JP4023713B2 - Reaction vessel for growth with gas phase shaft and method for producing the same - Google Patents

Reaction vessel for growth with gas phase shaft and method for producing the same Download PDF

Info

Publication number
JP4023713B2
JP4023713B2 JP2001333785A JP2001333785A JP4023713B2 JP 4023713 B2 JP4023713 B2 JP 4023713B2 JP 2001333785 A JP2001333785 A JP 2001333785A JP 2001333785 A JP2001333785 A JP 2001333785A JP 4023713 B2 JP4023713 B2 JP 4023713B2
Authority
JP
Japan
Prior art keywords
quartz glass
reaction vessel
growth
glass crucible
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001333785A
Other languages
Japanese (ja)
Other versions
JP2003137560A (en
Inventor
賞治 高橋
直哉 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Original Assignee
YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD., Shin Etsu Quartz Products Co Ltd filed Critical YAMAGATA SHIN-ETSU QUARTZ PRODUCTS CO., LTD.
Priority to JP2001333785A priority Critical patent/JP4023713B2/en
Publication of JP2003137560A publication Critical patent/JP2003137560A/en
Application granted granted Critical
Publication of JP4023713B2 publication Critical patent/JP4023713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/54Doped silica-based glasses containing metals containing beryllium, magnesium or alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、気相軸付成長用反応容器に関し、さらに詳しくは光ファイバ用母材の製造に好適な気相軸付成長用反応容器及びその製造方法に関する。
【0002】
【従来の技術】
光ファイバ母材の実用的な製造方法の一つとして、反応容器内でけい素化合物を火炎加水分解してシリカ微粒子を作成し、それを種棒の先端に堆積・成長させる気相軸付成長法(Vapor−Phase Axial Deposition Method、以下VAD法という)がある。このVAD法では、従来、耐熱性ガラス、石英ガラス、セラミックス等で作成された反応容器が使用されてきた。
【0003】
ところが、近年、光ファイバが大量に使用されるようになり、その量産化、低コスト化が求められるようになってきたが光ファイバの量産化、低コスト化には大型の光ファイバ用母材を作成するのが最も簡便である。光ファイバ用母材を大型化するには気相軸付成長用反応容器を大型化するとともに、高温化する気相反応においても不純物を発生しない素材で反応容器を作成ことが肝要である。従来の耐熱性ガラスからなる気相軸付成長用反応容器は、多くの不純物を含む上に光ファイバ用母材の製造時に発生した塩酸や塩素などの腐食性ガスで容易に腐食され不純物を発生し光ファイバ母材を汚染し、光ファイバの伝導特性を大きく損なう欠点があった。さらに、前記耐熱性ガラスはフッ酸やフッ硝酸に対する溶損が大きくこれらの試薬による洗浄後の再使用が困難で光ファイバ用母材の製造コストを高いものにしていた。
【0004】
また、従来の石英ガラスからなる気相軸付成長用反応容器は大型のチューブを真空成形等の機械加工で作成するため、反応容器内に歪みが残り、それが高温においてクラックの発生原因となり最悪の場合反応容器を破壊するなどの欠点があった。
【0005】
さらに、セラミックスからなる気相軸付成長用反応容器は、セラミックスが不純物を多く含むことから高純度のセラミックスを使用する必要があるが、高純度のセラミックスは大変高価で光ファイバの製造コストを高いものにした。そこで、ステンレス製容器の内壁をセラミックスで被覆した反応容器が特開平9−111462号公報等で提案された。しかしこの反応容器は、セラミックスとステンレスとの接合性が十分でなく、反応容器内が300〜600℃の雰囲気になると、セラミックスが剥離したり、クラックが発生したりしてセラミックスの耐熱性、耐酸性としての機能が十分に果せなくなる上に、剥離やクラックの箇所からステンレスが高温の塩素や塩酸で腐食され、不純物が発生し、光ファイバ母材を汚染する欠点があった。
【0006】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を重ねた結果、単結晶引上用石英ガラスるつぼが高純度である上に耐熱性に優れ、かつ大型のるつぼが容易に入手できることから、この単結晶引上用石英ガラスるつぼから底部を切出しその両端面部を溶融一体化し略球状又は鈴状に形成することで高純度で、高温化した気相反応においても不純物の発生がない大型の気相軸付成長用反応容器が得られること、また、石英ガラス中のアルミニウム元素含有量を特定の範囲にすることで反応容器の溶損量を低減でき再使用が容易となること、るつぼの成形が回転成形と真空成形でないことから内部歪みがなく高温加熱においてもクラックの発生がなく長時間の使用が可能となることを見出した。さらに、前記気相軸付成長用反応容器が単結晶引上用石英ガラスるつぼという他の目的で作成したものを流用することから、その製造コストを低くできることをも見出して、本発明を完成したものである。すなわち
【0007】
本発明は、高純度で不純物による光ファイバ用母材の汚染がなく、かつ洗浄液に対する溶損量が少なく再利用が容易である上に、内部歪みによるクラックの発生がなく長時間の使用が可能な気相軸付成長用反応容器を提供することを目的とする。
【0008】
また、本発明は、上記気相軸付成長用反応容器を比較的低コストで製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成する本発明は、気相軸付成長用反応容器において、該容器が石英ガラスからなり、そのアルカリ金属元素、アルカリ土類金属元素及び遷移金属元素の含有量がそれぞれ0.2ppm以下であることを特徴とする気相軸付成長用反応容器及びその製造方法に係る。
【0010】
本発明の気相軸付成長用反応容器は、特開昭56−149333公報や特開平7−335583号公報の単結晶引上用透明石英ガラスるつぼ又は半透明石英ガラスるつぼで作成されており、アルカリ金属元素、アルカリ土類金属元素及び遷移金属元素の含有量がそれぞれ0.2ppm以下の反応容器である。前記範囲の不純物を含有することで高温化した光ファイバ用母材の製造においても不純物元素の発生がなく高品質の光ファイバが生産性よく製造できる。さらに、アルミニウム元素含有量を20ppm以下とすることで溶損量を常温におけるフッ酸濃度が5%の時2×10−4g/min/cm以下とすることで、フッ酸やフッ硝酸などの洗浄後も再使用ができ光ファイバ用母材の製造コストを低くできる。前記HF溶液による溶損量を示すグラフを耐熱性ガラスとの対比で図2に示す。同図から明らかなように本発明の気相軸付成長用反応容器はフッ酸などによる溶損が少ない。
【0011】
さらに、本発明の気相軸付成長用反応容器は、真空成形などの機械加工でなく回転成形で作成されるたるつぼを素材として使用することから、内部歪みを複屈折量で40nm以下にでき、高温加熱においてもクラックの発生がなく安定に長時間使用できる。
【0012】
特に、本発明の反応容器を特開平7−335583号公報に記載の方法で製造した半透明石英ガラスるつぼで作成すると、該るつぼが高い強度を示すことから反応容器の肉厚を薄くでき、製造コストを一段と低くできる。この半透明石英ガラスるつぼを用いた反応容器にあっては、容器内の清掃時を的確に把握できるように透明な観察窓を設けるのがよい。該観察窓は機械加工で透明石英ガラスを嵌め込む、又はるつぼ製造時に回転成形型に観察窓相当部位に真空吸引貫通孔を設け、外部から真空吸引することで作成できる。
【0013】
【発明の実施の形態】
本発明の気相軸付成長用反応容器の1態様を図1に示す。図1において、1は反応容器、2は透明石英ガラスの観察窓、3は種棒、4は燃焼ガス供給バーナー、5は排気口、6は多孔質光ファイバ母材、7は接合部である。この気相軸付成長用反応容器は、上方が開口し内壁面が反応容器の外形とほぼ同形又は僅かに相似で大なる形状を有し、観察窓相当部に真空吸引孔を設けた成形型内に石英粉末を投入し、真空吸引しながら回転成形し、アーク放電装置等の加熱源で加熱溶融して透明石英ガラスの観察窓付き半透明の石英ガラスるつぼを製造する一方、前記観察窓のない半透明石英ガラスるつぼを作成し、両者のるつぼをその底部を切出し、その切出し部の両端面部を鈴状に溶融一体化し接合して形成し、その容器に種棒挿入口、燃焼ガス供給バーナー導入口、排気口5などを機械加工で形成し、種棒3、燃焼ガス供給バーナー4などを挿嵌して製造される。前記気相軸付成長用反応容器を用いた光ファイバ用母材の製造においては、先ず燃焼ガス供給バーナー4に原料ガス、キャリアガスを導入し、酸水素バーナーで原料ガスをシリカ微粒子に加水分解し、それを回転し上方に移動する種棒3の先端部分に堆積・成長させて多孔質光ファイバ用母材6を作成し、加熱溶融して光りファイバ用母材にする。前記原料ガスとしては、四塩化珪素、ヘキサメチルジシラザンなどの塩素を含有しないオルガノシラン化合物などが挙げられる。
【0014】
【発明の効果】
本発明の気相軸付成長用反応容器は、耐熱性が高く、耐薬品性に優れた単結晶引上用石英ガラスるつぼを素材にして作成され、高純度で、不純物による光ファイバ用母材の汚染がない上に、洗浄液による溶損量が少なく再使用が容易で、しかも内部歪みが少ないことから加熱時のクラックの発生による容器の損傷が少ない。さらに、本発明の気相軸付成長用反応容器は、単結晶引上用石英ガラスるつぼという他目的で作成した素材を使用することからその製造コストが低くでき、しかも大型化が容易である。
【図面の簡単な説明】
【図1】本発明の気相軸付成長用反応容器の概略断面図である。
【図2】本発明の気相軸付成長用反応容器と耐熱性ガラス製反応容器のフッ酸による溶損量を示すグラフである。実線の(a)、(c),(e)は石英ガラスの溶損量を、また点線の(b),(d),(f)は耐熱性ガラスの溶損量を示す。
【符号の説明】
1: 反応容器
2: 透明石英ガラスの観察窓
3: 種棒挿
4: 燃焼ガス供給バーナー
5: 排気口
6: 多孔質光ファイバ用母材
7: 接合部
[0001]
[Industrial application fields]
The present invention relates to a reaction vessel for growth with a vapor phase axis, and more particularly to a reaction vessel for growth with a vapor phase axis suitable for the production of an optical fiber preform and a method for producing the same.
[0002]
[Prior art]
One practical method for manufacturing optical fiber preforms is vapor phase growth with a silicon compound flame-hydrolyzed in a reaction vessel to produce silica particles, which are then deposited and grown on the tip of the seed rod. (Vapor-Phase Axial Deposition Method, hereinafter referred to as VAD method). In the VAD method, conventionally, a reaction vessel made of heat-resistant glass, quartz glass, ceramics, or the like has been used.
[0003]
However, in recent years, optical fibers have been used in large quantities, and mass production and cost reduction have been demanded. However, large-scale optical fiber base materials are required for mass production and cost reduction of optical fibers. Is the simplest to create. In order to increase the size of the optical fiber preform, it is important to increase the size of the reaction vessel for growth with a gas phase axis and to make the reaction vessel with a material that does not generate impurities even in a vapor phase reaction that is heated to a high temperature. A conventional reaction vessel for growth with a gas phase shaft made of heat-resistant glass contains many impurities and is easily corroded by corrosive gases such as hydrochloric acid and chlorine generated during the manufacture of optical fiber preforms. However, there is a drawback that the optical fiber preform is contaminated and the conduction characteristics of the optical fiber are greatly impaired. Further, the heat-resistant glass has a large melting loss with respect to hydrofluoric acid and hydrofluoric acid, and it is difficult to reuse after washing with these reagents, and the manufacturing cost of the optical fiber preform is high.
[0004]
In addition, the conventional reaction vessel for growth with a gas phase axis made of quartz glass creates a large tube by machining such as vacuum forming, so that strain remains in the reaction vessel, which causes cracks at high temperatures and is the worst. In this case, there were disadvantages such as destruction of the reaction vessel.
[0005]
Furthermore, it is necessary to use high-purity ceramics because the ceramics contain a lot of impurities in the reactor for vapor phase growth with ceramics. However, high-purity ceramics are very expensive and expensive to manufacture optical fibers. It was a thing. Thus, a reaction vessel in which the inner wall of a stainless steel vessel is coated with ceramics has been proposed in Japanese Patent Application Laid-Open No. 9-111462. However, this reaction vessel does not have sufficient bondability between ceramics and stainless steel, and if the atmosphere in the reaction vessel reaches 300 to 600 ° C., the ceramics may peel off or cracks may occur, resulting in the heat resistance and acid resistance of the ceramics. In addition to being unable to function sufficiently, the stainless steel is corroded by high-temperature chlorine or hydrochloric acid from the part of the peeling or cracking, and impurities are generated, which contaminates the optical fiber preform.
[0006]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have conducted extensive research, and as a result, the quartz glass crucible for pulling a single crystal has high purity, excellent heat resistance, and a large crucible can be easily obtained. Large-scale gas phase shaft with high purity and no generation of impurities even in high-temperature gas phase reactions by cutting out the bottom from quartz glass crucible for crystal pulling and melting and integrating both end surfaces to form a substantially spherical or bell shape A reaction vessel for growth can be obtained, and the amount of aluminum element in the quartz glass can be reduced to a specific range, reducing the amount of erosion loss in the reaction vessel and facilitating reuse. It has been found that since it is not molding and vacuum molding, there is no internal distortion and cracking does not occur even at high temperature heating, and it can be used for a long time. Furthermore, since the reaction vessel for growth with a vapor phase axis uses a silica glass crucible for pulling up a single crystal for other purposes, it was found that the production cost can be reduced, and the present invention was completed. Is. That is, [0007]
The present invention is high-purity, does not contaminate the optical fiber preform due to impurities, has a small amount of erosion loss with respect to the cleaning liquid, and can be easily reused, and can be used for a long time without cracking due to internal distortion. An object of the present invention is to provide a gas phase axial growth reactor.
[0008]
Another object of the present invention is to provide a method for producing the above-mentioned vapor phase growth reactor with relatively low cost.
[0009]
[Means for Solving the Problems]
The present invention for achieving the above object is a vapor phase axial growth reactor, wherein the vessel is made of quartz glass, and the contents of alkali metal element, alkaline earth metal element and transition metal element are each 0.2 ppm or less. The present invention relates to a reaction vessel for growth with a gas phase axis and a method for producing the same.
[0010]
Vapor axial with growth reaction vessel of the present invention are created in JP 56-149333 and JP 7-33 55 83 No. single crystal pulling transparent quartz glass crucible or translucent quartz glass crucible publications The reaction vessel has an alkali metal element, alkaline earth metal element, and transition metal element content of 0.2 ppm or less. Even in the production of optical fiber preforms containing the impurities in the above range, high-quality optical fibers can be produced with high productivity without generation of impurity elements. Furthermore, when the aluminum element content is 20 ppm or less, the amount of erosion is 2 × 10 −4 g / min / cm 2 or less when the hydrofluoric acid concentration at room temperature is 5%, so that hydrofluoric acid, hydrofluoric acid, etc. Can be reused after cleaning, and the manufacturing cost of the optical fiber preform can be reduced. A graph showing the amount of erosion caused by the HF solution is shown in FIG. 2 in comparison with heat resistant glass. As is clear from the figure, the vapor phase axial growth reactor of the present invention is less susceptible to melt damage due to hydrofluoric acid or the like.
[0011]
Furthermore, since the reaction vessel for growth with a gas phase shaft according to the present invention uses a crucible formed by rotational molding rather than mechanical processing such as vacuum molding, the internal strain can be reduced to 40 nm or less in terms of birefringence. In addition, cracks do not occur even at high temperature heating, and it can be used stably for a long time.
[0012]
In particular, creating a semi-transparent quartz glass crucible produced by the method according to the reaction vessel in JP-A 7-33 55 83 No. of the present invention, can reduce the wall thickness of the reaction vessel because it exhibits the crucible is high strength The manufacturing cost can be further reduced. In a reaction vessel using this translucent quartz glass crucible, it is preferable to provide a transparent observation window so that the time of cleaning inside the vessel can be accurately grasped. The observation window can be created by inserting transparent quartz glass by machining, or by providing a vacuum suction through-hole at a portion corresponding to the observation window in the rotary mold during vacuum crucible manufacture, and vacuum suction from the outside.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the reaction vessel for growth with a gas phase shaft of the present invention is shown in FIG. In FIG. 1, 1 is a reaction vessel, 2 is an observation window of transparent quartz glass, 3 is a seed rod, 4 is a combustion gas supply burner, 5 is an exhaust port, 6 is a porous optical fiber preform, and 7 is a joint. . This growth reactor with a gas phase axis is a mold having an opening at the top, an inner wall having a shape that is almost the same as or slightly similar to the outer shape of the reaction vessel, and a vacuum suction hole in the observation window corresponding portion. Quartz powder is put in, rotationally molded under vacuum suction, heated and melted with a heating source such as an arc discharge device to produce a translucent quartz glass crucible with a transparent quartz glass observation window, A semi-transparent quartz glass crucible is made, both crucibles are cut out at the bottom, and both ends of the cut out part are melted and joined in a bell shape to form a seed rod insertion port, combustion gas supply burner The introduction port, the exhaust port 5 and the like are formed by machining, and the seed rod 3, the combustion gas supply burner 4 and the like are inserted and manufactured. In the production of the optical fiber preform using the vapor phase axis growth reactor, first, a raw material gas and a carrier gas are introduced into the combustion gas supply burner 4, and the raw material gas is hydrolyzed into silica fine particles with an oxyhydrogen burner. Then, it is deposited and grown on the tip portion of the seed rod 3 that rotates and moves upward to create a porous optical fiber base material 6, which is heated and melted to form an optical fiber base material. Examples of the source gas include organosilane compounds that do not contain chlorine, such as silicon tetrachloride and hexamethyldisilazane.
[0014]
【The invention's effect】
The vapor phase shaft growth reactor of the present invention is made of a quartz glass crucible for pulling a single crystal that has high heat resistance and excellent chemical resistance, and is a high purity base material for optical fiber due to impurities. In addition, the amount of erosion caused by the cleaning liquid is small and reuse is easy, and the internal distortion is small, so that the container is less damaged by the occurrence of cracks during heating. Furthermore, since the reaction vessel for growth with a vapor phase shaft of the present invention uses a material prepared for other purposes such as a quartz glass crucible for pulling a single crystal, its production cost can be reduced and the size can be easily increased.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a reaction vessel for vapor phase growth according to the present invention.
FIG. 2 is a graph showing the amount of erosion caused by hydrofluoric acid in a reaction vessel for growth with a gas phase shaft and a reaction vessel made of heat-resistant glass according to the present invention. Solid lines (a), (c), and (e) indicate the amount of erosion of the quartz glass, and dotted lines (b), (d), and (f) indicate the amount of erosion of the heat-resistant glass.
[Explanation of symbols]
1: Reaction vessel 2: Observation window of transparent quartz glass 3: Seed rod insertion 4: Combustion gas supply burner 5: Exhaust port 6: Base material for porous optical fiber 7: Joint portion

Claims (6)

2個の単結晶引上用石英ガラスるつぼから切出した底部の両端面部を略球状に溶融一体化した気相軸付成長用反応容器であって、そのアルカリ金属元素、アルカリ土類金属元素及び遷移金属元素の含有量がそれぞれ0.2ppm以下、アルミニウム元素含有量が20ppm以下で、かつ反応容器の内部歪みが複屈折量で40nm以下、フッ酸に対する溶損量が常温でフッ酸濃度が5%の時2×10−4g/min/cm以下であることを特徴とする気相軸付成長用反応容器。A reaction vessel for growth with a gas phase shaft in which both end portions of a bottom portion cut out from two single crystal pulling quartz glass crucibles are fused and integrated into a substantially spherical shape, and its alkali metal element, alkaline earth metal element and transition The metal element content is 0.2 ppm or less, the aluminum element content is 20 ppm or less, the internal strain of the reaction vessel is 40 nm or less in terms of birefringence, the amount of erosion with respect to hydrofluoric acid is room temperature, and the hydrofluoric acid concentration is 5%. At this time, it is 2 × 10 −4 g / min / cm 2 or less. 単結晶引上用石英ガラスるつぼが透明石英ガラスるつぼ又は半透明石英ガラスるつぼであることを特徴とする請求項1記載の気相軸付成長用反応容器。The reaction vessel for vapor phase growth according to claim 1, wherein the quartz glass crucible for pulling single crystal is a transparent quartz glass crucible or a translucent quartz glass crucible. 半透明石英ガラスるつぼから得た気相軸付成長用反応容器に透明石英ガラスの観察窓を設けたことを特徴とする請求項1記載の気相軸付成長用反応容器。The reaction vessel for growth with a vapor phase axis according to claim 1, wherein an observation window for transparent quartz glass is provided in the reaction vessel for growth with a vapor phase axis obtained from a translucent quartz glass crucible. 請求項1又は2記載の気相軸付成長用反応容器の製造方法において、上方が開口し内壁面が反応容器外形とほぼ同形の形状を有する回転成形型内に石英粉末を投入し回転成形したのち、加熱溶融して石英ガラスるつぼを2個作成し、その底部を切出し、切出した2個の底部の両端面部を溶融一体化し略球状に形成することを特徴とする気相軸付成長用反応容器の製造方法。3. The method for producing a reaction vessel for growth with a gas phase shaft according to claim 1 or 2, wherein quartz powder is put into a rotary mold having an upper opening and an inner wall surface having substantially the same shape as the outer shape of the reaction vessel, and rotationally molded. Then, two quartz glass crucibles are made by heating and melting, the bottoms are cut out, and both ends of the two cut out bottoms are melted and integrated to form a substantially spherical shape. Container manufacturing method. 請求項4の製造方法において、石英ガラスるつぼを半透明石英ガラスるつぼに作成し、その溶融一体化後に透明石英ガラスからなる観察窓を機械加工で設けることを特徴とする気相軸付成長用反応容器の製造方法。5. The process for growth with a vapor phase shaft according to claim 4, wherein the quartz glass crucible is prepared in a semi-transparent quartz glass crucible, and an observation window made of transparent quartz glass is provided by machining after melting and integration. Container manufacturing method. 請求項4の製造方法において、回転成形型の観察窓相当部に真空吸引孔を設け、その成形型内に石英粉末を投入し真空吸引しながら回転成形し、加熱溶融して観察窓付きの半透明の石英ガラスるつぼを作成する一方、真空吸引孔なしの回転成形型を用いた半透明の石英ガラスるつぼを作成し、両者の底部を切出し、切出した2個の底部をその両端面部で略球状溶融一体化し、透明石英ガラスからなる観察窓を有することを特徴とする気相軸付成長用反応容器の製造方法。5. The manufacturing method according to claim 4, wherein a vacuum suction hole is provided in a portion corresponding to the observation window of the rotary mold, and quartz powder is put into the mold and rotational molding is performed while vacuum suction is performed. While creating a transparent quartz glass crucible, create a translucent quartz glass crucible using a rotary mold without a vacuum suction hole, cut out the bottom of both, and cut out the two bottoms to be approximately spherical at both ends A method for producing a reaction vessel for growth with a gas phase axis, characterized in that it has an observation window that is fused and integrated with each other and made of transparent quartz glass.
JP2001333785A 2001-10-31 2001-10-31 Reaction vessel for growth with gas phase shaft and method for producing the same Expired - Fee Related JP4023713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333785A JP4023713B2 (en) 2001-10-31 2001-10-31 Reaction vessel for growth with gas phase shaft and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333785A JP4023713B2 (en) 2001-10-31 2001-10-31 Reaction vessel for growth with gas phase shaft and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003137560A JP2003137560A (en) 2003-05-14
JP4023713B2 true JP4023713B2 (en) 2007-12-19

Family

ID=19148999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333785A Expired - Fee Related JP4023713B2 (en) 2001-10-31 2001-10-31 Reaction vessel for growth with gas phase shaft and method for producing the same

Country Status (1)

Country Link
JP (1) JP4023713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417200B2 (en) * 2009-02-17 2014-02-12 日本碍子株式会社 Quartz arc tube and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003137560A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2001348294A (en) Quartz glass crucible having multilayer structure and method of producing the same
KR101725359B1 (en) Process for producing a quartz glass cylinder and also surpport for carrying out the process
JP2004059410A (en) Quartz glass crucible for pulling up silicon single crystal and method of manufacturing the same
JP4717771B2 (en) Silica glass crucible
JP5121923B2 (en) Quartz glass crucible and manufacturing method thereof
JP4161296B2 (en) Method for producing quartz glass crucible
JP5046753B2 (en) Optical fiber preform manufacturing method and apparatus
JP2004262690A (en) Method of manufacturing quartz glass crucible for pulling up silicon single crystal and quartz glass crucible manufactured by the same method
JP2005231986A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP4023713B2 (en) Reaction vessel for growth with gas phase shaft and method for producing the same
JP2012017240A (en) Method for manufacturing silica glass crucible for pulling silicon single crystal
JP4931106B2 (en) Silica glass crucible
JPS63236723A (en) Quartz glass products for semiconductor industry
JPH02188489A (en) Method for regenerating quartz crucible for pulling up silicon single crystal
JPH0431254Y2 (en)
JP7428413B2 (en) Synthetic quartz manufacturing method
JP2006213556A (en) Quartz glass crucible for pulling silicon single crystal and production method therefor, and method for taking out the crucible
JPH0575703B2 (en)
JP4761355B2 (en) Method for producing metal element-doped large quartz glass member and metal element-doped large quartz glass member obtained by the production method
JP6581637B2 (en) Porous glass base material manufacturing apparatus and manufacturing method
JP3327364B2 (en) Method for producing silica glass processed product
JP3258175B2 (en) Method for producing non-doped or doped silica glass body
JP2561103B2 (en) Method for manufacturing glass article
JPH09241093A (en) Quartz crucible having double layer structure for fusing of silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees