JP4003605B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4003605B2
JP4003605B2 JP2002301158A JP2002301158A JP4003605B2 JP 4003605 B2 JP4003605 B2 JP 4003605B2 JP 2002301158 A JP2002301158 A JP 2002301158A JP 2002301158 A JP2002301158 A JP 2002301158A JP 4003605 B2 JP4003605 B2 JP 4003605B2
Authority
JP
Japan
Prior art keywords
trench
oxide film
nitride film
silicon
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002301158A
Other languages
Japanese (ja)
Other versions
JP2004140039A (en
Inventor
正明 荻野
直人 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002301158A priority Critical patent/JP4003605B2/en
Publication of JP2004140039A publication Critical patent/JP2004140039A/en
Application granted granted Critical
Publication of JP4003605B2 publication Critical patent/JP4003605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、比較的高電圧で大電流を制御するパワーMOSFET(絶縁ゲート型電界効果トランジスタ)やIGBT(絶縁ゲート型バイポーラトランジスタ)などの半導体装置の製造方法に関し、特にトレンチ内に絶縁膜を介してゲート電極が埋め込まれたトレンチゲート構造を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
図4は、トレンチゲート構造を有するパワーMOSFETの構成を模式的に示す断面図である。図4に示すように、ドレイン領域となる半導体基板11上に電界緩和領域12が形成され、さらにその上にベース領域13が形成されている。ベース領域13を貫通して電界緩和領域12に達するトレンチ14の内側にはゲート酸化膜15が形成され、さらにその内側は、ゲート電極16で埋められている。
【0003】
ベース領域13においてトレンチ14の外側には、ソース領域17が選択的に形成されている。ソース電極18は、ソース領域17およびベース領域13に接触しており、層間絶縁膜19によりゲート電極16から絶縁されている。ゲート電極16は、図示しないトレンチの終端領域において基板表面側に引き出されている。半導体基板11の裏面にはドレイン電極20が形成されている。
【0004】
トレンチゲート構造を有するトランジスタでは、オン状態のときにチャネルが、ベース領域13内においてトレンチ14の側壁に沿って縦方向に形成される。したがって、ゲート電極16の幅、すなわちトレンチ14の開口幅を縮めても、チャネル長を確保することができるので、高集積化を図ることができるという利点がある。
【0005】
しかし、トレンチ14を形成する際のエッチングのダメージによって、トレンチ14の側壁および底面に微小な凹凸が生じる。この凹凸は、オン状態のときのキャリア移動度を低下させて、トランジスタの駆動力の低下を招いたり、ゲート酸化膜との界面における界面準位密度を増加させて、ゲート酸化膜の信頼性の低下を招いたり、局所的なゲート酸化膜の薄膜化による耐圧の低下を招く原因となる。
【0006】
そこで、このエッチングによるダメージを除去するために、トレンチ14を形成した後、ゲート酸化膜を形成する前に、等方性エッチング等によりトレンチ14内を少しエッチングしてトレンチ14の内面を平滑化する方法や、1000℃以上の高温で酸化させてトレンチ14の内面を平滑化する方法が公知である。また、図5(a)に示すように、トレンチ開口パターンを有する絶縁膜21およびマスク材22を用いてトレンチ14を形成した後、図5(b)に示すように、マスク材22を除去し、水素還元性雰囲気でアニールをおこない、シリコンのマイグレーションによってトレンチ14の内面の凹凸をなくし、平滑化する方法が提案されている。
【0007】
なお、従来技術としては、下記特許文献1がある。
【0008】
【特許文献1】
特開2002−110782号公報
【0009】
【発明が解決しようとする課題】
しかしながら、等方性エッチング等や高温での酸化によりトレンチ形成後のダメージを除去する方法では、トレンチ内壁のシリコンを削って平滑化しているため、トレンチ形成後にトレンチ14の開口幅が広がることになり、半導体装置の高集積化の妨げになるという問題点がある。一方、水素還元性雰囲気でのアニール処理では、シリコンのマイグレーション効果を利用しているため、トレンチ14の開口幅は広がらない。
【0010】
しかし、絶縁膜21が酸化膜である場合には、酸化膜とシリコンとの界面において、SiO2とSiとが反応し、SiOとなって昇華するため、図6に示すように、トレンチ14の上側の角部では、酸化膜(絶縁膜21)の後退とシリコンのマイグレーションの相互作用により、シリコンが尖った形状となる。そのため、この尖った部分23でゲート酸化膜が薄くなり、耐圧低下を引き起こすという問題点がある。
【0011】
本発明は、上記問題点に鑑みてなされたものであって、トレンチ形成後、ゲート酸化膜を形成する前に、トレンチの上側の角部が尖るのを防ぎながら、トレンチ形成時のダメージを除去するための水素還元性雰囲気でのアニール処理をおこなうことができる半導体装置の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる半導体装置の製造方法は、半導体基板にトレンチを形成した後、前記トレンチの内側にゲート絶縁膜を形成する前に、前記トレンチの上側の角部をシリコン窒化膜でマスクした状態で、前記トレンチの内壁のエッチングダメージを除去するための、還元性雰囲気によるアニール処理をおこなうことを特徴とする。
【0013】
この発明によれば、還元性雰囲気によるアニール処理時に、トレンチの上側の角部がシリコン窒化膜によりマスクされているため、トレンチの上側の角部において、SiOが昇華する反応が起こるのを防ぐことができる。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。
図1および図2は、本発明方法にしたがって製造されるパワーMOSFETの製造段階における様子を模式的に示す断面図である。まず、図1に示すように、ドレイン領域となる第1導電型の半導体基板31上に第1導電型の電界緩和領域32をエピタキシャル成長させた基板を用意し、これに第2導電型の不純物を注入、拡散させてベース領域33を形成する。
【0015】
ついで、熱酸化をおこなって、ベース領域33の表面に、マスク材となる酸化膜41を形成する。そして、酸化膜41上にフォトレジストを塗布し、露光および現像をおこなって、トレンチ開口パターンを有するレジストマスクを形成する。このレジストマスクを用いて異方性エッチングをおこない、基板表面上の酸化膜41を選択的に除去して、トレンチ形成領域42を露出させる。その後、レジストマスクを除去する(図1(a))。
【0016】
ついで、基板表面の全面、すなわち酸化膜41の露出面およびトレンチ形成領域42に、CVD法によりシリコン窒化膜43を、特に限定しないが、たとえば0.1μmの厚さに堆積する(図1(b))。つづいて、異方性エッチングによりシリコン窒化膜43のエッチバックをおこない、酸化膜41の側壁部分にのみシリコン窒化膜43を残し、サイドウォール窒化膜44を形成する。そして、異方性エッチングをおこなって、トレンチ34を形成する(図1(c))。ここで、サイドウォール窒化膜44は、トレンチエッチングの際のマスクとなるため、シリコン窒化膜43の厚さは、トレンチ34が得たい開口幅に応じて適宜選択される。
【0017】
たとえば、酸化膜41の幅を1.2μmとし、シリコン窒化膜43の厚さを0.1μm(両側で0.2μm)とすると、1μmの開口幅のトレンチ34が形成できる。ここで、シリコン窒化膜43の厚さだけを0.15μmに変えるとトレンチ34の開口幅は0.9μmとなり、厚さを0.2μmとすると0.8μmのトレンチ開口幅とすることができる。すなわち、トレンチ形成領域42を作るマスクを変えずともシリコン窒化膜の堆積膜厚のみを変えるだけで、トレンチ開口幅を任意に変えることができる。
【0018】
ついで、図2に示すように、水素還元性雰囲気でアニール処理をおこない、トレンチ34の側壁の凹凸を、シリコンのマイグレーション効果により平滑化するとともに、トレンチ34の底部の角部341を丸める(同図(a))。ここで、特に限定しないが、たとえば水素アニール時の圧力は1333.22〜101324.72Paであり、温度は950〜1100℃であり、水素濃度は1〜100%であり、アニール時間は5〜30秒である。この水素アニール時には、トレンチ34の上側の角部は、サイドウォール窒化膜44によりマスクされているため、酸化膜41とシリコンとの界面において、SiO2とSiとが反応してSiOとなって昇華する反応が起こらない。したがって、トレンチ34の上側の角部が、尖った形状となることはない。
【0019】
ついで、熱いH3PO4溶液を用いてサイドウォール窒化膜44を除去する。そして、熱酸化をおこなって、トレンチ34の内側にゲート酸化膜35を形成する。その後、CVD法により、ゲート電極36となる膜を堆積してトレンチ34を埋める。この膜は、たとえばリンをドープしたポリシリコン膜である。ついでCMP(化学機械研磨)法により、酸化膜41が露出するまでポリシリコン膜を研磨して平坦化する。さらに、所望のパターンのレジストマスクを形成し、エッチングをおこなって所定のゲート電極36を形成する(図2(b))。
【0020】
酸化膜41を除去した後、不純物の注入および拡散によりソース領域37を形成し、ゲート電極36とソース電極38とを絶縁するための層間絶縁膜39を形成する。そして、ソース領域37とベース領域33とに電気的に接続するソース電極38を形成する。また、ドレイン領域となる半導体基板31の裏面にドレイン電極40を形成する(図2(c))。このようにして、トレンチゲート構造を有するパワーMOSFETができあがる。
【0021】
なお、図2(a)に示すように、水素アニール処理により、トレンチ34の側壁の凹凸を平滑化するとともに、トレンチ34の底部の角部341を丸めた後、図2(b)に示すように、トレンチ34の内側にゲート電極36を形成する前に、つぎの工程を挿入してもよい。すなわち、水素アニールをおこない、熱いH3PO4溶液によりサイドウォール窒化膜44を除去する。そして、CVD法により酸化膜を堆積し、たとえばHF溶液によるウェットエッチングなどの等方性エッチングをおこなって、トレンチ34内に酸化膜45を、トレンチ34の開口端よりも少し低い位置まで埋め込む(図3(a))。
【0022】
ついで、950℃〜1100℃の温度で、たとえばドライ雰囲気で酸化処理をおこない、トレンチ34の上側の角部342を含む、シリコンの露出領域に薄い酸化膜46を成長させる。その際、酸化膜46の粘性流動によって、トレンチ34の上側の角部342が丸められる(図3(b))。また、この酸化処理時には、酸化種の拡散が律速となり、ほとんど酸化が起こらないので、トレンチ34の開口幅は広くならない。ついで、酸化膜41の所望の部分をレジストで覆い、HF溶液を用いて、トレンチ34内の酸化膜45、およびトレンチ34の上側の角部342を覆う薄い酸化膜46を除去する。その後、ゲート酸化膜35を形成する工程へすすみ、それ以降は上述した通りである。
【0023】
ここで、トレンチ34内に酸化膜45を、上述した高さ位置まで埋め込むためには、あらかじめ、CVD法により堆積された酸化膜について、HF溶液によるエッチングレートを求めておき、それに基づいてエッチング時間の管理をおこなえばよい。また、HF溶液を用いたエッチング時に、トレンチ34を形成する際のマスクであった基板表面の酸化膜41もエッチングされるが、あらかじめ、この酸化膜41の厚さを、そのエッチング量を見込んだ厚さとしておき、後の工程において不具合が起こらないようにしておく。また、トレンチ34の上側の角部342を薄い酸化膜46で覆う際に、ウェット酸化法を用いることもできる。その場合には、たとえば希釈パイロジェニック酸化のように、高温において酸化速度を抑えることができる雰囲気であるとよい。
【0024】
上述した実施の形態によれば、トレンチ34の上側の角部をサイドウォール窒化膜44でマスクしたことにより、トレンチ34の上側の角部が尖るのを防ぎながら、トレンチ形成時のダメージを除去するための水素アニールをおこなうことができる。したがって、トレンチ34の上側の角部でゲート酸化膜35が薄くなるのを防ぐことができるので、MOSFETの耐圧や信頼性などの電気的諸特性を改善することができる。
【0025】
以上において本発明は、トレンチゲート構造を有するパワーMOSFETに限らず、トレンチゲート構造を有するIGBTなど、トレンチゲート構造を有する半導体装置の製造に適用することができる。
【0026】
【発明の効果】
本発明によれば、還元性雰囲気によるアニール処理時に、トレンチの上側の角部がシリコン窒化膜によりマスクされているため、トレンチの上側の角部において、SiOが昇華する反応が起こるのを防ぐことができる。したがって、トレンチの上側の角部が尖るのを防ぎながら、還元性雰囲気によるアニール処理をおこなって、トレンチ形成時のダメージを除去することができる。
【図面の簡単な説明】
【図1】本発明方法にしたがって製造されるパワーMOSFETの製造段階における様子を模式的に示す断面図である。
【図2】本発明方法にしたがって製造されるパワーMOSFETの製造段階における様子を模式的に示す断面図である。
【図3】本発明方法にしたがって製造されるパワーMOSFETの製造段階における様子を模式的に示す断面図である。
【図4】トレンチゲート構造を有するパワーMOSFETの構成を模式的に示す断面図である。
【図5】従来の水素還元性雰囲気でのアニール処理の前後の素子の様子を模式的に示す断面図である。
【図6】従来の水素還元性雰囲気でのアニール処理後の素子のトレンチ肩部を拡大して示す断面図である。
【符号の説明】
31 半導体基板
32 電界緩和領域
33 ベース領域
34 トレンチ
35 ゲート酸化膜
36 ゲート電極
41 酸化膜
42 トレンチ形成領域
43 シリコン窒化膜
44 サイドウォール窒化膜
45 酸化膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device such as a power MOSFET (insulated gate type field effect transistor) or IGBT (insulated gate type bipolar transistor) that controls a large current at a relatively high voltage, and in particular, an insulating film is interposed in a trench. The present invention relates to a method of manufacturing a semiconductor device having a trench gate structure in which a gate electrode is embedded.
[0002]
[Prior art]
FIG. 4 is a cross-sectional view schematically showing the configuration of a power MOSFET having a trench gate structure. As shown in FIG. 4, an electric field relaxation region 12 is formed on a semiconductor substrate 11 serving as a drain region, and a base region 13 is further formed thereon. A gate oxide film 15 is formed inside the trench 14 that passes through the base region 13 and reaches the electric field relaxation region 12, and further, the inside thereof is filled with a gate electrode 16.
[0003]
A source region 17 is selectively formed outside the trench 14 in the base region 13. The source electrode 18 is in contact with the source region 17 and the base region 13 and is insulated from the gate electrode 16 by the interlayer insulating film 19. The gate electrode 16 is drawn to the substrate surface side in a termination region of a trench (not shown). A drain electrode 20 is formed on the back surface of the semiconductor substrate 11.
[0004]
In a transistor having a trench gate structure, a channel is formed in the base region 13 in the vertical direction along the side wall of the trench 14 in the on state. Therefore, even if the width of the gate electrode 16, that is, the opening width of the trench 14 is reduced, the channel length can be secured, so that there is an advantage that high integration can be achieved.
[0005]
However, due to etching damage when forming the trench 14, minute irregularities are formed on the side wall and the bottom surface of the trench 14. This unevenness reduces the carrier mobility in the on state, leading to a reduction in the driving power of the transistor, or increasing the interface state density at the interface with the gate oxide film, thereby improving the reliability of the gate oxide film. This may cause a decrease or a breakdown voltage due to local thinning of the gate oxide film.
[0006]
Therefore, in order to remove the damage caused by this etching, after the trench 14 is formed and before the gate oxide film is formed, the inside of the trench 14 is slightly etched by isotropic etching or the like to smooth the inner surface of the trench 14. A method and a method of smoothing the inner surface of the trench 14 by oxidizing at a high temperature of 1000 ° C. or higher are known. Further, as shown in FIG. 5A, after forming the trench 14 using the insulating film 21 having the trench opening pattern and the mask material 22, the mask material 22 is removed as shown in FIG. 5B. A method has been proposed in which annealing is performed in a hydrogen-reducing atmosphere, and unevenness on the inner surface of the trench 14 is eliminated by silicon migration to smooth the surface.
[0007]
As a prior art, there is Patent Document 1 below.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-110782
[Problems to be solved by the invention]
However, in the method of removing damage after forming the trench by isotropic etching or oxidation at a high temperature, since the silicon on the inner wall of the trench is shaved and smoothed, the opening width of the trench 14 is widened after the trench is formed. However, there is a problem that high integration of semiconductor devices is hindered. On the other hand, in the annealing process in a hydrogen reducing atmosphere, the opening width of the trench 14 does not increase because the silicon migration effect is used.
[0010]
However, when the insulating film 21 is an oxide film, SiO 2 and Si react at the interface between the oxide film and silicon to sublimate to become SiO, and as shown in FIG. In the upper corner, silicon has a sharp shape due to the interaction between the receding of the oxide film (insulating film 21) and the migration of silicon. Therefore, there is a problem that the gate oxide film becomes thin at the pointed portion 23 and causes a decrease in breakdown voltage.
[0011]
The present invention has been made in view of the above problems, and after forming a trench and before forming a gate oxide film, removes damage at the time of trench formation while preventing the upper corner of the trench from being sharpened. An object of the present invention is to provide a method for manufacturing a semiconductor device capable of performing an annealing process in a hydrogen reducing atmosphere.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the method of manufacturing a semiconductor device of the present invention, after forming a trench in a semiconductor substrate, before forming a gate insulating film inside the trench, the upper corner portion of the trench is siliconized. An annealing process in a reducing atmosphere is performed to remove etching damage on the inner wall of the trench while masked with a nitride film.
[0013]
According to the present invention, since the upper corner portion of the trench is masked by the silicon nitride film during the annealing process in the reducing atmosphere, it is possible to prevent the reaction of SiO sublimation from occurring in the upper corner portion of the trench. Can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are cross-sectional views schematically showing a state in a manufacturing stage of a power MOSFET manufactured according to the method of the present invention. First, as shown in FIG. 1, a substrate is prepared by epitaxially growing a first conductivity type electric field relaxation region 32 on a first conductivity type semiconductor substrate 31 serving as a drain region, and a second conductivity type impurity is added thereto. The base region 33 is formed by implantation and diffusion.
[0015]
Next, thermal oxidation is performed to form an oxide film 41 serving as a mask material on the surface of the base region 33. Then, a photoresist is applied on the oxide film 41, and exposure and development are performed to form a resist mask having a trench opening pattern. Using this resist mask, anisotropic etching is performed to selectively remove the oxide film 41 on the substrate surface, thereby exposing the trench formation region 42. Thereafter, the resist mask is removed (FIG. 1A).
[0016]
Next, a silicon nitride film 43 is deposited on the entire surface of the substrate, that is, the exposed surface of the oxide film 41 and the trench formation region 42 by a CVD method to a thickness of, for example, 0.1 μm, although not particularly limited (FIG. 1B). )). Subsequently, the silicon nitride film 43 is etched back by anisotropic etching to leave the silicon nitride film 43 only on the side wall portion of the oxide film 41 and form the sidewall nitride film 44. Then, anisotropic etching is performed to form a trench 34 (FIG. 1C). Here, since the sidewall nitride film 44 serves as a mask during trench etching, the thickness of the silicon nitride film 43 is appropriately selected according to the opening width desired to be obtained by the trench 34.
[0017]
For example, if the width of the oxide film 41 is 1.2 μm and the thickness of the silicon nitride film 43 is 0.1 μm (0.2 μm on both sides), a trench 34 having an opening width of 1 μm can be formed. Here, if only the thickness of the silicon nitride film 43 is changed to 0.15 μm, the opening width of the trench 34 becomes 0.9 μm, and if the thickness is 0.2 μm, the trench opening width can be 0.8 μm. That is, the trench opening width can be arbitrarily changed by changing only the deposited thickness of the silicon nitride film without changing the mask for forming the trench formation region 42.
[0018]
Next, as shown in FIG. 2, annealing is performed in a hydrogen reducing atmosphere to smooth the unevenness on the side wall of the trench 34 by the migration effect of silicon and round the corner 341 at the bottom of the trench 34 (see FIG. 2). (A)). Here, although not particularly limited, for example, the pressure at the time of hydrogen annealing is 1333.22 to 101324.72 Pa, the temperature is 950 to 1100 ° C., the hydrogen concentration is 1 to 100%, and the annealing time is 5 to 30. Seconds. During this hydrogen annealing, the upper corner portion of the trench 34 is masked by the sidewall nitride film 44, so that SiO 2 and Si react with each other at the interface between the oxide film 41 and silicon to be sublimated. Reaction does not occur. Therefore, the upper corner of the trench 34 does not have a sharp shape.
[0019]
Next, the sidewall nitride film 44 is removed using a hot H 3 PO 4 solution. Then, thermal oxidation is performed to form a gate oxide film 35 inside the trench 34. Thereafter, a film to be the gate electrode 36 is deposited by CVD to fill the trench 34. This film is, for example, a polysilicon film doped with phosphorus. Next, the polysilicon film is polished and planarized by CMP (chemical mechanical polishing) until the oxide film 41 is exposed. Further, a resist mask having a desired pattern is formed, and etching is performed to form a predetermined gate electrode 36 (FIG. 2B).
[0020]
After removing the oxide film 41, a source region 37 is formed by impurity implantation and diffusion, and an interlayer insulating film 39 for insulating the gate electrode 36 and the source electrode 38 is formed. Then, a source electrode 38 electrically connected to the source region 37 and the base region 33 is formed. In addition, the drain electrode 40 is formed on the back surface of the semiconductor substrate 31 to be the drain region (FIG. 2C). In this way, a power MOSFET having a trench gate structure is completed.
[0021]
As shown in FIG. 2A, the unevenness of the sidewall of the trench 34 is smoothed by hydrogen annealing, and the corner 341 at the bottom of the trench 34 is rounded, and then, as shown in FIG. In addition, the following process may be inserted before the gate electrode 36 is formed inside the trench 34. That is, hydrogen annealing is performed, and the sidewall nitride film 44 is removed with a hot H 3 PO 4 solution. Then, an oxide film is deposited by the CVD method, and isotropic etching such as wet etching with an HF solution is performed, for example, so that the oxide film 45 is embedded in the trench 34 to a position slightly lower than the opening end of the trench 34 (FIG. 3 (a)).
[0022]
Next, an oxidation process is performed at a temperature of 950 ° C. to 1100 ° C., for example, in a dry atmosphere, and a thin oxide film 46 is grown in an exposed region of silicon including the upper corner portion 342 of the trench 34. At that time, the upper corner portion 342 of the trench 34 is rounded by the viscous flow of the oxide film 46 (FIG. 3B). Further, during this oxidation treatment, the diffusion of the oxidized species becomes rate-limiting and almost no oxidation occurs, so that the opening width of the trench 34 is not widened. Next, a desired portion of the oxide film 41 is covered with a resist, and the oxide film 45 in the trench 34 and the thin oxide film 46 covering the upper corner 342 of the trench 34 are removed using an HF solution. Thereafter, the process proceeds to the step of forming the gate oxide film 35, and the subsequent steps are as described above.
[0023]
Here, in order to embed the oxide film 45 in the trench 34 to the above-described height position, an etching rate by an HF solution is obtained in advance for the oxide film deposited by the CVD method, and the etching time is determined based on the etching rate. You just have to manage. In addition, during the etching using the HF solution, the oxide film 41 on the substrate surface, which was a mask for forming the trench 34, is also etched. The thickness of the oxide film 41 is estimated in advance for the etching amount. The thickness is set so that no trouble occurs in a later process. Further, when the upper corner portion 342 of the trench 34 is covered with the thin oxide film 46, a wet oxidation method can be used. In that case, it is preferable that the atmosphere can suppress the oxidation rate at a high temperature, for example, dilution pyrogenic oxidation.
[0024]
According to the above-described embodiment, the upper corner portion of the trench 34 is masked by the sidewall nitride film 44, thereby preventing damage at the time of forming the trench while preventing the upper corner portion of the trench 34 from being sharpened. Hydrogen annealing can be performed. Therefore, the gate oxide film 35 can be prevented from being thinned at the upper corner of the trench 34, so that various electrical characteristics such as breakdown voltage and reliability of the MOSFET can be improved.
[0025]
As described above, the present invention is not limited to the power MOSFET having the trench gate structure, but can be applied to the manufacture of a semiconductor device having a trench gate structure, such as an IGBT having a trench gate structure.
[0026]
【The invention's effect】
According to the present invention, since the upper corner portion of the trench is masked by the silicon nitride film during the annealing process in the reducing atmosphere, it is possible to prevent the reaction of SiO sublimation from occurring in the upper corner portion of the trench. Can do. Therefore, it is possible to remove the damage at the time of forming the trench by performing an annealing process in a reducing atmosphere while preventing the upper corner of the trench from being sharpened.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a state in a manufacturing stage of a power MOSFET manufactured according to the method of the present invention.
FIG. 2 is a cross-sectional view schematically showing a state in a manufacturing stage of a power MOSFET manufactured according to the method of the present invention.
FIG. 3 is a cross-sectional view schematically showing a state in a manufacturing stage of a power MOSFET manufactured according to the method of the present invention.
FIG. 4 is a cross-sectional view schematically showing a configuration of a power MOSFET having a trench gate structure.
FIG. 5 is a cross-sectional view schematically showing the state of an element before and after annealing in a conventional hydrogen reducing atmosphere.
FIG. 6 is an enlarged cross-sectional view showing a trench shoulder portion of a device after annealing in a conventional hydrogen reducing atmosphere.
[Explanation of symbols]
31 Semiconductor substrate 32 Electric field relaxation region 33 Base region 34 Trench 35 Gate oxide film 36 Gate electrode 41 Oxide film 42 Trench formation region 43 Silicon nitride film 44 Side wall nitride film 45 Oxide film

Claims (4)

半導体基板にトレンチを形成した後、前記トレンチの内側にゲート絶縁膜を形成する前に、前記トレンチの上側の角部で前記半導体基板の表面上をシリコン窒化膜でマスクした状態で、かつ前記シリコン窒化膜に隣接して前記半導体基板表面上をシリコン酸化膜でマスクした状態で、前記トレンチの内壁のエッチングダメージを除去するための、還元性雰囲気によるアニール処理をおこなうことを特徴とする半導体装置の製造方法。After forming a trench in the semiconductor substrate and before forming a gate insulating film inside the trench, the silicon substrate is masked with a silicon nitride film at the upper corner of the trench and the silicon substrate is masked. An annealing process in a reducing atmosphere is performed to remove etching damage on the inner wall of the trench in a state where the surface of the semiconductor substrate is masked with a silicon oxide film adjacent to the nitride film. Production method. 半導体基板の表面に、シリコン酸化膜を積層し、異方性エッチングにより前記シリコン酸化膜を選択的に除去して、基板表面のトレンチ形成領域を露出させる工程と、
前記シリコン酸化膜および基板表面の露出部分の上にシリコン窒化膜を積層する工程と、
前記シリコン窒化膜を異方性エッチングにより、基板表面の前記トレンチ形成領域が露出するまでエッチバックし、トレンチの上側の角部となる部分に前記シリコン窒化膜を残す工程と、
前記シリコン酸化膜、およびトレンチの上側の角部となる部分に残った前記シリコン窒化膜をマスクとしてトレンチを形成する工程と、
トレンチの上側の角部となる部分に前記シリコン窒化膜を残した状態で、前記トレンチの内壁のエッチングダメージを除去するための、還元性雰囲気によるアニール処理をおこなう工程と、
残った前記シリコン窒化膜を除去する工程と、
前記トレンチの内側にゲート酸化膜およびゲート電極を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Stacking a silicon oxide film on the surface of the semiconductor substrate, selectively removing the silicon oxide film by anisotropic etching, and exposing a trench formation region on the substrate surface;
Laminating a silicon nitride film on the silicon oxide film and the exposed portion of the substrate surface;
Etching back the silicon nitride film by anisotropic etching until the trench formation region on the substrate surface is exposed, and leaving the silicon nitride film in a portion that becomes the upper corner of the trench;
Forming a trench using the silicon oxide film and the silicon nitride film remaining in the upper corner portion of the trench as a mask; and
A process of performing an annealing treatment in a reducing atmosphere to remove etching damage on the inner wall of the trench while leaving the silicon nitride film in the upper corner portion of the trench,
Removing the remaining silicon nitride film;
Forming a gate oxide film and a gate electrode inside the trench;
A method for manufacturing a semiconductor device, comprising:
前記シリコン窒化膜を除去した後に、前記トレンチの上側の角部となる部分が露出するように、前記トレンチ内を酸化膜で埋める工程と、
前記トレンチの上側の角部となる部分に露出するシリコンを熱酸化する工程と、
をさらに含むことを特徴とする請求項2に記載の半導体装置の製造方法。
After removing the silicon nitride film, filling the trench with an oxide film so that the upper corner of the trench is exposed; and
Thermally oxidizing silicon exposed in the upper corner portion of the trench;
The method of manufacturing a semiconductor device according to claim 2, further comprising:
前記シリコン窒化膜の厚さを変えて、前記トレンチの開口幅を決めることを特徴とする請求項2に記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 2, wherein the opening width of the trench is determined by changing the thickness of the silicon nitride film.
JP2002301158A 2002-10-15 2002-10-15 Manufacturing method of semiconductor device Expired - Fee Related JP4003605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301158A JP4003605B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301158A JP4003605B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004140039A JP2004140039A (en) 2004-05-13
JP4003605B2 true JP4003605B2 (en) 2007-11-07

Family

ID=32449568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301158A Expired - Fee Related JP4003605B2 (en) 2002-10-15 2002-10-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4003605B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797358B2 (en) * 2004-10-01 2011-10-19 富士電機株式会社 Manufacturing method of semiconductor device
JP2007194333A (en) * 2006-01-18 2007-08-02 Elpida Memory Inc Method for manufacturing semiconductor device
JP2007250855A (en) * 2006-03-16 2007-09-27 Elpida Memory Inc Semiconductor device and its manufacturing method
JP2008305961A (en) 2007-06-07 2008-12-18 Elpida Memory Inc Semiconductor device and its manufacturing method
JP2009123998A (en) 2007-11-16 2009-06-04 Elpida Memory Inc Manufacturing method of semiconductor device
EP2277050B2 (en) 2008-04-16 2022-09-28 Momenta Pharmaceuticals, Inc. Analysis of amino acid copolymer compositions
WO2010115175A1 (en) 2009-04-03 2010-10-07 Momenta Pharmaceticals, Inc. Control of copolymer compositions
KR20100111162A (en) 2009-04-06 2010-10-14 삼성전자주식회사 Method of fabricating a semiconductor device having a recessed channel mos transistor
CN102446760A (en) * 2010-10-15 2012-05-09 中芯国际集成电路制造(上海)有限公司 Method of manufacturing vertical diode
KR101751482B1 (en) 2011-03-08 2017-06-29 삼성전자주식회사 Method of fabricating a semiconductor device including a recess channel
JP7151446B2 (en) * 2018-12-12 2022-10-12 株式会社デンソー Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2004140039A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US6797588B2 (en) Method for manufacturing a semiconductor device having a trench and a thick insulation film at the trench opening
JP3923214B2 (en) Method for isolating trench element in semiconductor device
JP4072308B2 (en) Trench element isolation method
US6979878B1 (en) Isolation structure having implanted silicon atoms at the top corner of the isolation trench filling vacancies and interstitial sites
US7029988B2 (en) Fabrication method and device structure of shallow trench insulation for silicon wafer containing silicon-germanium
JP3602313B2 (en) Method for manufacturing semiconductor device
JP2006510214A (en) Manufacturing method of trench gate type semiconductor device
JP2001024200A (en) Semiconductor device and manufacture therefor
JP4003605B2 (en) Manufacturing method of semiconductor device
US6165906A (en) Semiconductor topography employing a shallow trench isolation structure with an improved trench edge
US6218720B1 (en) Semiconductor topography employing a nitrogenated shallow trench isolation structure
US6433400B1 (en) Semiconductor fabrication employing barrier atoms incorporated at the edges of a trench isolation structure
JP2001044273A (en) Manufacture of semiconductor device
JP3150064B2 (en) Manufacturing method of vertical field effect transistor
JP4136145B2 (en) Manufacturing method of semiconductor device
JP3972486B2 (en) Manufacturing method of semiconductor device
JP2007088369A (en) Manufacturing method and manufacturing apparatus of semiconductor device
JP2004152851A (en) Method of manufacturing semiconductor device
JP4826036B2 (en) Manufacturing method of semiconductor device
KR100672768B1 (en) Method for forming isolation in semiconductor device
JP2001093861A (en) Semiconductor device and manufacturing method thereof
JP4067783B2 (en) Manufacturing method of semiconductor device
KR100519517B1 (en) Method for forming isolation in semiconductor device
JPH01196134A (en) Manufacture of semiconductor device
JP2007081167A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees