JPH05290617A - Porous type solid-state electrolyte - Google Patents

Porous type solid-state electrolyte

Info

Publication number
JPH05290617A
JPH05290617A JP11533892A JP11533892A JPH05290617A JP H05290617 A JPH05290617 A JP H05290617A JP 11533892 A JP11533892 A JP 11533892A JP 11533892 A JP11533892 A JP 11533892A JP H05290617 A JPH05290617 A JP H05290617A
Authority
JP
Japan
Prior art keywords
electrolyte
porous
pores
state electrolyte
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11533892A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Marumoto
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP11533892A priority Critical patent/JPH05290617A/en
Publication of JPH05290617A publication Critical patent/JPH05290617A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a porous type solid-state electrolyte being excellent in ionic conductivity. CONSTITUTION:A porous type solid-state electrolyte comprises part of an electrolyte retained in each of pores in a porous base of intercommunicating pore structure, and the pore has ethereal oxygen on its surface at least. The ethereal oxygen present respectively on the surfaces of the pores can thus promote dissociation of the electrolyte, so that the porous type solid-state electrolyte may be manufactured without difficulty while the process of making porous structure for the solid-state electrolyte may be also controlled without difficulty.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン伝導度に優れて
薄型電池等の形成に好適な多孔型固体電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous solid electrolyte having excellent ionic conductivity and suitable for forming thin batteries and the like.

【0002】[0002]

【従来の技術】従来、高分子多孔質膜の連続相ドメイン
中やフィブリル構造を有する短繊維基材中に、イオン伝
導性ポリマーと電解質の混合物を充填してなる固体電解
質が知られていた(特開昭63−102104号公報、
特開昭60−165058号公報)。しかしながら、イ
オン伝導度に劣る問題点があつた。
2. Description of the Related Art Heretofore, there has been known a solid electrolyte obtained by filling a mixture of an ion conductive polymer and an electrolyte in a continuous phase domain of a polymer porous membrane or a short fiber base material having a fibril structure ( JP-A-63-102104,
JP-A-60-165058). However, there was a problem of poor ionic conductivity.

【0003】[0003]

【発明が解決しようとする課題】本発明は、イオン伝導
度に優れる多孔型固体電解質の開発を課題とする。
DISCLOSURE OF THE INVENTION The present invention aims to develop a porous solid electrolyte having excellent ionic conductivity.

【0004】[0004]

【課題を解決するための手段】本発明は、連通構造を有
する多孔ベースの孔に電解質を保持させてなり、かつ前
記の孔が少なくとも表面にエーテル性酸素を有すること
を特徴とする多孔型固体電解質を提供するものである。
DISCLOSURE OF THE INVENTION The present invention is a porous solid characterized in that an electrolyte is held in pores of a porous base having a communicating structure, and the pores have etheric oxygen at least on the surface. It provides an electrolyte.

【0005】[0005]

【作用】多孔ベースの孔にエーテル性酸素をもたせるこ
とによりイオン伝導度が向上する。すなわち、従来の多
孔型固体電解質における高分子多孔質膜や短繊維基材か
らなる多孔ベースは、単に電解質の保持体として機能す
るのみでそれ自体がイオン伝導度に寄与するものではな
かったが、本発明では多孔ベースのエーテル性酸素が電
解質の解離を増大させ、従ってキャリアイオンの増大で
イオン伝導度が向上する。また、多孔構造の制御で電流
密度の向上をはかることができる。
The ionic conductivity is improved by providing ethereal oxygen in the pores of the porous base. That is, a porous base composed of a polymer porous membrane or a short fiber base material in a conventional porous solid electrolyte does not itself contribute to the ionic conductivity by merely functioning as a holder for the electrolyte, In the present invention, the pore-based ethereal oxygen increases the dissociation of the electrolyte, and thus the increase of carrier ions improves the ionic conductivity. Moreover, the current density can be improved by controlling the porous structure.

【0006】[0006]

【実施例】本発明の多孔型固体電解質は、少なくとも孔
表面にエーテル性酸素を有する連通構造の多孔ベースの
孔に電解質を保持させたものである。連通構造の多孔ベ
ースについては特に限定はなく、ゴムないしプラスチッ
ク、セラミック、活性炭などの適宜なものからなってい
てよい。多孔ベースは、フィルム等の基板形態が一般的
であるが、それに限定されず適宜な形態とすることがで
きる。
EXAMPLES The porous solid electrolyte of the present invention is one in which the electrolyte is retained in the pores of the porous base having a communicating structure having at least ethereal oxygen on the pore surface. The porous base having a communicating structure is not particularly limited, and may be made of rubber, plastic, ceramic, activated carbon or the like. The porous base is generally in the form of a substrate such as a film, but it is not limited to this and may be in an appropriate form.

【0007】ゴムないしプラスチックからなる連通構造
の多孔ベースの形成は、例えば発泡剤を配合して発泡処
理する方法、気泡を混入さて固化させる方法、重合時の
縮合反応で発生したガスを利用して発泡させる方法、非
親和性溶媒の混入下に硬化処理してその後、混入溶媒を
除去する方法、ゾル・ゲル方式で製膜する方法などによ
り行うことができる。
The porous base having a continuous structure made of rubber or plastic is formed by, for example, a method of blending a foaming agent for foaming treatment, a method of mixing bubbles for solidification, and a gas generated by a condensation reaction during polymerization. It can be carried out by a method of foaming, a method of curing after mixing with a non-affinity solvent and then removing the mixed solvent, a method of forming a film by a sol-gel method, or the like.

【0008】セラミックからなる連通構造の多孔ベース
の形成は、例えばゾル・ゲル方式で製膜する方法、粉末
を焼結する方法などにより行うことができる。活性炭な
どの多孔質粒子を保形して多孔ベースを得ることもでき
る。
The porous base having a continuous structure made of ceramic can be formed by, for example, a method of forming a film by a sol-gel method, a method of sintering powder, or the like. A porous base can also be obtained by retaining the shape of porous particles such as activated carbon.

【0009】孔表面にエーテル性酸素を有する多孔ベー
スの形成は例えば、エーテル系ポリマーで多孔ベースを
形成する方式等のベースそのものをエーテル性酸素含有
物で形成する方法、多孔ベースの孔表面をエーテル性酸
素含有物でコートする方法、孔表面を化学的に処理して
エーテル性酸素を修飾する方法など、適宜な方法で行う
ことができる。
The formation of the porous base having ethereal oxygen on the surface of the pores includes, for example, a method of forming the base itself with an ethereal oxygen-containing material such as a method of forming the porous base with an ether polymer, and the surface of the pores of the porous base with ether. It can be carried out by an appropriate method such as a method of coating with a reactive oxygen-containing material or a method of chemically treating the surface of the pores to modify the etheric oxygen.

【0010】前記したエーテル系ポリマーの例として
は、p−キノンジアジドを紫外線硬化処理してなるポリ
p−フェニレンオキシド、ポリエチレンオキシド、ポリ
プロピレンオキシド、ポリエチレンオキシド・プロピレ
ンオキシド共重合体、ポリアリレート、ポリエーテルイ
ミド、ポリエーテルスルホン、ポリエーテルエーテルケ
トン、ポリオキシベンゾイン、ポリフェニレンスルフィ
ドなどがあげられる。
Examples of the above-mentioned ether-based polymer include poly-p-phenylene oxide, polyethylene oxide, polypropylene oxide, polyethylene oxide / propylene oxide copolymer, polyarylate, and polyetherimide obtained by ultraviolet curing p-quinonediazide. , Polyether sulfone, polyether ether ketone, polyoxybenzoin, polyphenylene sulfide and the like.

【0011】孔表面をコートするためのエーテル性酸素
含有物としては、前記したエーテル系ポリマーないしオ
リゴマーなどの適宜なエーテル系化合物を用いることが
できる。孔表面のコーティング処理は、例えばエーテル
性酸素含有物の溶液中に多孔ベースを浸漬するなどし
て、孔内にエーテル性酸素含有物液を充填したのち乾燥
処理する方法などの適宜な方法で行ってよい。
As the etheric oxygen-containing substance for coating the surface of the pores, suitable ether compounds such as the above-mentioned ether polymers or oligomers can be used. The coating treatment of the surface of the pores is performed by an appropriate method such as a method of immersing the porous base in a solution of the ethereal oxygen-containing material, filling the pores with the ethereal oxygen-containing material solution, and then performing a drying treatment. You may.

【0012】孔表面へのエーテル性酸素の化学的修飾
は、例えば水酸基を有するセラミック系多孔ベースの孔
に濃硫酸等を充填して脱水反応させる方法などにより行
うことができる。多孔ベースが水酸基を有しない場合に
は、孔表面を酸等で変性処理することにより水酸基を導
入することができる。
The chemical modification of the surface of the pores with ethereal oxygen can be carried out by, for example, a method of filling the pores of a ceramic-based porous base having a hydroxyl group with concentrated sulfuric acid or the like to carry out a dehydration reaction. When the porous base does not have a hydroxyl group, the hydroxyl group can be introduced by modifying the pore surface with an acid or the like.

【0013】多孔ベースの孔には電解質を保持させる。
その電解質は、孔に充填された状態にあってもよいし、
孔表面に付着する状態にあってもよい。また電解質は単
独で孔に充填ないし付着していてもよいし、イオン伝導
性の媒体に混入された状態で充填ないし付着していても
よい。
The electrolyte is retained in the pores of the porous base.
The electrolyte may be filled in the pores,
It may be attached to the surface of the holes. Further, the electrolyte may be filled or attached to the pores alone, or may be filled or attached in a state of being mixed in the ion conductive medium.

【0014】多孔ベースの孔への電解質の供給は、例え
ば電解質の溶液、就中アルコールやアセトニトリルの如
き有機溶媒を用いた溶液中に多孔ベースを浸漬する方式
など、適宜な方式で行うことができる。
The electrolyte can be supplied to the pores of the porous base by any suitable method, for example, by immersing the porous base in a solution of the electrolyte, especially a solution using an organic solvent such as alcohol or acetonitrile. ..

【0015】電解質としては適宜なものを用いることが
できる。好ましくは、Liイオン、Naイオン、Kイオン
等の陽イオンと、Iイオン、CF3SO3イオン、BF4
イオン、ClO4イオン、AlCl4イオン、PF6イオン、
AsF6イオン等の陰イオンとの組合せからなるアルカリ
金属塩などが用いられる。
An appropriate electrolyte can be used as the electrolyte. Preferably, cations such as Li ions, Na ions, and K ions, and I ions, CF 3 SO 3 ions, and BF 4
Ion, ClO 4 ion, AlCl 4 ion, PF 6 ion,
An alkali metal salt or the like formed of a combination with an anion such as AsF 6 ion is used.

【0016】電解質混入用のイオン伝導性媒体として
は、上記したエーテル系ポリマー、ポリアクリロニトリ
ル、ポリカーボネートの如き極性基を有するポリマーな
いしオリゴマー等の電解質解離性の重合体などがあげら
れる。その場合、電解質の配合量は目的とするイオン伝
導度などに応じて適宜に決定してよい。なお電解質は、
充分に乾燥処理して用いることが好ましい。また多孔ベ
ースも真空雰囲気下等で充分に脱ガス処理したものを用
いることが好ましい。得られた多孔型固体電解質は、電
池などの種々の製品の形成に用いることができる。
Examples of the ion conductive medium for mixing the electrolyte include electrolyte-dissociable polymers such as the above-mentioned ether polymers, polyacrylonitrile, and polycarbonate-containing polymers or oligomers having polar groups. In that case, the blending amount of the electrolyte may be appropriately determined according to the desired ionic conductivity and the like. The electrolyte is
It is preferable to perform a sufficient drying treatment before use. It is also preferable to use a porous base that has been sufficiently degassed in a vacuum atmosphere or the like. The obtained porous solid electrolyte can be used for forming various products such as batteries.

【0017】実施例1 架橋剤としてアシル系パーオキサイドを配合したシリコ
ーンゴムに、その50容量%のエタノールを加えて充分
に撹拌混合したのちキャスティングし、それを乾燥処理
して連通構造の多孔ベース(厚さ300μm)を得た。
Example 1 50% by volume of ethanol was added to a silicone rubber blended with an acyl peroxide as a cross-linking agent, and the mixture was sufficiently stirred and mixed, followed by casting and drying treatment to obtain a porous base having a continuous structure ( A thickness of 300 μm) was obtained.

【0018】次に、前記の多孔ベースに分子量5000
のポリエチレンオキシドのトルエン溶液を真空含浸させ
たのち乾燥処理して、孔表面にポリエチレンオキシドを
絡ませ、ついでポリカーボネート100重量部と過塩素
酸リチウム1モルの混合物を真空含浸させて多孔型固体
電解質を得た。得られた多孔型固体電解質について交流
インピーダンスアナライザーにより室温におけるイオン
伝導度を測定した結果(以下同じ)、1.2/103
/cmであった。
Next, a molecular weight of 5000 is added to the porous base.
The solution of polyethylene oxide in toluene was vacuum-dried and then dried to entangle polyethylene oxide on the surface of the pores. Then, a mixture of 100 parts by weight of polycarbonate and 1 mol of lithium perchlorate was vacuum-impregnated to obtain a porous solid electrolyte. It was The ion conductivity at room temperature of the obtained porous solid electrolyte was measured by an AC impedance analyzer (the same applies hereinafter), 1.2 / 10 3 S
It was / cm.

【0019】実施例2 粒径0.03μmのTiO2粉末を焼結して得た連通構造
の多孔ベースに塩酸を含浸させて孔表面に水酸基を導入
し、充分に乾燥したのち濃硫酸を含浸させて脱水反応さ
せ、孔表面にエーテル性酸素を有する多孔ベースを得、
それを用いて実施例1に準じ、イオン伝導度が1.4/
103S/cmの多孔型固体電解質を得た。
Example 2 Hydrochloric acid was impregnated into a porous base having a continuous structure obtained by sintering TiO 2 powder having a particle size of 0.03 μm to introduce hydroxyl groups on the pore surfaces, and after sufficiently drying, impregnated with concentrated sulfuric acid. And dehydration reaction to obtain a porous base having etheric oxygen on the surface of the pores,
Using it, according to Example 1, the ionic conductivity is 1.4 /
A porous solid electrolyte of 10 3 S / cm was obtained.

【0020】実施例3 p−キノンジアジド2重量部とエタノール1重量部を充
分に混合したものの展開層を紫外線で硬化処理したのち
真空乾燥させて、ポリp−フェニレンオキシドからなる
連通構造の多孔ベース(厚さ100μm)を得、その孔
にポリカーボネート100重量部と過塩素酸リチウム1
モルの混合物を真空含浸させて多孔型固体電解質を得
た。得られた多孔型固体電解質のイオン伝導度は、1.
6/103S/cmであった。
Example 3 2 parts by weight of p-quinonediazide and 1 part by weight of ethanol were thoroughly mixed, and the developing layer was cured by ultraviolet rays and then dried in vacuum to form a porous base of a continuous structure consisting of poly (p-phenylene oxide) ( Thickness of 100 μm) and 100 parts by weight of polycarbonate and lithium perchlorate in the pores.
The molar mixture was vacuum impregnated to obtain a porous solid electrolyte. The ionic conductivity of the obtained porous solid electrolyte was 1.
It was 6/10 3 S / cm.

【0021】比較例 特開昭63−102104号公報に準拠して、高分子多
孔質膜の連続相ドメイン中に、ポリカーボネート100
重量部と過塩素酸リチウム1モルの混合物を充填して固
体電解質を得た。得られた固体電解質のイオン伝導度
は、1/104S/cmであった。
Comparative Example According to Japanese Patent Laid-Open No. 63-102104, polycarbonate 100 is added in the continuous phase domain of a polymer porous membrane.
A solid electrolyte was obtained by charging a mixture of 1 part by weight and 1 mol of lithium perchlorate. The ionic conductivity of the obtained solid electrolyte was 1/10 4 S / cm.

【0022】[0022]

【発明の効果】本発明によれば、孔表面のエーテル性酸
素が電解質の解離を増大させてイオン伝導度に優れる多
孔型固体電解質を得ることができる。また多孔型固体電
解質の製造が容易であり、多孔構造の制御も容易であ
る。
EFFECTS OF THE INVENTION According to the present invention, ether type oxygen on the surface of pores increases dissociation of the electrolyte and a porous solid electrolyte having excellent ionic conductivity can be obtained. In addition, it is easy to manufacture the porous solid electrolyte, and it is easy to control the porous structure.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連通構造を有する多孔ベースの孔に電解
質を保持させてなり、かつ前記の孔が少なくとも表面に
エーテル性酸素を有することを特徴とする多孔型固体電
解質。
1. A porous solid electrolyte characterized in that an electrolyte is held in pores of a porous base having a communication structure, and the pores have etheric oxygen on at least the surface thereof.
JP11533892A 1992-04-07 1992-04-07 Porous type solid-state electrolyte Pending JPH05290617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11533892A JPH05290617A (en) 1992-04-07 1992-04-07 Porous type solid-state electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11533892A JPH05290617A (en) 1992-04-07 1992-04-07 Porous type solid-state electrolyte

Publications (1)

Publication Number Publication Date
JPH05290617A true JPH05290617A (en) 1993-11-05

Family

ID=14660074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11533892A Pending JPH05290617A (en) 1992-04-07 1992-04-07 Porous type solid-state electrolyte

Country Status (1)

Country Link
JP (1) JPH05290617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte

Similar Documents

Publication Publication Date Title
Zhang et al. Progress in polymeric separators for lithium ion batteries
JP4937449B2 (en) Ion conductive matrix and use thereof
CN107170942A (en) A kind of high-temperature resistant aramid fiber lithium ion battery composite separation membrane and preparation method thereof
US4696835A (en) Process for applying an electrically conducting polymer to a substrate
WO2004005380A1 (en) Highly conductive ordered ion exchange membranes
JP2000516014A (en) Inorganic filler-containing membrane and assembly of membrane and electrode and electrochemical cell using the same
JPS63213534A (en) Electrically conductive polymer composite material and production thereof
JPH09251857A (en) Solid ion conductor
KR102140121B1 (en) Reinforced-Composite Electrolyte Membrane Comprising Porous Polymer Substrate And Manufacturing Method Thereof
CN101990443A (en) Gas decomposition apparatus and method for decomposing gas
KR20150083089A (en) Composition for an organic gel and the pyrolysate thereof, production method thereof, electrode formed by the pyrolysate and supercapacitor containing same
JP2012248408A (en) Barrier membrane for redox flow battery and manufacturing method thereof
JP2009181788A (en) Manufacturing method of electrolyte membrane, electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
KR100590967B1 (en) High Temperature Proton Exchange Membrane using Ionomer/Soild Proton Conductor by nano-templating, Preparation Method thereof and Fuel Cell Containing the Same
JP4398031B2 (en) Ion exchange membrane and method for producing the same
JPH05290617A (en) Porous type solid-state electrolyte
JP2005332800A (en) Proton conductive film for direct methanol fuel cell
KR20040111458A (en) Ion exchange composite material based on proton conductive silica particles dispersed in a polymer matrix
JP3084793B2 (en) Solid electrode composition
JP2004127846A (en) Composite ion exchange film and its manufacturing method
JP2023544010A (en) Separation membrane for lithium secondary batteries and its manufacturing method
JP7292711B2 (en) Nanofibers, electrolyte membranes, and polymer electrolyte fuel cells
JP2004204119A (en) Porous film and electrochemical element using the same
KR20220051982A (en) A polyphenylene sulfide/porogen composite, a porous separator for lithium secondary battery comprising the same, method for manufacturing the polyphenylene sulfide/porogen composite and method for manufacturing the porous separator for lithium secondary battery
EP1175457B1 (en) Process for the production of a composite membrane