JP4028775B2 - Annealed iron core manufacturing method - Google Patents

Annealed iron core manufacturing method Download PDF

Info

Publication number
JP4028775B2
JP4028775B2 JP2002198919A JP2002198919A JP4028775B2 JP 4028775 B2 JP4028775 B2 JP 4028775B2 JP 2002198919 A JP2002198919 A JP 2002198919A JP 2002198919 A JP2002198919 A JP 2002198919A JP 4028775 B2 JP4028775 B2 JP 4028775B2
Authority
JP
Japan
Prior art keywords
iron core
steel sheet
annealing
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002198919A
Other languages
Japanese (ja)
Other versions
JP2004040057A (en
Inventor
憲人 阿部
和年 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002198919A priority Critical patent/JP4028775B2/en
Publication of JP2004040057A publication Critical patent/JP2004040057A/en
Application granted granted Critical
Publication of JP4028775B2 publication Critical patent/JP4028775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電動機モータ、トランス用鉄芯、特に電気ハイブリット自動車用に使用される電動機モータ、トランス用鉄芯に関する。
【0002】
【従来の技術】
近年、省エネルギーの観点から各種電気機器、および電気ハイブリット自動車の効率向上が追求されている。特に、電気機器の効率は各種要因に影響されるが、モータやトランスの鉄芯で発生する損失である鉄損は比較的大きな比重を占めており、そのために、最近ではより鉄損の少ない電磁鋼板の使用が求められている。
【0003】
このような電磁鋼板を用いてモータやトランス等の積層鉄芯を製造する方法としては、電磁鋼板を所望の鉄芯形状に打ち抜いた後、必要枚数を単位鉄芯として積層し、周囲をボルト締め、カシメ、溶接して固着して鉄芯とするのが一般的である。このようにして製造された積層鉄芯は、その性能を更に向上させるために、巻線コイルの組み立て工程前に焼鈍を施す。この焼鈍は、それまでに鉄芯に導入された打ち抜き、ボルト締め、カシメ、溶接等で加工歪みを除去し、かつ鉄芯を構成する電磁鋼板の結晶粒の粒径を適正化させるために行われ、これにより鉄芯としての性能向上を図るものである。その後、巻線コイルの組み立て工程を経て、最終的にモータやトランスの一部品として組み込まれる。
【0004】
ところが、現実には、焼鈍により十分な熱を鉄芯に付与して、それまでに導入された打ち抜き、ボルト締め、カシメ、溶接等で加工歪みを除去したり、鉄芯を構成する電磁鋼板の結晶粒の粒径を適正化しても、鉄損特性が必ずしも改善されないという事態に直面している。
【0005】
上記問題解決のために鉄芯の焼鈍方法について、様々な提案がなされている。例えば、特開昭54−1803号公報では鉄芯を焼鈍後に接着する方法、特開昭63−39444号公報では真空中で、かつ還元雰囲気中で鉄芯を焼鈍後、プレス時に使用した油の炭化防止と絶縁皮膜の酸化劣化を防止する方法、特開平11−234971号公報および特開平11−243670号公報では800℃以上の温度で水素およびアルゴン雰囲気中で鉄芯を焼鈍することによりAlNの析出を防止する方法、特開2001−338824号公報では積層接着鋼板の冷却速度を制御してコアの割れ、或いは皮膜剥離を防止する方法、および特開2001−294999号公報ではSi:4質量%以上の電磁鋼板の平坦度を制御してボルト締めした時の緩みを防止する方法が提案されている。
【0006】
しかしながら、これら従来の方法においては、何れも焼鈍鉄芯の最終特性、特に鉄損値の改善効果を狙ったものでなく、このために本発明の目的である特に電気ハイブリット自動車用に使用される電動機モータ、トランス用鉄芯には適用できないという問題点がある。
【0007】
【発明が解決しようとする課題】
本発明者らは、これらの問題の原因について種々検討したところ、焼鈍された鉄芯を構成する電磁鋼板のヤング率が磁気特性改善に大きく影響することを知見し、更に、焼鈍鉄芯のヤング率は焼鈍後の鉄芯の冷却速度に依存することを知見し、焼鈍後の鉄芯の冷却速度を、鉄芯にする前の電磁鋼板の長手方向およびそれに直交する方向のヤング率に基づいて制御することで鉄芯のヤング率を高めることで、焼鈍後に大幅に鉄損が改善された焼鈍鉄芯を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は、電磁鋼板を所定の形状に打ち抜き、調整後、積層、或いは巻いて鉄芯形状に成形、溶接、カシメ、ボルト締めの工程を経て固定した鉄芯を焼鈍する焼鈍鉄芯の製造方法において、鉄芯にする前の電磁鋼板の電気抵抗値(Ωm×10-8)と(Lε+Cε)/2の積を9776〜10500の範囲にし、かつ、前記焼鈍後の鉄芯を、冷却速度:V≦0.6×(Lε+Cε)/2(℃/hr)で冷却することを特徴とする焼鈍鉄芯の製造方法である。
【0009】
ただし、Lεは、電磁鋼板の鋼板圧延方向のヤング率、Cεは、電磁鋼板の鋼板圧延方向と直角方向のヤング率、である。
【0010】
【発明の実施の形態】
先ず、本発明において使用される電磁鋼板は、方向性或いは無方向性電磁鋼板を使用することができる。この場合、これら電磁鋼板の鉄損特性は高磁束密度で、かつ低鉄損材であることが望ましい。すなわち、電気ハイブリット自動車用に使用されるモータやトランスでは局所的に磁束密度が2.0(T)近傍となり、しかも高速回転に対応した400Hz以上という高周波駆動が要求される。それには上述したように素材自体が極めて磁気特性の優れたもので、かつ、強度のある電磁鋼板を使用する必要がある。このように、電気ハイブリット自動車用に使用されるモータやトランスでは小型化、軽量化された高出力モータが望まれている。
【0011】
このような特性を有する電磁鋼板は、使用箇所の形状に応じて所定の形状に打ち抜かれた後、必要枚数を積層して積み鉄芯とするか、或いは巻いて巻き鉄芯の形状に成形される。次いで、この鉄芯は、必要箇所を溶接後、カシメまたはボルト締めでブロックにされる。次いで、この鉄芯は、その性能を更に向上させるために、巻線コイルの組み立て工程前に焼鈍を施こされる。この焼鈍は、それまでに鉄芯に導入された打ち抜き、ボルト締め、カシメ、溶接等で加工歪みを除去し、かつ鉄芯を構成する電磁鋼板の結晶粒の粒径を適正化させるために行われるもので、本発明においては、約700〜850℃で1〜3時間均熱の焼鈍処理が行われる。この鉄芯焼鈍処理においては、焼鈍炉の定盤上に鉄芯を載置して焼鈍する。
【0012】
本発明者らは、方向性或いは無方向性電磁鋼板が鉄芯製造過程において、鉄芯に導入された打ち抜き、ボルト締め、カシメ、溶接等で加工歪みの感受性がヤング率とは反比例することを知見した。一般的に鉄損は電気抵抗に反比例し、ヤング率とは比例するため、加工によって得られる鉄芯の鉄損値を低くするには最適条件があることが判明した。そこで本発明者らは、電気抵抗値とLεとCεの平均ヤング率の積が8000〜10500の範囲であることを見い出した。上記積の下限値が8000以下では鉄損が悪化し、また、上記積の上限値10500以上では加工性が劣化する。なお、固有抵抗(y:μΩ−cm)は鋼板中に含有する成分との関係式(y=10.45+13.2Si+11.3Al+45Mn+13.7P+6Cr)で表される。
【0013】
本発明者らは、更に、低鉄損を得るために種々検討したところ、鉄芯焼鈍工程において、焼鈍後の鉄芯の冷却速度が、鉄芯にする前の電磁鋼板のヤング率εと特定の関係にあることを見出した。すなわち、図1に示すように、鉄芯の焼鈍後の冷却速度をV≦0.6×(Lε+Cε)/2(ただし、Lεは、鉄芯にする前の電磁鋼板の鋼板圧延方向のヤング率、Cεは、鉄芯にする前の電磁鋼板の鋼板圧延方向と直角方向のヤング率)とするとよい。すなわち、図2に示すように、冷却速度を約100℃/hr以下に制御して冷却することで鉄損改善率を20%以上改善することができる。
【0014】
【実施例】
〈実施例1〉
電気抵抗値とヤング率の異なる0.35mmの無方向性電磁鋼板を、外径:120mmφ、内径:80mmφに打抜き、積層後、外周部を120°間隔でTIG溶接して鉄芯を製作した。次いで、還元雰囲気で750℃×2時間の均熱焼鈍を行い、引続き140℃/hの冷却速度で冷却を施した。その後コアパック部に巻線を施して磁気測定に供した。その結果を表1に示した。
【0015】
【表1】

Figure 0004028775
【0016】
表1から分かるように、鉄芯にする前の無方向性電磁鋼板の電気抵抗値(Ωm×10-8)と(Lε+Cε)/2の積が8000〜10500(Ωm×10-8・MPa)の範囲の場合、鉄損特性が優れていることが分かる。
【0017】
〈実施例2〉
質量%で、Si:3.0%、Al:0.03%含有する0.35mm厚の無向性電磁鋼板を、外径:60mmφ、内径:35mmφ、コアバック幅6mm、ティース幅3mm、スロット数20のモータコア形状に打ち抜き、カシメを実施後、還元性雰囲気で750℃×2時間の均熱後、様々な冷却速度でVで冷却し、種々の温度で脱炉した。この実施例で用いた無方向性電磁鋼板のヤング率は(Lε+Cε)/2=185であった。その後コアバック部に巻線を施して鉄損測定を行った。なお、焼鈍前の鉄損値W10/400は15.9W/kg、平均粒径は焼鈍前後ともに150μmであった。この結果を表2に示した。
【0018】
【表2】
Figure 0004028775
【0019】
表2から分かるように、鉄芯焼鈍後の冷却速度を111(=0.6×185)℃/hr以下で冷却することで、鉄損値(W10/400:W/kg)大幅に改善されることが分かる。
【0020】
【発明の効果】
以上述べたように、本発明は、鉄損特性の優れた電動機モータ、トランス用鉄芯、特に電気ハイブリット自動車用に使用される電動機モータ、トランス用鉄芯を提供可能となる。
【図面の簡単な説明】
【図1】鉄芯ヤング率と鉄芯焼鈍後の冷却速度との関係を示す図。
【図2】鉄芯焼鈍後の冷却速度と鉄損改善率との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric motor, an iron core for a transformer, and more particularly to an electric motor used for an electric hybrid vehicle and an iron core for a transformer.
[0002]
[Prior art]
In recent years, various electric devices and electric hybrid vehicles have been improved in efficiency from the viewpoint of energy saving. In particular, the efficiency of electrical equipment is affected by various factors, but iron loss, which is a loss generated in the iron core of motors and transformers, occupies a relatively large specific gravity. The use of steel sheets is required.
[0003]
As a method of manufacturing a laminated iron core such as a motor or a transformer using such an electromagnetic steel sheet, after punching the electromagnetic steel sheet into a desired iron core shape, the necessary number of sheets are laminated as a unit iron core, and the periphery is bolted. Generally, it is caulked and fixed by welding to form an iron core. In order to further improve the performance of the laminated iron core manufactured as described above, annealing is performed before the winding coil assembling process. This annealing is performed in order to remove the processing distortion by punching, bolting, caulking, welding, etc. introduced to the iron core and to optimize the grain size of the magnetic steel sheet constituting the iron core. This is intended to improve the performance as an iron core. Then, after the assembly process of the winding coil, it is finally assembled as one part of a motor or a transformer.
[0004]
However, in reality, sufficient heat is applied to the iron core by annealing, and processing distortion is removed by punching, bolting, caulking, welding, etc. introduced so far, or the electrical steel sheet constituting the iron core is removed. Even when the crystal grain size is optimized, the iron loss characteristics are not necessarily improved.
[0005]
In order to solve the above problems, various proposals have been made regarding methods for annealing iron cores. For example, in Japanese Patent Laid-Open No. 54-1803, a method of bonding an iron core after annealing, and in Japanese Patent Laid-Open No. 63-39444, after the iron core is annealed in a vacuum and in a reducing atmosphere, In the method of preventing carbonization and preventing oxidative deterioration of the insulating film, Japanese Patent Application Laid-Open No. 11-234971 and Japanese Patent Application Laid-Open No. 11-243670, the annealing of the iron core in an atmosphere of hydrogen and argon at a temperature of 800 ° C. or higher. A method for preventing the precipitation, a method for controlling the cooling rate of the laminated adhesive steel sheet in JP 2001-338824 A to prevent the core from cracking or peeling of the film, and JP 2001-294999 A, Si: 4 mass%. There has been proposed a method for preventing loosening when bolted by controlling the flatness of the electromagnetic steel sheet.
[0006]
However, none of these conventional methods are aimed at improving the final characteristics of the annealed iron core, particularly the iron loss value, and are therefore used for the electric hybrid vehicle, which is the object of the present invention. There is a problem that it cannot be applied to an electric motor and an iron core for a transformer.
[0007]
[Problems to be solved by the invention]
As a result of various studies on the causes of these problems, the present inventors have found that the Young's modulus of the magnetic steel sheet constituting the annealed iron core greatly affects the improvement of the magnetic properties. It is found that the rate depends on the cooling rate of the iron core after annealing, and the cooling rate of the iron core after annealing is based on the Young's modulus in the longitudinal direction of the electrical steel sheet before making it into the iron core and in the direction perpendicular thereto. By controlling, the Young's modulus of the iron core is increased to provide an annealed iron core whose iron loss is significantly improved after annealing.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is that the steel sheet is punched into a predetermined shape, adjusted, laminated, or wound into a core shape, welded, caulked, or bolted. In the manufacturing method of the annealed iron core which anneals the iron core fixed through the process, the product of the electrical resistance value (Ωm × 10 −8 ) and (Lε + Cε) / 2 of the electrical steel sheet before the iron core is 9776 to 10500 A method for producing an annealed iron core , wherein the annealed iron core is cooled at a cooling rate: V ≦ 0.6 × (Lε + Cε) / 2 (° C./hr) .
[0009]
However, the L epsilon, steel rolling direction Young's modulus of the electrical steel plate, C epsilon is steel sheet rolling direction perpendicular to the direction of the Young's modulus of the electrical steel plate is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the electrical steel sheet used in the present invention can be a directional or non-oriented electrical steel sheet. In this case, the iron loss characteristics of these electrical steel sheets are desirably high magnetic flux density and low iron loss materials. That is, in a motor or transformer used for an electric hybrid vehicle, the magnetic flux density is locally close to 2.0 (T), and high-frequency driving of 400 Hz or more corresponding to high-speed rotation is required. For this purpose, as described above, it is necessary to use a magnetic steel sheet that is extremely excellent in magnetic properties and has high strength. As described above, a motor and a transformer used for an electric hybrid vehicle are desired to be a high-output motor that is reduced in size and weight.
[0011]
The electrical steel sheet having such characteristics is punched into a predetermined shape according to the shape of the place to be used, and then laminated with a necessary number of sheets to form a stacked iron core, or wound into a wound iron core shape. The Next, the iron core is made into a block by caulking or bolting after welding a necessary portion. The iron core is then annealed before the winding coil assembly process to further improve its performance. This annealing is performed in order to remove the processing distortion by punching, bolting, caulking, welding, etc. introduced to the iron core and to optimize the grain size of the magnetic steel sheet constituting the iron core. Therefore, in the present invention, soaking is performed at about 700 to 850 ° C. for 1 to 3 hours. In this iron core annealing treatment, the iron core is placed on the surface plate of the annealing furnace and annealed.
[0012]
The present inventors have found that the sensitivity of processing strain is inversely proportional to the Young's modulus due to punching, bolting, caulking, welding, etc. introduced into the iron core in the iron core manufacturing process of the directional or non-oriented electrical steel sheet. I found out. In general, the iron loss is inversely proportional to the electric resistance and proportional to the Young's modulus. Therefore, it has been found that there is an optimum condition for reducing the iron loss value of the iron core obtained by processing. Therefore, the present inventors have found that the product of the electrical resistance value and the average Young's modulus of Lε and Cε is in the range of 8000-10500. When the lower limit value of the product is 8000 or less, the iron loss is deteriorated, and when the upper limit value of the product is 10500 or more, the workability is deteriorated. The specific resistance (y: μΩ-cm) is expressed by a relational expression (y = 10.45 + 13.2Si + 11.3Al + 45Mn + 13.7P + 6Cr) with the components contained in the steel sheet.
[0013]
The present inventors further studied variously in order to obtain a low iron loss. In the iron core annealing process, the cooling rate of the iron core after annealing was determined to be the Young's modulus ε of the electrical steel sheet before forming the iron core. I found that there is a relationship. That is, as shown in FIG. 1, the cooling rate after annealing of the iron core is V ≦ 0.6 × (Lε + Cε) / 2 (where Lε is the Young's modulus in the steel sheet rolling direction of the magnetic steel sheet before forming the iron core ) , Cε is preferably the Young's modulus in the direction perpendicular to the steel sheet rolling direction of the electromagnetic steel sheet before making the iron core . That is, as shown in FIG. 2, the iron loss improvement rate can be improved by 20% or more by controlling the cooling rate to about 100 ° C./hr or less for cooling.
[0014]
【Example】
<Example 1>
A 0.35 mm non-oriented electrical steel sheet having a different electrical resistance value and Young's modulus was punched into an outer diameter of 120 mmφ and an inner diameter of 80 mmφ, and after lamination, the outer periphery was TIG welded at 120 ° intervals to produce an iron core. Subsequently, soaking was performed at 750 ° C. for 2 hours in a reducing atmosphere, and then cooling was performed at a cooling rate of 140 ° C./h. Thereafter, the core pack portion was wound and subjected to magnetic measurement. The results are shown in Table 1.
[0015]
[Table 1]
Figure 0004028775
[0016]
As can be seen from Table 1, the product of the electrical resistance value (Ωm × 10 −8 ) and (Lε + Cε) / 2 of the non-oriented electrical steel sheet before the iron core is 8000 to 10500 (Ωm × 10 −8 · MPa) In the case of this range, it can be seen that the iron loss characteristics are excellent.
[0017]
<Example 2>
Non-oriented electrical steel sheet of 0.35 mm thickness containing Si: 3.0%, Al: 0.03% by mass%, outer diameter: 60 mmφ, inner diameter: 35 mmφ, core back width 6 mm, teeth width 3 mm, slot After punching out into several 20 motor core shapes and performing caulking, it was soaked in a reducing atmosphere at 750 ° C. for 2 hours, cooled at V at various cooling rates, and de-furnaced at various temperatures. The Young's modulus of the non-oriented electrical steel sheet used in this example was (Lε + Cε) / 2 = 185. After that, the core back part was wound and the iron loss was measured. The iron loss value W10 / 400 before annealing was 15.9 W / kg, and the average particle size was 150 μm both before and after annealing. The results are shown in Table 2.
[0018]
[Table 2]
Figure 0004028775
[0019]
As can be seen from Table 2, the iron loss value (W10 / 400: W / kg) is greatly improved by cooling at a cooling rate of 111 (= 0.6 × 185) ° C./hr or less after annealing the iron core. You can see that
[0020]
【The invention's effect】
As described above, the present invention can provide an electric motor and transformer iron core excellent in iron loss characteristics, particularly an electric motor and transformer iron core used for electric hybrid automobiles.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the iron core Young's modulus and the cooling rate after iron core annealing.
FIG. 2 is a diagram showing the relationship between the cooling rate after iron core annealing and the iron loss improvement rate.

Claims (1)

電磁鋼板を所定の形状に打ち抜き、調整後、積層、或いは巻いて鉄芯形状に成形、溶接、カシメ、ボルト締めの工程を経て固定した鉄芯を焼鈍する焼鈍鉄芯の製造方法において、鉄芯にする前の電磁鋼板の電気抵抗値(Ωm×10-8)と(Lε+Cε)/2の積を9776〜10500の範囲にし、かつ、前記焼鈍後の鉄芯を、冷却速度:V≦0.6×(Lε+Cε)/2(℃/hr)で冷却することを特徴とする焼鈍鉄芯の製造方法。
ただし、Lεは、電磁鋼板の鋼板圧延方向のヤング率、Cεは、電磁鋼板の鋼板圧延方向と直角方向のヤング率
In a method of manufacturing an annealed iron core , punching an electromagnetic steel sheet into a predetermined shape, adjusting, laminating, or winding the steel sheet into an iron core shape, annealing the iron core fixed through the steps of welding, caulking, and bolting. The product of the electrical resistance value (Ωm × 10 −8 ) and (Lε + Cε) / 2 of the electrical steel sheet before being made into a range of 9776 to 10500 , and the iron core after the annealing is cooled at a rate of V ≦ 0 The manufacturing method of the annealed iron core characterized by cooling by 6 * (L (epsilon) + C (epsilon)) / 2 (degreeC / hr) .
However, L epsilon is electrical steel plate steel rolling direction Young's modulus of, C epsilon is electrical steel plate steel rolling direction perpendicular to the direction of the Young's modulus of
JP2002198919A 2002-07-08 2002-07-08 Annealed iron core manufacturing method Expired - Lifetime JP4028775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198919A JP4028775B2 (en) 2002-07-08 2002-07-08 Annealed iron core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198919A JP4028775B2 (en) 2002-07-08 2002-07-08 Annealed iron core manufacturing method

Publications (2)

Publication Number Publication Date
JP2004040057A JP2004040057A (en) 2004-02-05
JP4028775B2 true JP4028775B2 (en) 2007-12-26

Family

ID=31706243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198919A Expired - Lifetime JP4028775B2 (en) 2002-07-08 2002-07-08 Annealed iron core manufacturing method

Country Status (1)

Country Link
JP (1) JP4028775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562912A1 (en) 2005-03-07 2013-02-27 Black & Decker Inc. Power Tools with Motor Having a Multi-Piece Stator
JP7328522B2 (en) * 2019-08-06 2023-08-17 日本製鉄株式会社 motor core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274803A (en) * 1975-12-19 1977-06-23 Hitachi Ltd Manufacturing of rotary electric machine core
JPH0770386B2 (en) * 1991-06-14 1995-07-31 日本鋼管株式会社 Low vibration core
JPH1025552A (en) * 1996-07-10 1998-01-27 Nippon Steel Corp Nonoriented silicon steel sheet excellent in punching dimensional precision
JP2991690B2 (en) * 1998-02-10 1999-12-20 弘道 輿石 Core manufacturing method
JP3473494B2 (en) * 1999-05-12 2003-12-02 Jfeスチール株式会社 Grain-oriented silicon steel sheet with low iron loss value

Also Published As

Publication number Publication date
JP2004040057A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JPWO2019017426A1 (en) Non-oriented electrical steel sheet
WO2018147044A1 (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
JP5321764B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP5716315B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6025864B2 (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6404356B2 (en) Soft high silicon steel sheet and method for producing the same
JP4380199B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7350063B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPWO2013024894A1 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
TW202104613A (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
KR20180073307A (en) Non-oriented electrical steel steet laminate and manufacturing method for the same
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
KR20050088925A (en) Stator for motor and process for producing the same
JP2004183002A (en) Non-oriented silicon steel sheet for automobile, and its production method
JP4028775B2 (en) Annealed iron core manufacturing method
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
JP6852966B2 (en) High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
JP2012036458A (en) Non-oriented magnetic steel sheet and production method therefor
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4670230B2 (en) Non-oriented electrical steel sheet
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP2003347140A (en) Annealed core
JP2004047505A (en) Annealed core and its annealing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4028775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term