JP4000435B2 - Exhaust gas purification device for in-cylinder injection internal combustion engine - Google Patents

Exhaust gas purification device for in-cylinder injection internal combustion engine Download PDF

Info

Publication number
JP4000435B2
JP4000435B2 JP26767999A JP26767999A JP4000435B2 JP 4000435 B2 JP4000435 B2 JP 4000435B2 JP 26767999 A JP26767999 A JP 26767999A JP 26767999 A JP26767999 A JP 26767999A JP 4000435 B2 JP4000435 B2 JP 4000435B2
Authority
JP
Japan
Prior art keywords
nox
injection
fuel
exhaust
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26767999A
Other languages
Japanese (ja)
Other versions
JP2001090593A (en
Inventor
均一 岩知道
孝之 小野寺
修 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP26767999A priority Critical patent/JP4000435B2/en
Publication of JP2001090593A publication Critical patent/JP2001090593A/en
Application granted granted Critical
Publication of JP4000435B2 publication Critical patent/JP4000435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、特に、燃費悪化やトルク変動を抑制しつつNOx触媒装置を再生可能な排気浄化装置に関する。
【0002】
【関連する背景技術】
希薄燃焼内燃機関の排ガス中の窒素酸化物(NOx)を浄化するNOx触媒が実用化されている。この種のNOx触媒として、内燃機関のリーン燃焼運転中に排ガス中のNOxを捕捉し、捕捉したNOxをリッチまたはストイキオ燃焼運転中に還元するものがある。この様な触媒を備えた排気浄化装置において、捕捉したNOxを還元させる際に、たとえば、特許第2600492号に記載のように主噴射による空燃比をリッチ化したり、特許第2845103号に記載のように主噴射(主たる燃料噴射)を行った後の膨張行程または排気行程で副噴射(追加の燃料噴射)を行ったりすることにより、NOx触媒に流入する排ガス中の酸素濃度を低下させてNOxの還元を促進する技術が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の公知技術のように、NOx触媒に流入する排ガス中の酸素濃度を低下させてNOxの還元を促進するには、主噴射における空燃比をリッチ化したり、そのために運転モードを切り換えたり、或いは副噴射に際して多量の燃料を噴射する必要があり、トルク変動や燃費の悪化を来すという問題がある。
【0004】
本発明は、トルク変動や燃費悪化を来すことなくNOx触媒装置の浄化能力を再生可能とする筒内噴射型内燃機関の排気浄化装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明に係る排気浄化装置は、NOx触媒装置に捕捉されたNOxを還元させる際、NOx触媒装置に流入する排ガス中の酸素濃度を殆ど低下させないという制約の下で、主噴射の後の膨張行程中または排気行程中にパルス噴射手段により燃料噴射弁を作動させて副噴射を行い、また、NOx触媒装置の下流での排ガス中酸素濃度を表す酸素センサ出力に基づいてNOx触媒装置の下流に配された三元触媒装置の入口での排ガス中酸素濃度が零またはその近傍の値になるように副噴射量を設定して、パルス噴射手段による燃料噴射弁の作動により副噴射を行うことを特徴とする。
【0006】
請求項1に記載の発明によれば、NOx触媒装置の浄化性能(NOx吸蔵能力)の低下がたとえば適宜の手段により適宜の判別条件の下で判別された場合、主噴射の後の膨張行程中または排気行程中にパルス噴射手段による燃料噴射弁の作動が行われる。膨張行程中または排気行程中に燃焼室内に供給された燃料は不完全燃焼し、燃料の未燃成分が排気通路へ排出され、排気空燃比がリッチ化される。この結果、NOx触媒装置に捕捉されているNOxが還元され、NOx触媒装置の浄化性能が再生される。本発明では、NOxパージ運転中の主噴射および副噴射、特に、NOx還元のための燃料噴射弁の作動(副噴射)は、NOx触媒装置に流入する排ガス中の酸素濃度を殆ど低下させないという制約の下で実施されるため、NOx触媒装置の再生に際して、公知技術のように排ガス中酸素濃度を低下させるべく、主噴射での空燃比のリッチ化、燃料噴射モードの切り換え或いは多量の副噴射が行われることがなく、触媒再生時のトルク変動や燃費悪化が解消され、或いは低減する。
また、請求項1に記載の発明は、NOx触媒装置の下流での排ガス中酸素濃度を表す酸素センサ出力に基づいてNOx触媒装置の下流に配された三元触媒装置の入口での排ガス中酸素濃度が零またはその近傍の値になるように副噴射量を設定して副噴射を行うものとなっており、これにより、三元触媒装置の浄化性能を充分に発揮させ、NOx触媒装置で浄化されなかったNOxを浄化することができる。
本発明において、NOx触媒装置に酸化機能(三元機能)をもたせることが好ましい。この場合、排気通路内へ未燃燃料成分として排出される炭化水素が、NOx触媒での酸化反応により、NOxの還元を促進する一酸化炭素へ転化され、NOx浄化に寄与する。
【0007】
請求項1に記載の発明において、パルス噴射手段による燃料噴射弁の作動に伴って排気通路へ排出される未燃燃料成分を、NOx触媒装置の上流側の排気通路内で殆ど酸化させないという制約の下で、パルス噴射手段により燃料噴射弁を作動させることが好ましい。この好適態様では、内燃機関の膨張行程中に噴射された燃料の未燃成分がNOx触媒装置の上流側の排気通路内で殆ど酸化されないことから、未燃燃料成分の酸化のために排ガス中の酸素が消費されることがない。従って、主噴射での空燃比のリッチ化などが行われないという本発明の主たる特徴と相まって、NOx触媒装置に流入する排ガス中の酸素濃度は殆ど低下せず、また、未燃燃料成分の大部分がNOx触媒装置に流入してNOx還元の促進に寄与する。この様に、NOx触媒に流入する排ガス中の酸素濃度の低下ならびにトルク変動や燃費悪化を来すことなく、NOx触媒装置の浄化能力の再生が効率的に行われる。
【0008】
請求項1に記載の発明において、パルス噴射手段による燃料噴射弁の作動を、圧縮行程で行われる主噴射の後の膨張行程で実施することが好ましい。この様に主噴射が圧縮行程で行われると、例えば吸気行程で主噴射を行う場合に比べ排気温度は低くなり、未燃燃料成分がNOx触媒装置の上流側の排気通路内で酸化されにくくなるため、主噴射での空燃比のリッチ化などが行われないという本発明の主たる特徴と相まって、NOx触媒装置に流入する排ガス中の酸素濃度を低下させることがなく、未燃燃料成分の大部分がNOx触媒装置からのNOx放出、還元に寄与し、NOx触媒装置の再生を促進する。
【0010】
本発明において、NOx触媒装置に酸化機能(三元機能)をもたせることが好ましい。この場合、排気通路内へ未燃燃料成分として排出される炭化水素が、NOx触媒での酸化反応により、NOxの還元を促進する一酸化炭素へ転化され、NOx浄化に寄与する。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態による排気浄化装置を装備した希薄燃焼内燃機関を説明する。
本実施形態の希薄燃焼内燃機関は、吸気行程での燃料噴射に加えて、圧縮行程や膨張行程での燃料噴射を必要に応じて実施可能な筒内噴射型火花点火式直列4気筒ガソリンエンジンから構成されている。この筒内噴射型エンジンでの燃料噴射モードは、エンジン運転域の変化に応じて種々に変化し、これに伴って混合気の空燃比が超リーン空燃比からリッチ空燃比にわたって変化し、所要のエンジン出力を発生しつつ燃費及び排気特性の向上が図られる。この種の筒内噴射型エンジンは従来公知であるが、以下、簡略に説明する。
【0012】
図1に示すように、エンジン1のシリンダヘッド2には各気筒毎に点火プラグ4とともに電磁式の燃料噴射弁6が取り付けられている。燃料噴射弁6は、燃料タンク、低圧燃料ポンプおよび高圧燃料ポンプを有した燃料供給装置(図示略)に燃料パイプを介して接続され、燃料タンク内の燃料を燃料噴射弁6から燃焼室8内に所望の燃圧で直接に噴射できるようになっている。
【0013】
シリンダヘッド2には各気筒毎に略直立方向に吸気ポートが形成され、各吸気ポートは吸気マニホールド10の一端に連通している。吸気マニホールド10の他端側に設けられたスロットル弁11には、スロットル開度θthを検出するスロットルセンサ11aが設けられている。また、シリンダヘッド2には各気筒毎に略水平方向に排気ポートが形成され、各排気ポートは排気マニホールド12の一端に連通している。
【0014】
排気マニホールド12には排気管(排気通路)14を介してマフラー(図示せず)が接続され、また、排気管14には排気温度を検出する高温センサ16が設けられている。
本実施形態の排気浄化装置30は、排気空燃比がリーンのときに排ガス中のNOxを吸蔵し吸蔵されたNOxを排気空燃比がストイキオまたはリッチのときに放出、還元する吸蔵型NOx触媒(NOx吸蔵触媒装置)30aとその下流に配された三元触媒30bとを有している。参照符号18は、排ガス流通方向にみてNOx触媒30aと三元触媒30bとの間に配され三元触媒30bの入口における排ガス中酸素濃度を検出する酸素センサを表し、参照符号32は、三元触媒30bの下流に配されNOx濃度を検出するNOxセンサ32を表す。
【0015】
吸蔵型NOx触媒30aは、白金(Pt),ロジウム(Rh)等の貴金属からなる触媒種とバリウム(Ba)、カリウム(K)等のアルカリ金属やアルカリ土類金属からなるNOx吸蔵剤とをアルミナなどの担体に担持したものであって、基本的には図2に示すように、酸化雰囲気においてNOxを一旦硝酸塩X−NO3(ここで記号Xは例えばBaやKを表す)として吸蔵する機能と、主としてCOの存在する還元雰囲気中においてNOxをN2(窒素)等に還元させる機能とを持つ。
【0016】
NOx触媒30aのNOx吸蔵能力が飽和してNOx浄化能力が失われるとNOxが大気中へ放出されてしまうので、NOx触媒30aのNOx吸蔵能力ひいてはNOx浄化能力を再生するべく、一般には、混合気をリッチ化する所謂NOxパージが周期的に実施される。
NOxパージに際して、特許2600492号に記載のNOxパージ技術では、NOxパージに係る主噴射時の混合気の空燃比をリッチ化するため、NOxパージへの移行時に運転モードを切り換える必要が生じ、この運転モード切換に伴ってエンジン出力トルクにショックが発生し易い。また、運転モード切換に伴うトルクショックは、主噴射時の空燃比の変化速度をテーリングにより低減することにより軽減可能ではあるが、この場合、空燃比制御手順が複雑になると共に空燃比制御中に還元剤不足を招来するような空燃比領域を通過するという不具合がある。
【0017】
また、特許第2845103号に記載のNOxパージ技術やこれに類するものでは、主噴射の後の膨張行程または排気行程で副噴射を行うことにより多量の炭化水素や一酸化炭素などの還元剤を排ガス中に含ませておき、還元剤をNOx触媒上のO2-などと酸化反応させることにより排ガス中の酸素濃度を低下させてNOx放出を促し、更に、O2-などとの酸化反応に寄与しなかった残りの還元剤によりNOxを窒素などに還元させている。このため、多量の燃料を副噴射させる必要がある。また、NOxパージに際しては、一般に、主噴射に係る空燃比をリッチ化したり燃料噴射モードの切り換えが行われ、多量の副噴射と共に、燃費悪化やトルク変動の発生原因になっている。そして、この技術では、NOxの還元に寄与する主たる還元剤である一酸化炭素の供給は副噴射により行われるが、一酸化炭素はNOxの還元のみならずNOx放出を促すためにも相当量が消費されるので、副噴射に係る燃料噴射量が増大する。
【0018】
本実施形態の排気浄化装置では、上記のトルクショック発生や副噴射量増大の要因に着目して、NOxパージにおける主噴射時の空燃比のリッチ化やそのための運転モード切換を不要にして燃費悪化やトルクショックを防止し、また、副噴射により燃焼室から排気通路へ排出される炭化水素や一酸化炭素などの未燃燃料成分(還元剤)がNOx触媒30aの上流側の排気通路内で殆ど酸化されないような条件下で副噴射を行うことにより酸化反応による未燃燃料成分の消費を抑制し、更に、NOx触媒30aの酸化機能(三元機能)を高めることにより、NOx触媒に流入する炭化水素を触媒上での酸化反応によって一酸化炭素に転化させてNOxの還元に必要な一酸化炭素を得るようにし、これにより副噴射量を低減可能にする。
【0019】
詳しくは、本実施形態の排気浄化装置では、NOxパージ運転に係る主噴射での空燃比をNOxパージ運転に先立つリーン燃焼運転での空燃比と同一値(たとえば30)に維持しつつ、主噴射の後の膨張行程の中期ないし後期において副噴射が実施され、この際、主噴射と副噴射とを合わせた合計空燃比が理論空燃比(14.7)よりも若干リッチ側の所定値(たとえば14)になるように副噴射での空燃比が設定される。この合計空燃比は、従来のNOxパージ運転に係る空燃比(たとえば12)よりもリーン側の値になっている。
【0020】
図3は合計空燃比とNOx浄化効率や酸素濃度との関係を示し、図3中、○マーク、△マーク及び●マークは、合計空燃比に対するNOx浄化効率、NOx触媒入口での酸素濃度およびNOx触媒出口での酸素濃度の変化を示す。図3から、合計空燃比が値14の近傍である場合に、NOx浄化効率が高く且つNOx触媒出口すなわち三元触媒入口での酸素濃度が値0の近傍になることが分かる。
【0021】
図3に示したNOx浄化効率および酸素濃度の変化に基づき、本実施形態では、NOx触媒30aの下流に配された三元触媒30bのNOx浄化作用を充分に発揮させてNOx触媒30aで浄化されなかったNOxを浄化可能とするべく、三元触媒30bの入口での酸素濃度を検出する酸素センサ18の出力に応じて、副噴射に係る空燃比や噴射時間ひいては副噴射量(初期値は固定の規定値)を可変制御するようにしている。
【0022】
また、本実施形態では、NOxパージのための副噴射を、NOxパージ運転に先立って圧縮行程噴射モードによるリーン燃焼運転が行われていた場合に実施するようにしている。この場合、NOxパージ運転での主噴射も圧縮行程噴射により行われることになり、吸気行程噴射による主噴射を行う場合に比べて排気温度が低くなり、NOx触媒30aの上流側の排気通路内で未燃燃料成分が酸化されにくくなる。これにより、NOx触媒30aに流入する排ガス中の酸素濃度が低下せず、また、未燃燃料成分の大部分がNOx触媒30aでのNOx放出、還元に寄与することになる。
【0023】
更に、本実施形態では、NOx触媒30aの上流側にフロント触媒を配置せず、NOx触媒30aへ未燃燃料成分が良好に供給されるようにしている。但し、NOx触媒30aへの未燃燃料成分の供給に支障を来さないようなものであればフロント触媒を設けても良い。
また、NOx触媒30aの酸化機能(三元機能)を高めるべく、本実施形態のNOx触媒30aは例えばPtやRhを多めに含有し、炭化水素を一酸化炭素に転化させる機能(CO生成能力)を備えたものになっており、NOx浄化に要する一酸化炭素を副噴射により供給しなくとも必要量の一酸化炭素を確保可能である。
【0024】
上記構成の排気浄化装置によれば、エンジン1のリーン燃焼運転時にNOx触媒30aによりNOxが吸蔵され、NOx吸蔵能力が飽和した場合には、主噴射の後の膨張行程中に燃料噴射弁6をパルス噴射手段により開弁動作させることにより、NOxパージのための副噴射が行われる。本実施形態では、エンジン1の運転制御を司る電子コントロールユニット(ECU)40が、このパルス噴射手段の機能を併有している。ECU40は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備え、その入力側にはスロットルセンサ11a、クランク角センサ13、高温センサ16、酸素センサ18、NOxセンサ32等の各種センサ類が接続され、その出力側には点火プラグ4や燃料噴射弁6等が接続されている。
【0025】
エンジン運転制御に関連して、ECU40は、各種センサ類から入力した検出情報に基づいて燃料噴射モードを選択すると共に燃料噴射量や点火時期などを演算するようになっている。例えば、スロットルセンサ11aからのスロットル開度情報θthとクランク角センサ13からのクランク角情報に基づいて検出したエンジン回転速度情報Neとに基づいてエンジン負荷に対応する目標筒内圧(目標平均有効圧Pe)が求められ、この目標平均有効圧Peとエンジン回転速度情報Neとに応じて燃料噴射モードが設定される。そして、目標平均有効圧Peとエンジン回転速度Neとから設定される目標空燃比(目標A/F)に基づいて燃料噴射量が決定される。
【0026】
NOxパージに関連して、ECU40は、図4に示すNOxパージ制御ルーチンを実施する。NOxパージ制御ルーチンでは、NOxパージ条件が成立しているか否かが判別される(ステップS1)。NOxパージ条件は種々に設定可能であるが、本実施形態では、現時点で圧縮行程噴射モードによるリーン燃焼運転が行われていると共にリーン燃焼運転が所定時間(たとえば30秒間)にわたって行われたときにNOxパージ条件の成立を判別し、また、現時点での噴射モードが圧縮行程噴射モード以外であるか、リーン燃焼運転の合計実行時間が所定時間未満であるか、或いはNOxパージ運転が所定時間(たとえば2〜3秒間)にわたって実行されてNOxパージ運転が完了した直後であるときにNOxパージ条件の不成立を判別するようにしている。
【0027】
NOxパージ条件の成立がステップS1で判別された場合、NOxパージモードが設定されると共にNOxパージ運転開始時からの経過時間を計測するタイマがリセットされてから起動される。そして、NOxパージモードの設定に応じてNOxパージ運転が実施される(ステップS2)。
具体的には、NOxパージ運転での主噴射に係る燃料噴射時間(以下、主噴射時間という)が決定される。ここで、主噴射時間は、現時点での圧縮行程噴射モードによるリーン燃焼運転での目標空燃比と同一の目標空燃比を達成するための燃料噴射時間に設定される。次に、副噴射に係る燃料噴射時間(以下、副噴射時間)は、主噴射と副噴射とによってNOxパージに適した空燃比(例えば、理論空燃比近傍のリッチ空燃比である値14)が達成されるような燃料噴射時間に設定される。
【0028】
次いで、上記の主噴射時間にわたって主噴射を行うための主噴射開始時期および終了時期が決定されると共に点火時期が決定される。また、上記の副噴射時間にわたって副噴射を行うための副噴射開始時期および終了時期が決定される。
そして、エンジン1のいずれかの気筒に関して、上記の主噴射開始時期が到来するとこの気筒に対応する燃料噴射弁6が開弁され、主噴射終了時期が到来するとその燃料噴射弁6が閉弁され、また、点火時期が到来すると点火プラグ4が作動する。ここで、主噴射は上記気筒での圧縮行程中に実施されることになる。この主噴射の後の膨張行程において、上記の副噴射開始時期が到来すると燃料噴射弁6が開弁され、副噴射終了時期が到来するとこの燃料噴射弁6が閉弁される。
【0029】
以上のように、ステップS2では、エンジン1の各気筒において主噴射と副噴射とが行われる。そして、副噴射が終了すると、酸素センサ18の出力に基づいて三元触媒30b入口における排ガス中酸素濃度が検出され、この酸素濃度が規定値(たとえば0.5%)以下であるか否かが判別される(ステップS3)。酸素濃度が規定値以下であれば副噴射時間すなわち副噴射での燃料噴射量が所定値だけ減少するように副噴射時間が減少補正される(ステップS4)。一方、酸素濃度が規定値以下でなければ副噴射時間が所定値だけ増大するように副噴射時間が増大補正される(ステップS5)。
【0030】
ステップS4またはS5での副噴射時間の補正が終了すると、ステップS1に戻ってNOxパージモードが依然として成立しているか否かが判別される。そして、NOxパージモードが成立していれば上記の制御手順が繰り返され、一方、NOxパージ運転が所定時間にわたって実施された等の理由でNOxパージモードが不成立になればNOxパージ運転が終了する。
【0031】
図4のNOxパージ制御が実施される結果、例えば30秒間にわたってリーン燃焼運転が継続してNOx触媒30aの浄化効率が低下するおそれが生じると、NOxパージ運転が2〜3秒間にわたって実施される。
図5は、上記のNOxパージ運転中での空燃比や排ガス成分濃度の時間経過に伴う変化を示す。NOxパージ運転では、主噴射は、NOxパージ運転への移行前の燃料噴射モードと同一の圧縮噴射モードによって行われ、しかも主噴射での空燃比はNOxパージ移行前の圧縮リーン運転での空燃比と同一値たとえば値30に維持され、燃費悪化およびトルクショックが防止される。主噴射と副噴射との合計空燃比は若干リッチな例えば値14に設定される。
【0032】
膨張行程で副噴射が行われると燃料は燃焼室内で不完全燃焼して、未燃HC(炭化水素)などの未燃燃料成分が燃焼室から排気通路14へ排出される。このため、図5に示すように、NOx触媒入口での排ガス中の未燃HC濃度は、NOxパージ運転が開始されると急増する一方、NOxパージ運転が終了すると急減する。
【0033】
NOxパージ運転に先立つリーン燃焼運転およびNOxパージ運転での主噴射が圧縮行程噴射モードで行われるので、排気温度は比較的低く、NOx触媒30aの上流側の排気通路14内で未燃HCは殆ど酸化されず、図5に示すようにNOx触媒入口での排ガス中酸素濃度はNOxパージ運転中に殆ど低下しない。
そして、未燃HCの一部は、酸化機能(三元機能)を有するNOx触媒30aにおいて酸化反応し、NOxの還元に寄与する一酸化炭素に転化される。未燃HC及び一酸化炭素によってNOx触媒30aのまわりに還元雰囲気が形成され、NOx触媒30aに硝酸塩の形で吸蔵されていたNOxが放出され、次いで、一酸化炭素の作用下で硝酸塩が炭酸塩へ転化されることによりNOxが還元される。
【0034】
この様に、NOx放出や一酸化炭素の生成のために未燃HCが消費されるので、NOx触媒出口での未燃HC濃度はNOx触媒入口での値に比べて小さくなる(図5)。また、NOx触媒30aでは、酸素を消費しつつ未燃HCから一酸化炭素への転化やHCまたは一酸化炭素から窒素ガス、二酸化炭素ガスまたは水への転化が行われるので、NOx触媒出口での酸素濃度はNOx触媒入口での値に比べて小さくなる(図5)。なお、本実施形態におけるNOx触媒入口での排ガス中の一酸化炭素濃度は従来公知の排気浄化装置での値よりも小さい(図5)。
【0035】
上記のNOxの放出、還元により、NOx触媒30aのNOx吸蔵能力ひいては浄化効率が再生される。すなわち、図5に示すNOx触媒入口および出口ならびに三元触媒出口での排ガス中NOx濃度から分かるように、NOx触媒30aによりNOx浄化が行われ、更に、NOx触媒30aで浄化されなかったNOxが三元触媒30bにおいて浄化される。
【0036】
本発明は、上記実施形態のものに限定されず、種々に変形可能である。
例えば、実施形態では、現時点で圧縮行程噴射モードによるリーン燃焼運転が行われている(すなわち、主噴射を圧縮行程噴射モードで実行する)という第1の要件ならびにリーン燃焼運転が所定時間にわたって行われたという第2の要件を満たすときにNOxパージ条件の成立を判別するようにしたが、本発明におけるNOxパージ条件はこれに限定されない。
【0037】
実施形態におけるNOxパージ条件のうち、第1の要件は、NOx触媒の上流側の排気通路内で未燃燃料成分が殆ど酸化しない(より広義にはNOx触媒に流入する排ガス中の酸素濃度が殆ど低下しない)という第1の条件の典型例を表し、また、第2の要件は、NOx触媒の浄化効率の低下のおそれがあるという第2の条件の典型例を表している。一方、本発明では、少なくとも第2の条件が満たされるときにNOxパージ条件の成立を判別するようにしても良い。NOx浄化効率は例えばNOx触媒へのNOxの付着量の推定値から求めることができるので、本発明では、例えば硝酸塩X−NO3の付着量の推定量が判定基準値を上回ったときにNOxパージ条件成立を判別可能である。上記の第1の要件は、換言すれば、主噴射を圧縮行程噴射モードで実行して排気温度を低下させることを表し、その一方で、点火時期制御やEGR制御により排気温度を低下可能であるので、NOxパージ運転に際して排気温度が低下するように点火時期やEGR量を制御可能である。
【0038】
また、実施形態ではNOxパージ運転の主噴射に係る空燃比をNOxパージ運転に先立つリーン燃焼運転での空燃比と同一値に維持したが、主噴射に係る空燃比をリーン燃焼運転での空燃比よりもリーン側の値に設定可能である。この場合、NOx触媒に流入する排ガス中の酸素濃度を増加させた状態下でNOxをパージさせることも可能であるが、この場合においても、主噴射と副噴射の合計空燃比をNOxの放出、還元に適したややリッチな値にするのが好ましい。
【0039】
また、実施形態においては、主噴射の後の膨張行程中に燃料噴射弁を作動させるものとしたが、排気行程中に作動させたり、膨張行程中と排気行程中との両方で作動させるものとしても良い。
【0040】
更に、上記実施形態においては、NOx触媒として、排気空燃比がリーンのときに排ガス中のNOxを吸蔵し、吸蔵されたNOxを排気空燃比がストイキオまたはリッチのときに放出、還元する吸蔵型NOx触媒を使用したが、本発明はこれに限定されず、排気空燃比がリーンの時に排ガス中のNOxを吸着し、吸着されたNOxを排気空燃比がストイキオまたはリッチのときに未燃燃料成分と接触、反応させて還元する方式のNOx触媒を使用しても良い。
【0041】
【発明の効果】
本発明の排気浄化装置は、NOx触媒装置に捕捉されたNOxを還元させる際、NOx触媒装置に流入する排ガス中の酸素濃度が殆ど低下しないという制約の下で、主噴射の後の膨張行程中または排気行程中に燃料噴射弁を作動させるので、トルク変動や燃費悪化を来すことなくNOx触媒装置の浄化能力を再生できる。
また、NOx触媒装置の下流での排ガス中酸素濃度を表す酸素センサ出力に基づいてNOx触媒装置の下流に配された三元触媒装置の入口での排ガス中酸素濃度が零またはその近傍の値になるように副噴射量を設定して副噴射を行うので、三元触媒装置の浄化性能を充分に発揮させ、NOx触媒装置で浄化されなかったNOxを浄化することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による排気浄化装置を装備した内燃機関の概略図である。
【図2】図1に示したNOx触媒のNOx吸蔵、放出、還元作用を示す図である。
【図3】NOxパージ運転での主噴射および副噴射の合計空燃比とNOx浄化効率ならびにNOx触媒出入り口での酸素濃度との関係を示す図である。
【図4】図1に示した電子制御ユニットにより実施されるNOxパージ制御ルーチンのフローチャートである。
【図5】NOxパージ運転中での空燃比ならびに排ガス成分濃度の時間経過に伴う変化を示す図である。
【符号の説明】
1 エンジン(筒内噴射型内燃機関)
6 燃料噴射弁
14 排気管(排気通路)
30 排気浄化触媒装置
30a NOx触媒(NOx吸蔵触媒装置)
30b 三元触媒
40 電子制御ユニット(パルス噴射手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device that can regenerate a NOx catalyst device while suppressing deterioration in fuel consumption and torque fluctuation.
[0002]
[Related technology]
NOx catalysts that purify nitrogen oxides (NOx) in exhaust gas from lean combustion internal combustion engines have been put into practical use. As this type of NOx catalyst, there is one that captures NOx in exhaust gas during a lean combustion operation of an internal combustion engine and reduces the captured NOx during a rich or stoichiometric combustion operation. In the exhaust gas purification apparatus equipped with such a catalyst, when reducing the trapped NOx, for example, as described in Japanese Patent No. 2600492, the air-fuel ratio by main injection is enriched, or as described in Japanese Patent No. 2845103. By performing sub-injection (additional fuel injection) in the expansion stroke or exhaust stroke after the main injection (main fuel injection) is performed, the oxygen concentration in the exhaust gas flowing into the NOx catalyst is lowered to reduce NOx Techniques for promoting reduction are known.
[0003]
[Problems to be solved by the invention]
However, in order to reduce the oxygen concentration in the exhaust gas flowing into the NOx catalyst and promote the reduction of NOx as in the above known technique, the air-fuel ratio in the main injection is enriched or the operation mode is switched for that purpose. Alternatively, it is necessary to inject a large amount of fuel at the time of sub-injection, which causes a problem of torque fluctuation and deterioration of fuel consumption.
[0004]
An object of the present invention is to provide an exhaust purification device for a direct injection internal combustion engine that can regenerate the purification capability of the NOx catalyst device without causing torque fluctuations or fuel consumption deterioration.
[0005]
[Means for Solving the Problems]
  The exhaust emission control device according to the first aspect of the present invention is the main injection under the restriction that when reducing NOx trapped in the NOx catalyst device, the oxygen concentration in the exhaust gas flowing into the NOx catalyst device is hardly reduced. The fuel injection valve is operated by the pulse injection means during the subsequent expansion stroke or exhaust stroke.And the oxygen concentration in the exhaust gas at the inlet of the three-way catalyst device arranged downstream of the NOx catalyst device is zero based on the oxygen sensor output representing the oxygen concentration in the exhaust gas downstream of the NOx catalyst device. Alternatively, the sub-injection amount is set so as to be a value in the vicinity thereof, and the sub-injection is performed by operating the fuel injection valve by the pulse injection meansIt is characterized by that.
[0006]
  According to the first aspect of the present invention, when a decrease in the purification performance (NOx storage capacity) of the NOx catalyst device is determined under appropriate determination conditions by appropriate means, for example, during the expansion stroke after main injection. Alternatively, the fuel injection valve is operated by the pulse injection means during the exhaust stroke. The fuel supplied into the combustion chamber during the expansion stroke or the exhaust stroke burns incompletely, unburned components of the fuel are discharged to the exhaust passage, and the exhaust air-fuel ratio is enriched. As a result, the NOx trapped in the NOx catalyst device is reduced, and the purification performance of the NOx catalyst device is regenerated. In the present invention, the main injection and the sub-injection during the NOx purge operation, in particular, the operation of the fuel injection valve for NOx reduction (sub-injection) hardly restricts the oxygen concentration in the exhaust gas flowing into the NOx catalyst device. Therefore, when the NOx catalyst device is regenerated, enrichment of the air-fuel ratio, switching of the fuel injection mode, or a large amount of sub-injection is performed in the main injection in order to reduce the oxygen concentration in the exhaust gas as in the known art. This is not performed, and torque fluctuation and fuel consumption deterioration during catalyst regeneration are eliminated or reduced.
  Further, the invention according to claim 1 is directed to the oxygen in exhaust gas at the inlet of the three-way catalyst device arranged downstream of the NOx catalyst device based on the oxygen sensor output representing the oxygen concentration in the exhaust gas downstream of the NOx catalyst device. Sub-injection is performed by setting the sub-injection amount so that the concentration becomes zero or a value in the vicinity thereof. By this, the purification performance of the three-way catalyst device is fully exhibited, and purification is performed by the NOx catalyst device. NOx that has not been purified can be purified.
  In the present invention, it is preferable that the NOx catalyst device has an oxidation function (three-way function). In this case, hydrocarbons discharged as unburned fuel components into the exhaust passage are converted into carbon monoxide that promotes reduction of NOx by an oxidation reaction in the NOx catalyst, contributing to NOx purification.
[0007]
In the first aspect of the present invention, there is a restriction that the unburned fuel component discharged to the exhaust passage with the operation of the fuel injection valve by the pulse injection means is hardly oxidized in the exhaust passage on the upstream side of the NOx catalyst device. Below, it is preferable to operate the fuel injection valve by the pulse injection means. In this preferred embodiment, since the unburned components of the fuel injected during the expansion stroke of the internal combustion engine are hardly oxidized in the exhaust passage upstream of the NOx catalyst device, the unburned fuel components are oxidized in the exhaust gas. Oxygen is never consumed. Therefore, coupled with the main feature of the present invention in which the air-fuel ratio is not enriched in the main injection, the oxygen concentration in the exhaust gas flowing into the NOx catalyst device hardly decreases, and a large amount of unburned fuel component exists. The portion flows into the NOx catalyst device and contributes to the promotion of NOx reduction. In this way, the purification capability of the NOx catalyst device is efficiently regenerated without lowering the oxygen concentration in the exhaust gas flowing into the NOx catalyst, causing torque fluctuations, or worsening fuel consumption.
[0008]
In the first aspect of the present invention, it is preferable that the operation of the fuel injection valve by the pulse injection means is performed in the expansion stroke after the main injection performed in the compression stroke. Thus, when the main injection is performed in the compression stroke, for example, the exhaust temperature becomes lower than when the main injection is performed in the intake stroke, and the unburned fuel component is less likely to be oxidized in the exhaust passage upstream of the NOx catalyst device. Therefore, coupled with the main feature of the present invention that the air-fuel ratio is not enriched in the main injection, the oxygen concentration in the exhaust gas flowing into the NOx catalyst device is not lowered, and most of the unburned fuel component Contributes to NOx release and reduction from the NOx catalyst device and promotes regeneration of the NOx catalyst device.
[0010]
In the present invention, it is preferable that the NOx catalyst device has an oxidation function (three-way function). In this case, hydrocarbons discharged as unburned fuel components into the exhaust passage are converted into carbon monoxide that promotes reduction of NOx by an oxidation reaction in the NOx catalyst, contributing to NOx purification.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a lean combustion internal combustion engine equipped with an exhaust emission control device according to an embodiment of the present invention will be described.
The lean combustion internal combustion engine of the present embodiment is an in-cylinder injection spark ignition type in-line four-cylinder gasoline engine that can perform fuel injection in a compression stroke and an expansion stroke as needed in addition to fuel injection in an intake stroke. It is configured. The fuel injection mode in this in-cylinder injection engine changes variously according to changes in the engine operating range, and accordingly, the air-fuel ratio of the air-fuel mixture changes from the super-lean air-fuel ratio to the rich air-fuel ratio. The fuel consumption and the exhaust characteristics are improved while generating the engine output. This type of in-cylinder injection engine is conventionally known, but will be briefly described below.
[0012]
As shown in FIG. 1, an electromagnetic fuel injection valve 6 is attached to the cylinder head 2 of the engine 1 together with a spark plug 4 for each cylinder. The fuel injection valve 6 is connected to a fuel supply device (not shown) having a fuel tank, a low-pressure fuel pump and a high-pressure fuel pump via a fuel pipe, and the fuel in the fuel tank is transferred from the fuel injection valve 6 to the combustion chamber 8. Can be directly injected at a desired fuel pressure.
[0013]
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and each intake port communicates with one end of the intake manifold 10. A throttle valve 11 provided on the other end side of the intake manifold 10 is provided with a throttle sensor 11a for detecting a throttle opening θth. Further, an exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and each exhaust port communicates with one end of the exhaust manifold 12.
[0014]
A muffler (not shown) is connected to the exhaust manifold 12 via an exhaust pipe (exhaust passage) 14, and the exhaust pipe 14 is provided with a high temperature sensor 16 for detecting the exhaust temperature.
The exhaust purification device 30 of the present embodiment stores an NOx in the exhaust gas when the exhaust air-fuel ratio is lean and stores and stores the stored NOx when the exhaust air-fuel ratio is stoichiometric or rich (NOx). (Occlusion catalyst device) 30a and a three-way catalyst 30b arranged downstream thereof. Reference numeral 18 represents an oxygen sensor that is arranged between the NOx catalyst 30a and the three-way catalyst 30b and detects the oxygen concentration in the exhaust gas at the inlet of the three-way catalyst 30b in the exhaust gas flow direction. The NOx sensor 32 arranged downstream of the catalyst 30b and detecting the NOx concentration is shown.
[0015]
The storage-type NOx catalyst 30a is composed of alumina containing a catalyst species composed of noble metals such as platinum (Pt) and rhodium (Rh) and a NOx storage agent composed of alkali metals and alkaline earth metals such as barium (Ba) and potassium (K). As shown in FIG. 2, basically, NOx is once converted to nitrate X-NO in an oxidizing atmosphere as shown in FIG.Three(Where symbol X represents Ba or K, for example) and NOx is reduced to N in a reducing atmosphere mainly containing CO.2It has the function of reducing to (nitrogen) etc.
[0016]
When the NOx storage capability of the NOx catalyst 30a is saturated and the NOx purification capability is lost, NOx is released into the atmosphere. Therefore, in order to regenerate the NOx storage capability and thus the NOx purification capability of the NOx catalyst 30a, generally, the air-fuel mixture A so-called NOx purge for enriching is periodically performed.
In the NOx purge, the NOx purge technique described in Japanese Patent No. 2600492 makes it necessary to switch the operation mode when shifting to the NOx purge in order to enrich the air-fuel ratio of the air-fuel mixture at the time of main injection related to the NOx purge. A shock is likely to occur in the engine output torque with the mode switching. In addition, torque shock due to operation mode switching can be reduced by reducing the change rate of the air-fuel ratio at the time of main injection by tailing. In this case, however, the air-fuel ratio control procedure becomes complicated and during the air-fuel ratio control. There is a problem of passing through an air-fuel ratio region that causes a shortage of reducing agent.
[0017]
In addition, in the NOx purge technique described in Japanese Patent No. 2845103 or the like, a large amount of reducing agent such as hydrocarbon or carbon monoxide is exhausted by performing sub-injection in the expansion stroke or exhaust stroke after the main injection. The oxygen concentration in the exhaust gas is decreased by causing the reducing agent to oxidize with O 2− etc. on the NOx catalyst to promote NOx release.2-NOx is reduced to nitrogen or the like by the remaining reducing agent that did not contribute to the oxidation reaction. For this reason, it is necessary to sub-inject a large amount of fuel. In addition, during the NOx purge, generally, the air-fuel ratio related to the main injection is enriched or the fuel injection mode is switched, which causes fuel consumption deterioration and torque fluctuation along with a large amount of sub-injection. In this technique, carbon monoxide, which is the main reducing agent that contributes to NOx reduction, is supplied by sub-injection. Carbon monoxide is not only reduced in NOx but also has a considerable amount to promote NOx release. Since it is consumed, the fuel injection amount related to the sub-injection increases.
[0018]
In the exhaust purification system of the present embodiment, focusing on the above-mentioned factors of torque shock occurrence and increase in the sub-injection amount, fuel consumption deteriorates by eliminating the need to enrich the air-fuel ratio at the time of main injection in NOx purge and switching the operation mode therefor. In addition, unburned fuel components (reducing agents) such as hydrocarbons and carbon monoxide that are discharged from the combustion chamber to the exhaust passage by the sub-injection are mostly in the exhaust passage upstream of the NOx catalyst 30a. By performing sub-injection under conditions that do not oxidize, consumption of unburned fuel components due to oxidation reaction is suppressed, and further, by increasing the oxidation function (three-way function) of the NOx catalyst 30a, carbonization that flows into the NOx catalyst. Hydrogen is converted to carbon monoxide by an oxidation reaction on the catalyst to obtain carbon monoxide necessary for NOx reduction, thereby making it possible to reduce the sub-injection amount.
[0019]
Specifically, in the exhaust purification system of the present embodiment, the main injection is performed while maintaining the air-fuel ratio in the main injection related to the NOx purge operation at the same value (for example, 30) as the air-fuel ratio in the lean combustion operation prior to the NOx purge operation. Sub-injection is carried out in the middle or later stage of the expansion stroke, and at this time, the total air-fuel ratio of the main injection and the sub-injection is a predetermined value (for example, slightly richer than the theoretical air-fuel ratio (14.7)). 14), the air-fuel ratio in the sub-injection is set. This total air-fuel ratio is a leaner value than the air-fuel ratio (for example, 12) according to the conventional NOx purge operation.
[0020]
FIG. 3 shows the relationship between the total air-fuel ratio, the NOx purification efficiency, and the oxygen concentration. In FIG. 3, the ◯ mark, Δ mark, and ● mark indicate the NOx purification efficiency with respect to the total air-fuel ratio, the oxygen concentration at the NOx catalyst inlet, and the NOx. The change in oxygen concentration at the catalyst outlet is shown. FIG. 3 shows that when the total air-fuel ratio is in the vicinity of the value 14, the NOx purification efficiency is high and the oxygen concentration at the NOx catalyst outlet, that is, the three-way catalyst inlet, is in the vicinity of the value 0.
[0021]
In the present embodiment, the NOx purification action of the three-way catalyst 30b disposed downstream of the NOx catalyst 30a is sufficiently exerted on the NOx catalyst 30a based on the changes in the NOx purification efficiency and the oxygen concentration shown in FIG. In order to be able to purify the NOx that was not present, the air-fuel ratio, the injection time, and the sub-injection amount (the initial value is fixed) according to the sub-injection according to the output of the oxygen sensor 18 that detects the oxygen concentration at the inlet of the three-way catalyst 30b. Stipulated value) is variably controlled.
[0022]
In the present embodiment, the sub-injection for the NOx purge is performed when the lean combustion operation in the compression stroke injection mode is performed prior to the NOx purge operation. In this case, the main injection in the NOx purge operation is also performed by the compression stroke injection, and the exhaust temperature is lower than in the case of performing the main injection by the intake stroke injection, and in the exhaust passage on the upstream side of the NOx catalyst 30a. Unburned fuel components are less likely to be oxidized. As a result, the oxygen concentration in the exhaust gas flowing into the NOx catalyst 30a does not decrease, and most of the unburned fuel component contributes to NOx release and reduction in the NOx catalyst 30a.
[0023]
Further, in the present embodiment, the front catalyst is not disposed on the upstream side of the NOx catalyst 30a, and the unburned fuel component is favorably supplied to the NOx catalyst 30a. However, a front catalyst may be provided as long as it does not interfere with the supply of unburned fuel components to the NOx catalyst 30a.
In addition, in order to enhance the oxidation function (three-way function) of the NOx catalyst 30a, the NOx catalyst 30a of the present embodiment contains a large amount of, for example, Pt and Rh, and functions to convert hydrocarbons to carbon monoxide (CO generation ability). The required amount of carbon monoxide can be secured without supplying carbon monoxide required for NOx purification by sub-injection.
[0024]
According to the exhaust emission control device having the above-described configuration, when NOx is occluded by the NOx catalyst 30a during the lean combustion operation of the engine 1 and the NOx occlusion capacity is saturated, the fuel injection valve 6 is operated during the expansion stroke after the main injection. By performing the valve opening operation by the pulse injection means, the secondary injection for the NOx purge is performed. In the present embodiment, an electronic control unit (ECU) 40 that controls the operation of the engine 1 has the function of the pulse injection means. The ECU 40 includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer counter, etc., and a throttle sensor 11a, a crank angle sensor 13, and a high temperature sensor 16 on its input side. Various sensors such as the oxygen sensor 18 and the NOx sensor 32 are connected, and an ignition plug 4 and a fuel injection valve 6 are connected to the output side.
[0025]
In connection with engine operation control, the ECU 40 selects a fuel injection mode based on detection information input from various sensors and calculates a fuel injection amount, an ignition timing, and the like. For example, the target in-cylinder pressure (target average effective pressure Pe) corresponding to the engine load based on the throttle opening degree information θth from the throttle sensor 11a and the engine rotational speed information Ne detected based on the crank angle information from the crank angle sensor 13. ) Is determined, and the fuel injection mode is set according to the target average effective pressure Pe and the engine rotational speed information Ne. Then, the fuel injection amount is determined based on the target air-fuel ratio (target A / F) set from the target average effective pressure Pe and the engine speed Ne.
[0026]
In connection with the NOx purge, the ECU 40 executes a NOx purge control routine shown in FIG. In the NOx purge control routine, it is determined whether or not a NOx purge condition is satisfied (step S1). Although the NOx purge condition can be set in various ways, in the present embodiment, when the lean combustion operation in the compression stroke injection mode is currently performed and the lean combustion operation is performed for a predetermined time (for example, 30 seconds). It is determined whether the NOx purge condition is satisfied, the current injection mode is other than the compression stroke injection mode, the total execution time of the lean combustion operation is less than a predetermined time, or the NOx purge operation is performed for a predetermined time (for example, When the NOx purge operation is performed immediately after the completion of the NOx purge operation, it is determined that the NOx purge condition is not satisfied.
[0027]
When it is determined in step S1 that the NOx purge condition is satisfied, the NOx purge mode is set and the timer for measuring the elapsed time from the start of the NOx purge operation is reset and started. Then, the NOx purge operation is performed according to the setting of the NOx purge mode (step S2).
Specifically, the fuel injection time (hereinafter referred to as the main injection time) related to the main injection in the NOx purge operation is determined. Here, the main injection time is set to a fuel injection time for achieving the same target air-fuel ratio as the target air-fuel ratio in the lean combustion operation in the current compression stroke injection mode. Next, the fuel injection time related to the sub-injection (hereinafter referred to as sub-injection time) has an air-fuel ratio (for example, a value 14 that is a rich air-fuel ratio in the vicinity of the theoretical air-fuel ratio) suitable for NOx purge by the main injection and the sub-injection. The fuel injection time is set as achieved.
[0028]
Next, the main injection start timing and end timing for performing main injection over the main injection time are determined, and the ignition timing is determined. Further, the sub-injection start timing and end timing for performing the sub-injection over the sub-injection time are determined.
When any of the cylinders of the engine 1 reaches the main injection start time, the fuel injection valve 6 corresponding to the cylinder is opened, and when the main injection end time comes, the fuel injection valve 6 is closed. When the ignition timing comes, the spark plug 4 is activated. Here, the main injection is performed during the compression stroke in the cylinder. In the expansion stroke after the main injection, the fuel injection valve 6 is opened when the sub-injection start time comes, and the fuel injection valve 6 is closed when the sub-injection end time comes.
[0029]
As described above, in step S2, main injection and sub-injection are performed in each cylinder of the engine 1. When the sub-injection ends, the oxygen concentration in the exhaust gas at the inlet of the three-way catalyst 30b is detected based on the output of the oxygen sensor 18, and it is determined whether or not this oxygen concentration is below a specified value (for example, 0.5%). A determination is made (step S3). If the oxygen concentration is less than or equal to the specified value, the sub-injection time, that is, the sub-injection time is corrected so as to decrease the fuel injection amount in the sub-injection by a predetermined value (step S4). On the other hand, if the oxygen concentration is not less than the specified value, the sub injection time is corrected to increase so that the sub injection time increases by a predetermined value (step S5).
[0030]
When the correction of the sub-injection time in step S4 or S5 is completed, the process returns to step S1 and it is determined whether or not the NOx purge mode is still established. If the NOx purge mode is established, the above control procedure is repeated. On the other hand, if the NOx purge mode is not established due to the NOx purge operation being performed for a predetermined time, the NOx purge operation is terminated.
[0031]
As a result of performing the NOx purge control of FIG. 4, for example, if there is a possibility that the lean combustion operation continues for 30 seconds and the purification efficiency of the NOx catalyst 30a decreases, the NOx purge operation is performed for 2 to 3 seconds.
FIG. 5 shows changes with time of the air-fuel ratio and exhaust gas component concentration during the NOx purge operation. In the NOx purge operation, the main injection is performed in the same compression injection mode as the fuel injection mode before shifting to the NOx purge operation, and the air-fuel ratio in the main injection is the air-fuel ratio in the compression lean operation before shifting to the NOx purge. Is maintained at the same value, for example, value 30, and fuel consumption deterioration and torque shock are prevented. The total air-fuel ratio of the main injection and the sub-injection is set to a slightly rich value 14 for example.
[0032]
When sub-injection is performed in the expansion stroke, the fuel is incompletely burned in the combustion chamber, and unburned fuel components such as unburned HC (hydrocarbon) are discharged from the combustion chamber to the exhaust passage 14. For this reason, as shown in FIG. 5, the unburned HC concentration in the exhaust gas at the NOx catalyst inlet rapidly increases when the NOx purge operation is started, and rapidly decreases when the NOx purge operation ends.
[0033]
Since the main injection in the lean combustion operation and the NOx purge operation prior to the NOx purge operation is performed in the compression stroke injection mode, the exhaust temperature is relatively low, and almost no unburned HC exists in the exhaust passage 14 upstream of the NOx catalyst 30a. As shown in FIG. 5, the oxygen concentration in the exhaust gas at the inlet of the NOx catalyst hardly decreases during the NOx purge operation.
A part of the unburned HC undergoes an oxidation reaction in the NOx catalyst 30a having an oxidation function (ternary function), and is converted into carbon monoxide that contributes to the reduction of NOx. Unburned HC and carbon monoxide form a reducing atmosphere around the NOx catalyst 30a, NOx stored in the form of nitrate in the NOx catalyst 30a is released, and then the nitrate is carbonated under the action of carbon monoxide. NOx is reduced by conversion to NOx.
[0034]
In this way, unburned HC is consumed for NOx release and carbon monoxide generation, so the unburned HC concentration at the NOx catalyst outlet is smaller than the value at the NOx catalyst inlet (FIG. 5). Further, in the NOx catalyst 30a, conversion from unburned HC to carbon monoxide or conversion from HC or carbon monoxide to nitrogen gas, carbon dioxide gas or water is performed while consuming oxygen. The oxygen concentration is smaller than the value at the NOx catalyst inlet (FIG. 5). Note that the carbon monoxide concentration in the exhaust gas at the NOx catalyst inlet in the present embodiment is smaller than the value in a conventionally known exhaust purification device (FIG. 5).
[0035]
By the release and reduction of NOx, the NOx storage capacity of the NOx catalyst 30a and thus the purification efficiency are regenerated. That is, as can be seen from the NOx concentration in the exhaust gas at the NOx catalyst inlet and outlet and the three-way catalyst outlet shown in FIG. 5, NOx purification is performed by the NOx catalyst 30a, and NOx that has not been purified by the NOx catalyst 30a is further reduced to three. The original catalyst 30b is purified.
[0036]
The present invention is not limited to the above embodiment, and can be variously modified.
For example, in the embodiment, the first requirement that the lean combustion operation in the compression stroke injection mode is currently performed (that is, the main injection is performed in the compression stroke injection mode) and the lean combustion operation is performed for a predetermined time. However, the NOx purge condition in the present invention is not limited to this.
[0037]
Among the NOx purge conditions in the embodiment, the first requirement is that the unburned fuel component hardly oxidizes in the exhaust passage on the upstream side of the NOx catalyst (in a broad sense, the oxygen concentration in the exhaust gas flowing into the NOx catalyst is almost zero). The second requirement represents a typical example of the second condition that the purification efficiency of the NOx catalyst may be lowered. On the other hand, in the present invention, the establishment of the NOx purge condition may be determined when at least the second condition is satisfied. Since the NOx purification efficiency can be determined from, for example, the estimated value of the NOx adhesion amount on the NOx catalyst, in the present invention, for example, when the estimated amount of the nitrate X-NO3 adhesion amount exceeds the determination reference value, the NOx purge condition The establishment can be determined. In other words, the above first requirement represents that the main injection is performed in the compression stroke injection mode to lower the exhaust temperature, while the exhaust temperature can be lowered by ignition timing control or EGR control. Therefore, it is possible to control the ignition timing and the EGR amount so that the exhaust temperature decreases during the NOx purge operation.
[0038]
In the embodiment, the air-fuel ratio related to the main injection in the NOx purge operation is maintained at the same value as the air-fuel ratio in the lean combustion operation prior to the NOx purge operation. It can be set to a value on the lean side. In this case, it is possible to purge NOx under a state in which the oxygen concentration in the exhaust gas flowing into the NOx catalyst is increased. In this case as well, the total air-fuel ratio of the main injection and the sub-injection is set to the NOx release, A slightly rich value suitable for reduction is preferable.
[0039]
  AlsoIn the embodiment, the fuel injection valve is operated during the expansion stroke after the main injection. However, the fuel injection valve may be operated during the exhaust stroke or during both the expansion stroke and the exhaust stroke. good.
[0040]
Further, in the above embodiment, as the NOx catalyst, the NOx in the exhaust gas is stored when the exhaust air-fuel ratio is lean, and the stored NOx is released and reduced when the exhaust air-fuel ratio is stoichiometric or rich. Although the catalyst is used, the present invention is not limited to this. NOx in the exhaust gas is adsorbed when the exhaust air-fuel ratio is lean, and the adsorbed NOx is separated from the unburned fuel component when the exhaust air-fuel ratio is stoichiometric or rich. You may use the NOx catalyst of the system reduced by contacting and making it react.
[0041]
【The invention's effect】
  The exhaust emission control device according to the present invention reduces the NOx trapped by the NOx catalyst device during the expansion stroke after the main injection under the restriction that the oxygen concentration in the exhaust gas flowing into the NOx catalyst device hardly decreases. Alternatively, since the fuel injection valve is operated during the exhaust stroke, it is possible to regenerate the purification capacity of the NOx catalyst device without causing torque fluctuations or fuel consumption deterioration.
  Further, based on the oxygen sensor output representing the oxygen concentration in the exhaust gas downstream of the NOx catalyst device, the oxygen concentration in the exhaust gas at the inlet of the three-way catalyst device arranged downstream of the NOx catalyst device becomes zero or a value in the vicinity thereof. Since the sub-injection amount is set so that the sub-injection is performed, the purification performance of the three-way catalyst device can be sufficiently exerted, and NOx that has not been purified by the NOx catalyst device can be purified.
[Brief description of the drawings]
FIG. 1 is a schematic view of an internal combustion engine equipped with an exhaust emission control device according to an embodiment of the present invention.
2 is a diagram showing NOx occlusion, release, and reduction actions of the NOx catalyst shown in FIG. 1. FIG.
FIG. 3 is a graph showing the relationship between the total air-fuel ratio of main injection and sub-injection in NOx purge operation, NOx purification efficiency, and oxygen concentration at the NOx catalyst inlet / outlet.
FIG. 4 is a flowchart of a NOx purge control routine executed by the electronic control unit shown in FIG.
FIG. 5 is a diagram showing changes with time of the air-fuel ratio and exhaust gas component concentration during NOx purge operation.
[Explanation of symbols]
1 Engine (Cylinder injection type internal combustion engine)
6 Fuel injection valve
14 Exhaust pipe (exhaust passage)
30 Exhaust purification catalyst device
30a NOx catalyst (NOx storage catalyst device)
30b Three-way catalyst
40 Electronic control unit (pulse injection means)

Claims (1)

燃焼室内に燃料を直接噴射する燃料噴射弁を有した筒内噴射型内燃機関の排気浄化装置において、
上記内燃機関の排気通路に設けられ排気空燃比がリーン空燃比のときに排ガス中のNOxを捕捉し、捕捉したNOxを排気空燃比が理論空燃比またはリッチ空燃比のときに還元するNOx触媒装置と、
捕捉されたNOxを還元させる際に、上記NOx触媒装置に流入する排ガス中の酸素濃度を殆ど低下させないという制約の下で、主噴射の後の膨張行程中または排気行程中に上記燃料噴射弁を作動させて副噴射を行うパルス噴射手段と
上記排気通路内で上記NOx触媒装置の下流に配された酸素センサと、
上記排気通路内で上記NOx触媒装置の下流に配された三元触媒装置とを備え、
上記酸素センサの出力に基づいて上記三元触媒装置の入口での排ガス中酸素濃度が零またはその近傍の値になるように副噴射量を設定して上記パルス噴射手段による上記燃料噴射弁の作動により上記副噴射を行う
ことを特徴とする筒内噴射型内燃機関の排気浄化装置。
In an exhaust purification apparatus for a cylinder injection internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber,
A NOx catalyst device that is provided in the exhaust passage of the internal combustion engine and captures NOx in the exhaust gas when the exhaust air-fuel ratio is a lean air-fuel ratio and reduces the captured NOx when the exhaust air-fuel ratio is the stoichiometric or rich air-fuel ratio When,
When the trapped NOx is reduced, the fuel injection valve is operated during the expansion stroke or the exhaust stroke after the main injection under the constraint that the oxygen concentration in the exhaust gas flowing into the NOx catalyst device is hardly reduced. Pulse injection means for operating and performing secondary injection ;
An oxygen sensor disposed downstream of the NOx catalyst device in the exhaust passage;
A three-way catalyst device disposed downstream of the NOx catalyst device in the exhaust passage,
Based on the output of the oxygen sensor, the sub-injection amount is set so that the oxygen concentration in the exhaust gas at the inlet of the three-way catalyst device becomes zero or a value close thereto, and the operation of the fuel injection valve by the pulse injection means An exhaust purification device for a cylinder injection internal combustion engine, characterized in that the sub-injection is performed by the above .
JP26767999A 1999-09-21 1999-09-21 Exhaust gas purification device for in-cylinder injection internal combustion engine Expired - Lifetime JP4000435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26767999A JP4000435B2 (en) 1999-09-21 1999-09-21 Exhaust gas purification device for in-cylinder injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26767999A JP4000435B2 (en) 1999-09-21 1999-09-21 Exhaust gas purification device for in-cylinder injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001090593A JP2001090593A (en) 2001-04-03
JP4000435B2 true JP4000435B2 (en) 2007-10-31

Family

ID=17448034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26767999A Expired - Lifetime JP4000435B2 (en) 1999-09-21 1999-09-21 Exhaust gas purification device for in-cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP4000435B2 (en)

Also Published As

Publication number Publication date
JP2001090593A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3702924B2 (en) Exhaust purification device
JP3460503B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3740987B2 (en) Exhaust gas purification device for internal combustion engine
JP4221125B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP2007046515A (en) Exhaust emission control device of internal combustion engine
JP3832550B2 (en) Exhaust gas purification device for internal combustion engine
JP2009121330A (en) Catalyst poisoning determining method and device, and exhaust emission control method and device
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP2005240716A (en) Deterioration diagnostic device for catalyst
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP4000435B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP4404003B2 (en) Exhaust gas purification device for hydrogen-utilized internal combustion engine
JP3649073B2 (en) Exhaust gas purification device for internal combustion engine
JP3514152B2 (en) Exhaust gas purification device for internal combustion engine
JP3622612B2 (en) Exhaust gas purification device for internal combustion engine
JP3820990B2 (en) Exhaust gas purification device for internal combustion engine
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP2007002734A (en) Exhaust emission control device for internal combustion engine
JP4867694B2 (en) Engine exhaust purification system
JP3642194B2 (en) In-cylinder internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP3582582B2 (en) Exhaust purification system for in-cylinder injection internal combustion engine
JP3807209B2 (en) Operation control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4000435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140824

Year of fee payment: 7

EXPY Cancellation because of completion of term