JP4031373B2 - 小振幅出力バッファ - Google Patents

小振幅出力バッファ Download PDF

Info

Publication number
JP4031373B2
JP4031373B2 JP2003007722A JP2003007722A JP4031373B2 JP 4031373 B2 JP4031373 B2 JP 4031373B2 JP 2003007722 A JP2003007722 A JP 2003007722A JP 2003007722 A JP2003007722 A JP 2003007722A JP 4031373 B2 JP4031373 B2 JP 4031373B2
Authority
JP
Japan
Prior art keywords
output buffer
small amplitude
level
amplitude output
pmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007722A
Other languages
English (en)
Other versions
JP2004222011A (ja
Inventor
慎也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2003007722A priority Critical patent/JP4031373B2/ja
Publication of JP2004222011A publication Critical patent/JP2004222011A/ja
Application granted granted Critical
Publication of JP4031373B2 publication Critical patent/JP4031373B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源とグラウンド間の電圧幅よりも小さい振幅の信号を出力する小振幅出力バッファに関する。
【0002】
【従来の技術】
従来より、回路内部で生成された信号を出力端子を介して、回路外部に出力するために出力バッファが用いられる。ここで、出力バッファはチップ外部に接続された負荷を駆動するために、出力バッファを構成するトランジスタサイズは、内部回路で用いられるトランジスタサイズと比較してサイズの大きなものが用いられる。特に、ボード上のシステムクロック等を供給する場合、このような大容量の負荷に応じた高い駆動能力を有するトランジスタサイズを必要とする。
【0003】
図12は、CMOSインバータにより構成される従来の出力バッファの一例を示す図である。
【0004】
図12に示す出力バッファ20(CMOSインバータ)は、そのソースが電源VDDに、ドレインが出力端子20bに、ゲートが入力端子20aにそれぞれ接続されるPMOSトランジスタ21と、ソースがグラウンドVSSに、ドレインが出力端子20bに、ゲートが入力端子20aにそれぞれ接続されるNMOSトランジスタ22とにより構成される。
【0005】
この出力バッファ20の入力端子20aにHレベルの信号Siが入力されると、出力端子20bからLレベル(=VSS)の信号Soが出力され、入力端子20aにLレベルの信号Siが入力されると、出力端子20bからHレベル(=VDD)の信号Soが出力される。
【0006】
上述したような高い駆動能力を有する出力バッファは、その動作により電源電圧やグラウンドにノイズを発生する。このノイズ対策のため、通常出力バッファ用に専用電源ピン等を設けてノイズの低減を図っているが、基板を介してのある程度のノイズ干渉は避けられない。
【0007】
特に、近年、システムLSIを始めとする、アナログ回路とデジタル回路が搭載されたチップや、無線通信のRFフロントエンドチップのような微少なアナログ信号を扱うチップ等では、そのチップ内におけるノイズの発生を極力避ける必要がある。
【0008】
そこで、このような出力バッファが発生するノイズを抑制するために、例えば、出力信号の立ち上がり時間あるいは立ち下がり時間が短いほど出力バッファが大きなノイズを発生することに着目し、出力バッファが駆動する負荷回路の動作には影響を与えない程度に、出力バッファの出力信号を緩やかに立ち上げ、あるいは緩やかに立ち下げることにより出力バッファが発生するノイズを抑制する技術が従来から提案されている(例えば、特許文献1,特許文献2,特許文献3,特許文献4参照。)。
【0009】
【特許文献1】
特開平5−218847号公報(段落番号0010−0018,図1)
【特許文献2】
特開平7−135456号公報(段落番号0007−0029,図1)
【特許文献3】
特開平5−29914号公報(段落番号0010−0023,図1)
【特許文献4】
特開2000−244304号公報(段落番号0022−0041,図1)
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1から4に示されている出力バッファでは、出力信号を緩やかに立ち上げ、あるいは緩やかに立ち下げることによりノイズを抑制しているために、出力バッファの動作速度が犠牲になるという問題がある。
【0011】
ここで、出力バッファが大きなノイズを発生する原因として、出力信号の立ち上がり時間あるいは立ち下がり時間が短いことの他に、出力信号の振幅が大きいことが挙げられる。
【0012】
本発明は、上記事情に鑑み、その出力振幅を抑えることによりチップ内で発生するノイズを低減し、ノイズによるチップ上の回路等に及ぼす影響を極力抑えた小振幅出力バッファを提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成する本発明の小振幅出力バッファのうちの第1の小振幅出力バッファは、
電源電圧よりも低いHレベルと、グラウンドよりも高いLレベルのいずれか一方又は両方を発生する手段と、
上記Hレベルと上記Lレベルとの間、又は上記電源電圧とLレベルとの間、又は上記Hレベルと上記グラウンドとの間の電位を調節する調節手段とを備え、
上記調節手段により調節された電位を振幅電圧として出力することを特徴とする。
【0014】
本発明の小振幅出力バッファは、電源電圧よりも低いHレベルと、グラウンドよりも高いLレベルのいずれか一方又は両方を発生する手段を備えているため、図12に示す出力バッファ20と比較して、振幅の小さな信号が出力される。従って、本発明の第1の小振幅出力バッファから発生するノイズが抑制される。
【0015】
ここで、本発明の第1の小振幅出力バッファにおいて、上記調節手段は、抵抗素子から形成されることが好ましい。
【0016】
本発明の第1の小振幅出力バッファでは、設計時に、上記抵抗素子の抵抗値を調節することにより、出力信号の上記Hレベルと上記Lレベルとの間、又は上記電源電圧とLレベルとの間、又は上記Hレベルと上記グラウンドとの間の電位を任意に設定することができる。
【0017】
また、上記調節手段は、さらに上記抵抗素子を流れる電流経路を導通遮断するスイッチ手段を備えたものであることが好ましい。
【0018】
本発明の第1の小振幅出力バッファでは、上記スイッチ手段により上記抵抗素子を流れる電流経路を遮断することにより、この電流経路に不要な電流が流れるのを防止することができる。
【0019】
また本発明の小振幅出力バッファのうちの第2の小振幅出力バッファは、
ソースが電源に接続され、ゲートとドレインを共通接続する第1のPMOSトランジスタと、
ソースがグラウンドに接続され、ゲートとドレインを共通接続する第1のNMOSトランジスタと、
ソースが上記第1のPMOSトランジスタのゲートおよびドレインに、ゲートが入力端子に、ドレインが出力端子に接続される第2のPMOSトランジスタと、
ドレインが上記出力端子に、ゲートが上記入力端子に、ソースが上記第1のNMOSトランジスタのゲートおよびドレインに接続される第2のNMOSトランジスタと、
上記第2のPMOSトランジスタおよび上記第2のNMOSトランジスタの各ソースを接続する抵抗素子とから構成されることを特徴とする。
【0020】
本発明の第2の小振幅出力バッファでは、上記抵抗素子を介して、上記第1のPMOSトランジスタと上記第1のNMOSトランジスタに定常電流が流れるため、上記第1のPMOSトランジスタのドレイン電圧は、電源電圧よりも上記第1のPMOSトランジスタの閾値電圧だけレベルの低下した電位以下で安定し、上記第1のNMOSトランジスタのドレイン電圧はグラウンドレベルよりもほぼ上記第1のNMOSトランジスタの閾値電圧だけレベルの上昇した電位以上で安定する。従って、本発明の第2の小振幅出力バッファでは、少なくとも上記第1のPMOSトランジスタの閾値電圧と上記第1のNMOSトランジスタの閾値電圧とを加算したレベル分だけ、図12に示す従来の出力バッファ20よりも小さな振幅の信号が出力される。
【0021】
また、本発明の第2の小振幅出力バッファでは、設計時に、上記抵抗素子の抵抗値を調節することにより、出力信号の振幅を任意に設定することができる。
【0022】
ここで、上記小振幅出力バッファは、さらに上記抵抗素子を流れる電流経路を導通遮断するスイッチ手段を備えたことが好ましい。
【0023】
このようにすると、電流経路に不要な電流が流れるのを防止することができる。
【0024】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0025】
図1は、本発明の小振幅出力バッファの第1実施形態を示す回路ブロック図である。
【0026】
図1に示す小振幅出力バッファ10は、ソースが電源VDDに、ゲートとドレインがノードN1で共通に接続された第1のPMOSトランジスタ11と、ソースがグラウンドVSSに、ゲートとドレインがノードN2で共通に接続された第1のNMOSトランジスタ12と、ソースがノードN1に接続され、ゲートが入力端子10aに、ドレインが出力端子10bに接続された第2のPMOSトランジスタ13aと、ドレインが出力端子10bに、ゲートが入力端子10aに、ソースがノードN2に接続された第2のNMOSトランジスタ13bと、ノードN1およびノードN2の間に挿入される抵抗素子14とから構成される。
【0027】
ここで、第1のPMOSトランジスタ11は、そのゲートおよびドレインを共通接続とするダイオードを形成し、本発明におけるHレベル生成手段に該当する。第1のNMOSトランジスタ12は、そのゲートおよびドレインを共通接続とするダイオードを形成し、本発明におけるLレベル生成手段に該当する。また、第2のPMOSトランジスタ13aと第2のNMOSトランジスタ13bとでインバータ13を構成する。
【0028】
このようにダイオード接続された第1のPMOSトランジスタ11、インバータ13、ダイオード接続された第1のNMOSトランジスタ12が、電源VDDとグラウンドVSSの間に直列に挿入され、さらに、本発明の特徴である抵抗素子14がノードN1とノードN2の間に接続されている。
【0029】
次に、この第1実施形態の小振幅出力バッファ10の動作について説明する。
【0030】
まず、本出願の発明者は、出力バッファのノイズを低減するために図2に示す小振幅出力バッファ30を考案した。この小振幅出力バッファ30は、図1に示す小振幅出力バッファ10とは本発明の特徴である抵抗素子14が存在しない点のみが異なる。
【0031】
図2は、図1に示す小振幅出力バッファから、抵抗素子を除いた小振幅出力バッファを示す回路ブロック図である。
【0032】
図2に示す小振幅出力バッファ30では、ダイオード接続された第1のPMOSトランジスタ31のソースが電源VDDに接続されることにより、ノードN1はソース電位(VDD)よりもほぼ第1のPMOSトランジスタ31の閾値電圧Vthpだけレベルの低下した電位で安定する。また、ダイオード接続された第1のNMOSトランジスタ32のソースがグラウンドVSSに接続されることにより、ノードN2はグラウンド電位(VSS)よりもほぼ第1のNMOSトランジスタ32の閾値電圧Vthnだけレベルの上昇した電位で安定する。従って、ノードN1とノードN2の間に挿入されたインバータ33は、入力信号Siの信号レベルがLレベル(例えばVSS)ならばHレベル≒VDD−Vthpを、Hレベル(例えばVDD)ならばLレベル≒VSS+Vthnを反転出力する。即ち、図2に示す小振幅出力バッファ30は、前述した図12に示す従来の出力バッファ20よりもVthp+Vthn分だけ振幅が抑圧された出力信号Soを出力する。
【0033】
しかしながら、図2に示す小振幅出力バッファ30には、ダイオード接続された第1のPMOSトランジスタ31、第1のNMOSトランジスタ32は一種のフィードバック回路となっているため、動作速度は遅い。以下、図2に示す小振幅出力バッファ30の動作速度が遅い理由について説明する。例えば出力信号SoのレベルがLレベルからHレベルに切り替わる場合、オンする第2のPMOSトランジスタ33aが図示しない負荷容量(寄生容量を含む)を充電しきったところで完全なHレベルに達する。図12に示す従来の出力バッファ20では、PMOSトランジスタ21がオンする瞬間は、ゲートがLレベル(例えばVSS)に固定されPMOSトランジスタ21が完全にオン状態(オン抵抗が一番低い状態)になるため、このオン抵抗と図示しない負荷容量とで構成される時定数が一番小さい状態(即ち動作速度が一番速い状態)のまま出力信号SoのレベルがHレベルに到達する。しかし、図2に示す小振幅出力バッファ30においては、スイッチング用の第2のPMOSトランジスタ33aがオンした瞬間、もともとVDD−Vthpの電位を保っていたダイオード接続された第1のPMOSトランジスタ31のドレイン電圧=ゲート電圧は一気に下がるが、負荷容量を充電しながら徐々に元の電圧VDD−Vthpに戻っていく。その戻り方は、まずはゲート電圧が下がったことで第1のPMOSトランジスタ31のオン抵抗が下がりドレイン電圧が急速に上がっていく。しかしドレイン電圧が上がると同時にゲート電圧も上がるので、それにつれて第1のPMOSトランジスタ31のオン抵抗は徐々に大きくなっていき、それに伴い上記の時定数も徐々に大きくなる。この第1のPMOSトランジスタ31の動作と同様に、第2のNMOSトランジスタ33bがオンした瞬間には、第1のNMOSトランジスタ32のオン抵抗は徐々に大きくなっていく。このため、ノードN1またはノードN2に変動が生じた場合、本来のHレベル(例えば、VDD−Vthp)またはLレベル(例えば、VSS+Vthn)に落ち着くまでに所定の時間を要する。
【0034】
図3は、図2に示す小振幅出力バッファおよび図1に示す小振幅出力バッファの出力信号の波形を示す図である。
【0035】
図3(a)には、図2に示す小振幅出力バッファ30を30MHzのクロックで動作させた場合の出力信号の波形が示されている。また、図3(b)には、図1に示す小振幅出力バッファ10を30MHzのクロックで動作させた場合の出力信号の波形が示されている。
【0036】
図3(a)に示す出力信号Soの波形から明らかなように、図2に示す小振幅出力バッファ30の出力信号Soは、必要とする振幅レベルまで到達するのに所定の時間を要する。即ち、図2に示す小振幅出力バッファ30を高速で動作させようとすると十分な電位に達しないため、必要な出力振幅V1を得ることができない。一方、以下に説明する小振幅出力バッファ10では、図3(b)に示すように、出力信号Soのレベルは高速に所定のレベルにまで達している。
【0037】
次に、図1に示す小振幅出力バッファ10の動作について説明する。
【0038】
図4は、図1に示す小振幅出力バッファ10の動作点を説明するためのグラフである。ここでは、図4を用いて図1に示す小振幅出力バッファ10の動作について説明する。
【0039】
図1に示すダイオード接続された第1のPMOSトランジスタ11において、ソース電位を電源電圧VDDに固定し、ドレイン(ゲート)電位を変化させた場合のドレイン電流Idをプロットしたものが、図4に示すラインIdpである。一方、ラインIdnは、ダイオード接続された第1のNMOSトランジスタ12において、ソース電位をグラウンドレベル(0V)に固定し、ドレイン(ゲート)電位を変化させた場合のドレイン電流Idをプロットしたものである。
【0040】
これら2つのトランジスタ11,12のドレインどうしを接続すると、それぞれのドレイン電流Idは同じ電流となり、またドレイン電圧も同じになるので、図4に示すグラフ中の2本のラインIdp,Idnの交点Pがこれら2つのトランジスタ11,12のドレインどうしを接続した回路の動作点となる。次に、これら2つのトランジスタのドレインどうしを直接つなぐのではなく、図1に示す小振幅出力バッファ10のように抵抗素子14を介してつなぐと、両ドレイン間には、このときのドレイン電流Idrと抵抗素子14の抵抗値とで決まる電位差ΔVが発生する。この電位差ΔVが発生している状態が、図1に示す小振幅出力バッファ10の動作点を表している。つまり、動作電流Idr(ドレイン電流)と、出力信号の振幅ΔV(両ドレイン間の電位差)は、両ドレイン間に挿入される抵抗素子14の抵抗値によってある程度自由に変えることができる。さらに、両トランジスタ11,12のサイズによって図4に示すグラフにおける2本のラインIdp,Idnの傾きが変わるので、トランジスタのサイズ変更によっても動作電流Idr、出力信号の振幅ΔVを調整することが可能である。
【0041】
このように本発明の小振幅出力バッファによれば出力信号の振幅ΔVの自由度が確保でき、小振幅出力を達成することができる。また、本発明の小振幅出力バッファによれば動作速度を向上させることができる。例えば、図1に示す小振幅出力バッファ10の第1のPMOSトランジスタ11を見てみると、最終的に落ち着くことになるゲート電圧は、図2に示す小振幅出力バッファ30に比べ低いため、低いオン抵抗を保ったまま最終目的電圧に達する。また、出力側から見ると、第1のPMOSトランジスタ11のオン抵抗と、第1のNMOSトランジスタ12のオン抵抗+抵抗素子14の抵抗値とが並列になったものが出力インピーダンスとなるので、図2に示す小振幅出力バッファ30に比べると、出力インピーダンスが半分以下になっている。従って、この出力インピーダンスと図示しない負荷容量とで構成される時定数は大幅に小さくなり、さらに出力信号の振幅ΔVが小さいことも手伝って、高速動作を実現することが可能となる。
【0042】
図1に示す小振幅出力バッファ10では、期待する十分な出力振幅を高速に得るために、ノードN1とノードN2の間に抵抗素子14を接続するものである。
【0043】
このようにノードN1とノードN2の間に抵抗素子14を接続することにより、両ノード間には抵抗素子14を介して定常電流Idが流れるため、各ノードの電位を安定にすることが可能となる。即ち、ダイオード接続された第1のPMOSトランジスタ11のソースが電源VDDに接続されることにより、ノードN1は電源電圧(VDD)よりも第1のPMOSトランジスタ11の閾値電圧Vthp以下の電位Vpで安定する。また、ダイオード接続された第1のNMOSトランジスタ12のソースがグラウンドVSSに接続されることにより、ノードN2はグラウンド電位(VSS)よりも第1のNMOSトランジスタ12の閾値電圧Vthn以上の電位Vnで安定する。従って、ノードN1とノードN2の間に挿入されたインバータ13は、入力信号SiのレベルがLレベル(例えば、VSS)ならばHレベルVp<VDD−Vthpを、Hレベル(例えば、VDD)ならばLレベルVn>VSS+Vthnを出力する。即ち、図1に示す小振幅出力バッファ10は、図12に示す従来の出力バッファ20よりもVthp+Vthn分以上、振幅が抑圧された出力信号Soを出力する。
【0044】
また、図2に示す小振幅出力バッファ30の出力振幅電圧がVDD−Vthp−Vthnに固定であるのに対し、図1に示す小振幅出力バッファ10の出力振幅電圧は、設計時に抵抗素子14の抵抗値を調節することにより、任意に設定可能となる。例えば、電源電圧がVDD=2.5V、第1のPMOSトランジスタ11および第1のNMOSトランジスタ12の閾値電圧がともに0.5Vであるとすると、図2に示す小振幅出力バッファ30の出力振幅電圧は1.5Vの固定値となる。これに対し、図1に示す小振幅出力バッファ10の出力振幅電圧は、抵抗素子14の抵抗値により所望の値が設定される。例えば、抵抗素子14の抵抗値を2.5KΩとすると、小振幅出力バッファ10の出力振幅電圧は1.1Vになる。尚、小振幅出力バッファ10が動作する場合には、瞬時的に電圧変動(グリッジ)が発生するが、抵抗素子14によりHレベル(<VDD−Vthp)またはLレベル(>VSS+Vthn)に復帰する時間を短縮することができる。
【0045】
尚、本発明の第1の小振幅出力バッファは、ダイオード接続されたPMOSトランジスタまたはNMOSトランジスタの一方だけを挿入してもよく、この場合は従来の出力バッファ20と比較し、VpまたはVn分だけ振幅が抑圧された信号を出力する。
【0046】
図5は、本発明の小振幅出力バッファの第2実施形態を示す図である。
【0047】
図5に示す小振幅出力バッファ40は、図1に示す小振幅出力バッファ10と比較して、ダイオード接続された第1のNMOSトランジスタ12が除かれている点のみが異なる。このようにして、出力信号波形の振幅を小さく抑えてノイズを低減してもよい。
【0048】
図6は、本発明の小振幅出力バッファの第3実施形態を示す図である。
【0049】
図6に示す小振幅出力バッファ50は、図5に示す小振幅出力バッファ40と比較し、以下の点が異なる。即ち、ノードN1と抵抗素子14の間に制御信号Cをゲートの入力とし、ソースがノードN1、ドレインが抵抗素子14の一端に接続された第3のPMOSトランジスタ51、および制御信号Cの反転信号CNをゲートの入力とし、ソースがノードN1、ドレインが抵抗素子14の一端に接続された第3のNMOSトランジスタ52が備えられている。
【0050】
図6に示す小振幅出力バッファ50においては、小振幅出力バッファ50が機能を停止している時には、図6に示す第1のPMOSトランジスタ11、抵抗素子14を介して流れる定常電流Iを、上記の第3のPMOSトランジスタ51および第3のNMOSトランジスタ52をオフすることにより遮断する。このようにして、小振幅出力バッファ50が機能を停止している時に不要な電流が流れるのを防止してもよい。
【0051】
図7は、図5に示す小振幅出力バッファおよび図6に示す小振幅出力バッファの動作を説明する図である。
【0052】
図5に示す小振幅出力バッファ40および図6に示す小振幅出力バッファ50において、抵抗素子14に電圧をかけると電流はリニアに変わるので、両者の関係は図7に示すラインIrのような直線となる。また、図7に示すラインIdpは、ダイオード接続された第1のPMOSトランジスタ11のドレイン電圧とドレイン電流の関係を示すものである。これら2本のラインIr,Idpの交点Pが、上記の抵抗素子14を介して流れる定常電流I、および図5に示す小振幅出力バッファ40および図6に示す小振幅出力バッファ50の出力信号SoのHレベルVhを示す。これらの値も上記第1のPMOSトランジスタ11のサイズと抵抗素子14の抵抗値である程度自由度を持っている。
【0053】
図8は、本発明の小振幅出力バッファの第4実施形態を示す図である。
【0054】
図8に示す小振幅出力バッファ60は、図1に示す小振幅出力バッファ10と比較して、ダイオード接続された第1のPMOSトランジスタ11が除かれている点のみが異なる。このように構成して、出力信号波形の振幅を小さくしてノイズを低減してもよい。
【0055】
図9は、本発明の小振幅出力バッファの第5実施形態を示す図である。
【0056】
図9に示す小振幅出力バッファ70は、図8に示す小振幅出力バッファ60と比較し、以下の点が異なる。即ち、ノードN1と抵抗素子14の間に、制御信号Cをゲートの入力とし、ソースがノードN1、ドレインが抵抗素子14の一端に接続された第3のPMOSトランジスタ71、および制御信号Cの反転信号CNをゲートの入力とし、ソースがノードN1、ドレインが抵抗素子14の一端に接続された第3のNMOSトランジスタ72が備えられている。
【0057】
図9に示す小振幅出力バッファ70においては、図6に示す小振幅出力バッファ50と同様に、小振幅出力バッファ70が機能を停止している時に不要な電流が流れるのを、上記の第3のPMOSトランジスタ71および第3のNMOSトランジスタ72をオフすることにより防止している
図10は、図8に示す小振幅出力バッファおよび図9に示す小振幅出力バッファの動作を説明する図である。
【0058】
図8に示す小振幅出力バッファ60および図9に示す小振幅出力バッファ70において、抵抗素子14を介して流れる定常電流Iおよび、図8に示す小振幅出力バッファ60および図9に示す小振幅出力バッファ70の出力信号SoのLレベルVlが、図10において、抵抗素子14における電圧と電流の関係を示すラインIrと、ダイオード接続された第1のNMOSトランジスタ12のドレイン電圧とドレイン電流の関係を示すラインIdnとの交点Pとして示されている。
【0059】
尚、上述した第1から第5実施形態では、インバータと電源の間またはインバータとグラウンドの間あるいはその両方に、ダイオード接続されたトランジスタを1つ接続した構成を例に挙げて説明したが、ダイオード接続されたトランジスタの個数は1つに限定されるものではなく、多段直列に接続した構成であってもよい。ダイオード接続されたトランジスタを多段直列に接続した場合、直列接続したトランジスタの閾値電圧分、出力振幅をさらに抑圧することが可能となる。
【0060】
また、第1,第2および第3実施形態では、小振幅出力バッファにおけるHレベル生成手段はダイオード接続されたPMOSトランジスタにより構成されているが、これらに限られるものではなく、電源電圧よりも低いHレベルを生成するものであればどのような構成であってもよい。例えば、ゲートとドレインを電源VDDに共通接続とするNMOSトランジスタで構成されていてもよい。同様に、第1,第4および第5実施形態では、本発明の第1の小振幅出力バッファにおけるLレベル生成手段はダイオード接続されたNMOSトランジスタにより構成されているが、これに限られるものではなく、グラウンドレベルよりも高いLレベルを生成するものであればどのような構成であってもよい。例えば、ゲートとドレインをグラウンドVSSに共通接続とするPMOSトランジスタで構成されていてもよい。また、第1から第5実施形態における抵抗素子は、図1に示すノードN1とノードN2の間に定常電流を流すものであれば、どのようなインピーダンス素子であってもよい。例えば、ゲートを一定バイアスされたPMOSトランジスタやNMOSトランジスタ等で構成される抵抗素子であってもよい。
【0061】
次に、本発明の小振幅出力バッファの第6実施形態について説明する。
【0062】
図11は、本発明の小振幅出力バッファの第6実施形態を示す回路ブロック図である。
【0063】
図11に示す小振幅出力バッファ80は、図1に示す小振幅バッファ10と比較し、以下の点が異なる。即ち、ノードN1と抵抗素子14の間に、制御信号Cをゲートの入力とし、ソースがノードN1、ドレインが抵抗素子14の一端に接続される第3のPMOSトランジスタ81および、制御信号Cの反転信号CNをゲートの入力とし、ドレインがノードN1、ソースが抵抗素子14の一端に接続する第3のNMOSトランジスタ82をさらに備える。また、第2のPMOSトランジスタ13aのゲートには第1のバッファ83を介して第1の入力信号PINが入力される。第2のNMOSトランジスタ13bのゲートには第2のバッファ84を介して、第1の入力信号PINと反転関係にある第2の入力信号NINが入力される。さらに、ドレインが出力端子10aに、ソースがグラウンドVSSに接続され、制御信号Zをゲートの入力とする第4のNMOSトランジスタ85を備える。図11に示す小振幅出力バッファ80と図1に示す小振幅出力バッファ10の上記相違点以外の同一構成要素には同一の符号を付し、詳細な説明は省略する。
【0064】
本実施形態においては、まず第2のPMOSトランジスタ13aおよび第2のNMOSトランジスタ13bを反転関係にある別信号で制御する。このように両トランジスタを別々の信号で制御することにより、瞬間的に両トランジスタが同時にオンして貫通電流が流れることを防止することができる。また、小振幅出力バッファ80が機能を停止中、例えば、スタンバイ中等に第2のPMOSトランジスタ13aおよび第2のNMOSトランジスタ13bをともにオフすることにより、小振幅出力バッファ80をハイインピーダンス状態とすることができる。
【0065】
次に、第3のPMOSトランジスタ81および第3のNMOSトランジスタ82により、小振幅出力バッファ80が機能停止している時に不要な電流が流れるのを防ぐことができる。図1に示す小振幅出力バッファ10では、第1のPMOSトランジスタ11、抵抗素子14、第1のNMOSトランジスタ12を介して定常的に電流が流れる。本実施形態では、小振幅出力バッファ80が機能停止の状態では、これらのトランジスタにより貫通電流を流さないように制御する。また、第4のNMOSトランジスタ85は、小振幅出力バッファ80をハイインピーダンス状態とした時に、一定電位(本実施形態ではVSS)に固定することが可能となる。尚、このような制御は小振幅出力バッファ80の使用方法により、必要に応じて適宜その制御方法を選択すればよい。
【0066】
ところで、本発明の第1から第6実施形態の全てにおいて、PMOSトランジスタおよびNMOSトランジスタからなるインバータ構成の出力バッファについて説明したが、このようなインバータで構成される出力バッファ以外にも、NAND型やNOR型で構成されるもの、或いは、電源とグラウンド間にNMOSトランジスタを直列接続して構成する出力バッファ等にも適用することができることは言うまでもない。
【0067】
また、前述した本発明の第1から第6実施形態の全てにおいて、出力バッファについて説明したが、本発明は出力バッファに限られず、大きな負荷を駆動する必要があるバッファについても適用できる。即ち、出力バッファ以外の回路であっても、上述したようにその回路動作によりノイズが発生し、他の微少信号を扱うような回路に影響を及ぼす場合には、本発明を適用することによりノイズの影響を回避する有効な手段となる。
【0068】
次に、本発明の小振幅出力バッファを実際に半導体基板上に製造する場合について説明する。
【0069】
本発明の小振幅出力バッファは、特にこれに限定するものではないがASIC(Application Specific IC)で用いられる出力バッファにより適している。ASICとは、配線工程前まで(以降、下地と呼ぶ)を既に製造しておき、最終の配線工程のみで、必要とする回路を作り上げるものであり、製造工程時間の短縮とともに、改版等を容易に行うことが可能となる。
【0070】
通常、ASICにおける出力バッファは入力バッファを含めた、それぞれの回路を構成するのに必要な部品を備えた共通の下地を有するI/O(入出力)バッファとしてライブラリ化されているものが多い。このように共通の下地を有することにより、配線工程により出力バッファ、入力バッファ、I/Oバッファのいずれも構成することが可能である。また、I/Oバッファを形成する駆動用トランジスタは、最大駆動能力時に必要とする大きさを備えており、配線工程により駆動能力に応じて必要な大きさのものが製造される。本発明による小振幅出力バッファは、このように従来のI/Oバッファ内に用意された個々の部品であるトランジスタや抵抗素子を用いて構成することが可能であり、本発明の小振幅出力バッファ用に新たな下地を用意する必要はない。
【0071】
尚、図1,図5,図6,図8,図9,図11に示す第2のPMOSトランジスタ13a、第2のNMOSトランジスタ13bのバックゲートは、必要に応じてそれぞれのソース端子に接続してもよい。即ち、p型基板プロセスならば第2のPMOSトランジスタ13aのソースはNウェルに、n型基板プロセスならば第2のNMOSトランジスタ13bのソースをPウェルに接続する。
【0072】
【発明の効果】
以上説明したように、本発明によれば、高速性を損なうことなく出力信号の振幅を小さくすることができ、これによりチップ内で発生するノイズを低減し、アナログ回路やRFフロントエンドチップなどの微少な信号を扱う回路の特性を向上させることが可能となる。また、本発明によれば、上述した効果とともに、回路がその機能停止中に不要な電流が流れるのを防止することもできる。さらに、本発明によれば、上述の2つの効果に加えてさらに、出力トランジスタのスイッチングの際に発生する貫通電流を低減することもできる。
【図面の簡単な説明】
【図1】本発明の小振幅出力バッファの第1実施形態を示す回路ブロック図である。
【図2】図1に示す小振幅出力バッファから、抵抗素子を除いた小振幅出力バッファを示す回路ブロック図である。
【図3】図2に示す小振幅出力バッファおよび図1に示す小振幅出力バッファの出力信号の波形を示す図である。
【図4】図1に示す小振幅出力バッファの動作点を説明するためのグラフである。
【図5】本発明の小振幅出力バッファの第2実施形態を示す図である。
【図6】本発明の小振幅出力バッファの第3実施形態を示す図である。
【図7】図5に示す小振幅出力バッファおよび図6に示す小振幅出力バッファの動作を説明する図である。
【図8】本発明の小振幅出力バッファの第4実施形態を示す図である。
【図9】本発明の小振幅出力バッファの第5実施形態を示す図である。
【図10】図8に示す小振幅出力バッファおよび図9に示す小振幅出力バッファの動作を説明する図である。
【図11】本発明の小振幅出力バッファの第6実施形態を示す回路ブロック図である。
【図12】従来の出力バッファの回路ブロック図である。
【符号の説明】
10,30,40,50,60,70,80 小振幅出力バッファ
20 出力バッファ
10a,20a 入力端子
10b,20b 出力端子
21 Pチャネルトランジスタ
22 Nチャネルトランジスタ
11,31 第1のPチャネルトランジスタ
12,32 第1のNチャネルトランジスタ
13,33 インバータ
13a,33a 第2のPチャネルトランジスタ
13b,33b 第2のNチャネルトランジスタ
14 抵抗素子
51,71,81 第3のPチャネルトランジスタ
52,72,82 第3のNチャネルトランジスタ
85 第4のNチャネルトランジスタ
83 第1のバッファ
84 第2のバッファ

Claims (2)

  1. 電源電圧よりも低いHレベルと、グラウンドよりも高いLレベルのいずれか一方又は両方を発生する手段と、
    前記Hレベルと前記Lレベルとの間、又は前記電源電圧とLレベルとの間、又は前記Hレベルと前記グラウンドとの間の電位を調節する抵抗素子と、該抵抗素子を流れる電流経路を導通遮断するスイッチ手段とを有する調節手段とを備え、
    前記調節手段により調節された電位を振幅電圧として出力する小振幅出力バッファ。
  2. ソースが電源に接続され、ゲートとドレインを共通接続する第1のPMOSトランジスタと、
    ソースがグラウンドに接続され、ゲートとドレインを共通接続する第1のNMOSトランジスタと、
    ソースが前記第1のPMOSトランジスタのゲートおよびドレインに、ゲートが入力端子に、ドレインが出力端子に接続される第2のPMOSトランジスタと、
    ドレインが前記出力端子に、ゲートが前記入力端子に、ソースが前記第1のNMOSトランジスタのゲートおよびドレインに接続される第2のNMOSトランジスタと、
    前記第2のPMOSトランジスタおよび前記第2のNMOSトランジスタの各ソースを接続する抵抗素子と、
    前記抵抗素子を流れる電流経路を導通遮断するスイッチ手段とから構成されることを特徴とする小振幅出力バッファ。
JP2003007722A 2003-01-16 2003-01-16 小振幅出力バッファ Expired - Fee Related JP4031373B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007722A JP4031373B2 (ja) 2003-01-16 2003-01-16 小振幅出力バッファ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007722A JP4031373B2 (ja) 2003-01-16 2003-01-16 小振幅出力バッファ

Publications (2)

Publication Number Publication Date
JP2004222011A JP2004222011A (ja) 2004-08-05
JP4031373B2 true JP4031373B2 (ja) 2008-01-09

Family

ID=32897734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007722A Expired - Fee Related JP4031373B2 (ja) 2003-01-16 2003-01-16 小振幅出力バッファ

Country Status (1)

Country Link
JP (1) JP4031373B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320705B2 (ja) * 2007-08-29 2013-10-23 セイコーエプソン株式会社 出力回路およびその方法、ならびに、サーマルヘッドドライバ、サーマルヘッド、電子機器、および印刷システム

Also Published As

Publication number Publication date
JP2004222011A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
US7227400B1 (en) High speed MOSFET output driver
US6064227A (en) Output buffer circuit having low breakdown voltage
US7295038B2 (en) Digital circuits having current mirrors and reduced leakage current
JP4002847B2 (ja) 自動遅延調整機能付きレベル変換回路
US5764110A (en) Voltage controlled ring oscillator stabilized against supply voltage fluctuations
US6593795B2 (en) Level adjustment circuit and data output circuit thereof
US20050162191A1 (en) Slew rate controlled output buffer
US6664814B1 (en) Output driver for an integrated circuit
US20180069537A1 (en) Level shift circuit and semiconductor device
US6163179A (en) Voltage level transfer
US6483340B2 (en) High integration-capable output buffer circuit unaffected by manufacturing process fluctuations or changes in use
US7218169B2 (en) Reference compensation circuit
KR100191880B1 (ko) 거닝 트랜시버 논리의 출력 회로
JP4031373B2 (ja) 小振幅出力バッファ
US7982490B2 (en) Semiconductor integrated circuit
US20200328732A1 (en) Semiconductor device
JP2001308694A (ja) ローノイズバッファ回路
US6646486B2 (en) Semiconductor integrated circuit
JP3684210B2 (ja) Cmos出力バッファー回路
US20060145749A1 (en) Bias circuit having reduced power-up delay
US7183809B2 (en) Current mode transmitter capable of canceling channel charge error
US7595662B2 (en) Transmission/reception apparatus for differential signals
JPH11326398A (ja) 電圧検知回路
US7236030B2 (en) Method to implement hysteresis in a MOSFET differential pair input stage
JP3535811B2 (ja) パルス幅制御回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Ref document number: 4031373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees