FIG. 8, the introduction path is not shown.
[0032]
The introduction paths (6) and (60) are respectively provided in the shell (4) and the outer connecting part (5) as shown in FIGS. 7 and 9 in two embodiments. The introduction path (6) provided in the shell (4) is for introducing mortar or ready concrete from the ground to the bottom (12) of the shell (4). The introduction path (60) provided in the outer connection part (5) is for introducing mortar or ready-mixed concrete from the ground to the bottom part (120) of the outer connection part (5).
[0033]
These introduction paths (6) and (60) may be shaped pipes or may be flexible hoses. One end of the introduction path (6) is connected to a mortar or concrete plant (16) via a pump (15) (see FIG. 1). The other end of the introduction path (6) is connected to an introduction discharge port (7) provided at the bottom (12) of the shell (4). The other end portion of the introduction path (60) in the outer connection portion (5) is connected to an introduction discharge port (70) provided in the bottom portion (120) of the outer connection portion (5).
[0034]
The introduction discharge ports (7) and (70) are respectively provided at the bottom (12) of the shell (4) and the bottom (120) of the outer connecting portion (5). The introduction discharge port (7) provided in the bottom (12) of the shell (4) discharges an introduction such as mortar or concrete introduced into the bottom (12) of the shell (4). The introduced substance discharge port (70) provided in the bottom part (120) of the outer connecting part (5) discharges an introduced substance such as mortar or concrete introduced into the bottom part (120) of the outer connecting part (5).
[0035]
The valves (8) and (80) are respectively provided in the introduction discharge port (7) provided in the shell (4) and the introduction discharge port (70) provided in the outer connecting portion (5). . These valves (8) and (80) are opened by the introduction pressure of the introduced substance or by remote operation from the ground. The valves (8) and (80) are so-called check valves and can be opened from the inside to the outside, but cannot be opened from the outside to the inside.
[0036]
The chuck (9) is provided on the shell (4). The chuck (9) is a member that is gripped by a driving machine or a drawing machine when the box-shaped bucket (1) is driven into the ground and when the bucket (1) is pulled out from the ground. The driving machine and the drawing machine referred to here are, for example, a vibrator blower (18) (see FIGS. 1 and 2) suspended from a crane (17). The vibrator (18) is a device that generates vibration. While lowering the hook that suspends the vibrator hood (18) while vibrating the vibrator hood (18), the box-shaped bucket (1) can be driven into the ground, and the vibrator hood (18) is vibrated. On the other hand, when the hook for hanging the vibrator (18) is raised, the box-shaped bucket (1) can be pulled out from the ground.
[0037]
The box-type bucket (1) according to the present invention may be provided with an injection excavation means (26) (see FIG. 7) for cutting the ground by air injection. The jet excavation means (26) includes a compressor (not shown) for generating compressed air and an air introduction path (27) for introducing the compressed air sent from the compressor to the bottom (12) of the shell (4). ), An air injection port (28) that is provided at the bottom (12) of the shell (4) and that ejects compressed air, and a valve (not shown) that opens and closes the air injection port (28). . The valve is opened only when compressed air is injected.
By providing such an injection excavation means (26), the box-shaped bucket (1) can be driven smoothly.
[0038]
Next, the construction method of the underground continuous wall using this box-shaped bucket (1) is demonstrated. In addition, although it is explanation about the construction method of the underground continuous wall, it can be replaced with the impermeable wall construction method in the waste landfill ground, and in this case, it is the waste landfill that forms the underground continuous wall It becomes the ground.
[0039]
In the construction method of the underground continuous wall in the present embodiment , first, the underground excavation is performed using an auger excavator (2) (see FIGS. 1 and 3A, not shown in FIG. 2). Thereafter, the bottomed cylindrical box-shaped bucket (1) whose side surface corresponding to the inner side surface of the underground continuous wall (10) is a flat surface (11) is driven into the preceding excavation hole (3) (FIG. 1). FIG. 3B). At this time, the box-shaped bucket (1) is driven so that the flat side surface (11) coincides with the inner side surface of the underground continuous wall (10).
[0040]
In addition, in order to drive in the box-shaped bucket (1) with high accuracy, a guide member (19) such as H-shaped steel is provided on the ground along the position that is the inner side surface of the underground continuous wall (10) (see FIG. 1). It is preferable that the guide member (19) is driven and the flat surface (11) of the box-shaped bucket (1) is brought into contact with the guide member (19).
[0041]
Further, as shown in FIG. 1, guide members (19) are arranged along both sides in the thickness direction of the box-shaped bucket (1), and the box-shaped bucket (1) is in contact with these guide members (19). It is more preferable to perform driving.
[0042]
As shown in FIG. 10, it is preferable to use an auger (20) of an auger excavator (2) in which a reinforcing bar (21) is spirally wound around a cylindrical rod and fixed. If such a thing is used, even if the ground is waste embankment and soft foreign matters such as vinyl bags are mixed, this does not get entangled with the auger (20). Moreover, it is preferable to provide the conical bit (22) which can cut | disconnect even if hard foreign materials, such as iron, are mixed in the ground at the front-end | tip of an auger (20). Furthermore, when the box-shaped bucket is driven (penetrated) into the ground, it is preferable to insert the box-shaped bucket into the support base of the underground continuous wall (water-impervious wall) in the ground to be driven.
[0043]
Next, the box-shaped bucket (1) is pulled out while introducing mortar or ready-mixed concrete into the bottom (12) of the box-shaped bucket (1) that has been driven. During this drawing operation, an introduced material such as mortar or ready-mixed concrete is discharged from an introduced material discharge port (7) (70) provided at the bottom of the box-shaped bucket (1). The introduction discharge port (7) (70) is provided with a valve (8) (80) opened by the introduction pressure of the introduction or an operation from the ground, and the valve (8) (80) is opened when the valve (8) (80) is opened. The introduction is discharged.
[0044]
When all drawing is completed, rebar rods and steel pipe piles are inserted into the holes filled with mortar or ready-mixed concrete as needed, and wait for the mortar or ready-mixed concrete to solidify.
[0045]
The construction method of the underground continuous wall in this embodiment is basically such as this, but it is preferable to adopt the following method illustrated in FIG. 4 as the method of driving the box-shaped bucket (1).
[0046]
As described above, the box-shaped bucket (1) includes the connecting portion (5) for connecting to the adjacent box-shaped bucket (1). As shown in FIG. 4 (a), the first stage of driving the preferred box-shaped bucket (1) is a process of driving a plurality of box-shaped buckets (1) continuously. Later, they are connected to each other. In this first stage, a plurality of box-shaped buckets (1) may be driven at the same time in an already connected state, or they are driven sequentially one by one, each time the adjacent box-shaped bucket (1) You may connect with.
The number of box-shaped buckets (1) driven in in the first stage is not particularly limited, but can be three as shown in the illustrated example.
[0047]
In the second stage of driving, as shown in FIG. 4B, while introducing mortar or ready concrete into the bottom (12) (120) in the first box-shaped bucket (1), This is a step of pulling out the bucket (1) and driving the pulled-out box-shaped bucket (1) to the next planned driving position (the fourth planned driving position in the illustrated example).
[0048]
In the third stage of driving, as shown in FIG. 4 (c), the mortar or ready-mixed concrete is introduced into the bottom (12) (120) in the second box-shaped bucket (1) while the second box-shaped. In this step, the bucket (1) is pulled out, and the pulled out box-shaped bucket (1) is driven to the next planned driving position.
[0049]
Thereafter, the same processes as those in the second and third stages are repeated. At each stage, the box-shaped bucket (1) is driven while being connected to the adjacent box-shaped bucket (1).
[0050]
When the box-shaped bucket (1) is driven to a predetermined position, all the box-shaped buckets (1) are pulled out from the ground.
[0051]
Thus, driving of the box-shaped bucket (1) is completed.
[0052]
According to the box-shaped bucket (1) used in construction how the underground continuous wall according to the present invention, when applying a pillar column formula diaphragm wall (10), the continuous wall the inner side (10 ) Can be flattened during construction. Furthermore, even if the excavated soil is a waste embankment (24) (see FIGS. 1 and 2) that contains almost no high-quality silt, the waste embankment is not mixed in the box-shaped bucket (1), and prepared in advance. Since mortar or ready-mixed concrete is introduced into the box-shaped bucket (1), the underground continuous wall (10) with sufficient strength can be made.
[0053]
In addition, although the above embodiment demonstrated the construction method of the underground continuous wall which continues linearly, when joining the corner part which underground continuous walls cross, first one underground continuous wall By building a wall body at the end of the crossover position, and then building a wall body that intersects and penetrates one wall body at the end of the other impermeable wall, And can be combined. Further, when sufficient water stoppage cannot be ensured by this construction method, a treatment such as increasing the CCP on the back side of the corner at the crossing position may be performed.
[0054]
【The invention's effect】
According to the present invention, when constructing a columnar underground continuous wall, the inner side surface can be flattened when the continuous wall is constructed. Therefore, when building an underground structure inside the underground continuous wall, the construction period of the underground structure can be greatly shortened.
[0055]
Furthermore, even if the excavated soil is a waste embankment that contains almost no high-quality silt, the waste embankment is not mixed in the box-shaped bucket, and mortar or ready concrete prepared in advance is introduced into the box-shaped bucket. It is possible to build an underground continuous wall with sufficient strength.
[0056]
In addition, the ground at the construction position of the impermeable wall is loosened by an excavator, and the box-shaped bucket is only inserted, so that there is almost no soil generation. Therefore, even if the construction target ground of the impermeable wall is a waste landfill ground, it is not bothered by the disposal of contaminated and unnecessary soil. Furthermore, since the constructed wall body of the impermeable wall is composed only of the impermeable wall material and there is almost no contamination of landfill waste, the strength according to the design strength can be sufficiently expressed. In addition, it is possible to use the box-shaped bucket left in the ground as a guide for the penetration of the box-shaped bucket that will be viewed next, and to improve various construction accuracy such as the vertical and straightness of the impermeable wall. It is possible to carry out efficient construction while maintaining the above. Therefore, in the impermeable wall construction method for the waste landfill board according to the present invention, there is almost no generation of soil due to the construction of the impermeable wall, and no soil disposal is required, which is suitable for simplification of construction. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a construction method of an underground continuous wall in an embodiment of the present invention.
FIG. 2 is a diagram showing a construction method of an underground continuous wall in the present embodiment .
FIGS. 3A and 3B are diagrams illustrating a method for constructing an underground continuous wall in the present embodiment , where FIG. 3A is a plan view illustrating a state of preceding excavation, and FIG. 3B is a diagram illustrating driving a box bucket into the preceding excavation hole; It is a top view which shows a mode.
FIG. 4 is a diagram showing a construction method of an underground continuous wall according to the present embodiment in the order of steps from (a) to (c).
FIG. 5 is a perspective view showing two box-shaped buckets according to the present invention connected together.
FIG. 6 is a plain view showing an example of a box-shaped bucket according to the present invention.
FIG. 7 is a longitudinal sectional view showing an example of a tip portion of a box-shaped bucket according to the present invention.
FIG. 8 is a plan view showing another example of a box-shaped bucket according to the present invention.
FIG. 9 is a longitudinal sectional view showing another example of the tip of the box-shaped bucket according to the present invention.
FIG. 10 is a side view showing an auger used in the underground continuous wall construction method in the present embodiment .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Box-shaped bucket 2 Auger type excavator 3 Prior excavation hole 4 Shell 5 Connection part 6 Introductory path 7 Introduced material discharge port 8 Valve 9 Chuck 10 Underground continuous wall 11 Flat side surface

Claims (5)

地中連続壁を構築するために、オーガ式掘削機を用いて形成された先行掘削孔に打ち込まれる箱形バケットであり、この箱形バケットは、少なくとも地中連続壁の内側に対応する側面が平坦面とされた有底筒状の殻体と、この殻体に設けられた隣の箱形バケットとの位置関係を決定する連結部と、前記殻体内に設けられた該殻体の底部に地上からモルタル或いは生コンクリートを導入する導入路と、前記殻体の底部に設けられ前記導入されたモルタル或いは生コンクリートを排出する導入物排出口と、この導入物排出口に設けられ前記導入されたモルタル或いは生コンクリートの導入圧若しくは地上からの操作によって開く弁と、前記殻体上部に設けられ箱形バケットを地中に打ち込むとき及び該バケットを地中から引き抜くときに打ち込み機械或いは引き抜き機械に把持されるチャックとを備え、
前記連結部は前記殻体の外部と内部にそれぞれ設けられており、外部の連結部は、箱形バケットの打ち込み方向に伸びる有底筒状体であると共に、地上からモルタル或いは生コンクリートを該外側連結部の底部に導入する導入路と、該外側連結部の底部に設けられ前記導入されたモルタル或いは生コンクリートを排出する導入物排出口と、この導入物排出口に設けられ前記導入されたモルタル或いは生コンクリートの導入圧若しくは地上からの操作によって開く弁とを備えており、内側の連結部は、前記外側連結部にスライド内嵌可能な無底筒状体であり、前記一方の連結部と隣の箱形バケットの内側連結部をスライド嵌合することにより、隣り合う箱形バケットを連結可能とされていることを特徴とする箱形バケット。
A box-shaped bucket that is driven into a preceding excavation hole formed by using an auger excavator in order to construct the underground continuous wall, and this box-shaped bucket has at least a side surface corresponding to the inside of the underground continuous wall. A bottomed cylindrical shell having a flat surface and a connecting portion for determining a positional relationship between an adjacent box-shaped bucket provided in the shell, and a bottom of the shell provided in the shell. an introduction passage for introducing a mortar or fresh concrete from the ground, the introduction product discharge outlet for discharging the introduced mortar or fresh concrete provided at a bottom of the shell, the introduced provided the introduction product discharge outlet implantation when pulling the valve opened by operation from the introduction pressure or ground mortar or ready-mixed concrete, the and the bucket when implanting provided box-shaped buckets in said shell top underground from the ground械 or a chuck to be grasped to pull the machine,
The connecting portions are provided on the outside and the inside of the shell body, respectively, and the external connecting portions are bottomed cylindrical bodies extending in the driving direction of the box-shaped bucket, and mortar or ready-mixed concrete from the ground. an introduction passage for introducing into the bottom of the connecting portion, and the introduction product discharge outlet for discharging the introduced mortar or fresh concrete provided at the bottom of the outer connecting portion, the introduced mortar provided in the introduction product discharge outlet Alternatively, it is provided with a valve that is opened by an introduction pressure of ready-mixed concrete or an operation from the ground, and the inner connecting portion is a bottomless cylindrical body that can be slid into the outer connecting portion, and the one connecting portion A box-type bucket characterized in that adjacent box-type buckets can be connected by sliding-fitting an inner connecting portion of an adjacent box-shaped bucket.
廃棄物埋立て地盤である遮水壁構築位置を、円柱状のロッドの周囲に鉄筋を螺旋状に巻き付け固定してなり、先端にコニカルビットが設けられたオーガを備えるオーガ式掘削機により掘削してその地盤を弛める工程と、弛んだ前記地盤内に遮水壁厚に相当する断面寸法を備えた箱形バケットを貫入する工程と、前記箱形バケットが着底後に該箱形バケット先端より地盤に遮水壁材料を注入すると共に該箱形バケットを地盤より引抜く工程と、を繰り返し実行することを特徴とする遮水壁工法。  The construction site of the impervious wall, which is the waste landfill ground, is excavated by an auger type excavator equipped with an auger with a conical bit at the tip, with a reinforcing rod spirally wound around a cylindrical rod. A step of loosening the ground, a step of penetrating a box-shaped bucket having a cross-sectional dimension corresponding to the thickness of a water-impervious wall into the slackened ground, and a ground from the tip of the box-shaped bucket after the box-shaped bucket is settled A method of injecting a water-impervious wall material into the container and repeatedly extracting the box-shaped bucket from the ground. 互いの連結部で連結するよう地盤へ順次貫入され連結した複数の前記箱形バケットのうち所定の箱形バケットについて遮水材の前記注入と前記引き抜きを行う工程と、引き抜いた箱形バケットを次の貫入位置に貫入させる工程とを、隣接する箱形バケット毎に順次繰り返すことを特徴とする請求項に記載の遮水壁工法。The step of injecting and withdrawing the water shielding material with respect to a predetermined box-shaped bucket among the plurality of box-shaped buckets sequentially inserted and connected to the ground so as to be connected with each other, and the extracted box-shaped bucket The water-impervious wall construction method according to claim 2 , wherein the step of penetrating into the penetrating position is sequentially repeated for each adjacent box-shaped bucket. 前記箱形バケットの前記連結部を、箱形バケットの一端における鉛直ガイドブロックと、他端において前記鉛直ガイドブロックに挿通可能なガイド凹部とから構成し、地盤中に残置された箱形バケットにおける前記鉛直ガイドブロックまたはガイド凹部のいずれかを次に貫入する箱形バケットの貫入ガイドとすることを特徴とする請求項記載の遮水壁工法。The connecting portion of the box-shaped bucket is composed of a vertical guide block at one end of the box-shaped bucket and a guide recess that can be inserted into the vertical guide block at the other end, and the box-shaped bucket left in the ground 4. The impermeable wall construction method according to claim 3 , wherein either the vertical guide block or the guide recess is used as an intrusion guide for a box-shaped bucket that penetrates next. 前記箱形バケットの地盤への貫入に際し、前記地盤における遮水壁支持基盤への箱形バケットの根入れを行うことを特徴とする請求項2〜4のいずれかに記載の遮水壁工法。5. The impermeable wall construction method according to claim 2 , wherein, when the box-shaped bucket penetrates into the ground, the box-shaped bucket is embedded into the impermeable wall support base in the ground.
JP2002279813A 2001-12-27 2002-09-25 Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills Expired - Lifetime JP4031967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279813A JP4031967B2 (en) 2001-12-27 2002-09-25 Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001397366 2001-12-27
JP2001-397366 2001-12-27
JP2002279813A JP4031967B2 (en) 2001-12-27 2002-09-25 Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills

Publications (2)

Publication Number Publication Date
JP2003253667A JP2003253667A (en) 2003-09-10
JP4031967B2 true JP4031967B2 (en) 2008-01-09

Family

ID=28677287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279813A Expired - Lifetime JP4031967B2 (en) 2001-12-27 2002-09-25 Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills

Country Status (1)

Country Link
JP (1) JP4031967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959238B1 (en) * 2023-06-05 2024-04-16 Nanjing Institute Of Environmental Sciences, Mee Treatment system and method for sandy soil landfill solid waste polluted river channel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115492084A (en) * 2022-11-02 2022-12-20 上海市基础工程集团有限公司 Construction method of underground continuous wall fore shaft pipe joint water stop structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959238B1 (en) * 2023-06-05 2024-04-16 Nanjing Institute Of Environmental Sciences, Mee Treatment system and method for sandy soil landfill solid waste polluted river channel

Also Published As

Publication number Publication date
JP2003253667A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4031967B2 (en) Box-type buckets used in the construction method of underground underground walls, and impermeable wall construction methods for waste landfills
JPH09317373A (en) Method of shaft construction
JPH1025734A (en) Bearing-pile reinforcing structure of existing structure and reinforcing method thereof
JPH07103550B2 (en) Pile or continuous wall and its construction method
JPH11158865A (en) Underground structure having wall using steel sheet pile as core and method for constructing the same
JPH11269874A (en) Pile construction method for foundation pile
JP6634251B2 (en) Pile foundation structure, ready-made pile burying device, method of constructing pile foundation structure using said ready-made pile burying device
JP2905129B2 (en) Ground improvement method
JPS62178620A (en) Formation of improved angular ground
JPH11200362A (en) Earth retaining work
JPH073782A (en) Method for constructing cast-in-place hollow concrete pile, and cast-in-place concrete pile
JP4180347B2 (en) Construction method of underground continuous wall and underground continuous wall
JPS63197717A (en) Construction work of in-situ pile
JPS6178915A (en) Formation work of underground continuous wall
JPS63197718A (en) Construction work of in-situ pile
JP2001164550A (en) Improvement method of construction ground for underground structure
JPH0434116A (en) Constructing method of underground structure body
JP2023171017A (en) Existing pile extraction method and fluid supply device
JPH02311617A (en) Construction of foundation pile
JP2023171016A (en) Existing pile extraction method
JP2002256548A (en) Treating method of construction removal mud and earth retaining wall filled with construction removal earth
JPH08209678A (en) Ground improvement method and pile or underground wall constructing method
JPS63284309A (en) Formation of angular improved ground
JPH07158064A (en) Preparation method for cast-in-place hollow concrete pile
JPH1193161A (en) C-shaped pile and its driving method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Ref document number: 4031967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term