JP4005880B2 - Quality inspection equipment - Google Patents

Quality inspection equipment Download PDF

Info

Publication number
JP4005880B2
JP4005880B2 JP2002253868A JP2002253868A JP4005880B2 JP 4005880 B2 JP4005880 B2 JP 4005880B2 JP 2002253868 A JP2002253868 A JP 2002253868A JP 2002253868 A JP2002253868 A JP 2002253868A JP 4005880 B2 JP4005880 B2 JP 4005880B2
Authority
JP
Japan
Prior art keywords
frequency
inspected
range
vibration sound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002253868A
Other languages
Japanese (ja)
Other versions
JP2004093294A (en
Inventor
正敏 宿女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002253868A priority Critical patent/JP4005880B2/en
Publication of JP2004093294A publication Critical patent/JP2004093294A/en
Application granted granted Critical
Publication of JP4005880B2 publication Critical patent/JP4005880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、中央に貫通孔を有する平板状の被検査部材のクラック、重量、厚み選別を高速で判別する品質検査装置に関し、特に、ハードディスク装置に使用されるスペーサや各種ポンプに使用されるシールリングの品質検査を高速に行うことができる品質検査装置に関するものである。
【0002】
【従来の技術】
従来から、製品のクラックを検査する方法として、クラック箇所に探傷液を染みこませてクラックを外観検査するレッドチェック検査と呼ばれる判別方法が行われている。
【0003】
この方法では、小さなクラックを判別するのは難しく検査員の熟練が必要であり、製品を大量に検査する方法としては不向きであった。
【0004】
中央に貫通孔を有する平板状の被検査部材のクラックを検査する方法として、中央に貫通孔を有する平板状の被検査部材を検査基板上に落下させて、その振動音を聞き分けることでクラックの検査を行う方法もあった。この方法は、クラックの無い製品は「チリリ〜ン」という振動音が響くのに対し、クラックが貫通孔の内部と外部に通じている製品はその振動音が低音で鈍いという特徴を人の聴覚により聞き分けて判別を行っていた。
【0005】
このような振動音による品質検査方法としては、建物の外壁に張り付けたタイルのモルタルの状態をハンマーにて叩いて周波数アナライザを用いて探傷試験する方法があった(特開平9−152427号公報参照)。
【0006】
一方、生産ライン上で、重量、厚みを選別する方法としては、重量計を用いたり、光学式センサ、レーザを使ったセンサを被検査部材の通過するライン上に設置しておき、センサが感知した範囲にて厚みを判別したりする方法があった。
【0007】
【発明が解決しようとする課題】
上述の人の聴覚により振動音を聞き分けてクラック検査を行う方法では、振動音の区別には熟練を要する上に、大量にクラック検査を行う場合には人為的ミスが発生して信頼性に欠けていた。
【0008】
また、モルタルの状態をハンマーにて叩いて周波数アナライザを用いて探傷試験する方法は、判定の効率が悪く、生産性のある方法ではなかった。
【0009】
さらに、生産ライン上で、重量、厚みを選別する方法としては、測定誤差も大きく、正確な数値を得ることは困難であった。
【0010】
【課題を解決するための手段】
本発明では、上記の課題を鑑み、中央に貫通孔を有する平板状のセラミック部材である被検査部材を用い、該被検査部材を検査基板上へ落下させて発生する振動音を集音する集音機と、前記振動音の周波数出力ピークとその周波数波長とを検出する周波数アナライザと、予めクラックがない被検査部材の振動音の出力ピークとその周波数を基に周波数範囲と周波数出力範囲を第1の範囲として定め、前記周波数アナライザの検出値が前記第1の範囲に入るか否かによりクラックの有無を判定する比較演算回路と、該比較演算回路の判定結果を基に被検査部材を良品と不良品に仕分ける選別機構とからなる品質検査装置であって、前記比較演算回路は、クラックがないと判定した良品の被検査部材について、予め前記良品の被検査部材で、その重量下限値の振動音の出力ピークとその周波数及び重量上限値の振動音の出力ピークとその周波数から第2の範囲を定め、前記周波数アナライザの検出値が前記第2の範囲に入るか否かを判定することにより所定の重量値の被検査部材を判別する回路であるとともに、予め同一の断面積と比重を有した被検査部材について、その重量下限値の振動音の出力ピークとその周波数及び重量上限値の振動音の出力ピークとその周波数から厚みにおける第3の範囲を定め、前記周波数アナライザの検出値が前記第3の範囲に入るか否かを判定することで所定の厚みの被検査部材を判別する回路であることを特徴とする品質検査装置とした。
【0013】
【発明の実施の形態】
本発明を添付する図面に示す具体的な実施例に基づいて以下詳細に説明する。
図1は、本発明の品質検査装置の構成図を示している。
品質検査装置は上部に形成するホッパー1、ホッパー1の下部に配置した被検査部材Pを小出しに分離整列させるパーツフィーダ2、パーツフィーダ2から排出された被検査部材Pを搬送する直進フィーダ3、直進フィーダ3の被検査部材Pを落下させてクラックの検査を行う落下シュート4、落下した被検査部材Pを着地させて落下した振動音を発生させる検査基板上5、その振動音を集音する集音機(以下、マイクロフォーンという)、周波数アナライザ7、比較演算回路8、被検査部材Pを良品と不良品に仕分ける選別機構9、不良品と良品をそれぞれ入れる仕分ボックス9aとから構成されている。
【0014】
なお、図1のように被検査部材Pは、中央に貫通孔を有する平板状のセラミック部材が用いられ、例えば、アルミナ、ジルコニア、窒化アルミニウム等で形成されたものである。
【0015】
また、検査基板5としては、アルミナセラミックやサファイアなのでように剛性が高く耐摩耗性のある材料が好ましい。また、検査基板5の衝突面は、落下してくる被検査部材Pに対して水平に配置するよりも、図1に示すように被検査部材Pの排出する方向に衝突面を傾けて配置することで、生産ラインでの被検査部材Pの流れをスムーズにすることができ、検査時間を短縮することが可能となる。
【0016】
そして、品質検査装置の動作については、被検査部材Pをホッパー1に投入し、パーツフィーダ2にてホッパー1から被検査部材Pを小出しに分離整列させ、直進フィーダ3にて1個ずつ直列に整列させた被検査部材Pを、1個ずつ落下シュート4に通過させて検査基板上5に落下させる。そして、その時に発生する振動音をマイクロフォン6にて集音し、その振動音を周波数アナライザ7にて周波数出力ピークとその周波数波長を検出し、その検出値が比較演算回路8にて予め定められた周波数範囲と周波数出力範囲に入るか否かは判定し、その判定結果を選別機構9の判別アクチュエーターに信号を送ることで良品と不良品を振り分け、仕分ボックス9aに仕分けられる。
【0017】
なお、この良否判定にかかる時間及び各駆動部、搬送、アクチュエーターの動作時間は被検査部材1個あたり0.5秒以下となるように構成されている。
【0018】
次に更に具体的なクラック検査、重量検査、厚み検査を行うクラック判定方法について図2のフローチャート図により説明する。
まず、被検査部材Pを検査基板5上へ落下させ、被検査部材Pが検査基板5上に達した振動音を発生した時点から数msec〜数10msec後の被検査部材Pから発せられる振動音をマイクロフォン6により集音する。この時の集音タイミングはピックアップセンサ10で監視し、更に、その信号を制御回路11に送り、トリガ回路12で入力タイミングを選定する。また、それと同時に、マイクロフォン6から集音された入力信号を増幅器13にて増幅し、不要な周波数帯をハイパスフィルタ14で除去し、周波数アナライザ7にて振動音の周波数特性、即ち、周波数出力ピーク値とその周波数波長とを検出する。
【0019】
この場合、被検査部材Pが検査基板5に落下させ、クラックのない被検査部材Pの周波数特性は図5のように周波数出力ピークの山を有する波形となり、クラックのある被検査部材Pの周波数特性は図6のように周波数出力ピークの周波数における周波数出力ピークが全く異なるように現れている。
【0020】
ところで、一般にクラックのない被検査部材Pの振動音は周波数出力ピーク値の値が高く、クラックのある被検査部材Pの振動音とには周波数出力ピーク値が10dB以上の差があるので、本発明ではこの特徴を利用して予め定めるクラックがない被検査部材Pの振動音の出力ピークとその周波数を実験により第1の範囲として求め判定間違いを少なく品質検査を行うことが可能となる。本発明では、この第1の範囲をしきいちメモリ15に登録している。
【0021】
例えば、図3はクラックのない被検査部材Pの振動音を集音した集音特性を示す図で、●印は検出した周波数出力ピーク値となる。四角枠で囲んだ範囲は予め定められたクラックがない被検査部材の振動音の出力ピーク値とその周波数であり、これをもとに第1の範囲が定められている。例えば、この出力ピークとその周波数の前後を周波数範囲と周波数出力範囲として第1の範囲を直線の四角枠内に示し、実際に周波数アナライザ7で検出したピーク値が入るか否を比較演算回路8にて比較判定している。このように周波数アナライザ7の検出値が第1の範囲に入るか否かによりクラックの有無を判定する。
【0022】
更に比較演算回路8で比較判定した結果を制御回路11に電気信号(0・1判定)として送り、被検査部材Pを選別させる選別アクチュエーター9(選別機構)を動作させて、良品または不良品の仕分けを行う。
【0023】
次に、比較演算回路8でクラックがない良品と判断された被検査部材Pにおいて、重量検査を行うことができる。
【0024】
即ち、比較演算回路8が上述のようなクラックの有無を判定するだけでなく、重量の判定も行うことができる。
この判定方法としては、予め良品の被検査部材Pで、その重量下限値の振動音の出力ピークとその周波数及び重量上限値の振動音の出力ピークとその周波数から以下に示す第2の範囲を定めている。
【0025】
この第2の範囲について図4を用いて説明する。図4(a)はクラックのない被検査部材について、その重量に差がある場合の振動音を集音した波形のイメージ図であり、(b)はその第2の範囲における拡大図である。(a)に示すように四角点線枠内は第1の範囲を、四角直線枠内は第2の範囲を示す。そして、●印は被検査部材の重量が規定重量範囲内にある場合の周波数出力ピーク値を示し、■印は被検査部材の重量が規定重量範囲にない場合の周波数出力ピーク値を示したものである。
【0026】
図に示すように、重量の大きな被検査部材Pの周波数出力ピーク値は、主に左側に、即ち、周波数の低い位置にピークが現れ、逆に重量の小さな被検査部材Pでは周波数の高い位置にピーク値が現れる。この傾向は被検査部材Pの重量が大きいほど周波数のピーク値が大きく移動するものである。従って、被検査部材Pの振動音を検出した周波数出力ピーク値から重量判定を行うことができる。
【0027】
これを利用して、第1の範囲よりも更に絞り込んだ第2の範囲が設定される。即ち、図4(b)に示すように、予め、良品の被検査部材Pで、その重量下限値の振動音の出力ピークとその周波数の値X及び重量上限値の振動音の出力ピークとその周波数の値Yから四角線枠に示す第2の範囲を設定する。この第2の範囲も、しきいちメモリ15に登録され、比較演算回路8により周波数アナライザ7の検出値が第2の範囲に入るか否かを判定する。これにより判定された判定結果を基に被検査部材Pをクラック検査と同時に選別機構9で良品と不良品に仕分けるものである。このように重量を基準として仕分けることで、簡単な構成で重量が均一なものを抽出することができる。
【0028】
次に、上述の重量が選定された被検査部材Pにおいて、更に、厚みの検査を行うことができる。
即ち、比較演算回路8が上述のようなクラックの有無を判定するだけでなく、厚みの判定も行うことができる。この場合、同一の断面積と比重を有した被検査部材Pが対象となる。例えば、ハードディスク装置に使用されるスペーサは、金型を用いた一軸加圧成形により形成されているため、同一の比重のものが量産され、これを用いて厚みを測定している。
この判定方法としては、重量下限値と上限値における被検査部材の厚み寸法を計算して第3の範囲として定める。図4(b)に示す四角点線枠の第2の範囲は被検査部材Pの断面積、比重を問わない範囲により設定したものであるが、第3の範囲は同一の断面積と比重を有した被検査部材Pの重量範囲に限って設定されているので、この範囲から厚みの範囲を設定することができる。
【0029】
この第3の範囲をしきいちメモリ15に登録しておき、周波数アナライザ7に入った被検査部材Pの周波数波長が周波数範囲に入るか否かを比較演算回路8により比較判定し、上述と同様の方法にて厚み寸法の良品、不良品の仕分けを行う。
【0030】
なお、上述のように、厚み測定のみの行う実施の形態を説明したが、重量判定について、厚み判定と同じ試験で同時に行うようにできることはいうまでもない。即ち、クラックのない良品と判定したものについて、同一の断面積、比重を有する被検査部材Pを予め用意し、この被検査部材Pについて、重量判定を行うとともに、厚み判定をも同様に行うことが可能である。従って、この場合は第2の範囲と第3の範囲とが同じ範囲となる。
【0031】
【実施例】
[実施例1]
本発明の品質検査装置を用いてクラックのない被検査部材とクラックのある被検査部材を適当に混合させてそれぞれの周波数波長と周波数出力の違いを確認した。
被検査部材としては、外径25mm、内径20mm、厚み2mmのファルステライトセラミックス(比重2.8)からなるリング状ワークを用いた。
予め定めたクラックがない被検査部材における周波数範囲と周波数出力範囲を調べ、その周波数範囲を0.6kHz〜1.7kHzとし周波数出力範囲を−19dB〜−1dBと第1の範囲を設定した。
また、図5にクラックのない被検査部材の周波数特性、図6にクラックのある被検査部材の周波数特性を示す。これらの図は、被検査部材を落下シュートの高さ50mm位置から検査基板上に落下させて振動音を発生させ、振動音が発生した時点から50msec後の波形である。また、低い周波数域、高い周波数域にはハイパスフィルタを用いることにより減衰させ、この周波数域をカットすることで判別に影響がでないようにしている。
【0032】
実験の結果、図5のクラックのない被検査部材には図中の中央辺りに周波数出力の高いピーク値があるのに対し、図6のクラックのある被検査部材にはそのピーク値が見られないことがわかる。そして、この周波数出力ピーク値のレベル差は15〜20dBあり、クラックの有無を区別するのには充分な周波数出力レベルであることが分かる。
【0033】
クラックのない被検査部材とクラックのある被検査部材を各10個評価し、その周波数出力ピークと周波数波長を調べた結果を表1に示し、図7にクラックのない被検査部材の出力ピークを●印にて記し、クラックのある被検査部材の出力ピークを■印にてプロットし、予め設定したクラックがない被検査部材の周波数範囲と周波数出力範囲を四角枠にて記した図を示す。
【0034】
【表1】

Figure 0004005880
【0035】
表1及び図7から分かるように、クラックのない被検査部材の出力ピークは四角枠内にあり、クラックのない被検査部材の出力ピークは四角枠外にあるので、これを比較演算回路にて比較判別することでクラックの有無を判別し、選別機構にて良品と不良品に仕分けることができた。
【0036】
[実施例2]
本発明の品質検査装置を用いて厚み寸法に差のある被検査部材を適当に混合させてそれぞれの周波数波長と周波数出力の違いを確認した。被検査部材としては、外径25mm、内径20mmファルステライトセラミックス(比重2.8)からなるリング状ワークを用い、その厚み寸法は1.9mm〜2.1mmのものを適当に混合させた。
【0037】
予め実験により被検査部材の重量下限値0.975gのピーク周波数波長であった1.1kHz、上限値1.025gのピーク周波数波長であった1.3kHzの範囲を第2の範囲(第3の範囲)として設定した。
【0038】
このリング状ワーク1000個についてクラックの有無の検査と重量規格0.975〜1.025gの品質検査により良品、不良品の仕分けを行い、良品、不良品のリング状ワークについて検査員がクラックの目視検査と重量検査を再確認したところ、判定ミスなく作業が完了していた。
【0039】
また、リング状ワークの断面形状と比重は一定であったので、その厚み寸法を計算することができ、厚み寸法1.95mm〜2.05mmの寸法判定による品質検査をも行えた。
【0040】
【発明の効果】
以上説明したように、本発明によれば、人の聴覚に頼ることなくクラック検査を自動で行うことができるので、より効率的で生産性を向上させることができる品質検査装置を提供することができる。
【0041】
また、クラックのない良品と判定した被検査部材について、光学式センサやレーザなどのセンサを用いることなく生産ライン上で被検査部材の重量や厚み寸法も同時に検査が可能な品質検査装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のクラック検査機を説明する工程図である。
【図2】本発明のクラック検査機を説明するブロック図である。
【図3】クラックのない被検査部材Pの振動音を集音した波形の集音特性を示す図である。
【図4】(a)はクラックのない被検査部材について、その重量に差がある場合の振動音を集音した波形の周波数特性図であり、(b)はその第2の範囲における拡大した周波数特性図である。
【図5】クラックのない被検査部材の周波数特性を示す図である。
【図6】クラックのある被検査部材の周波数特性を示す図である。
【図7】クラックがある被検査部材の出力ピークとクラックがない場合の被検査部材の出力ピークを示す図である。
【符号の説明】
P:中央に貫通孔を有する平板状の被検査部材
1:投入ホッパー
2:パーツフィーダ
3:直進フィーダ
4:落下シュート
5:検査基板
6:マイクロフォン
7:周波数アナライザ
8:比較演算回路
9:選別機構(判別アクチュエータ)[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a quality inspection apparatus for quickly discriminating cracks, weights, and thicknesses of a plate-shaped inspected member having a through hole in the center, and in particular, seals used for spacers and various pumps used in hard disk devices. The present invention relates to a quality inspection apparatus capable of performing a quality inspection of a ring at high speed.
[0002]
[Prior art]
Conventionally, as a method for inspecting a crack in a product, a discrimination method called a red check inspection in which a crack detection liquid is soaked into a crack portion and an appearance inspection of the crack is performed.
[0003]
In this method, it is difficult to discriminate small cracks, and the skill of an inspector is required, which is unsuitable as a method for inspecting a large amount of products.
[0004]
As a method of inspecting cracks in a flat plate-shaped inspected member having a through hole in the center, a flat plate-shaped inspected member having a through hole in the center is dropped on the inspection substrate, and the vibration sound is discriminated by hearing the vibration sound. There was also a method of inspection. This method is characterized by the fact that a product with no cracks emits a vibration sound called “Chilelein”, whereas a product with cracks leading to the inside and outside of the through-hole has low and dull vibrations. It was discriminating and distinguishing.
[0005]
As a quality inspection method using such vibration sound, there is a method of performing a flaw detection test using a frequency analyzer by hitting the state of a mortar of a tile attached to the outer wall of a building with a hammer (see Japanese Patent Laid-Open No. 9-152427). ).
[0006]
On the other hand, as a method of selecting the weight and thickness on the production line, a weight meter, an optical sensor, or a sensor using a laser is installed on the line passing through the member to be inspected, and the sensor detects it. There was a method of determining the thickness within the range.
[0007]
[Problems to be solved by the invention]
In the above-described method of performing crack inspection by distinguishing vibration sound by human hearing, skill is required for distinguishing vibration sound, and when performing a large number of crack inspection, human error occurs and lacks reliability. It was.
[0008]
In addition, the method of performing a flaw detection test using a frequency analyzer by hitting the mortar state with a hammer is not a productive method because of poor determination efficiency.
[0009]
Furthermore, as a method of selecting weight and thickness on the production line, measurement errors are large and it is difficult to obtain accurate numerical values.
[0010]
[Means for Solving the Problems]
In the present invention, in view of the above problems, a member to be inspected, which is a flat plate-like ceramic member having a through-hole in the center, is used to collect vibration noise generated by dropping the member to be inspected onto an inspection substrate. The frequency range and the frequency output range are determined based on the sound machine, the frequency analyzer for detecting the frequency output peak of the vibration sound and the frequency wavelength thereof, the output peak of the vibration sound of the member to be inspected without cracks and the frequency in advance. A comparison operation circuit that determines whether or not there is a crack depending on whether or not the detection value of the frequency analyzer falls within the first range, and a member to be inspected is a non-defective product based on the determination result of the comparison operation circuit And a sorting mechanism for sorting into defective products, wherein the comparison operation circuit is a non-defective inspected member in advance for a non-defective inspected member determined to have no cracks. A second range is determined from the output peak of the vibration sound of the volume lower limit value and its frequency and the output peak of the vibration sound of the weight upper limit value and its frequency, and whether or not the detected value of the frequency analyzer falls within the second range. Is a circuit for discriminating a member to be inspected having a predetermined weight value by determining the output peak of vibration sound at the weight lower limit value, its frequency, and the member having the same cross-sectional area and specific gravity in advance. A third range in thickness is determined from the output peak of vibration sound of weight upper limit value and its frequency, and it is determined whether or not the detected value of the frequency analyzer falls within the third range. A quality inspection apparatus characterized by being a circuit for discriminating members.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below based on specific embodiments shown in the accompanying drawings.
FIG. 1 shows a configuration diagram of a quality inspection apparatus according to the present invention.
The quality inspection apparatus includes a hopper 1 formed at the upper part, a parts feeder 2 for separating and aligning the inspection target P arranged at the lower part of the hopper 1, a linear feeder 3 for conveying the inspection target P discharged from the part feeder 2, A dropping chute 4 for inspecting cracks by dropping the member P to be inspected of the linear feeder 3, a test substrate 5 for generating a falling vibration sound by landing the dropped inspection member P, and collecting the vibration sound. It is composed of a sound collector (hereinafter referred to as a microphone), a frequency analyzer 7, a comparison operation circuit 8, a sorting mechanism 9 for sorting the member P to be inspected into a non-defective product and a non-defective product, and a sorting box 9a for storing the defective product and the non-defective product. Yes.
[0014]
As shown in FIG. 1, the member P to be inspected is a flat ceramic member having a through hole in the center, and is formed of alumina, zirconia, aluminum nitride, or the like, for example.
[0015]
The inspection substrate 5 is preferably a material having high rigidity and wear resistance such as alumina ceramic or sapphire. Further, the collision surface of the inspection substrate 5 is arranged so that the collision surface is inclined in the direction in which the member to be inspected P is discharged, as shown in FIG. Thus, the flow of the member P to be inspected on the production line can be made smooth, and the inspection time can be shortened.
[0016]
And about the operation | movement of a quality inspection apparatus, the to-be-inspected member P is thrown into the hopper 1, the to-be-inspected member P is separated and aligned from the hopper 1 with the parts feeder 2, and it is serially connected one by one with the linear feeder 3 The aligned members to be inspected P are passed through the drop chute 4 one by one and dropped onto the inspection substrate 5. The vibration sound generated at that time is collected by the microphone 6, the frequency output peak and its frequency wavelength are detected by the frequency analyzer 7, and the detected value is determined in advance by the comparison operation circuit 8. It is determined whether or not the frequency range and the frequency output range are entered, and the determination result is sent to a discrimination actuator of the selection mechanism 9 so that the non-defective product and the defective product are sorted and sorted into the sorting box 9a.
[0017]
The time required for the pass / fail judgment and the operation time of each drive unit, transport, and actuator are configured to be 0.5 seconds or less per member to be inspected.
[0018]
Next, a more specific crack inspection method for performing crack inspection, weight inspection, and thickness inspection will be described with reference to the flowchart of FIG.
First, the member P to be inspected is dropped onto the inspection substrate 5, and the vibration sound emitted from the member P to be inspected several msec to several tens of msec from the time when the member P to be inspected has generated a vibration sound reaching the inspection substrate 5. Is collected by the microphone 6. The sound collection timing at this time is monitored by the pickup sensor 10, the signal is further sent to the control circuit 11, and the input timing is selected by the trigger circuit 12. At the same time, the input signal collected from the microphone 6 is amplified by the amplifier 13, unnecessary frequency bands are removed by the high-pass filter 14, and the frequency characteristic of the vibration sound, that is, the frequency output peak is obtained by the frequency analyzer 7. Detect the value and its frequency wavelength.
[0019]
In this case, the member P to be inspected is dropped on the inspection substrate 5, and the frequency characteristic of the member P to be inspected without a crack becomes a waveform having a peak of the frequency output peak as shown in FIG. The characteristics appear such that the frequency output peak at the frequency of the frequency output peak is completely different as shown in FIG.
[0020]
By the way, in general, the vibration sound of the member P to be inspected without a crack has a high frequency output peak value, and the vibration sound of the member P to be inspected with a crack has a frequency output peak value of 10 dB or more. In the invention, using this feature, it is possible to obtain the output peak of the vibration sound of the member P to be inspected without a predetermined crack and the frequency thereof as a first range by experiment, and to perform quality inspection with few determination errors. In the present invention, this first range is frequently registered in the memory 15.
[0021]
For example, FIG. 3 is a diagram showing a sound collecting characteristic obtained by collecting vibration sound of the member P to be inspected without cracks, and the mark ● represents the detected frequency output peak value. The range enclosed by the rectangular frame is the output peak value of the vibration sound of the member to be inspected without a crack and the frequency thereof, and the first range is determined based on this. For example, this output peak and the frequency range before and after the frequency are shown as a frequency range and a frequency output range, and the first range is shown in a straight square frame, and whether or not the peak value actually detected by the frequency analyzer 7 is entered is compared and compared. The comparison judgment is done. Thus, the presence or absence of a crack is determined depending on whether or not the detection value of the frequency analyzer 7 falls within the first range.
[0022]
Further, the result of the comparison and determination by the comparison operation circuit 8 is sent to the control circuit 11 as an electric signal (0 · 1 determination), and the selection actuator 9 (selection mechanism) for selecting the member P to be inspected is operated. Sort.
[0023]
Next, a weight inspection can be performed on the member P to be inspected which is judged as a non-defective product having no cracks by the comparison operation circuit 8.
[0024]
That is, the comparison operation circuit 8 can determine not only the presence / absence of cracks as described above but also the weight.
As this determination method, with a non-defective inspected member P in advance, the output peak of the vibration sound at the lower weight limit value, the frequency and the output peak of the vibration sound at the upper weight limit value, and the second range shown below from the frequency. It has established.
[0025]
The second range will be described with reference to FIG. FIG. 4A is an image diagram of a waveform obtained by collecting vibration sound when there is a difference in the weights of the member to be inspected without cracks, and FIG. 4B is an enlarged view in the second range. As shown to (a), the inside of a square dotted line frame shows a 1st range, and the inside of a square straight line frame shows a 2nd range. The ● mark indicates the frequency output peak value when the weight of the member to be inspected is within the specified weight range, and the ■ mark indicates the frequency output peak value when the weight of the member to be inspected is not within the specified weight range. It is.
[0026]
As shown in the figure, the frequency output peak value of the heavy inspected member P has a peak mainly on the left side, that is, at a low frequency position. A peak value appears at. This tendency is such that the peak value of the frequency moves larger as the weight of the member P to be inspected increases. Therefore, the weight determination can be performed from the frequency output peak value obtained by detecting the vibration sound of the member P to be inspected.
[0027]
By utilizing this, a second range further narrowed down than the first range is set. That is, as shown in FIG. 4 (b), in advance, a non-defective member P to be tested has an output peak of vibration noise at its lower weight limit value, an output peak of vibration sound at its frequency value X and upper limit weight value, and its peak. A second range indicated by a square frame is set from the frequency value Y. This second range is also registered in the threshold memory 15, and the comparison operation circuit 8 determines whether or not the detection value of the frequency analyzer 7 falls within the second range. Based on the determination result thus determined, the member P to be inspected is classified into a non-defective product and a defective product by the sorting mechanism 9 simultaneously with the crack inspection. Thus, by classifying on the basis of weight, it is possible to extract a uniform weight with a simple configuration.
[0028]
Next, the thickness of the member to be inspected P for which the above-described weight is selected can be further inspected.
That is, the comparison operation circuit 8 can determine not only the presence / absence of a crack as described above but also the thickness. In this case, the member P to be inspected having the same cross-sectional area and specific gravity is targeted. For example, since the spacer used in the hard disk device is formed by uniaxial pressure molding using a mold, one having the same specific gravity is mass-produced, and the thickness is measured using this.
As this determination method, the thickness dimension of the member to be inspected at the weight lower limit value and the upper limit value is calculated and defined as the third range. The second range of the rectangular dotted line frame shown in FIG. 4B is set based on the range of the cross-sectional area and specific gravity of the member P to be inspected, but the third range has the same cross-sectional area and specific gravity. Since it is set only within the weight range of the inspected member P, the thickness range can be set from this range.
[0029]
The third range is regularly registered in the memory 15, and the comparison operation circuit 8 compares and determines whether or not the frequency wavelength of the member P to be inspected that has entered the frequency analyzer 7 falls within the frequency range. This method is used to sort non-defective and defective products with thickness dimensions.
[0030]
As described above, the embodiment in which only the thickness measurement is performed has been described, but it goes without saying that the weight determination can be performed simultaneously in the same test as the thickness determination. That is, a member P to be inspected having the same cross-sectional area and specific gravity is prepared in advance for those that are determined to be non-cracked non-defective products, and the weight determination and thickness determination are similarly performed on the member P to be inspected. Is possible. Therefore, in this case, the second range and the third range are the same range.
[0031]
【Example】
[Example 1]
Using the quality inspection apparatus of the present invention, a member to be inspected without cracks and a member to be inspected with cracks were appropriately mixed, and the difference in frequency wavelength and frequency output was confirmed.
As the member to be inspected, a ring-shaped workpiece made of Falsterite ceramics (specific gravity 2.8) having an outer diameter of 25 mm, an inner diameter of 20 mm, and a thickness of 2 mm was used.
The frequency range and the frequency output range in the member to be inspected without a predetermined crack were examined, the frequency range was set to 0.6 kHz to 1.7 kHz, and the first range was set to −19 dB to −1 dB.
FIG. 5 shows the frequency characteristics of the member to be inspected without cracks, and FIG. 6 shows the frequency characteristics of the member to be inspected with cracks. These figures show the waveform after 50 msec from the time when the member to be inspected is dropped onto the inspection substrate from the position of 50 mm height of the drop chute to generate the vibration noise. Further, the low frequency region and the high frequency region are attenuated by using a high-pass filter, and this frequency region is cut so as not to affect the determination.
[0032]
As a result of the experiment, the inspected member without cracks in FIG. 5 has a peak value with a high frequency output around the center in the figure, whereas the inspected member with cracks in FIG. I understand that there is no. And the level difference of this frequency output peak value is 15-20 dB, and it turns out that it is a frequency output level sufficient to distinguish the presence or absence of a crack.
[0033]
Evaluation was made for 10 members to be inspected without cracks and 10 members to be inspected with cracks, and the results of examining the frequency output peak and frequency wavelength are shown in Table 1. FIG. 7 shows the output peak of the inspected member without cracks. The figure shows the output peak of the member to be inspected marked with ●, plotted with the mark ■, and the frequency range and frequency output range of the member to be inspected without a crack set in a square frame.
[0034]
[Table 1]
Figure 0004005880
[0035]
As can be seen from Table 1 and FIG. 7, the output peak of the member to be inspected without cracks is within the square frame, and the output peak of the member to be inspected without cracks is outside the square frame. By discriminating, it was possible to discriminate the presence or absence of cracks, and the sorting mechanism could sort them into good and defective products.
[0036]
[Example 2]
Using the quality inspection apparatus of the present invention, members to be inspected having different thickness dimensions were mixed appropriately to confirm the difference between the frequency wavelength and the frequency output. As the member to be inspected, a ring-shaped workpiece made of falsterite ceramics (specific gravity 2.8) having an outer diameter of 25 mm and an inner diameter of 20 mm was used, and a thickness of 1.9 mm to 2.1 mm was appropriately mixed.
[0037]
The range of 1.1 kHz, which was a peak frequency wavelength of 0.975 g lower limit of the weight of the member to be inspected in advance, and the peak frequency wavelength of 1.025 g of the upper limit 1.025 g was previously set in the second range (third Range).
[0038]
The 1,000 pieces of ring-shaped workpieces are classified into non-defective products and defective products by inspection for cracks and quality inspections of weight standards of 0.975 to 1.025 g. When we reconfirmed the inspection and the weight inspection, the work was completed without judgment errors.
[0039]
Moreover, since the cross-sectional shape and specific gravity of the ring-shaped workpiece were constant, the thickness dimension could be calculated, and a quality inspection could be performed by determining the thickness dimension of 1.95 mm to 2.05 mm.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to automatically perform a crack inspection without relying on human hearing, so it is possible to provide a quality inspection apparatus that is more efficient and can improve productivity. it can.
[0041]
In addition, a quality inspection device is provided that can inspect the weight and thickness of a member to be inspected on a production line without using a sensor such as an optical sensor or a laser for a member to be inspected determined to be a non-cracking non-defective product. be able to.
[Brief description of the drawings]
FIG. 1 is a process diagram illustrating a crack inspection machine according to the present invention.
FIG. 2 is a block diagram illustrating a crack inspection machine according to the present invention.
FIG. 3 is a diagram showing a sound collection characteristic of a waveform obtained by collecting vibration sounds of a member P to be inspected without cracks.
FIG. 4A is a frequency characteristic diagram of a waveform obtained by collecting vibration sounds when there is a difference in the weights of a member to be inspected without cracks, and FIG. 4B is an enlarged view in the second range. It is a frequency characteristic figure.
FIG. 5 is a diagram showing frequency characteristics of a member to be inspected without cracks.
FIG. 6 is a diagram showing frequency characteristics of a member to be inspected having cracks.
FIG. 7 is a diagram illustrating an output peak of a member to be inspected with a crack and an output peak of the member to be inspected when there is no crack.
[Explanation of symbols]
P: Plate-like inspected member having a through-hole in the center 1: Feeding hopper 2: Parts feeder 3: Straight feeder 4: Drop chute 5: Inspection substrate 6: Microphone 7: Frequency analyzer 8: Comparison operation circuit 9: Sorting mechanism (Distinguishing actuator)

Claims (1)

中央に貫通孔を有する平板状のセラミック部材である被検査部材を用い、該被検査部材を検査基板上へ落下させて発生する振動音を集音する集音機と、前記振動音の周波数出力ピークとその周波数波長とを検出する周波数アナライザと、予めクラックがない被検査部材の振動音の出力ピークとその周波数を基に周波数範囲と周波数出力範囲を第1の範囲として定め、前記周波数アナライザの検出値が前記第1の範囲に入るか否かによりクラックの有無を判定する比較演算回路と、該比較演算回路の判定結果を基に被検査部材を良品と不良品に仕分ける選別機構とからなる品質検査装置であって、前記比較演算回路は、クラックがないと判定した良品の被検査部材について、予め前記良品の被検査部材で、その重量下限値の振動音の出力ピークとその周波数及び重量上限値の振動音の出力ピークとその周波数から第2の範囲を定め、前記周波数アナライザの検出値が前記第2の範囲に入るか否かを判定することにより所定の重量値の被検査部材を判別する回路であるとともに、予め同一の断面積と比重を有した被検査部材について、その重量下限値の振動音の出力ピークとその周波数及び重量上限値の振動音の出力ピークとその周波数から厚みにおける第3の範囲を定め、前記周波数アナライザの検出値が前記第3の範囲に入るか否かを判定することで所定の厚みの被検査部材を判別する回路であることを特徴とする品質検査装置。Using a member to be inspected, which is a flat ceramic member having a through hole in the center, a sound collector that collects vibration sound generated by dropping the member to be inspected onto the inspection substrate, and a frequency output of the vibration sound A frequency analyzer for detecting the peak and its frequency wavelength, a frequency range and a frequency output range are defined as a first range based on an output peak of vibration sound of a member to be inspected without cracks and its frequency in advance, and the frequency analyzer It comprises a comparison operation circuit that determines the presence or absence of cracks depending on whether or not the detected value falls within the first range, and a selection mechanism that sorts the member to be inspected into a non-defective product and a defective product based on the determination result of the comparison operation circuit. In the quality inspection apparatus, the comparison operation circuit is configured to output a vibration sound output peak at a lower limit weight of the non-defective member to be inspected in advance for the non-defective member to be inspected. A second range is determined from the output peak of the vibration sound of the frequency and weight upper limit value and the frequency, and a predetermined weight value is determined by determining whether or not the detection value of the frequency analyzer falls within the second range. It is a circuit for discriminating a member to be inspected, and for a member to be inspected having the same cross-sectional area and specific gravity in advance, an output peak of vibration sound at its lower weight limit and an output peak of vibration sound at its frequency and upper limit weight. A circuit for determining a member to be inspected having a predetermined thickness by determining a third range in thickness from the frequency and determining whether or not a detection value of the frequency analyzer falls in the third range. Quality inspection equipment.
JP2002253868A 2002-08-30 2002-08-30 Quality inspection equipment Expired - Fee Related JP4005880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253868A JP4005880B2 (en) 2002-08-30 2002-08-30 Quality inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253868A JP4005880B2 (en) 2002-08-30 2002-08-30 Quality inspection equipment

Publications (2)

Publication Number Publication Date
JP2004093294A JP2004093294A (en) 2004-03-25
JP4005880B2 true JP4005880B2 (en) 2007-11-14

Family

ID=32059752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253868A Expired - Fee Related JP4005880B2 (en) 2002-08-30 2002-08-30 Quality inspection equipment

Country Status (1)

Country Link
JP (1) JP4005880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636508B1 (en) * 2014-05-14 2016-07-20 주식회사 생명과기술 Fruit Selection Device
CN111451166B (en) * 2020-04-09 2022-01-04 安徽品智自动化科技有限公司 Logistics sorting equipment
CN112402736B (en) * 2020-11-17 2023-03-10 杭州师范大学钱江学院 Infusion monitoring method

Also Published As

Publication number Publication date
JP2004093294A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US6026686A (en) Article inspection apparatus
JP4875589B2 (en) Panel inspection apparatus and inspection method
JPS59500250A (en) A method for determining the soundness of sown seeds and their germination ability based thereon, and an apparatus for implementing the method
EP1736766A2 (en) Method for handling and testing work pieces and device for carrying out the method
JP4005880B2 (en) Quality inspection equipment
JP2003214944A (en) Failure inspection device depending on abnormal noise
KR101139805B1 (en) Cracked egg quality decision system and method
CN101609067B (en) Nondestructive quantitative detecting method and device for internal defects of refractory brick
JPH0392758A (en) Product inspection
JPH07134118A (en) Method and apparatus for sorting sound
JPH063305A (en) Method for non-destructively inspecting piezo-electric element for micro-crack
JP2641231B2 (en) Internal quality inspection method for fruits and vegetables
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
JP2004230325A (en) Golf ball sorting method and apparatus
GB2361311A (en) Method and apparatus for inspecting an object
JPH04320958A (en) Method for inspecting product acoustically
JP3881445B2 (en) Article inspection apparatus and recording medium recording article inspection program
JP3236865B2 (en) Excitation mode identification method
JP2012168023A (en) Method for diagnosing quality of concrete-based structure
KR100497501B1 (en) Detection Method for Defect of piston gallery and The apparatus used thereto
JPH03199960A (en) Crack detecting method
US20240133787A1 (en) System and method for measuring grain particle granulometry and grain particle granulometry measurement system calibration method
JPH0549933B2 (en)
JPH0356851A (en) Cracking detecting method
JPS58147642A (en) Detection of defect in product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees