JP4007756B2 - Concrete panel and concrete panel manufacturing method - Google Patents

Concrete panel and concrete panel manufacturing method Download PDF

Info

Publication number
JP4007756B2
JP4007756B2 JP2000289014A JP2000289014A JP4007756B2 JP 4007756 B2 JP4007756 B2 JP 4007756B2 JP 2000289014 A JP2000289014 A JP 2000289014A JP 2000289014 A JP2000289014 A JP 2000289014A JP 4007756 B2 JP4007756 B2 JP 4007756B2
Authority
JP
Japan
Prior art keywords
corrugated plate
concrete
valley
concrete panel
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000289014A
Other languages
Japanese (ja)
Other versions
JP2002097742A (en
Inventor
光男 中村
Original Assignee
タマホーム 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タマホーム 株式会社 filed Critical タマホーム 株式会社
Priority to JP2000289014A priority Critical patent/JP4007756B2/en
Publication of JP2002097742A publication Critical patent/JP2002097742A/en
Application granted granted Critical
Publication of JP4007756B2 publication Critical patent/JP4007756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物における躯体床、屋根、躯体壁、外壁の壁板および鉄筋コンクリートの床などの構築に使用するコンクリートパネルに関する。
【0002】
【従来の技術】
コンクリート構造物の躯体床、躯体壁などを構築する場合、従来は、施工現場で所定の型枠を組み立てて必要な鉄筋を配筋した後、型枠内にコンクリートを打設するという工法が採用されていた。
【0003】
ところが、このような工法は、型枠組み立て、コンクリート打設、コンクリートの固化および養生などに多くの時間と労力が必要であるため、工期の短縮の阻害要因となっており、コンクリート打設量の増大を招きやすく、構造物の重量増大などの弊害も生じている。
【0004】
そこで、近年は、予め工場で製造された、いわゆるプレキャストコンクリートパネルを施工現場に搬入して、構造物に取り付けていく工法を採用することによって、作業性の向上、工期の短縮化が図られている。
【0005】
このような工法においては、施工現場までの輸送性、施工現場でのハンドリング性を良くするため、コンクリートパネルの軽量化を図る必要があるが、本出願人は、このような要請に応えるコンクリートパネルを開発し、特開平7−90972号公報などで開示している。
【0006】
また、本出願人は、特開平7−90972号公報に開示したコンクリートパネルに改良を加え、強度、断熱性、遮音性を高めたコンクリートパネルを開発し、特開平10−25854号公報などで開示している。このコンクリートパネルは、図7に示すように、波形板73の上下に配筋された鉄筋網75などを埋没するように互いに間隔をおいて一対のコンクリート層71,72を形成し、波形板73とコンクリート層71,72とで形成される中空部に発泡樹脂74を充填した構造である。
【0007】
コンクリートパネル70では、波形板73の山形部73mおよび谷形部73vをそれぞれコンクリート層71,72に埋没させることによって、波形板73の波ピッチ方向Xの圧縮強度が向上するとともに、波形板73の断面形状に基づく実質的なトラス構造を形成することで全体的な剛性も向上している。
【0008】
【発明が解決しようとする課題】
図7に示すコンクリートパネル70においては、波形板73の山形部73mおよび谷形部73vの凸面側はコンクリート層71,72に強固に固着されているが、同凹面側は波形板73と発泡樹脂74とが接しているだけであるため、強度的なバランスが悪く、設計強度が十分に発揮されないことがある。
【0009】
また、施工後、長期間経過すると、山形部73mおよび谷形部73vと発泡樹脂74との隙間76に残存している空気によって、波形板73が酸化、腐食する可能性もある。
【0010】
本発明が解決しようとする課題は、比較的軽量で強度が高く、断熱性および遮音性に優れ、耐久性も良好なコンクリートパネルを提供することにある。
【0011】
【課題を解決するための手段】
本発明のコンクリートパネルは、山形部と谷形部とが交互に配置された断面形状を有し山形部の頂面および谷形部の底面に複数の貫通孔が形成された波形板と、山形部および谷形部の凹面部に配置されたコンクリートより嵩比重の小さな補強部材と、波形板および補強部材を埋没させるように打設されたコンクリート層とを備え、前記波形板の山形部頂面と谷形底面の少なくとも一方に、前記コンクリート層内に展開する鉄筋材を一体的に接合したことを特徴とする。
【0012】
このような構成とすることにより、波形板の山形部頂面および谷形部底面に形成された貫通孔を通して、コンクリート層の一部が山形部および谷形部の凹面部に流入し、凹面部に配置された補強部材と波形板との間が完全に充填された構造となって、波形板と補強部材との間に空気が残存することがなくなるため、波形板の酸化や腐食なども発生せず、耐久性が向上する。また、波形板の山形部および谷形部の凹面部にコンクリートより嵩比重の小さな補強部材を配置することにより、比較的軽量で強度が高く、断熱性および遮音性に優れたものとなる。
【0013】
また、前記波形板の山形部頂面と谷形部底面の少なくとも一方に、コンクリート層内に展開する鉄筋材を一体的に接合したことにより、波形板の剛性が高まるので、コンクリートパネル全体の剛性、強度が向上する。なお、波形板の山形部頂面および谷形部底面には貫通孔が形成されていることによ、鉄筋材を溶接接合したときに波形板に発生する残留応力が分散されるため、波形板の変形、部分的な強度低下などを防止することができる。
【0014】
さらに、前記波形板の山形部および谷形部の断面形状を略台形状とすることにより、断面に実質的なトラス構造が形成されるため、コンクリートパネルの剛性をさらに高めることができる。
【0015】
前記波形板の山形部および谷形部の凹面部に配置する補強部材としては、緻密質合成樹脂材、発泡合成樹脂材、多孔質合成樹脂材などの合成樹脂材を用いることができる。合成樹脂材を用いれば、これらの部材の嵩比重はコンクリートより大幅に小さく、耐食性も優れているため、コンクリートパネルの軽量化、耐久性向上を図ることができる。
【0016】
上記のコンクリートパネルは、波形板を埋没状態に収容可能な容量を有する型枠に流動性コンクリートを注入する工程と、山形部および谷形部の凹面部に補強部材を配置した波形板を固化前の流動性コンクリート中に浸漬する工程と、波形板および補強部材が埋没するまで型枠に流動性コンクリートを注入する工程とを含む製造方法によって製造することができる。
【0017】
【発明の実施の形態】
図1は、本発明の実施の形態であるコンクリートパネルを示す斜視図、図2は図1のコンクリートパネルを構成する波形板と鉄筋網との接合体を示す平面図、図3(a)は図2に示す接合体の正面図、同(b)は図2に示す接合体の側面図である。
【0018】
図1に示すように、本実施形態のコンクリートパネル4は、山形部3mと谷形部3vとが交互に配置された断面形状を有する波形板3と、波形板3の上下に配筋された鉄筋材5,6と、山形部3mおよび谷形部3vの凹面部3hに配置された発泡ポリスチレン製の補強部材7と、波形板3、補強部材7および鉄筋材5,6を埋没させるように打設されたコンクリート層1,2などによって形成されている。
【0019】
図2および図3に示すように、波形板3においては、その山形部3mの頂面と谷形部3vの底面に複数の貫通孔9が一定間隔ごとに形成され、波形板3の上下に格子状に配筋された鉄筋材5,6と、山形部3mの頂面および谷形部9vの底面との交差部分をスポット溶接するとともに、鉄筋材5,6同士の交差部分をそれぞれスポット溶接することによって、波形板3と鉄筋材5,6との接合体8が形成されている。
【0020】
波形板3の山形部3mおよび谷形部3vの断面は略台形状であり、これらの凹面部3hに配置された補強部材7はその断面が略台形状をした柱状部材であって、その嵩比重はコンクリート層1,2を構成するコンクリートより小さい。
【0021】
コンクリートパネル4においては、後述するコンクリートパネル製造方法を見ると分かるように、波形板3の山形部3mの頂面および谷形部3vの底面に形成された複数の貫通孔9を通して、コンクリート層1,2の一部が山形部3mおよび谷形部3vの凹面部3hに流入し、凹面部3hに配置された補強部材7と波形板3との間が完全に充填された構造となっている。
【0022】
このため、波形板3と補強部材7との間に空気が残存することがなく、波形板3の酸化や腐食などが発生せず、耐久性にすぐれている。また、波形板3の山形部3mおよび谷形部3vの凹面部3hにコンクリートより嵩比重の小さな発泡ポリスチレン製の補強部材7を配置しているため、コンクリートパネル4は、比較的軽量で強度が高く、断熱性および遮音性にも優れている。
【0023】
また、波形板3の山形部3mの頂面、谷形部3vの底面の両方に、コンクリート層1,2内に展開する鉄筋材5,6を一体的に接合することによって波形板3の剛性を高め、コンクリートパネル4全体の剛性、強度を高めている。なお、波形板3に複数の貫通孔9が形成されていることで、鉄筋材5,6を波形板3に溶接接合したときに波形板3に発生する残留応力が分散されるため、溶接後の波形板3の変形や、部分的な強度低下などを防止することができる。
【0024】
さらに、波形板3の山形部3mおよび谷形部3vの断面形状を略台形状としたことで、断面に実質的なトラス構造が形成されるため、コンクリートパネル4の剛性がさらに高まっている。
【0025】
本実施形態において、波形板3の山形部3mおよび谷形部3vの凹面部3hに配置された補強部材7は、発泡合成樹脂の一つである発泡ポリスチレンであり、その嵩比重はコンクリートより極めて小さく、耐食性も優れているため、コンクリートパネル4の軽量化、耐久性向上を実現することができる。
【0026】
次に、図4〜図6を参照して、コンクリートパネル4の製造方法について説明する。図4は、コンクリートパネル4の製造に先立って予め製作した波形板3と鉄筋材5,6との接合体8に補強部材7を組み込む工程を示す斜視図、図5および図6はコンクリートパネル4の製造工程図である。
【0027】
本実施形態のコンクリートパネル4に組み込まれる部材は、前述したように、波形板3と、格子状に配筋された鉄筋材5,6と、波形板3の凹面部3hに配置される補強部材7である。
【0028】
波形板3は、断面が略台形をした山形部3mと谷形部3vとが交互に配置された形状であり、その肉厚やサイズはコンクリートパネル4の用途や必要強度によって変更されるが、例えば、最終的に製造されるコンクリートパネル4の厚さが120〜240mmであれば、肉厚を0.8〜1.6mm程度、高さ寸法を70〜150mm程度とすることが望ましい。
【0029】
鉄筋材5,6はいずれも直径が6〜10mm程度の鉄筋丸棒材であり、これらを一定間隔ごとに縦横に配列して格子状とし、鉄筋材5,6の交差部分をそれぞれスポット溶接して形成されたものであり、これらの格子状の鉄筋材5,6を波形板3の上面側および下面側に配置して、波形板3の山形部3mの頂面と谷形部3vの底面と、鉄筋材5,6との交差部分をスポット溶接することによって、接合体8が形成されている。
【0030】
接合体8は、下側から格子状の鉄筋材6と波形板3と格子状の鉄筋網5とが順に重なりあった構造であり、波形板3の凹面部3hに補強部材7が配置されている。補強部材7は、図4に示すように、凹面部3hのいずれかの端面開口部分から挿入することによって所定位置に配置する。
【0031】
図5(a)に示すように、波形板3が埋没状態に収容可能な容量を有する型枠10にコンクリート注入管17から流動性コンクリートRを注入し、型枠10内の流動性コンクリートRが固化する前に、図5(b)に示すように、図4の工程で補強部材7を配置した接合体8を型枠10内に降下させる。このとき、鉄筋材5が嵌合可能な切欠部11aが一定間隔ごとに形成された型枠ライナ11を接合体8の上面の両側縁部に装着しておく。
【0032】
図5(c)に示すように、型枠10内の流動性コンクリートRに接合体8の下半分を浸漬させた後、図6(a)に示すように、再びコンクリート注入管17から流動性コンクリートRを型枠10内に注入して接合体8を完全に埋没させる。このとき、図6(b)に示すように、型枠10内の流動性コンクリートRが波形板3に形成された貫通孔9を通過して、補強部材7と波形板3との間に流入するので、補強部材7と波形板3との隙間などに空気が残存することはない。
【0033】
型枠10内に注入された流動性コンクリートRが固化した後、所定の養生期間が経過したら、型枠10を脱型し、型枠ライナ11を離脱させると、図6(c)に示すような構造のコンクリートパネル4が完成する。
【0034】
以上のような工程をとることにより、前述したように、比較的軽量で強度が高く、断熱性および遮音性に優れ、耐久性も良好なコンクリートパネル4を製造することができる。
【0035】
【発明の効果】
本発明により、以下に示す効果を奏する。
【0036】
(1)山形部と谷形部とが交互に配置された断面形状を有し山形部の頂面および谷形部の底面に複数の貫通孔が形成された波形板と、山形部および谷形部の凹面部に配置されたコンクリートより嵩比重の小さな補強部材と、波形板および補強部材を埋没させるように打設されたコンクリート層とを備えたことにより、比較的軽量で強度が高く、断熱性および遮音性に優れ、耐久性も良好なコンクリートパネルとなる。
【0037】
(2)波形板の山形部頂面、谷形部底面の少なくとも一方に、コンクリート層内に展開する鉄筋材を一体的に接合することにより、波形板の剛性が高まるので、コンクリートパネル全体の剛性、強度が向上する。また、波形板の山形部頂面および谷形部底面にある貫通孔で、鉄筋材を溶接したときの残留応力が分散されるため、波形板の変形や部分的強度低下などを防止できる。
【0038】
(3)波形板の山形部および谷形部の断面形状を略台形状とすることにより、断面に実質的なトラス構造が形成されるため、コンクリートパネルの剛性をさらに高めることができる。
【0039】
(4)波形板の山形部および谷形部の凹面部に配置する補強部材として合成樹脂材を用いることにより、コンクリートパネルの軽量化、耐久性向上を図ることができる。
【図面の簡単な説明】
【図1】 実施の形態であるコンクリートパネルを示す斜視図である。
【図2】 図1のコンクリートパネルを構成する波形板と鉄筋網との接合体を示す平面図である。
【図3】 (a)は図2に示す接合体の正面図、(b)は図2に示す接合体の側面図である。
【図4】 図1に示す鉄筋材が接合された波形板の凹面部に補強部材を配置する工程を示す斜視図である。
【図5】 図1に示すコンクリートパネルの製造工程図である。
【図6】 図5に続くコンクリートパネルの製造工程図である。
【図7】 従来のコンクリートパネルを示す斜視図である。
【符号の説明】
1,2 コンクリート層
3 波形板
3m 山形部
3v 谷形部
3h 凹面部
4 コンクリートパネル
5,6 鉄筋材
7 補強部材
8 接合体
9 貫通孔
10 型枠
11 型枠ライナ
11a 切欠部
17 コンクリート注入管
R 流動性コンクリート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete panel used for construction of a building floor, a roof, a building wall, a wall plate of an outer wall, a reinforced concrete floor and the like in a concrete structure.
[0002]
[Prior art]
Conventionally, when constructing concrete structure frame floors, frame walls, etc., a construction method has been adopted in which a specific formwork is assembled at the construction site, the necessary reinforcing bars are placed, and then concrete is placed in the formwork. It had been.
[0003]
However, such a construction method requires a lot of time and labor for formwork assembly, concrete placement, concrete solidification and curing, etc., and is an impediment to shortening the construction period. The increase is easy to cause, and there are also problems such as an increase in the weight of the structure.
[0004]
Therefore, in recent years, the workability has been improved and the construction period has been shortened by adopting a method in which so-called precast concrete panels manufactured in advance in the factory are brought into the construction site and attached to the structure. Yes.
[0005]
In such a construction method, it is necessary to reduce the weight of the concrete panel in order to improve the transportability to the construction site and the handling property on the construction site. Has been developed and disclosed in Japanese Patent Laid-Open No. 7-90972.
[0006]
In addition, the present applicant has improved a concrete panel disclosed in Japanese Patent Laid-Open No. 7-90972 and developed a concrete panel having improved strength, heat insulation and sound insulation, and disclosed in Japanese Patent Laid-Open No. 10-25854. is doing. As shown in FIG. 7, this concrete panel forms a pair of concrete layers 71, 72 spaced from each other so as to bury a reinforcing bar net 75 arranged above and below the corrugated plate 73. And a foamed resin 74 in a hollow portion formed by the concrete layers 71 and 72.
[0007]
In the concrete panel 70, the crest 73m and the trough 73v of the corrugated plate 73 are buried in the concrete layers 71 and 72, respectively, thereby improving the compressive strength of the corrugated plate 73 in the wave pitch direction X and the corrugated plate 73. By forming a substantial truss structure based on the cross-sectional shape, the overall rigidity is also improved.
[0008]
[Problems to be solved by the invention]
In the concrete panel 70 shown in FIG. 7, the convex surface side of the corrugated plate 73 m and the trough portion 73 v is firmly fixed to the concrete layers 71 and 72, but the concave surface side is corrugated plate 73 and foamed resin. Since it is only in contact with 74, the balance in strength is poor, and the design strength may not be sufficiently exhibited.
[0009]
Further, after a long period of time has elapsed after the construction, the corrugated plate 73 may be oxidized and corroded by the air remaining in the gaps 76 between the mountain-shaped portion 73m and the valley-shaped portion 73v and the foamed resin 74.
[0010]
The problem to be solved by the present invention is to provide a concrete panel that is relatively light and high in strength, excellent in heat insulation and sound insulation, and excellent in durability.
[0011]
[Means for Solving the Problems]
The concrete panel of the present invention has a corrugated plate having a cross-sectional shape in which angle portions and valley shapes are alternately arranged, and a plurality of through holes formed on the top surface of the angle portion and the bottom surface of the valley shape, A corrugated plate and a concrete layer placed so as to bury the corrugated plate and the reinforcing member, the corrugated plate top surface of the corrugated plate Further, a reinforcing bar material developed in the concrete layer is integrally joined to at least one of the bottom of the valley shape .
[0012]
By adopting such a configuration, a part of the concrete layer flows into the concave portion of the mountain-shaped portion and the valley-shaped portion through the through holes formed in the top surface of the mountain-shaped portion and the bottom surface of the valley-shaped portion of the corrugated plate. The structure between the corrugated plate and the corrugated plate is completely filled, and no air remains between the corrugated plate and the corrugated plate, causing oxidation and corrosion of the corrugated plate. And durability is improved. In addition, by disposing a reinforcing member having a smaller bulk specific gravity than concrete on the concave portions of the corrugated plate and the valley-shaped portion, it is relatively light and high in strength, and has excellent heat insulation and sound insulation properties.
[0013]
Further, at least one of the angled portion top surface and a valley portion bottom surface of said corrugated sheet, by which is integrally joined a reinforcing bar to expand the concrete layer, the rigidity of the corrugated plate is increased, the entire concrete panel stiffness , The strength is improved. Note that the mountain portion top and valley bottom face of the corrugated plate Ri by that the through holes are formed, the residual stress generated in the corrugated plate when welded the reinforcing bar is dispersed, the waveform It is possible to prevent deformation of the plate and partial strength reduction.
[0014]
Furthermore, since the substantial truss structure is formed in the cross section by making the cross-sectional shape of the chevron part and the valley part of the corrugated plate substantially trapezoidal, the rigidity of the concrete panel can be further increased.
[0015]
A synthetic resin material such as a dense synthetic resin material, a foamed synthetic resin material, or a porous synthetic resin material can be used as the reinforcing member disposed on the concave portion of the corrugated plate and the valley-shaped portion. If a synthetic resin material is used, the bulk specific gravity of these members is significantly smaller than that of concrete and the corrosion resistance is excellent, so that the weight and durability of the concrete panel can be improved.
[0016]
The above concrete panel is composed of a step of injecting fluid concrete into a mold having a capacity capable of accommodating the corrugated plate in an embedded state, and a corrugated plate in which reinforcing members are disposed on the concave portions of the mountain-shaped portion and the valley-shaped portion before solidification. Can be manufactured by a manufacturing method including a step of immersing in the fluid concrete and a step of injecting the fluid concrete into the mold until the corrugated plate and the reinforcing member are buried.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing a concrete panel according to an embodiment of the present invention, FIG. 2 is a plan view showing a joined body of a corrugated plate and a reinforcing bar network constituting the concrete panel of FIG. 1, and FIG. 2 is a front view of the joined body shown in FIG. 2, and FIG. 2B is a side view of the joined body shown in FIG.
[0018]
As shown in FIG. 1, the concrete panel 4 of the present embodiment is arranged in a corrugated plate 3 having a cross-sectional shape in which mountain-shaped portions 3 m and valley-shaped portions 3 v are alternately arranged, and arranged above and below the corrugated plate 3. The reinforcing members 5 and 6, the reinforcing member 7 made of expanded polystyrene disposed in the concave surface portion 3h of the mountain-shaped portion 3m and the valley-shaped portion 3v, the corrugated plate 3, the reinforcing member 7, and the reinforcing bars 5 and 6 are buried. It is formed by the concrete layers 1 and 2 that are placed.
[0019]
As shown in FIGS. 2 and 3, in the corrugated plate 3, a plurality of through holes 9 are formed at regular intervals on the top surface of the mountain-shaped portion 3 m and the bottom surface of the valley-shaped portion 3 v. Spot welding is performed at the intersections between the reinforcing bars 5 and 6 arranged in a grid and the top surface of the mountain-shaped portion 3m and the bottom surface of the valley-shaped portion 9v, and the intersections between the reinforcing bars 5 and 6 are spot-welded respectively. By doing so, the joined body 8 of the corrugated plate 3 and the reinforcing bars 5 and 6 is formed.
[0020]
The cross section of the mountain-shaped part 3m and the valley-shaped part 3v of the corrugated plate 3 has a substantially trapezoidal shape, and the reinforcing member 7 disposed on these concave surface parts 3h is a columnar member whose cross section has a substantially trapezoidal shape. Specific gravity is smaller than the concrete which comprises the concrete layers 1 and 2.
[0021]
In the concrete panel 4, as can be seen from the concrete panel manufacturing method described later, the concrete layer 1 passes through the plurality of through holes 9 formed in the top surface of the mountain-shaped portion 3 m and the bottom surface of the valley-shaped portion 3 v of the corrugated plate 3. , 2 flows into the concave surface portion 3h of the mountain-shaped portion 3m and the valley-shaped portion 3v, and the space between the reinforcing member 7 disposed on the concave surface portion 3h and the corrugated plate 3 is completely filled. .
[0022]
For this reason, air does not remain between the corrugated plate 3 and the reinforcing member 7, and the corrugated plate 3 does not oxidize or corrode and has excellent durability. In addition, since the reinforcing member 7 made of expanded polystyrene having a smaller bulk specific gravity than concrete is disposed on the concave portions 3h of the corrugated plate 3 and the concave portion 3h of the valley-shaped portion 3v, the concrete panel 4 is relatively light and strong. High heat insulation and sound insulation.
[0023]
Further, the reinforcing members 5 and 6 developed in the concrete layers 1 and 2 are integrally joined to both the top surface of the mountain-shaped portion 3m and the bottom surface of the valley-shaped portion 3v of the corrugated plate 3, whereby the rigidity of the corrugated plate 3 is obtained. To increase the rigidity and strength of the concrete panel 4 as a whole. Since the plurality of through holes 9 are formed in the corrugated plate 3, residual stress generated in the corrugated plate 3 when the reinforcing bars 5 and 6 are welded to the corrugated plate 3 is dispersed. It is possible to prevent deformation of the corrugated plate 3 and a partial decrease in strength.
[0024]
Furthermore, since the substantial truss structure is formed in the cross section because the cross-sectional shapes of the mountain-shaped portion 3m and the valley-shaped portion 3v of the corrugated plate 3 are substantially trapezoidal, the rigidity of the concrete panel 4 is further increased.
[0025]
In the present embodiment, the reinforcing member 7 disposed on the chevron 3m of the corrugated plate 3 and the concave surface 3h of the valley 3v is foamed polystyrene which is one of the foamed synthetic resins, and its bulk specific gravity is much higher than that of concrete. Since it is small and has excellent corrosion resistance, the concrete panel 4 can be reduced in weight and improved in durability.
[0026]
Next, with reference to FIGS. 4-6, the manufacturing method of the concrete panel 4 is demonstrated. FIG. 4 is a perspective view showing a process of incorporating the reinforcing member 7 into the joined body 8 of the corrugated plate 3 and the reinforcing bars 5 and 6 manufactured in advance prior to the production of the concrete panel 4, and FIGS. FIG.
[0027]
As described above, the members incorporated in the concrete panel 4 of the present embodiment are the corrugated plate 3, the reinforcing bars 5 and 6 arranged in a lattice shape, and the reinforcing member disposed on the concave surface portion 3 h of the corrugated plate 3. 7.
[0028]
The corrugated plate 3 has a shape in which a mountain-shaped portion 3m and a valley-shaped portion 3v having a substantially trapezoidal cross section are alternately arranged, and the thickness and size of the corrugated plate 3 are changed depending on the use and required strength of the concrete panel 4. For example, if the concrete panel 4 to be finally produced has a thickness of 120 to 240 mm, it is desirable that the wall thickness is about 0.8 to 1.6 mm and the height dimension is about 70 to 150 mm.
[0029]
Reinforcing bars 5 and 6 are all round bars with a diameter of about 6 to 10 mm. These are arranged vertically and horizontally at regular intervals to form a grid, and the intersections of reinforcing bars 5 and 6 are spot welded respectively. These lattice-shaped reinforcing bars 5 and 6 are arranged on the upper surface side and the lower surface side of the corrugated plate 3, and the top surface of the mountain-shaped portion 3m and the bottom surface of the valley-shaped portion 3v of the corrugated plate 3 are formed. And the joined body 8 is formed by carrying out spot welding of the intersection part with the reinforcing bars 5 and 6. FIG.
[0030]
The joined body 8 has a structure in which a lattice-shaped reinforcing material 6, a corrugated plate 3, and a lattice-shaped reinforcing steel net 5 are sequentially overlapped from the lower side, and the reinforcing member 7 is arranged on the concave surface portion 3 h of the corrugated plate 3. Yes. As shown in FIG. 4, the reinforcing member 7 is disposed at a predetermined position by being inserted from any end surface opening portion of the concave surface portion 3 h.
[0031]
As shown in FIG. 5 (a), fluid concrete R is poured from a concrete injection pipe 17 into a mold 10 having a capacity capable of accommodating the corrugated plate 3 in a buried state. Before solidification, as shown in FIG. 5B, the joined body 8 on which the reinforcing member 7 is arranged is lowered into the mold 10 in the step of FIG. At this time, the mold liner 11 in which the notches 11 a into which the reinforcing bars 5 can be fitted is formed at regular intervals is mounted on both side edges of the upper surface of the joined body 8.
[0032]
As shown in FIG. 5 (c), after the lower half of the joined body 8 is immersed in the fluid concrete R in the mold 10, the fluidity is again returned from the concrete injection pipe 17 as shown in FIG. 6 (a). Concrete R is poured into the mold 10 and the joined body 8 is completely buried. At this time, as shown in FIG. 6B, the fluid concrete R in the mold 10 passes through the through-hole 9 formed in the corrugated plate 3 and flows between the reinforcing member 7 and the corrugated plate 3. Therefore, no air remains in the gap between the reinforcing member 7 and the corrugated plate 3.
[0033]
When the predetermined curing period has elapsed after the fluid concrete R injected into the mold 10 has solidified, the mold 10 is removed and the mold liner 11 is removed, as shown in FIG. A concrete panel 4 having a simple structure is completed.
[0034]
By taking the steps as described above, as described above, the concrete panel 4 can be manufactured that is relatively light and high in strength, excellent in heat insulation and sound insulation, and excellent in durability.
[0035]
【The invention's effect】
The present invention has the following effects.
[0036]
(1) A corrugated plate having a cross-sectional shape in which a chevron portion and a trough portion are alternately arranged, and a plurality of through holes are formed on the top surface of the chevron portion and the bottom surface of the trough portion, and the chevron portion and the trough shape By providing a reinforcing member having a smaller bulk specific gravity than the concrete arranged in the concave portion of the part, and a concrete layer placed so as to bury the corrugated plate and the reinforcing member, it is relatively light weight, high in strength, and heat insulating It becomes a concrete panel with excellent durability and sound insulation, and good durability.
[0037]
(2) The rigidity of the corrugated plate is enhanced by integrally joining the reinforcing bar material developed in the concrete layer to at least one of the top surface of the corrugated plate and the bottom surface of the trough portion. , The strength is improved. Further, since the residual stress when the reinforcing bar material is welded is dispersed in the through holes in the top surface and the bottom surface of the valley portion of the corrugated plate, the corrugated plate can be prevented from being deformed or partially reduced in strength.
[0038]
(3) Since the substantial truss structure is formed in the cross section by making the cross-sectional shape of the mountain-shaped portion and the valley-shaped portion of the corrugated plate substantially trapezoidal, the rigidity of the concrete panel can be further increased.
[0039]
(4) By using a synthetic resin material as the reinforcing member disposed on the concave portions of the corrugated plate and the valley-shaped portion, it is possible to reduce the weight and improve the durability of the concrete panel.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a concrete panel according to an embodiment.
FIG. 2 is a plan view showing a joined body of a corrugated plate and a reinforcing bar net constituting the concrete panel of FIG.
3A is a front view of the joined body shown in FIG. 2, and FIG. 3B is a side view of the joined body shown in FIG. 2;
4 is a perspective view showing a step of arranging a reinforcing member on the concave surface portion of the corrugated plate to which the reinforcing bar material shown in FIG. 1 is joined. FIG.
FIG. 5 is a manufacturing process diagram of the concrete panel shown in FIG. 1;
FIG. 6 is a manufacturing process diagram of the concrete panel continued from FIG. 5;
FIG. 7 is a perspective view showing a conventional concrete panel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Concrete layer 3 Corrugated board 3m Mountain-shaped part 3v Valley-shaped part 3h Concave-surface part 4 Concrete panel 5, 6 Reinforcement material 7 Reinforcement member 8 Joined body 10 Formwork 11 Formwork liner 11a Notch 17 Concrete injection pipe R Fluid concrete

Claims (4)

山形部と谷形部とが交互に配置された断面形状を有し前記山形部の頂面および前記谷形部の底面に複数の貫通孔が形成された波形板と、前記山形部および前記谷形部の凹面部に配置されたコンクリートより嵩比重の小さな補強部材と、前記波形板および前記補強部材を埋没させるように打設されたコンクリート層とを備え、前記波形板の山形部頂面と谷形底面の少なくとも一方に、前記コンクリート層内に展開する鉄筋材を一体的に接合したコンクリートパネル。A corrugated plate having a cross-sectional shape in which chevron portions and trough portions are alternately arranged and having a plurality of through holes formed on the top surface of the chevron portion and the bottom surface of the trough portion, the chevron portion and the trough A reinforcing member having a smaller bulk specific gravity than the concrete disposed in the concave surface portion of the shape portion, and the corrugated plate and a concrete layer placed so as to bury the reinforcing member, the top surface of the corrugated portion of the corrugated plate, A concrete panel in which a reinforcing bar material developed in the concrete layer is integrally joined to at least one of the bottom surfaces of the valley . 前記波形板の山形部および谷形部の断面形状が略台形状である請求項記載のコンクリートパネル。Chevrons and concrete panel of claim 1, wherein the cross-sectional shape of the valley portion is substantially trapezoidal in the corrugated sheet. 前記補強部材が合成樹脂財である請求項1記載のコンクリートパネル。  The concrete panel according to claim 1, wherein the reinforcing member is a synthetic resin article. 請求項1〜のいずれかに記載のコンクリートパネルの製造方法であって、山形部と谷形部とが交互に配置された断面形状を有し前記山形部の頂面および前記谷形部の底面に複数の貫通孔が形成された波形板を埋没状態に収容可能な容量を有する形枠に流動性コンクリートを注入する工程と、前記山形部および前記谷形部の凹面部に補強部材を配置した前記波形板を固化前の前記流動性コンクリート中に浸漬する工程と、前記波形板および前記補強部材が埋没するまで前記形枠に流動性コンクリートを注入する工程とを含むことを特徴とするコンクリートパネル製造方法。A method of manufacturing a concrete panel according to any one of claims 1 to 3 of the mountain-shaped portions having a cross-sectional shape and the angled portion and the valley portion are arranged alternately top and the valley portion A step of injecting fluid concrete into a form having a capacity capable of accommodating a corrugated plate having a plurality of through-holes formed in a bottom surface, and a reinforcing member is disposed on the concave portion of the chevron and the valley A step of immersing the corrugated plate in the fluid concrete before solidification, and a step of injecting the fluid concrete into the form until the corrugated plate and the reinforcing member are buried. Panel manufacturing method.
JP2000289014A 2000-09-22 2000-09-22 Concrete panel and concrete panel manufacturing method Expired - Fee Related JP4007756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000289014A JP4007756B2 (en) 2000-09-22 2000-09-22 Concrete panel and concrete panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289014A JP4007756B2 (en) 2000-09-22 2000-09-22 Concrete panel and concrete panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2002097742A JP2002097742A (en) 2002-04-05
JP4007756B2 true JP4007756B2 (en) 2007-11-14

Family

ID=18772495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289014A Expired - Fee Related JP4007756B2 (en) 2000-09-22 2000-09-22 Concrete panel and concrete panel manufacturing method

Country Status (1)

Country Link
JP (1) JP4007756B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505773A (en) * 2011-09-27 2012-06-20 上海兴邦建筑技术有限公司 Precast concrete sandwiched heat-insulation external wall
CN104690826A (en) * 2015-01-20 2015-06-10 上海欧墅节能科技股份有限公司 Method for forming deep concave and convex cement decorative plate by adopting mold box overlapping and vertical vibration
KR101545196B1 (en) 2013-12-18 2015-08-19 주식회사 삼정산업 Boards for manufacturing concreate products
JP2017507259A (en) * 2013-07-02 2017-03-16 グロッツ−ベッケルト・カーゲー Method for manufacturing concrete member, prefabricated structural element for concrete member, and concrete member
KR20200065905A (en) * 2018-11-30 2020-06-09 (주)케이에스텍 Design concrete panel

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505271B2 (en) * 2004-06-16 2010-07-21 積水化成品工業株式会社 COMPOSITE MATERIAL FOR PRECAST STRUCTURE, PRECAST STRUCTURE, AND METHOD FOR PRODUCING PRECAST STRUCTURE
JP2006097307A (en) * 2004-09-29 2006-04-13 Nippon Kaiser Kk Precast concrete plate and structure
WO2007137592A1 (en) * 2006-05-30 2007-12-06 Briceno Matute Alberto Arturo Vibro-pressed micro-concrete in synthetic formwork in panels-sheets-moulded sections
HU228967B1 (en) * 2008-11-19 2013-07-29 Loeglen Kft Lightweight building structure and a method making thereof
JP4839402B2 (en) * 2009-12-24 2011-12-21 フクビ化学工業株式会社 Insulation
CN104314210B (en) * 2014-10-17 2016-06-01 李东 A kind of enhancing frame rock cotton board sound-proof light floor
KR101630235B1 (en) * 2015-02-09 2016-06-14 주식회사 태영피씨엠 Precast truss wall structure and construction method of underground structure using thereof
KR102036772B1 (en) * 2019-05-07 2019-10-25 주식회사 상아뉴매틱 Insulation Deck Plate
KR102051008B1 (en) * 2019-07-26 2019-12-02 (주)디앤에프 Heat insulator integrated deck plate using the plastic anchor
CN112757454B (en) * 2020-12-29 2022-06-24 浙江煤科清洁能源有限公司 High-strength steel bar plate and manufacturing die thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505773A (en) * 2011-09-27 2012-06-20 上海兴邦建筑技术有限公司 Precast concrete sandwiched heat-insulation external wall
JP2017507259A (en) * 2013-07-02 2017-03-16 グロッツ−ベッケルト・カーゲー Method for manufacturing concrete member, prefabricated structural element for concrete member, and concrete member
US10227777B2 (en) 2013-07-02 2019-03-12 Groz-Beckert Kg Method for producing a concrete component, prefabricated structural element of a concrete component, and concrete component
KR101545196B1 (en) 2013-12-18 2015-08-19 주식회사 삼정산업 Boards for manufacturing concreate products
CN104690826A (en) * 2015-01-20 2015-06-10 上海欧墅节能科技股份有限公司 Method for forming deep concave and convex cement decorative plate by adopting mold box overlapping and vertical vibration
CN104690826B (en) * 2015-01-20 2017-02-22 上海欧墅节能科技股份有限公司 Method for forming deep concave and convex cement decorative plate by adopting mold box overlapping and vertical vibration
KR20200065905A (en) * 2018-11-30 2020-06-09 (주)케이에스텍 Design concrete panel
KR102474586B1 (en) 2018-11-30 2022-12-06 주식회사 케이건설 Design concrete panel

Also Published As

Publication number Publication date
JP2002097742A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP4007756B2 (en) Concrete panel and concrete panel manufacturing method
WO1998002304A1 (en) Concrete panel and method of production thereof
JP2001081720A (en) Connection structure of concrete floor slab to steel web in composite box-girder
CN112081242B (en) Assembled integral beam-column joint provided with shape memory alloy reinforcement and construction method
JP2002349006A (en) Concrete plate for forming faulting slab, faulting slab structure and method for manufacturing the same
KR20180094673A (en) Double plate walls and manufacturing method thereof
KR200186222Y1 (en) Deck plate
JP3208530B2 (en) Precast concrete formwork and structure using the same
JP4101397B2 (en) Method of joining concrete slab and corrugated steel in corrugated steel web bridge
JP2004190396A (en) Half precast floor slab and construction method of floor using the same
JPH04334405A (en) Manufacture of precast concrete beam
JP2002038642A (en) Concrete slab and construction method for it
JPH09195438A (en) Precast concrete plate and reinforcing structure of building
KR100189494B1 (en) Executing method of the concrete structure work
JP2959325B2 (en) Construction method of steel frame reinforced concrete structure
JP4505271B2 (en) COMPOSITE MATERIAL FOR PRECAST STRUCTURE, PRECAST STRUCTURE, AND METHOD FOR PRODUCING PRECAST STRUCTURE
JPH0122827Y2 (en)
JP3014987U (en) Reinforcement equipment for existing buildings
JPH10204996A (en) Concrete structure column with filled steel pipe and its method for construction
JP2007245739A (en) Composite material for floating body structure, floating body structure, and manufacturing method therefor
JPH08209831A (en) Compound ultra-light floor board and manufacture thereof
KR20110006225U (en) Combination reinforcement
KR102383333B1 (en) Sqaure shape steel pipe with opening for distribution of rebar and manufacturing method of the same and steel beam join structure using the same
JP2000309998A (en) Precast concrete form and structure using the same
KR100579543B1 (en) System for constructing composite reinforced concrete girders and beams using FRP

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees