JP4018288B2 - Artificial ground made of box that can pass water and its construction method - Google Patents

Artificial ground made of box that can pass water and its construction method Download PDF

Info

Publication number
JP4018288B2
JP4018288B2 JP07481699A JP7481699A JP4018288B2 JP 4018288 B2 JP4018288 B2 JP 4018288B2 JP 07481699 A JP07481699 A JP 07481699A JP 7481699 A JP7481699 A JP 7481699A JP 4018288 B2 JP4018288 B2 JP 4018288B2
Authority
JP
Japan
Prior art keywords
water
box unit
box
ground
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07481699A
Other languages
Japanese (ja)
Other versions
JP2000265450A (en
Inventor
英美 太田
章 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP07481699A priority Critical patent/JP4018288B2/en
Publication of JP2000265450A publication Critical patent/JP2000265450A/en
Application granted granted Critical
Publication of JP4018288B2 publication Critical patent/JP4018288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は海や、河川、湖等の軟弱地盤で比較的浅い水深の水面上に設置される大規模人工地盤とその施工方法に関するもので、特に迅速施工を可能とし、周辺水域の環境に対する悪影響がないようにした人工地盤に関するものである。
【0002】
【従来の技術】
近年、海上空間の有効利用のニーズに対応して、各種の大規模人工地盤の構想が提案されている。従来、人工地盤は締め切り堤を構築した後、廃棄物や土砂を投入して埋立てる方式が主流であったが、最近は大規模浮体(メガフロート)による人工地盤が提案され浮体空港や各種産業施設、レジャー施設等への利用が提案され話題になっている。この浮体形式の人工地盤はヤードやドックで製作した多数の箱型ユニットを浮上曳航して洋上で接合し、大型化したものをポンツーンや係留索で海底に係留して構築される。
【0003】
この他、本発明に近似した先行技術として特開平8-232251で開示されている「人工地盤の構築方法」がある。この人工地盤は図13に示すように水平な基盤部23の中央位置に立ち上がる垂直壁24が逆T字形に形成され、その躯体内部に中空状のエア室25を有しエア抜き栓(図示せず)が取付けられた逆T字形ユニット21を陸上で製作する。人工地盤の構築地点の海底地盤を水平に地均しした後、逆T字形ユニット21を構築地点まで曳航し、隣接する垂直壁部24を直交配置してエア栓を開け基盤部23を海底地盤に着地する。そして垂直壁部24の上方の海面上に床版22を形成したものである。
【0004】
【発明が解決しようとする課題】
従来技術のうち埋立て方式は施工期間が長期に亘ることや、埋立て用土砂の採集・輸送による環境への影響や埋立て後の地盤沈下、埋立てによる周辺水域の生態系への悪影響等の課題がある。
【0005】
また、浮体方式の場合は潮汐変化等による海面の変動に追随して人工地盤の上面のレベルが変化すること、浅い水深部に適用する場合は箱状浮体の底面が水底面と接近するため、水の流れを阻害して周辺水域の生態系への悪影響が懸念される。また、この浮体形式は深い水深において経済性を発揮できるといわれており、浅い水深部に適用した場合は経済的に不利になる課題等もある。
【0006】
一方、特開平8−232251で開示されている「人工地盤」(図13に示す)は、陸上で製作した逆T字形ユニット21を人工地盤の構築地点まで浮上曳航し、エア栓を開け浮力を解除して基盤部23を海底地盤に着地して設置するため現地の施工工期を短縮できる。また、海底地盤に設置された逆T字形ユニット21は安定性がよく、さらに隣接する垂直壁部24を直交配置して、当該垂直壁部24の上方の海面上に床版22を形成しているため、人工地盤下の水の流れが阻害されないため海中の生態系が保存されると記載されている。
【0007】
しかし、この人工地盤は基盤部23を海底地盤に着地して支持したものであるため軟弱地盤では十分な支持力が得られず、不同沈下が生じ易くなり大掛かりな地盤改良が必要となるとともに、地震等の水平外力を受けた際に水平移動しやすい。
また、逆T字形ユニット21上に設ける上部床版22は困難な接合となり、しかも現地作業となるため工期短縮とならない。
さらに、人工地盤下の水の流れは隣接する直交配置された垂直壁部24の隙間を通るため水流が屈折して円滑な流れが得られない課題がある。
【0008】
本発明の人工地盤は前記の課題を解消し、軟弱地盤の水底においても人工地盤を確実に支持し、周辺水域の環境や生態系に対する悪影響がないように人工地盤下の水の流れを円滑にしたもので、さらに現地工事の工期を短縮化できる施工法を提供することを目的としたものである。
【0009】
【課題を解決する手段】
前記目的を達成する本発明の人工地盤は以下の構成を要旨とする。
図1以下に示す例を参照して説明すると、本発明の人工地盤1においては、浮力調整可能な空間11を有する底版5と、側版4および水面上に位置する上版3で構成され、杭7を差込可能な複数の貫通孔8を底版5と上版3に形成し、内部を通水可能な空間6とした函体ユニット2が、地均しされたた水底地盤10上に隣接函体ユニット2同士が接合されて複数配設されている。前記函体ユニット2は水底地盤中に貫入された複数の杭7と結合して支持したり、函体ユニット2の底版5の下側に水平抵抗版9を突出させて地均しされた水底地盤10上に軟着底させるようにしてもよい。
【0010】
また、前記函体ユニット2における底版5と側版4は、鋼板製の外殻材12に型鋼の補剛材13を固着して製作し、内部空間の全部または一部に中詰めコンクリート15を充填するようにしてもよい。さらに、前記底版5と側版4と上版3を鋼板製の外殻材12とした場合は、函体ユニット表面2の没水部、干満部、飛沫部に耐食製金属薄板をライニングして防食する。
【0011】
また、本発明の人工地盤の施工方法については、図10(a),(b)、図11(a),(b)、図12(a),(b)に示すように、次の(1)〜(7)の工程からなる。つまり、
(1)浮力調整可能な空間を有する底版5と側版4および水面上に位置する上版3で構成され、内部を通水可能な空間6とした函体ユニット2を陸上ヤードまたはドックにて製作する。
(2)函体ユニット設置場所の水底地盤を所定水深になるように掘削・地均ししておく。(図10,a)
(3)前記陸上ヤードまたはドックで製作した函体ユニット2を設置場所に浮上曳航する。(図10,b)
(4)底版5と側版4のいずれか一方または両方の浮力調整用空間11に注水して浮力を減じ、地均しした水底地盤上10に函体ユニット2を沈設する。(図11,a)
(5)函体ユニット2の貫通孔8に上方から杭7を差込み水底地盤10中に貫通させ、杭頭部を函体ユニットに結合材16で結合する。(図11,b、図12,a)
または、函体ユニットの底版下側に水平抵抗版9を突出させる。この場合は前項の浮力調整用空間11に注水して浮力を減じる工程において、函体重量が重くならないように浮力を残し、軟着底させ水底地盤10への荷重を小さくする。
(6)2基目以降の函体ユニット2は既設函体ユニットに隣接して配設した後、レベルを調整して接合材17にて接合する。(12,b)
(7)函体ユニット2を水底に設置した後、函体ユニット2の底版5および側版4の浮力調整用空間11の一部にコンクリート15を充填して中詰めする。
以上の工程によって築造されることを特徴とする通水可能な函体からなる人工地盤の施工方法である。
【0012】
【作用】
本発明の人工地盤1は、函体ユニット2の内部を通水可能な空間6としていることに大きな特徴がある。つまり、この通水可能な空間6を有することによって、河口部河川水や水際の潮流等の水流を阻害して周辺の流況に変化を生じさせることがないため、洪水を引起こしたり、魚類や貝類等の水中生物の生育環境を乱したりすることがない。また、函体ユニット2に作用する水流は側版4のみで受けるため水流から受ける受圧面積が小さく設計外力を軽減できる。
【0013】
また、函体ユニット2の浮力調整用空間11は、陸上ヤードまたはドックで製作された函体ユニット2を浮上曳航する際浮力を与え、水底地盤10に沈設した後は軟着底させて、函体ユニット2を支持するこの水底地盤10に作用させる荷重を小さくする。また函体ユニット2を杭支持したものでは杭7に対する鉛直荷重を軽減することができる。
【0014】
函体ユニット2は上版3を水面より上方に位置させて曳航するため、底版5と側版4下部の没水部しか浮力が利用できない。このため、底版5と側版4がより大きな浮力を得やすいように鋼板製の外殻材12に型鋼の補剛材13を固着し、コンクリートに比べて軽量化できかつ、より大きな浮力調整用空間11が形成され、さらに、剛性も確保されるようにしたのがよい。この場合、函体ユニット2を水底地盤10に沈設した後に内部空間の全部または一部に中詰めのコンクリート15を充填し、更なる剛性を確保する方がよい。
なお、鋼板製の外殻材12は中詰めのコンクリート15の充填作業時に永久型枠として作用する。
【0015】
底版5と側版4を鋼板製の外殻材12とした場合は、防食メンテナンスフリーとするため、函体ユニット2表面の没水部、干満部、飛沫部に耐食製金属薄板をライニングしたほうがよい。
【0016】
また、本発明の人工地盤の施工方法においては、、前記函体ユニット2を陸上ヤードまたはドックにて完成形に近い状態に製作し、設置場所に曳航した後予め地均しした水底地盤10に沈設した後に、函体ユニット2の貫通孔8に杭7を差込んで水底地盤10中に杭7を貫入して結合したり、または水平抵抗版9を突出させて構築するため施工が容易で、かつ現地工期を短縮できる。
【0017】
【発明の実施の形態】
以下、本発明の人工地盤を構築する実施形態について図を参照して説明する。
図1は,本発明の内部を通水可能とした函体ユニット2を杭支持した人工地盤1の実施形態の部分斜視図である。この人工地盤1は、例えば、図8に斜視図で示すように、河口部19に設置した人工地盤として実施され、あるいは図9に平面図として示すように臨海部20に設置した人工地盤として実施される。
そして、従来の埋立て方式や,通水空間を有しない函体で前記の立地に人工地盤を構築すると、河川幅を狭めるため大雨時に洪水を引起こしたり流れが変化し、また、潮流の流れが変化して河底や周辺臨海部の洗掘・堆砂によって魚介類の生育環境を乱す恐れがあるが、本発明ではこのような環境への悪影響が生じない。
【0018】
図1以下によってさらに説明する。本発明の人工地盤1は複数の函体ユニット2を接合して構成される躯体が水底地盤10上に設置され、水底地盤10下の支持層に貫入された鋼管杭7で支持されている。躯体をなす函体ユニット2は、人工地盤面1となる上版3と側版4と底版5で構成され、側版4が開口されて函体ユニット内部を通水可能な空間6とされている。この通水空間6は河川水や潮流等の水流19方向に設ければよいが、水流19が回遊したり定まらない場合は図示例のように直交する方向も通水可能としたほうがよい。
【0019】
図2は函体ユニット2の斜視図である。函体ユニット2は陸上ヤードやドックで製作され、現地に浮上曳航された後、沈設される。このため底版5内には図4(b)に示すように注排水バルブ14を備えた浮力調整用の空間11を有する。なお、底版5のみで浮力が不足する場合は図7に示すように側版4の下部にも浮力調整空間11を有せしめる。
【0020】
この浮力調整用空間11は函体ユニット2を現地で水底に沈設した後、適切な浮力を保持する部分を残してコンクリート15を充填・中詰めする。(図5参照)
函体ユニット2は全体を鉄筋コンクリート構造、鉄骨や鋼板とコンクリートの合成構造としてもよいが、図4(a)に示す上版3、図4(b)に示す底版5、図7に示す側板4のように鋼板製の外殻材12に型鋼の補剛材13を溶接したものにすると、函体ユニット2の剛性に対する重量をコンクリートに比べて軽量化でき、底版5の浮力調整空間11を大きくとれる。なお鋼殻製の外殻材12内の浮力調整空間11の全部または一部には、函体ユニット設置後現地にて中詰コンクリート15が充填される。
【0021】
函体ユニット2には図2に示すように、側版4の近傍位置において、上版3と底版5には、この上版3から底版5を貫いて鋼管杭7を差し込み可能な貫通孔8が複数設けられている。鋼管杭7は函体ユニット2を水底地盤10に設置した後、この上下の貫通孔8を通して水底地盤10中に貫入される。なお、貫通孔8と鋼管杭7の間は、函体ユニット2の浮力調整用空間11に対して水密的となるように接合されていて、この貫通部から前記空間11内に水が流入しない。
上版3と底版5の各貫通孔8に差込まれた鋼管杭7は、底版5の貫通孔8を貫通した位置で切断され、切断された鋼管杭7の頭部は、図5に示すように函体ユニット2の底版5と強固に結合されている。この結合は詳細な説明は省くが結合部材16,16aを介した溶接、スタッドやシアキーを介在させたコンクリート15やグラウト等の公知の手段を用いてよい。底版上面の貫通孔8は蓋26で閉じられる。なお、鋼管杭7の上部は上版3の上面まで伸長し、その位置で切断し、かつ水密的な接合処理を施してもよい。また、鋼管杭7はコンクリート杭にしてもよい。
人工地盤1は図6、図7に示すように,隣接する函体ユニット2同士を水底地盤10に設置した状態でレベルを合わせて接合して構成される。接合手段は隣接する函体ユニット2の端面を高精度に位置決めすることが難しいため、ある程度の設置誤差があっても接合可能な方法を用いた方がよい。この函体ユニット2間の具体的な接合手段としては、ボルト接合や溶接などの接合部材(図では、接合部材17として略図的に示す)で接合したり、PC鋼棒・鋼線を利用する。さらに、接合部は函体ユニット2に設けたジベル(図示せず)と充填コンクリート15によって一体化するのもよい。
【0022】
また、函体ユニット2の外表面のうち没水部、干満部、飛沫部は厳しい腐蝕環境に晒されるため鋼製函体にした場合は防食の必要がある。防食手段は従来の重防食塗装や没水部は電気防食の併用が適用できるが、経年劣化に対する塗替え等のメンテナンスが必要となる。
そこで、永年に渡ってメンテナンスフリーで防食性能を保持できるチタンやステンレス等の耐蝕性薄金属をライニングする防食法を採用するのが望ましい。
【0023】
次に本発明に係る人工地盤の施工方法について、図10(a),(b)、図11(a),(b)、図12(a),(b)を参照して、下記(1)〜(8)の順で工程を説明する。
(1)人工地盤設置場所の水底は水深が浅く、函体ユニット2を引き込むことができない場合は事前に所定深さに掘削して地均ししておく。(図10(a)に示す)
(2)陸上ヤードやドックで製作された函体ユニット2を浮力調整用空間11を空にして浮上させた状態で設置場所まで曳航する。(図10(b)に示す)
(3)所定の設置場所に着いたら排気バルブと注水バルブ14(図4(b)に示す)を開き、浮力調整用空間11に注水して浮力を減じ函体ユニット2を徐々に沈めていき、地均ししておいた水底地盤上10に着地させる。この際、浮力調整用空間11の全てに注水しないで、或る程度の浮力を残しておき函体ユニットを軟着底させた方が鋼管杭7の支持力負担を軽減できる。(図11(a)に示す)
(4)次に函体ユニット2の貫通孔8に鋼管杭7を差し込み、ハンマー打撃や圧入工法等によって水底地盤10中に貫入させる。鋼管杭7の接続延長は通常は溶接方式とされるが、迅速施工するにはネジ込み等のクイックジョイント方式を採用した方が望ましい。(図11(b)に示す)
(5)すべての鋼管杭7の貫入が終わったら、鋼管杭7の頭部と函体ユニット2を結合部材16を介した溶接やスタッドジベル、シアキーを付けたコンクリート15やグラウト等により結合する。鋼管杭7の余長部分は切断し、函体底版5の上面には蓋26をしておく。(図12(a)に示す)
(6)鋼製函体ユニット2の場合、浮力調整用空間11には前記の注排水バルブを介してコンクリート15を充填中詰めする。
(7)2基目以降の函体ユニット2は、隣接する既設函体ユニット2に並べて位置決めした状態で水底地盤10上に沈設した後、レベルを合わせ接合材17によって函体ユニット2の端部を接合して一体化する。(図12(b)に示す)
(8)函体ユニット2の上面にはコンクリートやアスファルト等の仕上げ材27(図1,図7に示す)を施して完成する。
【0024】
図3は、函体ユニット2に杭を用いない方式の人工地盤用函体ユニットの例である。本発明の方式は函体ユニット2に十分な浮力を残し、水底地盤10に軟着底させるため水底地盤に大きな荷重を与えないで済むがその分、水平抵抗力が減少するため函体ユニット2が水底面で滑動しやすくなる。その対策として図3の例では、底版5の下側に鋼管杭7に代えて水平抵抗版9を突出させている。この水平抵抗版9は浅い水深の海域を曳航時に障害となる場合は、水底10に函体ユニット2を設置後施工できるように予め函体ユニット底版5に前記杭7の貫通孔8と同様な孔を設けておく。そしてこの孔を利用して下方の水底地盤10を掘削し、鋼製の水平抵抗版を設置したり、鉄筋コンクリートを打設してなる水平抵抗版を設ける。
【0025】
【実施例】
本発明に係る人工地盤の具体的実施例の諸元について一例を示すと以下のとおりである。
水深4mの軟弱地盤に平面広さ500m×300mの人工地盤を築造する場合、50m×100mの函体ユニットを30基接合して構成する。
函体ユニット2は全体高さ11mで、内部は2方向とも通水可能な空間とされている。函体ユニットは鋼管杭支持または水平抵抗版を設けて軟着底設置され、上版レベルは+7m(水面)、底版レベルは−4m(水底面)となる。
【0026】
【発明の効果】
本発明に係る人工地盤は軟弱地盤の水底においても人工地盤を確実に支持し、周辺水域の環境や生態系に対する悪影響がないように人工地盤下の水の流れを円滑にしたもので、さらに現地工事の工期を短縮化できる施工法であり、次のような立地条件に適用すると大きな効果を奏する。
【0027】
▲1▼水底地盤の土質が軟弱で、比較的水深の浅い水際(臨海部)の場合。
人工地盤躯体をなす函体ユニットは主として杭によって水底地盤下の支持層で確実に支持されるか、または函体底版が水底地盤で軟着底状態で支持されるため、水底地盤の土質が軟弱であっても沈下が生じない。
また、杭を用いないで函体底版を水底地盤に軟着底状態で支持したものは水平抵抗版を設けているため、地震時などの水平荷重に対して水平移動が生じない。
【0028】
▲2▼河口や水際のような流水のある場所。
人工地盤躯体をなす函体ユニットは内部を通水可能な空間としているため、河口部に設置して川幅を狭めても人工地盤下の流水を阻害しないため、洪水を引き起こすようなことがない。また、河口や水際部の周辺水域の河川水や潮流等に対して流況変化を生じさせることがなく、魚介類の水中生物の生態系を乱すような環境への悪影響がない。
【0029】
▲3▼空港のような既設の施設・構造物の拡張の場合。
人工地盤の躯体は固定的に支持しているため、浮体人工地盤のように潮汐変化や、上載荷重によってレベルが変化することがなく、既設の施設・構造物と変動する段差が生じない。
▲4▼函体ユニットの底版と側版を鋼板製の外殻材に型鋼の補剛材を固着したものにした場合、函体ユニットの重量を軽減でき、かつ大きな浮力が得やすくい。また、底版と側版を鋼板製の外殻材とした場合函体ユニット表面の没水部、干満部、飛沫部に耐食製金属薄板をライニングすれば防食メンテナンスフリーとすることができる。
【0030】
さらに、本発明の人工地盤の施工方法においては、函体ユニットを陸上ヤードやドックで完成形に近い状態に製作し、現地に曳航して設置するため現地工事の工期を短縮化できる。また、地均しした水底地盤に着地させて函体ユニット同士の接合を行うため作業が容易、かつ確実にできる。
【図面の簡単な説明】
【図1】本発明に係る人工地盤の実施例の一部斜視図。
【図2】函体ユニットの第1例の斜視図(杭支持方式)。
【図3】函体ユニットの第2例の斜視図(軟着底方式)。
【図4】(a)は函体ユニットを鋼殻構造とした場合の上版の断面図。(b)は函体ユニットを鋼殻構造とした場合の底版の断面図。
【図5】底版と杭(鋼管杭)の結合構造例の断面図。
【図6】函体ユニットの接合図。
【図7】図6の(c)部の拡大断面図。
【図8】本発明の人工地盤を河口部に設置した例の斜視図。
【図9】本発明の人工地盤を臨海部に設置した例の斜視図。
【図10】(a),(b)は本発明の人工地盤の設置方法に係る第1,第2工程図。
【図11】(a),(b)は本発明の人工地盤の設置方法に係る第3,第4工程図。
【図12】(a),(b)は本発明の人工地盤の設置方法に係る第5,第6工程図。
【図13】従来例の斜視図。
【符号の説明】
1 人工地盤
2 函体ユニット
3 上版
4 側版
5 底版
6 通水空間
7 杭(鋼管杭)
8 貫通孔
9 水平抵抗版
10 水底地盤
11 浮力調整用空間
12 鋼板(鋼殻)
13 補剛材
14 注排水バルブ
15 コンクリート
16 結合部材
17 接合材
18 河口部
19 水流
20 臨海部
21 逆T字ユニット
22 床版
23 基盤部
24 垂直壁
25 エア室
26 蓋
27 仕上げ材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a large-scale artificial ground that is installed on the surface of relatively shallow water in soft ground such as the sea, rivers, lakes and the like, and its construction method, and particularly enables rapid construction and adverse effects on the environment of surrounding water areas. It is related to artificial ground that has been made to have no
[0002]
[Prior art]
In recent years, various large-scale artificial ground concepts have been proposed in response to the needs for effective use of marine space. In the past, artificial ground was constructed by building deadlines and then dumping waste and earth and sand, but recently, artificial ground using large-scale floating bodies (mega floats) has been proposed, and floating airports and various industries have been proposed. The use for facilities and leisure facilities has been proposed and has become a hot topic. This floating-type artificial ground is constructed by floating a large number of box-type units made in yards and docks and joining them offshore, and mooring the larger ones on the sea floor with pontoons and mooring lines.
[0003]
In addition, there is a “artificial ground construction method” disclosed in Japanese Patent Laid-Open No. 8-232251 as a prior art approximated to the present invention. In this artificial ground, as shown in FIG. 13, a vertical wall 24 rising to the center position of the horizontal base portion 23 is formed in an inverted T shape, and has a hollow air chamber 25 inside the housing, and an air vent plug (not shown). 1) is manufactured on land. After leveling the seabed ground at the construction site of the artificial ground, the inverted T-shaped unit 21 is towed to the construction site, adjacent vertical wall portions 24 are arranged orthogonally, air plugs are opened, and the base portion 23 is grounded. Land on. The floor slab 22 is formed on the sea surface above the vertical wall portion 24.
[0004]
[Problems to be solved by the invention]
Among the conventional technologies, the landfill method has a long construction period, impacts on the environment due to the collection and transportation of landfill sand, land subsidence after landfill, and adverse effects on the surrounding waters ecosystem due to landfill There is a problem.
[0005]
In addition, in the case of the floating body method, the level of the upper surface of the artificial ground changes following the fluctuation of the sea surface due to tide changes, etc., and when applying to shallow water depths, the bottom surface of the box-shaped floating body approaches the bottom of the water, There is concern about the negative impact on the ecosystem of the surrounding water area by blocking the flow of water. Moreover, this floating body type is said to be economical at deep water depths, and there are problems such as economical disadvantages when applied to shallow water depths.
[0006]
On the other hand, the “artificial ground” (shown in FIG. 13) disclosed in Japanese Patent Laid-Open No. 8-232251 floats the inverted T-shaped unit 21 manufactured on land to the construction point of the artificial ground, opens the air plug, and increases the buoyancy. Since the base portion 23 is landed and installed on the submarine ground, the local construction period can be shortened. Further, the inverted T-shaped unit 21 installed on the seabed ground has good stability. Further, the adjacent vertical wall portions 24 are arranged orthogonally, and the floor slab 22 is formed on the sea surface above the vertical wall portions 24. Therefore, it is described that the marine ecosystem is preserved because the flow of water under the artificial ground is not hindered.
[0007]
However, since this artificial ground is supported by landing the base portion 23 on the seabed ground, sufficient supporting force cannot be obtained on the soft ground, and uneven subsidence is likely to occur, and a large ground improvement is required. Easy to move horizontally when subjected to horizontal external forces such as earthquakes.
Further, the upper floor slab 22 provided on the inverted T-shaped unit 21 is difficult to join, and the work period is not shortened because it is a field work.
Furthermore, since the water flow under the artificial ground passes through the gap between the adjacent perpendicular wall portions 24 arranged orthogonally, the water flow is refracted and a smooth flow cannot be obtained.
[0008]
The artificial ground of the present invention solves the above-mentioned problems, reliably supports the artificial ground even at the bottom of soft ground, and smoothes the flow of water under the artificial ground so as not to adversely affect the environment and ecosystem of the surrounding water area. The purpose is to provide a construction method that can further shorten the construction period of local construction.
[0009]
[Means for solving the problems]
The artificial ground of the present invention that achieves the above object is summarized as follows.
If it demonstrates with reference to the example shown below from FIG. 1, in the artificial ground 1 of this invention, it is comprised by the bottom plate 5 which has the space 11 in which buoyancy adjustment is possible, the upper plate 3 located on the side plate 4 and the water surface, A box unit 2 having a plurality of through holes 8 into which the piles 7 can be inserted is formed in the bottom plate 5 and the upper plate 3 and a space 6 through which the water can flow is formed on the leveled water bottom ground 10. A plurality of adjacent box units 2 are joined to each other. The box unit 2 is connected to and supported by a plurality of piles 7 penetrating into the water bottom ground, or the bottom of the box unit 2 with the horizontal resistance plate 9 protruding below the bottom plate 5 is leveled. You may make it make it softly settle on the ground 10.
[0010]
Further, the bottom plate 5 and the side plate 4 in the box unit 2 are manufactured by fixing a steel plate stiffener 13 to a steel plate outer shell material 12, and filling concrete 15 in all or part of the internal space. You may make it fill. Further, when the bottom plate 5, the side plate 4 and the upper plate 3 are made of a steel plate outer shell material 12, a corrosion-resistant metal thin plate is lined on the submerged portion, the tidal portion and the splash portion of the box unit surface 2. Anticorrosion.
[0011]
Moreover, about the construction method of the artificial ground of this invention, as shown to FIG. 10 (a), (b), FIG. 11 (a), (b), FIG. 12 (a), (b), the following ( 1) to (7). That means
(1) A box unit 2 comprising a bottom plate 5 having a space capable of adjusting buoyancy, a side plate 4 and an upper plate 3 positioned on the surface of the water, and having a space 6 capable of passing water inside, is obtained by a land yard or dock. To manufacture.
(2) Excavate and level the water bottom ground at the box unit installation location to a predetermined depth. (Fig. 10, a)
(3) The box unit 2 manufactured in the land yard or dock is levitated and towed to the installation site. (Fig. 10, b)
(4) Water is poured into the buoyancy adjustment space 11 of one or both of the bottom plate 5 and the side plate 4 to reduce the buoyancy, and the box unit 2 is set on the leveled water bottom ground 10. (Fig. 11, a)
(5) The pile 7 is inserted into the through-hole 8 of the box unit 2 from above and penetrated into the water bottom ground 10, and the pile head is coupled to the box unit with the bonding material 16. (Fig. 11, b, Fig. 12, a)
Alternatively, the horizontal resistance plate 9 is projected below the bottom plate of the box unit. In this case, in the step of pouring water into the buoyancy adjustment space 11 described above and reducing the buoyancy, the buoyancy is left so as not to increase the weight of the box, and the load is applied to the water bottom ground 10 by making it softly settle.
(6) After the second box unit 2 is disposed adjacent to the existing box unit, the level is adjusted and the box unit 2 is bonded by the bonding material 17. (12, b)
(7) After the box unit 2 is installed on the bottom of the water, concrete 15 is filled into the bottom slab 5 and the side plate 4 of the box unit 2 and filled with concrete 15 inside.
It is a construction method for artificial ground made of a water-permeable box, which is constructed by the above-described process.
[0012]
[Action]
The artificial ground 1 of the present invention has a great feature in that it is a space 6 through which water can flow inside the box unit 2. In other words, having this water-permeable space 6 does not impede water flow such as river water at the estuary and tides at the shore and cause changes in the surrounding flow conditions. It does not disturb the growth environment of aquatic organisms such as shellfish and shellfish. Further, since the water flow acting on the box unit 2 is received only by the side plate 4, the pressure receiving area received from the water flow is small, and the design external force can be reduced.
[0013]
Further, the buoyancy adjustment space 11 of the box unit 2 gives buoyancy when the box unit 2 manufactured on the land yard or dock is levitated and towed, and after being submerged in the water bottom ground 10, the box unit 2 is softly settled. The load applied to the water bottom ground 10 that supports the body unit 2 is reduced. Moreover, in the case where the box unit 2 is supported by a pile, the vertical load on the pile 7 can be reduced.
[0014]
Since the box unit 2 is towed with the upper plate 3 positioned above the water surface, buoyancy can be used only in the submerged portions of the bottom plate 5 and the lower side plate 4. For this reason, the stiffener 13 is fixed to the outer shell 12 made of a steel plate so that the bottom plate 5 and the side plate 4 can easily obtain larger buoyancy. It is preferable that the space 11 is formed and the rigidity is secured. In this case, after the box unit 2 is sunk in the water bottom ground 10, it is better to fill all or a part of the internal space with the intermediate packed concrete 15 to ensure further rigidity.
The outer shell 12 made of steel plate acts as a permanent mold during the filling operation of the concrete 15 that is filled in the middle.
[0015]
When the bottom plate 5 and the side plate 4 are made of steel plate outer shell material 12, it is better to line a corrosion-resistant metal sheet on the submerged portion, tidal portion, and splashing portion of the surface of the box unit 2 in order to prevent corrosion prevention. Good.
[0016]
Further, in the artificial ground construction method of the present invention, the box unit 2 is manufactured in a near-finished state at the land yard or dock, and after towing to the installation site, the water bottom ground 10 that has been leveled in advance is prepared. After installation, the pile 7 is inserted into the through hole 8 of the box unit 2 and the pile 7 is inserted into the bottom bottom ground 10 to be coupled, or the horizontal resistance plate 9 is projected to construct the construction. In addition, the local construction period can be shortened.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment for constructing an artificial ground according to the present invention will be described with reference to the drawings.
FIG. 1 is a partial perspective view of an embodiment of an artificial ground 1 that supports a box unit 2 that allows water to pass through inside the present invention. The artificial ground 1 is implemented as an artificial ground installed in the estuary 19 as shown in a perspective view in FIG. 8, or as an artificial ground installed in the coastal area 20 as shown in a plan view in FIG. Is done.
And if an artificial ground is constructed in the above-mentioned location with a conventional landfill system or a box that does not have a water flow space, the river width will be narrowed, causing flooding or changing the flow during heavy rain, and the flow of the tidal current May change and disturb the growth environment of seafood due to scouring and sedimentation in the riverbed and surrounding coastal areas, but the present invention does not have such an adverse effect on the environment.
[0018]
This will be further described with reference to FIG. The artificial ground 1 of the present invention is supported by a steel pipe pile 7 in which a frame constituted by joining a plurality of box units 2 is installed on a water bottom ground 10 and penetrates into a support layer below the water bottom ground 10. The box unit 2 forming the frame is composed of an upper plate 3, a side plate 4 and a bottom plate 5 to be an artificial ground surface 1, and the side plate 4 is opened to be a space 6 through which water can pass inside the box unit. Yes. The water flow space 6 may be provided in the direction of the water flow 19 such as river water or tidal current. However, when the water flow 19 does not move or cannot be determined, it is preferable to allow water to pass in the orthogonal direction as illustrated.
[0019]
FIG. 2 is a perspective view of the box unit 2. The box unit 2 is manufactured in a land yard or dock, levitated to the site, and then sunk. For this reason, the bottom plate 5 has a buoyancy adjustment space 11 having a pouring / draining valve 14 as shown in FIG. When the buoyancy is insufficient only with the bottom plate 5, the buoyancy adjustment space 11 is also provided at the lower portion of the side plate 4 as shown in FIG. 7.
[0020]
This buoyancy adjusting space 11 is filled with concrete 15 after leaving the box unit 2 on the bottom of the water at the site and leaving a portion that retains appropriate buoyancy. (See Figure 5)
The entire box unit 2 may have a reinforced concrete structure, a composite structure of steel frame or steel plate and concrete, but an upper plate 3 shown in FIG. 4 (a), a bottom plate 5 shown in FIG. 4 (b), and a side plate 4 shown in FIG. If the steel plate outer shell 12 is welded with the steel plate stiffener 13, the weight of the box unit 2 relative to the rigidity can be reduced compared to concrete, and the buoyancy adjustment space 11 of the bottom plate 5 can be increased. I can take it. Note that all or part of the buoyancy adjustment space 11 in the outer shell material 12 made of steel shell is filled with filled concrete 15 on site after the box unit is installed.
[0021]
As shown in FIG. 2, the box unit 2 has a through-hole 8 through which the steel pipe pile 7 can be inserted into the upper plate 3 and the bottom plate 5 from the upper plate 3 through the bottom plate 5 in the vicinity of the side plate 4. Are provided. The steel pipe pile 7 is inserted into the underwater ground 10 through the upper and lower through holes 8 after the box unit 2 is installed on the underwater ground 10. In addition, between the through-hole 8 and the steel pipe pile 7, it joins so that it may become watertight with respect to the space 11 for buoyancy adjustment of the box unit 2, and water does not flow in into the said space 11 from this penetration part. .
The steel pipe pile 7 inserted in each through-hole 8 of the upper plate 3 and the bottom plate 5 is cut at a position passing through the through-hole 8 of the bottom plate 5, and the head of the cut steel pipe pile 7 is shown in FIG. Thus, it is firmly coupled to the bottom plate 5 of the box unit 2. Although a detailed description of this connection is omitted, known means such as welding via the connecting members 16 and 16a, concrete 15 with studs and shear keys interposed, and grout may be used. The through hole 8 on the bottom plate upper surface is closed with a lid 26. In addition, the upper part of the steel pipe pile 7 may extend to the upper surface of the upper plate 3, and may be cut at that position and subjected to a watertight joining process. The steel pipe pile 7 may be a concrete pile.
As shown in FIGS. 6 and 7, the artificial ground 1 is configured by joining adjacent box units 2 to each other in a state where they are installed on the water bottom ground 10. Since it is difficult to position the end surfaces of adjacent box units 2 with high accuracy, it is better to use a method that can be joined even if there is some installation error. As specific joining means between the box units 2, they are joined by a joining member such as bolt joining or welding (shown schematically as the joining member 17 in the figure), or a PC steel rod / steel wire is used. . Further, the joint may be integrated by a dowel (not shown) provided in the box unit 2 and the filling concrete 15.
[0022]
Moreover, since the submerged part, the tidal part, and the splash part of the outer surface of the box unit 2 are exposed to a severe corrosive environment, it is necessary to prevent corrosion when the steel box is used. Conventional anti-corrosion coating can be applied as the anti-corrosion means, and electro-corrosion protection can be applied to the submerged part, but maintenance such as repainting for aging deterioration is required.
Therefore, it is desirable to adopt a corrosion prevention method in which a corrosion-resistant thin metal such as titanium or stainless steel that can maintain anticorrosion performance without maintenance for many years is used.
[0023]
Next, regarding the construction method of the artificial ground according to the present invention, referring to FIGS. 10 (a), (b), FIGS. 11 (a), (b), FIGS. 12 (a), (b), the following (1 ) To (8) in order.
(1) The bottom of the artificial ground installation site is shallow, and if the box unit 2 cannot be retracted, it is excavated to a predetermined depth and leveled beforehand. (Shown in Fig. 10 (a))
(2) The box unit 2 manufactured in the land yard or dock is towed to the installation site in a state where the box unit 2 is levitated with the buoyancy adjustment space 11 empty. (Shown in FIG. 10 (b))
(3) Open the exhaust valve and water injection valve 14 (shown in FIG. 4 (b)) when arriving at a predetermined installation location, inject water into the buoyancy adjustment space 11 to reduce the buoyancy and gradually sink the box unit 2. Then, land on the ground surface 10 that has been leveled. At this time, it is possible to reduce the support load of the steel pipe pile 7 by not pouring all of the buoyancy adjustment space 11 and leaving the box unit softly so as to leave a certain degree of buoyancy. (Shown in FIG. 11 (a))
(4) Next, the steel pipe pile 7 is inserted into the through hole 8 of the box unit 2 and is penetrated into the water bottom ground 10 by hammering or press-fitting. The connection extension of the steel pipe pile 7 is usually a welding method, but it is desirable to adopt a quick joint method such as screwing for quick construction. (Shown in FIG. 11 (b))
(5) When the penetration of all the steel pipe piles 7 is finished, the head part of the steel pipe pile 7 and the box unit 2 are joined by welding via a coupling member 16, a stud gibber, concrete 15 with a shear key, grout or the like. The extra length portion of the steel pipe pile 7 is cut, and a lid 26 is placed on the upper surface of the box bottom plate 5. (Shown in FIG. 12 (a))
(6) In the case of the steel box unit 2, the concrete 15 is filled in the buoyancy adjusting space 11 through the above-described pouring / draining valve.
(7) The second and subsequent box units 2 are placed on the bottom bottom ground 10 in a state of being aligned with the adjacent existing box unit 2, and then the level is adjusted. Are joined together. (Shown in FIG. 12 (b))
(8) The upper surface of the box unit 2 is finished by applying a finishing material 27 (shown in FIGS. 1 and 7) such as concrete or asphalt.
[0024]
FIG. 3 is an example of a box unit for artificial ground that does not use a pile for the box unit 2. Since the method of the present invention leaves sufficient buoyancy in the box unit 2 and softly settles on the bottom floor ground 10, it is not necessary to apply a large load to the bottom floor ground. Becomes easier to slide on the bottom of the water. As a countermeasure, in the example of FIG. 3, a horizontal resistance plate 9 is projected below the bottom plate 5 in place of the steel pipe pile 7. This horizontal resistance plate 9 is the same as the through hole 8 of the pile 7 in the box unit bottom plate 5 in advance so that it can be constructed after the box unit 2 is installed on the bottom 10 in the case of towing the shallow water. Make a hole. Then, using this hole, the bottom bottom ground 10 is excavated, and a horizontal resistance plate made of steel is installed, or a horizontal resistance plate made of reinforced concrete is provided.
[0025]
【Example】
An example of the specifications of a specific example of the artificial ground according to the present invention is as follows.
When constructing an artificial ground having a plane area of 500 m × 300 m on a soft ground having a depth of 4 m, 30 box units each having a size of 50 m × 100 m are joined.
The box unit 2 has an overall height of 11 m, and the inside is a space that allows water to flow in both directions. The box unit is provided with a steel pipe pile support or a horizontal resistance plate and is installed with a soft bottom. The upper plate level is +7 m (water surface) and the bottom plate level is -4 m (water bottom).
[0026]
【The invention's effect】
The artificial ground according to the present invention reliably supports the artificial ground even at the bottom of soft ground, and smoothes the flow of water under the artificial ground so as not to adversely affect the environment and ecosystem of the surrounding water area. It is a construction method that can shorten the construction period, and it has a great effect when applied to the following location conditions.
[0027]
(1) In the case of the waterside ground where the soil is soft and the water is relatively shallow (the coastal area).
The box unit that forms the artificial ground frame is mainly supported by the support layer under the bottom bottom ground mainly by the pile, or the bottom of the box body is supported by the bottom bottom ground in a softly settled state. Even so, no settlement occurs.
In addition, since a horizontal resistance plate is provided for a case where the box bottom plate is supported on the water bottom ground without using piles, a horizontal resistance plate is provided, so that horizontal movement does not occur against a horizontal load such as during an earthquake.
[0028]
(2) A place with running water such as an estuary or a waterfront.
Since the box unit that forms the artificial ground frame is a space that allows water to pass through inside, even if it is installed in the estuary and the river width is narrowed, it will not hinder the flowing water under the artificial ground, so it will not cause flooding. In addition, there will be no changes in the flow conditions of river water and tides in the waters around the estuary and at the water's edge, and there will be no adverse environmental impacts that would disrupt the aquatic ecosystem of seafood.
[0029]
(3) Expansion of existing facilities and structures such as airports.
Since the frame of the artificial ground is fixedly supported, the level does not change due to tidal changes and overloads unlike the floating artificial ground, and there is no step difference that fluctuates with existing facilities and structures.
(4) When the bottom plate and side plate of the box unit are made by fixing a steel plate stiffener to a steel plate outer shell material, the weight of the box unit can be reduced and large buoyancy can be easily obtained. Further, when the bottom plate and the side plate are made of steel plate outer shell material, corrosion-resistant maintenance-free can be made free by lining a corrosion-resistant metal thin plate on the submerged portion, tidal portion, and splash portion on the surface of the box unit.
[0030]
Further, in the artificial ground construction method of the present invention, the box unit is manufactured in a land yard or dock in a state close to a completed form, and is towed and installed on the site, so the construction period of the field construction can be shortened. Further, since the box units are joined to each other by landing on the leveled water bottom ground, the work can be easily and reliably performed.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of an embodiment of an artificial ground according to the present invention.
FIG. 2 is a perspective view of a first example of a box unit (pile support method).
FIG. 3 is a perspective view of a second example of a box unit (soft bottom method).
FIG. 4A is a cross-sectional view of an upper plate when the box unit has a steel shell structure. (B) is a cross-sectional view of the bottom plate when the box unit has a steel shell structure.
FIG. 5 is a cross-sectional view of a coupling structure example of a bottom slab and a pile (steel pipe pile).
FIG. 6 is a connection diagram of a box unit.
7 is an enlarged cross-sectional view of part (c) of FIG.
FIG. 8 is a perspective view of an example in which the artificial ground of the present invention is installed in an estuary.
FIG. 9 is a perspective view of an example in which the artificial ground according to the present invention is installed in a coastal area.
FIGS. 10A and 10B are first and second process diagrams according to the artificial ground installation method of the present invention.
FIGS. 11A and 11B are third and fourth process diagrams according to the artificial ground installation method of the present invention. FIGS.
FIGS. 12A and 12B are fifth and sixth process diagrams according to the method for installing an artificial ground of the present invention.
FIG. 13 is a perspective view of a conventional example.
[Explanation of symbols]
1 Artificial ground 2 Box unit 3 Upper plate 4 Side plate 5 Bottom plate 6 Water flow space 7 Pile (steel pipe pile)
8 Through-hole 9 Horizontal resistance plate 10 Submarine ground 11 Buoyancy adjustment space 12 Steel plate (steel shell)
13 Stiffening material 14 Pouring / draining valve 15 Concrete 16 Connecting member 17 Joining material 18 Estuary 19 Water flow 20 Seaside 21 Reverse T unit 22 Floor slab 23 Base 24 Vertical wall 25 Air chamber 26 Lid 27 Finishing material

Claims (6)

浮力調整可能な空間を有する底版と側版および水面上に位置する上版で構成され、内部を通水可能な空間とした複数の函体ユニットが、地均しされたた水底地盤上に隣接函体ユニット同士を接合して設置されていることを特徴とする通水可能な函体からなる人工地盤。Multiple box units composed of a bottom plate, a side plate, and a top plate located on the surface of the water that have a buoyancy-adjustable space, adjacent to the leveled water bottom ground. An artificial ground consisting of a box that allows water to flow, which is installed by connecting box units. 函体ユニットに杭を差込可能な複数の貫通孔を形成し、水底地盤上に設置された函体ユニットは、貫通孔を通して水底地盤中に貫入された複数の杭と結合して支持されていることを特徴とする請求項1記載の通水可能な函体からなる人工地盤。A plurality of through-holes into which piles can be inserted into the box unit are formed, and the box unit installed on the water bottom ground is supported by being combined with a plurality of piles penetrating into the water bottom ground through the through holes. The artificial ground comprising a water-permeable box according to claim 1. 函体ユニットの底版下側に水平抵抗版を突出させ、函体ユニットが地均しされたた水底地盤上に軟着底されていることを特徴とする請求項1記載の通水可能な函体からなる人工地盤。2. A water-permeable container according to claim 1, wherein a horizontal resistance plate is projected below the bottom plate of the box unit, and the box unit is softly settled on a leveled water bottom ground. Artificial ground consisting of the body. 函体ユニットの底版と側版は鋼板製の外殻材に型鋼の補剛材を固着して製作され、内部空間の一部に中詰めコンクリートが充填されていることを特徴とする請求項1乃至請求項3のいずれかに記載の通水可能な函体からなる人工地盤。The bottom plate and the side plate of the box unit are manufactured by fixing a steel plate stiffener to a steel plate outer shell material, and a portion of the internal space is filled with filling concrete. An artificial ground comprising a water-permeable box according to any one of claims 3 to 4. 函体ユニット表面の没水部、干満部、飛沫部に耐食性金属薄板をライニングして防食したことを特徴とする請求項4記載の通水可能な函体からなる人工地盤。5. The artificial ground comprising a water-permeable box according to claim 4, wherein a corrosion-resistant metal thin plate is lined on a submerged part, a tidal part, and a splash part on the surface of the box unit to prevent corrosion. 下記(1)〜(7)の工程、つまり、
(1)浮力調整可能な空間を有する底版と側版および水面上に位置する上版で構成され、内部を通水可能な空間とした函体ユニットを陸上ヤードまたはドックにて製作する。
(2)函体ユニット設置場所の水底地盤を所定水深になるように掘削し、地均ししておく。
(3)前記陸上ヤードまたはドックで製作した函体ユニットを設置場所に浮上曳航する。
(4)底版と側版のいずれか一方または両方の浮力調整用空間に適量の注水を行い浮力を減じ、地均しした水底地盤上に函体ユニットを軟着底させる。
(5)函体ユニットの貫通孔に杭を挿入して水底地盤中に貫入させた後函体ユニットと杭を結合し、または函体ユニットの底版下側に水平抵抗版を突出させる。
(6)2基目以降の函体ユニットは既設函体ユニットに隣接して配設した後、函体ユニット同士をレベルを調整して接合する。
(7)函体ユニットを水底に設置した後、函体ユニットの底版および側版の浮力調整用空間の一部にコンクリートを充填して中詰めする。
以上の工程によって築造されることを特徴とする通水可能な函体からなる人工地盤の施工方法。
The following steps (1) to (7), that is,
(1) A box unit composed of a bottom plate, a side plate, and an upper plate located on the surface of the water having a buoyancy-adjustable space and having a water-permeable space inside is manufactured at an onshore yard or dock.
(2) Excavate the water bottom ground at the box unit installation location to a predetermined depth and level it.
(3) The box unit produced in the land yard or dock is levitated and towed to the installation site.
(4) A suitable amount of water is poured into the buoyancy adjustment space of either one or both of the bottom plate and the side plate to reduce the buoyancy, and the box unit is softly settled on the leveled water bottom ground.
(5) After inserting the pile into the through hole of the box unit and penetrating it into the water bottom ground, the box unit and the pile are combined, or the horizontal resistance plate is projected below the bottom plate of the box unit.
(6) After the second box unit is disposed adjacent to the existing box unit, the box units are joined to each other by adjusting the level.
(7) After the box unit is installed on the bottom of the water, concrete is filled in the bottom slab and side buoyancy adjustment spaces of the box unit and filled in.
A method for constructing artificial ground comprising a water-permeable box, which is constructed by the above process.
JP07481699A 1999-03-19 1999-03-19 Artificial ground made of box that can pass water and its construction method Expired - Fee Related JP4018288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07481699A JP4018288B2 (en) 1999-03-19 1999-03-19 Artificial ground made of box that can pass water and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07481699A JP4018288B2 (en) 1999-03-19 1999-03-19 Artificial ground made of box that can pass water and its construction method

Publications (2)

Publication Number Publication Date
JP2000265450A JP2000265450A (en) 2000-09-26
JP4018288B2 true JP4018288B2 (en) 2007-12-05

Family

ID=13558226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07481699A Expired - Fee Related JP4018288B2 (en) 1999-03-19 1999-03-19 Artificial ground made of box that can pass water and its construction method

Country Status (1)

Country Link
JP (1) JP4018288B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401214B1 (en) * 2000-12-19 2003-10-10 한국해양연구원 A breakwater for soft ground
JP6068985B2 (en) * 2013-01-11 2017-01-25 大成建設株式会社 Pile core positioning member
CN104480922B (en) * 2014-11-05 2016-01-20 广州市恒盛建设工程有限公司 Space truss formwork system and construction method thereof
JP6282316B2 (en) * 2016-07-21 2018-02-21 大成建設株式会社 Underwater pile construction method
JP6339752B1 (en) * 2018-04-16 2018-06-06 株式会社ヤマガタ Reinforcement method for soft ground and reinforcement support device for soft ground
CN110241800A (en) * 2019-06-14 2019-09-17 中交二公局第二工程有限公司 Drilling platform construction method under a kind of disorderly Condition of Supercritical Flow of naked rock of high inclination-angle

Also Published As

Publication number Publication date
JP2000265450A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
Rasmussen Concrete immersed tunnels—Forty years of experience
CN109356186B (en) Bridge tower composite foundation applicable to deep water soft soil areas and construction method
JP4018288B2 (en) Artificial ground made of box that can pass water and its construction method
CN107338760B (en) Low-tidal-difference harbor section wall caisson wharf structure and construction method thereof
Burcharth et al. Types and functions of coastal structures
JP2015519489A (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
Watson et al. State of the art in storm-surge protection: the Netherlands Delta project
US5938374A (en) Soft landing structure and method setting the same
JP7389893B2 (en) Offshore structures and construction methods
KR20140092217A (en) Construction method of the pier with the working bardge
Esteban Lefler et al. Reinforced concrete caissons for port structures in Spain
CN109403325B (en) Large-diameter steel-concrete combined cylinder dispersed multi-open caisson foundation and construction method thereof
CN212128811U (en) Main tower artificial island structure of deep open sea suspension bridge
CN218374182U (en) Drainage pipeline system is got to bank
JP2655322B2 (en) Construction method of revetment structure
JP2002081048A (en) Soft landing bottom-type ocean rig
JP2556380B2 (en) Construction method of revetment structure
JPS622081B2 (en)
CHIILDS et al. THE ROYAL PORTBURY DOCK, BRISTOL.
JP2004011142A (en) Sea area environment-coexistent quay structure
JPH04297619A (en) Construction of underwater foundation
JPH08232251A (en) Method for constructing artificial island
JPS58160420A (en) Levee body using king post
CN114182681A (en) Sheet pile gravity combined breakwater construction method
Navy–YD NOTICE OF CANCELLATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees