JP4016712B2 - Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same - Google Patents

Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same Download PDF

Info

Publication number
JP4016712B2
JP4016712B2 JP2002137109A JP2002137109A JP4016712B2 JP 4016712 B2 JP4016712 B2 JP 4016712B2 JP 2002137109 A JP2002137109 A JP 2002137109A JP 2002137109 A JP2002137109 A JP 2002137109A JP 4016712 B2 JP4016712 B2 JP 4016712B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
lithium ion
ion conductive
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002137109A
Other languages
Japanese (ja)
Other versions
JP2002373705A (en
Inventor
幹雄 岡田
秀雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002137109A priority Critical patent/JP4016712B2/en
Publication of JP2002373705A publication Critical patent/JP2002373705A/en
Application granted granted Critical
Publication of JP4016712B2 publication Critical patent/JP4016712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、リチウムイオン導電性ポリマー電解質およびそれを用いたポリマー電解質電池に関する。
【0002】
【従来の技術】
近年、電子機器の発展に伴って、新しい高性能電池の出現が期待されている。現在、電子機器の電源としては、一次電池では二酸化マンガン・亜鉛電池が、また二次電池ではニッケル・カドミウム電池、ニッケル・亜鉛電池、ニッケル・水素化物電池等のニッケル系電池および鉛電池が、主に使用されている。
【0003】
これらの電池の電解液には、水酸化カリウム等のアルカリ水溶液や、硫酸等の水溶液が使用されている。水の理論分解電圧は1.23Vである。その値以上の電池系にすると、水の分解が起こりやすくなり、電気エネルギ−として安定に蓄えることは困難となるため、たかだか起電力が2V程度のものが実用化されているにすぎない。したがって、3V以上の高電圧系電池の電解液としては、非水系の電解液を使用することになる。その代表的な電池として、負極にリチウムを使用する、いわゆるリチウム電池がある。
【0004】
リチウム一次電池としては、二酸化マンガン・リチウム電池、フッ化カーボン・リチウム電池等があり、リチウム二次電池としては、二酸化マンガン・リチウム電池、酸化バナジウム・リチウム電池等がある。
【0005】
負極に金属リチウムを使用する二次電池は、金属リチウムのデンドライト析出によって短絡が発生しやすく、寿命が短いという欠点があり、また、金属リチウムの反応性が高いために、安全性を確保することが困難である。そのために、金属リチウムのかわりにグラファイトやカ−ボンを使用し、正極にコバルト酸リチウムやニッケル酸リチウムを使用する、いわゆるリチウムイオン電池が考案され、高エネルギ−密度電池として用いられてきているが、最近、用途の拡大にともない、さらに高性能な電池が求められてきている。とくに有機電解液電池は、水溶液系電池と比較して、高率での放電性能に劣るという問題点がある。
【0006】
【発明が解決しようとする課題】
有機電解液は、水溶液と比較してイオンの伝導度が極めて低く、その拡散速度が遅いために、特に低温において高率での放電が行えないという問題点があった。本発明は、上記問題点に鑑みなされたものであり、低温においても高率での放電が可能である非水系ポリマー電解質電池に用いられるリチウムイオン導電性ポリマー電解質を提供するものである。
【0007】
【課題を解決するための手段】
そこで、本発明は、リチウムイオンが通過することのできない絶縁性膜や、イオンの拡散速度が遅くなるリチウムイオン導電性ポリマー膜の原理と異なり、非水系ポリマー電池の電解質として全く新しい原理に基づく、細孔を有し多孔性である、リチウムイオン導電性ポリマー電解質およびそれを用いたポリマー電解質電池を提供するものである。
【0008】
本発明は、リチウムイオン導電性ポリマー電解質であって、前記ポリマー材料はリチウムイオン導電性を示し、かつ、前記ポリマーは多数の孔を有し、その孔中に有機電解液を保持することによって、イオンが拡散する通路が確保されていることを特徴とする。
【0009】
また本発明は、具体的には、多孔度が10%から80%のリチウムイオン導電性ポリマー電解質を提供するものである
【0010】
さらに本発明は、上記多孔性リチウムイオン導電性ポリマー電解質と遊離のリチウムイオン導電性有機電解液とを備えたポリマー電解質電池であることを特徴とする。
【0011】
【作用】
従来の液体電解質リチウム電池では、セパレータとしてポリプロピレンまたはポリエチレン等の多孔性高分子膜を用いており、その孔の中に電解液を保持することによって、リチウムイオンの伝導パスを確保している。この場合、セパレータはイオン伝導において絶縁物であり、高率での充電および放電をおこなう際の障害となる。
【0012】
また、電解質として、細孔のあいていない、従来のポリマー電解質を使用したリチウム電池においては、電解質中のカチオンおよびアニオンの拡散が極めて遅いために、電解質中のリチウムイオンの輸率が1であるか、あるいは1に近い場合でない限り高率での放電をおこなえないが、この条件を満足するポリマー電解質は得られていない。
【0013】
本発明による多孔性リチウムイオン導電性ポリマー電解質を用いたポリマー電解質電池においては、電解液内のみでなくポリマー電解質内をもリチウムイオンが通過可能となり、従来の液体電解質リチウム電池よりも高率での放電が可能となる。また、本発明による多孔性リチウムイオン導電性ポリマー電解質を用いたポリマー電解質電池においては、多孔性リチウムイオン導電性ポリマー電解質の細孔中の電解液によって、イオンが速く拡散する通路が確保されているため、従来のポリマー電解質リチウム電池よりも高率での放電が可能となる。
【0014】
【実施例】
[実施例1]
まず、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比率1:1で混合し、1mol/lのLiPFを加えて電解液とした。この電解液と分子量約100,000のポリアクリロニトリル(PAN)とを重量比率7:1で混合したものをステンレス板上に塗布し、100℃で30分間加熱した後、−20℃で15時間冷却したところ、ゲル状となり、その厚さは30μmであった。このゲル状ポリマー電解質に、上記電解液中で、ステンレスの細針を用いて、物理的に多数の孔をあけ、その孔の内部に電解液を含有させて、多孔度10%、20%、30%、40%、50%、60%、70%および80%の多孔性リウムイオン導電性ポリマー電解質を製作した。
【0015】
尚、上記実施例では、予めゲル状リチウムイオン導電性ポリマー電解質を製作し、ついで、リチウム塩を含有する非水電解液中で、前記ゲル状リチウムイオン導電性ポリマー電解質に多孔処理を施すことにより、リチウム塩を含有する非水電解液を多孔性リチウムイオン導電性ポリマー電解質の孔中に保持させたが、予め多孔性リチウムイオン導電性ポリマー電解質を製作し、ついで、この多孔性リチウムイオン導電性ポリマー電解質を、リチウム塩を含有する非水電解液中に浸漬することにより、リチウム塩を含有する非水電解液を多孔性リチウムイオン導電性ポリマー電解質の孔中に保持させることもできる。
【0016】
次に、正極の製作について説明する。まず、コバルト酸リチウム70wt%、アセチレンブラック6wt%、ポリビニリデンフルオライド(PVdF)9wt%、n−メチルピロリドン(NMP)15wt%を混合したものを、幅20mm、長さ480mm、厚さ20μmのアルミニウム箔上に塗布し、150℃で乾燥してNMPを蒸発させた。以上の操作をアルミニウム箔の両面におこなった後に、プレスをして正極とした。プレス後の正極の厚さは170μmであり、単位面積当たりに充填された活物質、導電剤および結着剤の重量は、23mg/cmであった。
【0017】
負極は次のようにして製作した。グラファイト81wt%、PVdF9wt%、NMP10wt%を混合したものを厚さ14μmの銅箔上に塗布し、150℃で乾燥してNMPを蒸発させた。以上の操作を銅箔の両面に対しておこなった後に、プレスを行い、負極とした。プレス後の負極の厚さは190μmであった。
【0018】
このようにして準備した多孔性リチウムイオン導電性ポリマー電解質、正極および負極を重ねて巻き、高さ47.0mm、幅22.2mm、厚さ6.4mmのステンレスケース中に挿入して、角型電池を組み立てた。この電池の内部には上記電解液2.5gを加え、公称容量400mAhの、電池(A)を製作した。
【0019】
[比較例1]
多孔性のリチウムイオン導電性電解質の代わりに、厚さ26μm、多孔度10%、20%、30%、40%、50%、60%、70%、80%のポリプロピレン膜を使用したこと以外は上記と同一構成である、公称容量が400mAhの、従来から公知の電池(B)を製作した。
【0020】
[比較例2]
リチウムイオン導電性ポリマー電解質に孔をあけないこと以外は前記と同一構成である、公称容量が400mAhの、従来から公知の電池(C)を製作した。
【0021】
これらの電池(A)、(B)および(C)を用いて、−10℃において、1CAの電流で1時間充電し、続いて4.1Vの定電圧で2時間充電した後、1CAの電流で2.5Vまで放電した。
【0022】
図1は、これら電池の試験結果を示す図であり、使用したセパレータの多孔度を横軸に、放電容量を縦軸に示したものである。同図から、本発明による多孔性リチウムイオン導電性ポリマー電解質を用いた電池(A)は、リチウムイオン導電性ポリマー電解質の多孔度が10%から80%の間において、多孔性リチウムイオン導電性ポリマー電解質ではなくポリプロピレン膜を用いた従来の電池(B)よりも、優れた放電容量を示していることが理解される。
【0023】
また、ポリマー電解質およびセパレータにおいては、その多孔度が大きくなると内部短絡および活物質の脱落等が問題となるため、本発明による多孔性リチウムイオン導電性ポリマー電解質の多孔度が10%である電池が、比較例1のポリプロピレンを用いた、セパレータの多孔度が80%の電池よりも優れた放電容量を示したことによって、本発明の重要性を理解することができる。
【0024】
図2は、多孔度が40%である実施例の多孔性リチウムイオン導電性ポリマー電解質を用いた電池、多孔度が40%である比較例1のポリプロピレンを用いた電池、および比較例2の細孔をあけないリチウムイオン導電性ポリマー電解質を用いた電池を用いて、図1と同様の実験をおこなった結果を示すものであり、縦軸は放電電圧(V)、横軸は放電容量(mAh)を示したものである。この図によって、本発明による多孔性リチウムイオン導電性ポリマー電解質を用いた電池(A)は、従来のポリプロピレンを用いた電池(B)および孔をあけていないイオン導電性ポリマー電解質を用いた電池(C)と比べて、優れた低温での放電特性を示すことが理解される。
【0025】
前記実施例では、ポリマー電解質中の高分子としてポリアクリロニトリルを使用しているが、これに限定されるものではなく、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアクリロニトリル、ポリビニリデンフルオライド、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン、もしくはこれらの誘導体を、単独で、あるいは混合して用いてもよい。また、上記ポリマーを構成する各種モノマーを共重合させた高分子を用いてもよい。
【0026】
また、前記実施例におけるリチウムイオン導電性ポリマー電解質では、リチウムイオン導電性を向上させるために、高分子中に含有させる有機電解液の有機溶媒として、またリチウムイオン導電性ポリマー電解質の孔中に含有させる電解液の有機溶媒として、ECとDECとの混合溶液を用いているが、これに限定されるものではなく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、もしくはこれらの混合物を使用してもよい。また、リチウムイオン導電性ポリマー電解質において、高分子中に含有させる電解液の有機溶媒と、孔中に含有させる電解液の有機溶媒とが異なっていてもよい。
【0027】
さらに、前記実施例においては、リチウムイオン導電性ポリマー電解質中および有機溶媒に含有させるリチウム塩としてLiPFを使用しているが、その他に、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCFSO、LiCl、LiBr、LiCFCO等のリチウム塩、もしくはこれらの混合物を用いてもよい。イオン導電性ポリマー電解質中と有機電解液中で異なる塩を用いてもよい。
【0028】
さらに、前記実施例の多孔性リチウムイオン導電性ポリマー電解質を用いたポリマー電解質電池においては、正極材料たるリチウムを吸蔵放出可能な化合物としてLiCoOを使用しているが、これに限定されるものではない。これ以外にも、無機化合物としては、組成式LiMO、またはLi(ただし、Mは遷移金属、0≦x≦1、0≦y≦2)で表される、複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。その具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。
【0029】
さらに、前記実施例の多孔性リチウムイオン導電性ポリマー電解質を用いたポリマー電解質電池においては、負極材料たる化合物としてグラファイトを使用しているが、その他に、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe等の遷移金属複合酸化物、WO、MoO等の遷移金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム箔、又はこれらの混合物を用いてもよい。
【0030】
【発明の効果】
以上述べたように、本発明にかかるリチウムイオン導電性ポリマー電解質は、ポリマー材料は有機電解液を含有し、かつ、ポリマー材料は多数の孔を有し、その孔中に有機電解液を保持することによって、イオンが拡散する通路が確保されていることを特徴とする。
【0031】
本発明は、具体的には、多孔度が10%から80%のリチウムイオン導電性ポリマ−電解質を提供する。本発明のリチウムイオン導電性ポリマ−電解質は、ポリマー電解質内をもリチウムイオンが通過可能となり、さらに、多孔性ポリマー電解質の多数の孔中の電解液によって、イオンが拡散する通路が確保されている。
【0032】
さらに本発明は、上記多孔性リチウムイオン導電性ポリマー電解質と遊離のリチウムイオン導電性有機電解液とを備えたポリマー電解質電池であることを特徴とする。
【0033】
これにより、本発明の多孔性イオン導電性ポリマー電解質を用いた電池は、従来の非水系電解液電池よりも、低温で高率放電性能がよく、高温においても自己放電が少なく、長期の充電放置特性に優れたポリマ−電池とすることができる。
【図面の簡単な説明】
【図1】本発明の多孔性イオン導電性ポリマー電解質を用いた電池と比較例の公知の物質を用いた電池とにおける、多孔度と放電容量との関係を示す図である。
【図2】本発明の多孔性イオン導電性ポリマー電解質を用いた電池と比較例の公知の物質を用いた電池との放電特性を示す図である。
[0001]
[Industrial application fields]
The present invention relates to a lithium ion conductive polymer electrolyte and a polymer electrolyte battery using the same .
[0002]
[Prior art]
In recent years, with the development of electronic devices, the appearance of new high-performance batteries is expected. Currently, the main power sources of electronic devices are manganese dioxide / zinc batteries for primary batteries, and nickel-based batteries such as nickel / cadmium batteries, nickel / zinc batteries, nickel / hydride batteries, and lead batteries for secondary batteries. Is used.
[0003]
An alkaline aqueous solution such as potassium hydroxide or an aqueous solution such as sulfuric acid is used for the electrolyte of these batteries. The theoretical decomposition voltage of water is 1.23V. If the battery system exceeds that value, water will be easily decomposed, and it will be difficult to stably store it as electric energy. Therefore, only those having an electromotive force of about 2 V have been put into practical use. Therefore, a non-aqueous electrolyte solution is used as an electrolyte solution for a high voltage battery of 3 V or higher. As a typical battery, there is a so-called lithium battery using lithium for the negative electrode.
[0004]
Examples of lithium primary batteries include manganese dioxide / lithium batteries and carbon fluoride / lithium batteries, and examples of lithium secondary batteries include manganese dioxide / lithium batteries and vanadium oxide / lithium batteries.
[0005]
Secondary batteries that use metallic lithium for the negative electrode have the disadvantages of short-circuiting due to the deposition of metallic lithium dendrite, the short lifetime, and the high reactivity of metallic lithium to ensure safety. Is difficult. Therefore, a so-called lithium ion battery using graphite or carbon instead of metallic lithium and using lithium cobaltate or nickel nickelate as a positive electrode has been devised and used as a high energy density battery. Recently, with the expansion of applications, higher performance batteries have been demanded. In particular, the organic electrolyte battery has a problem that the discharge performance at a high rate is inferior to that of the aqueous battery.
[0006]
[Problems to be solved by the invention]
The organic electrolyte has a problem that the conductivity of ions is extremely low as compared with the aqueous solution and the diffusion rate is slow, so that discharge at a high rate cannot be performed particularly at a low temperature. The present invention has been made in view of the above problems, and provides a lithium ion conductive polymer electrolyte used for a non-aqueous polymer electrolyte battery capable of discharging at a high rate even at a low temperature.
[0007]
[Means for Solving the Problems]
Therefore, the present invention is based on a completely new principle as an electrolyte of a non-aqueous polymer battery, unlike the principle of an insulating film through which lithium ions cannot pass and a lithium ion conductive polymer film in which the diffusion rate of ions is slow. The present invention provides a lithium ion conductive polymer electrolyte having pores and being porous, and a polymer electrolyte battery using the lithium ion conductive polymer electrolyte .
[0008]
The present invention is a lithium ion conductive polymer electrolyte , wherein the polymer material exhibits lithium ion conductivity, and the polymer has a large number of pores, and by holding an organic electrolyte in the pores, A path through which ions diffuse is secured.
[0009]
The present invention specifically provides a lithium ion conductive polymer electrolyte having a porosity of 10% to 80%.
Furthermore, the present invention is a polymer electrolyte battery comprising the porous lithium ion conductive polymer electrolyte and a free lithium ion conductive organic electrolyte.
[0011]
[Action]
In a conventional liquid electrolyte lithium battery, a porous polymer film such as polypropylene or polyethylene is used as a separator, and a lithium ion conduction path is secured by holding an electrolytic solution in the hole. In this case, the separator is an insulator in ionic conduction, and becomes an obstacle when charging and discharging at a high rate.
[0012]
In addition, in a lithium battery using a conventional polymer electrolyte without pores as an electrolyte, the transport number of lithium ions in the electrolyte is 1 because diffusion of cations and anions in the electrolyte is extremely slow. However, unless it is close to 1, discharge at a high rate cannot be performed, but a polymer electrolyte satisfying this condition has not been obtained.
[0013]
In the polymer electrolyte battery using the porous lithium ion conductive polymer electrolyte according to the present invention, lithium ions can pass not only in the electrolytic solution but also in the polymer electrolyte, which is higher than the conventional liquid electrolyte lithium battery. Discharge is possible. Further, in the polymer electrolyte battery using the porous lithium ion conductive polymer electrolyte according to the present invention, a passage through which ions diffuse quickly is secured by the electrolyte in the pores of the porous lithium ion conductive polymer electrolyte. Therefore, the discharge can be performed at a higher rate than the conventional polymer electrolyte lithium battery.
[0014]
【Example】
[Example 1]
First, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1, and 1 mol / l LiPF 6 was added to obtain an electrolytic solution. A mixture of this electrolytic solution and polyacrylonitrile (PAN) having a molecular weight of about 100,000 in a weight ratio of 7: 1 is applied on a stainless steel plate, heated at 100 ° C. for 30 minutes, and then cooled at −20 ° C. for 15 hours. As a result, it became a gel and its thickness was 30 μm. In this gel polymer electrolyte, a large number of holes are physically opened in the above-mentioned electrolyte solution using a stainless fine needle, and the electrolyte solution is contained in the inside of the hole, so that the porosity is 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% porous lithium ion conducting polymer electrolytes were fabricated.
[0015]
In the above embodiment, to prepare a pre-gel lithium ion conductive polymer electrolyte, and then, in a non-aqueous electrolyte solution containing a lithium salt, by the porous processing performed on the gel-like lithium ion conductive polymer electrolyte The non-aqueous electrolyte containing the lithium salt was held in the pores of the porous lithium ion conductive polymer electrolyte , but the porous lithium ion conductive polymer electrolyte was manufactured in advance, and then this porous lithium ion conductive By immersing the polymer electrolyte in a non-aqueous electrolyte containing a lithium salt, the non-aqueous electrolyte containing a lithium salt can be held in the pores of the porous lithium ion conductive polymer electrolyte .
[0016]
Next, production of the positive electrode will be described. First, a mixture of lithium cobaltate 70 wt%, acetylene black 6 wt%, polyvinylidene fluoride (PVdF) 9 wt% , and n-methylpyrrolidone (NMP) 15 wt% was obtained. It was applied on a foil and dried at 150 ° C. to evaporate NMP. After performing the above operation on both surfaces of the aluminum foil, it was pressed to obtain a positive electrode. The thickness of the positive electrode after pressing was 170 μm, and the weight of the active material, the conductive agent and the binder filled per unit area was 23 mg / cm 2 .
[0017]
The negative electrode was manufactured as follows. A mixture of 81 wt% graphite, 9 wt% PVdF, and 10 wt% NMP was applied onto a 14 μm thick copper foil and dried at 150 ° C. to evaporate NMP. After the above operation was performed on both sides of the copper foil, pressing was performed to obtain a negative electrode. The thickness of the negative electrode after pressing was 190 μm.
[0018]
The porous lithium ion conductive polymer electrolyte prepared in this way, the positive electrode and the negative electrode are rolled up and inserted into a stainless steel case having a height of 47.0 mm, a width of 22.2 mm, and a thickness of 6.4 mm. I assembled the battery. Inside the battery, 2.5 g of the electrolyte solution was added to manufacture a battery (A) having a nominal capacity of 400 mAh.
[0019]
[Comparative Example 1]
Instead of using a porous lithium ion conductive electrolyte , a polypropylene film having a thickness of 26 μm, a porosity of 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% was used. A conventionally known battery (B) having the same configuration as described above and having a nominal capacity of 400 mAh was manufactured.
[0020]
[Comparative Example 2]
A conventionally known battery (C) having a nominal capacity of 400 mAh having the same configuration as that described above except that the lithium ion conductive polymer electrolyte was not perforated was manufactured.
[0021]
Using these batteries (A), (B), and (C), charging at -10 ° C. with a current of 1 CA for 1 hour, followed by charging at a constant voltage of 4.1 V for 2 hours, and then a current of 1 CA Was discharged to 2.5V.
[0022]
FIG. 1 is a diagram showing test results of these batteries, in which the horizontal axis indicates the porosity of the separator used and the vertical axis indicates the discharge capacity. From the figure, a battery using the porous lithium ion conductive polymer electrolyte according to the present invention (A), between the porosity of the lithium ion conducting polymer electrolyte is 80% to 10%, the porous lithium ion conductive polymer It is understood that the discharge capacity is superior to that of the conventional battery (B) using a polypropylene film instead of the electrolyte .
[0023]
Further, in the polymer electrolyte and the separator, when the porosity becomes large, internal short circuit and dropping of the active material become a problem. Therefore, there is a battery in which the porosity of the porous lithium ion conductive polymer electrolyte according to the present invention is 10%. The importance of the present invention can be understood by showing the discharge capacity superior to that of the battery having the separator porosity of 80% using the polypropylene of Comparative Example 1.
[0024]
FIG. 2 shows a battery using the porous lithium ion conductive polymer electrolyte of the example having a porosity of 40%, a battery using the polypropylene of the comparative example 1 having a porosity of 40%, and the thin film of the comparative example 2. FIG. 1 shows the results of an experiment similar to that shown in FIG. 1 using a battery using a lithium ion conductive polymer electrolyte that does not open a hole. The vertical axis represents discharge voltage (V), and the horizontal axis represents discharge capacity (mAh). ). According to this figure, a battery (A) using a porous lithium ion conductive polymer electrolyte according to the present invention includes a battery (B) using a conventional polypropylene and a battery using an ion conductive polymer electrolyte having no holes ( It can be seen that it exhibits superior low temperature discharge characteristics compared to C).
[0025]
In the above embodiment, polyacrylonitrile is used as the polymer in the polymer electrolyte. However, the polymer electrolyte is not limited thereto, but is not limited to polyethers such as polyethylene oxide and polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polychlorinated. Vinylidene, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethyleneimine, polybutadiene, polystyrene, polyisoprene, or derivatives thereof may be used alone or in combination. Good. Further, a polymer obtained by copolymerizing various monomers constituting the polymer may be used.
[0026]
Moreover, in the lithium ion conductive polymer electrolyte in the said Example, in order to improve lithium ion conductivity, it contains as an organic solvent of the organic electrolyte solution contained in a polymer | macromolecule, and in the hole of a lithium ion conductive polymer electrolyte. A mixed solution of EC and DEC is used as an organic solvent for the electrolytic solution to be used, but is not limited to this, and is not limited to this. Polar solvents such as acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or the like The mixture may be used. Further, in the lithium ion conductive polymer electrolyte , the organic solvent of the electrolytic solution contained in the polymer may be different from the organic solvent of the electrolytic solution contained in the pores.
[0027]
Further, in the above embodiment, the use of the LiPF 6 as the lithium salt to be incorporated in and organic solvent a lithium ion conducting polymer electrolyte, the other, LiBF 4, LiAsF 6, LiClO 4, LiSCN, LiI, LiCF 3 SO 3, LiCl, LiBr, lithium salts such as LiCF 3 CO 2 or may be a mixture thereof. Different salts may be used in the ion conductive polymer electrolyte and in the organic electrolyte.
[0028]
Furthermore, in the polymer electrolyte battery using the porous lithium ion conductive polymer electrolyte of the above example, LiCoO 2 is used as a compound capable of occluding and releasing lithium as the positive electrode material. However, the present invention is not limited to this. Absent. In addition to this, as the inorganic compound, a compound represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) is used. An oxide, an oxide having a tunnel-like hole, or a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 0 5 , V 6 O 13 , TiO 2 and TiS 2 . Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.
[0029]
Further, in the polymer electrolyte battery using the porous lithium ion conductive polymer electrolyte of the above example, graphite is used as the compound as the negative electrode material. In addition, Al, Si, Pb, Sn, Zn, Cd Alloys of lithium and the like, transition metal composite oxides such as LiFe 2 O 3 , transition metal oxides such as WO 2 and MoO 2 , carbonaceous materials such as graphite and carbon, nitriding such as Li 5 (Li 3 N) Lithium, metal lithium foil, or a mixture thereof may be used.
[0030]
【The invention's effect】
As described above, in the lithium ion conductive polymer electrolyte according to the present invention, the polymer material contains an organic electrolyte, and the polymer material has a large number of pores, and the organic electrolyte is held in the pores. Thus, a passage through which ions diffuse is secured.
[0031]
The present invention specifically provides a lithium ion conductive polymer electrolyte having a porosity of 10% to 80%. The lithium ion conductive polymer electrolyte of the present invention allows lithium ions to pass through the polymer electrolyte, and further, a passage through which ions are diffused is ensured by the electrolytic solution in the numerous pores of the porous polymer electrolyte. .
[0032]
Furthermore, the present invention is a polymer electrolyte battery comprising the porous lithium ion conductive polymer electrolyte and a free lithium ion conductive organic electrolyte.
[0033]
As a result, the battery using the porous ion conductive polymer electrolyte of the present invention has a high rate discharge performance at a low temperature and less self-discharge at a high temperature than a conventional non-aqueous electrolyte battery, and can be left for a long time. A polymer battery having excellent characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between porosity and discharge capacity in a battery using the porous ion conductive polymer electrolyte of the present invention and a battery using a known substance of a comparative example.
FIG. 2 is a diagram showing discharge characteristics of a battery using the porous ion conductive polymer electrolyte of the present invention and a battery using a known substance of a comparative example.

Claims (2)

リチウムイオン導電性ポリマー電解質であって、前記ポリマー材料は有機電解液を含有することでリチウムイオン導電性を示し、かつ、前記ポリマー材料は多数の孔を有し、その孔中に有機電解液を保持することによって、イオンが拡散する通路が確保されていることを特徴とする多孔性リチウムイオン導電性ポリマー電解質A lithium ion conductive polymer electrolyte , wherein the polymer material contains an organic electrolyte and exhibits lithium ion conductivity, and the polymer material has a large number of holes, and the organic electrolyte is placed in the holes. A porous lithium ion conductive polymer electrolyte characterized in that a passage through which ions diffuse is secured by holding. 正極と、負極と、請求項1記載の多孔性リチウムイオン導電性ポリマー電解質、前記多孔性リチウムイオン導電性ポリマー電解質のポリマー材料に含有された有機電解液および孔中に保持された有機電解液以外に、遊離のリチウムイオン導電性有機電解液を備えたことを特徴とするポリマー電解質電池 The positive electrode, the negative electrode, the porous lithium ion conductive polymer electrolyte according to claim 1, the organic electrolyte contained in the polymer material of the porous lithium ion conductive polymer electrolyte, and the organic electrolyte retained in the pores In addition, a polymer electrolyte battery comprising a free lithium ion conductive organic electrolyte.
JP2002137109A 2002-05-13 2002-05-13 Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same Expired - Fee Related JP4016712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137109A JP4016712B2 (en) 2002-05-13 2002-05-13 Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137109A JP4016712B2 (en) 2002-05-13 2002-05-13 Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02615095A Division JP3385516B2 (en) 1995-01-18 1995-01-18 Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery

Publications (2)

Publication Number Publication Date
JP2002373705A JP2002373705A (en) 2002-12-26
JP4016712B2 true JP4016712B2 (en) 2007-12-05

Family

ID=19194491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137109A Expired - Fee Related JP4016712B2 (en) 2002-05-13 2002-05-13 Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same

Country Status (1)

Country Link
JP (1) JP4016712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617197B2 (en) * 1996-06-15 2005-02-02 ソニー株式会社 Flame retardant gel electrolyte and battery using the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214501A (en) * 1961-09-12 1965-10-26 Esb Reeves Corp Method of making non-adhesive, highly cohesive microporous plastic bandage material or the like
BE757690A (en) * 1969-10-20 1971-04-19 Minnesota Mining & Mfg MICROPOROUS FILMS AND METHODS FOR THEIR MANUFACTURE
DK171108B1 (en) * 1976-08-30 1996-06-10 Akzo Nv Microporous polymer body and its preparation and use
DE3032380A1 (en) * 1979-09-04 1981-03-19 Celanese Corp., 10036 New York, N.Y. METHOD FOR PRODUCING HYDROPHILIC MICROPOROESE FILMS
CA1226112A (en) * 1982-09-09 1987-09-01 Minnesota Mining And Manufacturing Company Microporous sheet material, method of making and articles made therewith
GB2201287B (en) * 1987-02-18 1990-09-26 Atomic Energy Authority Uk Solid state cell electrolyte
JP2630643B2 (en) * 1988-12-27 1997-07-16 宇部興産株式会社 Solid polymer electrolyte membrane
JPH0395871A (en) * 1989-04-29 1991-04-22 Tonen Corp High density energy capacity secondary battery
GB2232982A (en) * 1989-06-13 1991-01-02 Scimat Ltd Microporous films
JPH04204522A (en) * 1990-11-30 1992-07-24 Tonen Corp Electrolytic thin film
JP3530544B2 (en) * 1992-09-14 2004-05-24 キヤノン株式会社 Rechargeable battery
JPH05290617A (en) * 1992-04-07 1993-11-05 Mitsubishi Cable Ind Ltd Porous type solid-state electrolyte
JP3441107B2 (en) * 1992-05-18 2003-08-25 三菱電線工業株式会社 Lithium secondary battery
JPH06150939A (en) * 1992-11-05 1994-05-31 Mitsubishi Cable Ind Ltd Porous electrolyte base, its manufacture, and solid electrolyte
JPH06188030A (en) * 1992-12-18 1994-07-08 Yuasa Corp Nonaqueous electrolyte battery
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5571634A (en) * 1993-03-05 1996-11-05 Bell Communications Research, Inc. Hybrid lithium-ion battery polymer matrix compositions
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
US5587253A (en) * 1993-03-05 1996-12-24 Bell Communications Research, Inc. Low resistance rechargeable lithium-ion battery
US5240790A (en) * 1993-03-10 1993-08-31 Alliant Techsystems Inc. Lithium-based polymer electrolyte electrochemical cell
US5478668A (en) * 1993-11-30 1995-12-26 Bell Communications Research Inc. Rechargeable lithium battery construction
US5498489A (en) * 1995-04-14 1996-03-12 Dasgupta; Sankar Rechargeable non-aqueous lithium battery having stacked electrochemical cells

Also Published As

Publication number Publication date
JP2002373705A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP3385516B2 (en) Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
CN101355146A (en) Anode, battery, and methods of manufacturing them
JP3525553B2 (en) Non-aqueous polymer battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JPH09259929A (en) Lithium secondary cell
JP3885227B2 (en) Non-aqueous secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2007172878A (en) Battery and its manufacturing method
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery
JP4016712B2 (en) Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same
JP2002343437A (en) Nonaqueous electrolyte battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JPH1126025A (en) Cylindrical nonaqueous battery
JP2002203551A (en) Non-aqueous electrolyte battery
JP2002093463A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees