JP3582582B2 - Exhaust purification system for in-cylinder injection internal combustion engine - Google Patents

Exhaust purification system for in-cylinder injection internal combustion engine Download PDF

Info

Publication number
JP3582582B2
JP3582582B2 JP2000213996A JP2000213996A JP3582582B2 JP 3582582 B2 JP3582582 B2 JP 3582582B2 JP 2000213996 A JP2000213996 A JP 2000213996A JP 2000213996 A JP2000213996 A JP 2000213996A JP 3582582 B2 JP3582582 B2 JP 3582582B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000213996A
Other languages
Japanese (ja)
Other versions
JP2001059440A (en
Inventor
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP02569398A external-priority patent/JP3334592B2/en
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000213996A priority Critical patent/JP3582582B2/en
Publication of JP2001059440A publication Critical patent/JP2001059440A/en
Application granted granted Critical
Publication of JP3582582B2 publication Critical patent/JP3582582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内噴射型内燃機関の排気浄化装置に係り、特に吸蔵型NOx触媒を備えた排気浄化装置のNOx或いはSOxパージ技術に関する。
【0002】
【関連する背景技術】
内燃機関が所定運転状態にある時に空燃比を理論空燃比(値14.7)よりも燃料希薄側(リーン側)の目標値(例えば、値22以上)に制御して、エンジンの燃費特性等を改善する空燃比制御方法が知られている。このようなリーン空燃比制御方法において、従来の三元触媒では排ガス中のNOx(窒素酸化物)が充分に浄化できないという問題がある。
【0003】
この問題を解決するために、酸素過剰状態(酸化雰囲気)において排ガス中のNOxを硝酸塩X−NOとして付着させて吸蔵し、吸蔵したNOxをCO(一酸化炭素)過剰状態(還元雰囲気)でN(窒素)に還元させる特性(同時に炭酸塩X−COが生成される)を有した排気浄化触媒、所謂吸蔵型NOx触媒を使用して、大気へのNOx排出量を低減させることが知られている。この吸蔵型NOx触媒では、上記のようにリーン空燃比制御時にNOxを吸蔵するのであるが、リーン燃焼運転を長時間連続して行うと、触媒のNOx吸蔵量には限度があるために、NOx吸蔵量が飽和量に達した時点で排ガス中のNOxが触媒に吸蔵されずに大気に排出されることになる。
【0004】
そこで、吸蔵型NOx触媒の吸蔵量が飽和に達する前に、空燃比を理論空燃比またはその近傍値に制御するリッチ空燃比運転に定期的に切換え(これをリッチスパイクという)、COの多い還元雰囲気(リッチ状態)でNOxの浄化還元(NOxパージ)を行い吸蔵型NOx触媒を再生する構成の排気浄化装置が、特開平7−166913号公報等により知られている。
【0005】
また、排ガス中には硫黄成分(S成分)が含まれており、吸蔵型NOx触媒がNOxを吸蔵する際に硫黄酸化物(SOx)も吸蔵してしまい、故に触媒担体が被毒して触媒の浄化効率が低下するという問題がある。このため、NOx触媒からSOxを離脱させ触媒の浄化効率を再生させるべくNOxパージと同様に空燃比をリッチ状態にする必要がある。この一例として、硫黄の吸着量を推定し、所定時間に亘って触媒温度を電気ヒータ等によって高温とし且つ空燃比をリッチ状態に変更する技術が特開平6−66129号等により知られている。
【0006】
【発明が解決しようとする課題】
ところで、空燃比をリーン空燃比から理論空燃比またはリッチ空燃比に切り換える際、上記後者の公報のように当該切換を行い燃料量を一気に増大させると、筒内圧が急激に上昇して内燃機関の出力トルクが一時的に大きく変動するという問題がある。そこで、上記前者の公報では、燃料噴射量を徐々に増加させて空燃比を所望のリッチ空燃比まで極力緩やかにテーリングさせるようにしており、これにより出力トルク変動を抑えるようにしている。また、これとは別に、燃料噴射量を増加させるとともに吸入空気量を適宜変化させて空燃比を徐々にリッチ空燃比に移行させ出力トルク変動を抑えることも行われている。
【0007】
ところが、このように空燃比をテーリングさせた場合、そのテーリングが出力トルク変動を抑えるのに好ましいほど緩やかであると、空燃比が所望のリッチ空燃比となるまでに時間を要し、このテーリング期間においては、COの生成量は少なくNOxパージが良好に行われず、つまりNOxパージの開始が遅れることになり好ましいことではない。つまり、テーリングが緩やかであるほど全体としてNOxパージに要する時間が長くなり、内燃機関本来の運転状態に影響を与え好ましいことではない。
【0008】
また、NOxは空燃比が値16近傍であるときに最も多く発生するものであり、空燃比を上記のようにリーン空燃比からリッチ空燃比に切り換えるときには必ずこの値16近傍を経るのであるが、このように空燃比のテーリング期間が長いと、必然的に空燃比が値16近傍である期間が長くなり空燃比の切換中にNOxが多量に発生し(これをNOxスパイクという)、故にこの間に多くのNOxが浄化されずに排出されてしまうという問題もある。
【0009】
また、吸蔵NOx量が多いと空燃比が理論空燃比近傍である場合において吸蔵型NOx触媒から多量にNOxが放出されることがあるが、当該理論空燃比近傍ではNOxを還元するための還元剤(CO,HC等)が少なく、故に上記のようにテーリングが緩やかであって理論空燃比近傍である期間が長くなると、当該NOxの放出量が必然的に増加し、これにより大気中に排出されるNOx量が増加するという問題もある。
【0010】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、吸蔵型NOx触媒を備えた排気浄化装置において、吸蔵型NOx触媒をトルク変動や不用意なNOxの排出なく迅速に再生可能な筒内噴射型内燃機関の排気浄化装置を提供することにある。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明は、吸気行程または圧縮行程で筒内に燃料を直接に供給する主噴射手段を有した内燃機関に装備された吸蔵型NOx触媒を再生する際に空燃比切換手段により内燃機関の空燃比をリーン空燃比と理論空燃比またはリッチ空燃比との間で徐々に変化させると共に、この空燃比制御中にNOxが多量に発生する空燃比を含む空燃比域において副噴射手段により燃料を筒内に追加供給するものとなっている。
【0012】
この発明によれば、触媒再生に係る空燃比切換えに際して空燃比が徐々に変化し、空燃比変化に起因する機関出力トルクの変動が抑制される。その一方で、副噴射手段により筒内に燃料が追加供給されて空燃比がリッチ化され、吸蔵型NOx触媒の還元が促進され、これにより触媒再生に要するNOxパージ期間(空燃比リッチ化期間)が短縮する。しかも、NOxが多量に発生する空燃比を含む空燃比域において副噴射手段による燃料の追加供給が実施されることによって、筒内の空燃比は、NOxが多量に発生する空燃比を含む空燃比域を短時間内に通過し、従ってNOx排出量が大幅に低減する。
【0013】
請求項2の発明は、内燃機関に装備された吸蔵型NOx触媒の再生時に空燃比切換手段により内燃機関の空燃比をリーン空燃比と理論空燃比またはリッチ空燃比との間で徐々に変化させる一方、触媒から放出されるNOxの還元に供し得る還元剤が少なくなる空燃比を含む空燃比域において副噴射手段により燃料を筒内に追加供給するものとなっている。
【0014】
この発明によれば、触媒再生に係る空燃比切換えに際して空燃比が徐々に変化して機関出力トルクの変動が抑制され、また、副噴射手段により筒内に燃料が追加供給されて吸蔵型NOx触媒の還元が促進され、NOxパージ期間が短縮する。しかも、空燃比切換制御下で変化する空燃比がNOxの還元に供される還元剤が不足する空燃比を含む空燃比域において、副噴射手段により燃料が追加供給され、筒内の空燃比は還元剤が不足する空燃比を含む空燃比域を短時間内に通過し、NOx排出量が大幅に低減する。
【0015】
請求項3の発明は、燃料を筒内に直接に供給する主噴射手段を有した内燃機関の空燃比が空燃比制御手段により理論空燃比またはリッチ空燃比に制御される間、この空燃比制御に係る目標空燃比と所定のリッチ空燃比との差分に相当する量の燃料が内燃機関の膨張行程において副噴射手段により筒内に追加供給するものとなっている。
【0016】
この発明によれば、内燃機関が理論空燃比またはリッチ空燃比で運転されている状態で副噴射手段により燃料が追加供給されると、筒内の全体空燃比が所定のリッチ空燃比になり、触媒から放出されたNOxを十分還元することができ、ひいては触媒の再生が促進される。しかも、燃料の追加供給が膨張行程で行われるので、この燃料供給は機関出力トルクの増大に寄与せず、従って、トルク変動を来すことなしに触媒再生が行われる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づき説明する。
図1を参照すると、車両に搭載された本発明に係る筒内噴射型内燃機関の排気浄化装置の概略構成図が示されており、以下同図に基づいて本発明に係る排気浄化装置の構成を説明する。
【0018】
同図に示すように、エンジン本体(以下、単にエンジンという)1としては、例えば、燃料噴射モード(運転モード)を切換えることで吸気行程での燃料噴射または圧縮行程での燃料噴射(主噴射手段)を実施可能な筒内噴射型火花点火式直列4気筒ガソリンエンジンが適用される。この筒内噴射型のエンジン1は、容易にして理論空燃比(ストイキオ)での運転やリッチ空燃比での運転(リッチ空燃比運転)の他、リーン空燃比での運転(リーン空燃比運転)が実現可能とされている。
【0019】
同図に示すように、エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4とともに電磁式の燃料噴射弁6が取り付けられており、これにより、燃焼室内に燃料を直接噴射可能とされている。
点火プラグ4には高電圧を出力する点火コイル8が接続されている。また、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。より詳しくは、燃料供給装置には、低圧燃料ポンプと高圧燃料ポンプとが設けられており、これにより、燃料タンク内の燃料を燃料噴射弁6に対し低燃圧或いは高燃圧で供給し、該燃料を燃料噴射弁6から燃焼室内に向けて所望の燃圧で噴射可能とされている。この際、燃料噴射量は高圧燃料ポンプの燃料吐出圧と燃料噴射弁6の開弁時間、即ち燃料噴射時間Tinjとから決定される。
【0020】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド12の一端がそれぞれ接続されている。
【0021】
なお、当該筒内噴射型のエンジン1は既に公知であり、その構成の詳細についてはここでは説明を省略する。
同図に示すように、吸気マニホールド10には排気管(排気通路)14が接続されており、この排気管14には排気浄化触媒装置20を介してマフラー(図示せず)が接続されている。また、排気管14にはOセンサ18が設けられている。該Oセンサ18は、排気中のO量に基づいて主として燃焼室内の空燃比A/Fを検出するものである。
【0022】
排気浄化触媒装置20は、吸蔵型NOx触媒20aと三元触媒20bとの2つの触媒を備えて構成されており、三元触媒20bの方が吸蔵型NOx触媒20aよりも下流側に配設されている。
吸蔵型NOx触媒20aは、酸化雰囲気においてNOxを一旦吸蔵させ、主としてCOの存在する還元雰囲気中においてNOxをN(窒素)等に還元させる機能を持つものである。詳しくは、吸蔵型NOx触媒20aは、貴金属として白金(Pt),ロジウム(Rh)等を有した触媒として構成されており、吸蔵材としてはバリウム(Ba)等のアルカリ金属、アルカリ土類金属が採用されている。
【0023】
さらに、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(電子コントロールユニット)30が設置されており、このECU30により、エンジン1を含めた本発明に係る排気浄化装置の総合的な制御が行われる。ECU30の入力側には、上述したOセンサ18等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力する。また、入力側には、車両の走行距離を検出する距離計32も接続されている。
【0024】
一方、出力側には、上述の燃料噴射弁6や点火コイル8等が接続されており、これら燃料噴射弁6、点火コイル8等には、各種センサ類からの検出情報に基づき演算された燃料噴射量や点火時期等の最適値がそれぞれ出力される。これにより、燃料噴射弁6から適正量の燃料が噴射され、点火プラグ4によって適正なタイミングで点火が実施される。
【0025】
次に、上述のように構成された本発明に係る排気浄化装置の作用を説明する。なお、ここではエンジン1が圧縮行程で燃料噴射(主噴射)が行われ且つリーン空燃比運転とされている場合を例に説明する。
先ず一般的な作用について説明する。
エンジン1がリーン空燃比運転とされている場合にはNOxの発生量が増大している。しかしながら、ここでは上記のように吸蔵型NOx触媒20aと三元触媒20bとが直列に配設されており、三元触媒20bがNOxを浄化できない分、吸蔵型NOx触媒20aがNOxを浄化することになる。故に全体の排ガス浄化特性としてHC,COのみならずNOxが洩れなく略完全に浄化される。
【0026】
ところが、吸蔵型NOx触媒20aについては、酸化雰囲気で吸蔵したNOxが飽和量に達するとNOx吸蔵能力が低下するため、該吸蔵させたNOxを上述の如く還元雰囲気中においてN等に還元除去してやる必要がある。
そこで、当該吸蔵型NOx触媒20aを有した排気浄化装置では、例えば予め設定された所定周期で目標空燃比(主噴射用空燃比)を小さくし燃料噴射量(主噴射量)を一旦増量して所定時間に亘りリッチ空燃比運転を行い(これをリッチスパイクという)、これにより吸蔵型NOx触媒20a内にCO過剰状態、即ち還元雰囲気を強制的に生起させ、吸蔵したNOxを放出し還元除去(NOxパージ)するようにしている。
【0027】
実際には、ECU30内のタイマカウンタによって上記所定周期が計時され、ECU30により当該所定周期毎に燃料噴射弁6の開弁時間、即ち燃料噴射時間Tinjが所定量増大するよう制御される。これにより、吸蔵型NOx触媒20aが再生されて常時NOxを浄化可能な状態に保持され、NOxの浄化が安定して継続実施されることになる。
【0028】
なお、上記所定周期は、通常の運転によって吸蔵型NOx触媒20aに吸蔵されたNOxが飽和量に達したと推定される時間に基づき予め設定されているが、その他にも、例えば距離計32によって検出される車両の走行距離に基づいて推定することもできる。つまり、所定距離走行したら上記リッチ空燃比運転を行うようにしてもよい。
【0029】
ところで、本発明では、上記NOxパージする際において、出力トルク変動を抑制することを目的として目標空燃比をリーン空燃比からリッチ空燃比、及びリッチ空燃比からリーン空燃比に向けてテーリングさせており、さらに、この目標空燃比のテーリングに合わせてエンジン1の膨張行程において燃料を燃焼室内に噴射(副噴射)するようにしている(副噴射手段)。以下、図2のタイムチャートに基づき、本発明に係る空燃比切換制御(リッチスパイク制御)について説明する。ここでは、主として目標空燃比がリーン空燃比からリッチ空燃比に切り換わる場合について説明する。
【0030】
上記所定周期が計時されると、図2(a)に示すように、A時点においてECU30内部で空燃比切換指令が発せられ(空燃比切換手段)、空燃比モード(A/Fモード)がリーン空燃比モードからリッチ空燃比モードに切り換えられる。これにより、目標空燃比(目標A/F)がリーン空燃比から所定のリッチ空燃比(例えば、A/F=12)に切り換わることになるのであるが、このとき、(b)に示すように、目標空燃比は上述したようにテーリングされて徐々にリッチ空燃比とされる(空燃比切換手段または空燃比制御手段)。なお、このテーリングの度合(傾き)、即ちテーリング係数は、予め出力トルク変動が発生しない程度に設定されたものである。
【0031】
そして、さらに、このテーリングに合わせ、(c)に示すように、エンジン1が膨張行程にあるときにおいて燃料噴射弁6から燃料が副噴射される。
この副噴射では、(d)に示すように、目標空燃比のテーリングの度合に応じ、全体の空燃比(全A/F)が所定のリッチ空燃比(例えば、A/F=12)となるように燃料が噴射される。つまり、当該副噴射では、テーリングにより変化する目標空燃比と所定のリッチ空燃比(例えば、A/F=12)との差分に相当する量の燃料がECU30において演算され、この差分に相当する量の燃料がテーリングにより変化する目標空燃比を補うよう燃料噴射弁6より噴射される。なお、 全A/FはOセンサ18によって常時検出されており、また、この副噴射の時期は、膨張行程の間であれば任意とされる。
【0032】
このように空燃比切換時に膨張行程において最終的に全A/Fが所定のリッチ空燃比(例えば、A/F=12)となるよう副噴射が行われると、副噴射された燃料の一部が燃焼室内の残存Oの存在によって燃焼するものの、燃料過剰状態であるために、副噴射を行わない通常の主噴射の噴射量を増量した場合と同様にHCやCOが多く排出される。
【0033】
つまり、副噴射を行うことにより、空燃比切換指令が発せられたA時点からすぐにNOxの還元に必要なCOが吸蔵型NOx触媒20aに供給され始めることになり、NOxパージが遅れなく速やかに開始されることになる。
このようにNOxパージが遅れなく開始されると、結果としてNOxパージの実施期間を短くできることになり、これにより、NOxパージが内燃機関の通常の運転状態に与える影響を極力少なく抑えることができる。
【0034】
ところで、このように膨張行程において副噴射を行う場合には、該副噴射はピストンが下降を開始した後に燃料を追加供給することになるため、(e)に示すように、その燃焼は筒内圧Pe、即ちエンジン1の出力トルクに殆ど寄与することなく行われることになる。従って、副噴射によってエンジン1の出力トルクが不用意に変動することはない。
【0035】
また、このように副噴射すると、瞬時にして全A/Fが所定のリッチ空燃比(例えば、A/F=12)となるので、空燃比がNOxが最も多く発生する空燃比(A/F=16近傍)及び吸蔵されたNOxを放出するが十分に還元できない空燃比( A/F=14.5近傍)に滞留することがなく、故に、(f)に示すように、空燃比切換時にNOx量の変動、即ちNOxスパイクが発生することがなく、NOxが不用意に大気中に排出されることもない。もっとも、NOxパージが実施されている間にはエンジン1から排出されるNOxを吸蔵型NOx触媒20aで処理することはできないことになるのであるが、この間は上述のように確実に空燃比がリッチ空燃比とされることになるので、NOxは三元触媒20bによって良好に浄化処理されることとなる。
【0036】
つまり、本発明に係る筒内噴射型内燃機関の排気浄化装置にあっては、吸蔵型NOx触媒20aのNOxパージを行う際、該NOxパージをエンジン1の出力変動なく空燃比切換指令が発せられた直後からすぐに良好に実施することができ、故に車両の乗員にトルクショック等の違和感を与えないようにしながら、NOxパージ時をも含め常に良好にNOxの排出を抑えることが可能となる。
【0037】
なお、目標空燃比が所定のリッチ空燃比(例えば、A/F=12)となってNOxパージが実施された後所定期間が経過すると、目標空燃比は今度は空燃比切換指令が停止されるまで所定のリッチ空燃比からリーン空燃比に向けてテーリングすることになり、この場合においても上記同様にして副噴射が行われることとなる。
【0038】
ところで、最近ではHCをCOに変換し易い触媒が開発されており、図3に示すように、このような触媒20cを吸蔵型NOx触媒20aの上流に設けることでさらに良好な効果が得られる。このHCをCOに変換し易い触媒としては、例えば特開平6−221140号公報に開示されているものがある。
以下、当該HCをCOに変換し易い触媒20cを用いた場合の作用及び効果について説明する。
【0039】
膨張行程で副噴射を行う際に当該副噴射を膨張行程の後半に実施するようにすると、噴射された燃料は排気行程が近いことからその殆どが燃焼に至らずに未燃燃料、即ちHCのままに排出されることになる。
このとき、触媒20cがHCをCOに変換し易い触媒であると、当該燃焼せずエンジン1から排出されたHCはその殆どがCOに変換されることになる。そして、このように変換されたCOは、吸蔵型NOx触媒20aにおいてNOxパージに良好に使用されることになる。
【0040】
つまり、当該COを発生し易い触媒を用い且つ副噴射を膨張行程の後半に実施するようにすると、主噴射のみでリーン空燃比からリッチ空燃比に空燃比切換した場合や上記実施形態のように副噴射を行った場合よりも多くのCOを存在させてNOxパージを実施でき、吸蔵型NOx触媒20aに吸蔵されたNOxを早期にして略完全に還元除去するようにできる。故に、NOxパージの時間を極力短縮することができ、NOxパージがエンジン1の本来の運転状態に与える影響をより一層少なくすることができることになる。
【0041】
なお、上記実施形態では、NOxパージ時の空燃比を所定のリッチ空燃比(例えば、A/F=12)としたが、該所定のリッチ空燃比を必要に応じて変化させるようにしてもよい。
また、上記実施形態では、副噴射量をテーリングにより変化する目標空燃比と所定のリッチ空燃比との差分に相当する燃料量としたが、該燃料量をエンジン回転速度、筒内圧Pe、A/N、エンジン冷却水温、吸気温、触媒温度、排気温等に応じて補正するようにしてもよい。これにより、より一層良好にNOxパージを行うことができる。
【0042】
また、上記実施形態では、リーン空燃比運転時においてNOxパージを行い、副噴射を実施するようにしたが、理論空燃比運転時やリッチ空燃比運転時においてNOxパージを行ってもよく、これに併せて副噴射を実施するようにしてもよい。
また、上記実施形態では、吸蔵型NOx触媒20aに吸蔵されたNOxのパージに関してのみ言及したが、さらに、本発明を吸蔵型NOx触媒20aに吸蔵されるSOxのパージ時に適用することもできる。つまり、SOxのパージは、吸蔵型NOx触媒20aに吸蔵されたSOx量を推定し、該SOx量が所定量を超えたときに電気ヒータ等で触媒温度を上昇させて空燃比をリーン空燃比からリッチ空燃比に切り換えるものであるが、この空燃比切換の際に上記同様の副噴射を実施するようにしてもよい。
【0043】
これにより、SOxのパージの際においても、エンジン1の出力トルク変動を抑止でき、所謂NOxスパイクを防止して不用意にNOxを排出しないようにできる。
また、上記実施形態では、1本の噴射弁で主噴射と副噴射とを実施するようにしているが、主噴射用と副噴射用の噴射弁をそれぞれ設け、主噴射及び副噴射を当該それぞれの噴射弁で実施するようにしてもよい。
【0044】
【発明の効果】
以上詳細に説明したように、本発明の請求項1及び2の筒内噴射型内燃機関の排気浄化装置によれば、触媒再生に係る空燃比切換えに際して空燃比を徐々に変化させると共に副噴射手段により燃料を追加供給するので、機関出力トルクの変動を来すことなしに触媒再生を短期間で実施できる。しかも、NOxが多量に発生する空燃比またはNOxの還元に供し得る還元剤が少なくなる空燃比を含む空燃比域において上記燃料の追加供給を行うので、NOx排出量を低減できる。
【0045】
また、請求項3の発明では、理論空燃比またはリッチ空燃比への制御中にこの空燃比制御に係る目標空燃比と所定のリッチ空燃比との差分に相当する量の燃料を副噴射手段により膨張行程で追加供給するので、機関出力トルクを増大させることなしに空燃比をリッチ化して触媒からのNOxの放出およびNOxの還元を促進することができ、従って、トルク変動なしに触媒を再生できる。
【図面の簡単な説明】
【図1】本発明に係る筒内噴射型内燃機関の排気浄化装置を示す概略構成図である。
【図2】本発明に係るリッチスパイク制御を行いNOxパージを実施したときの目標A/F及び副噴射量と全A/Fとの関係並びに効果を示すタイムチャートである。
【図3】吸蔵型NOx触媒の上流にHCをCOに変換し易い触媒を設けた場合の排気浄化装置を示す概略構成図である。
【符号の説明】
1 エンジン本体(筒内噴射型内燃機関)
6 燃料噴射弁
14 排気管(排気通路)
18 Oセンサ
20a 吸蔵型NOx触媒
20b 三元触媒
20c 触媒
30 電子制御ユニット(ECU)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for a direct injection type internal combustion engine, and more particularly to a NOx or SOx purging technique for an exhaust gas purification device provided with a storage type NOx catalyst.
[0002]
[Related background art]
When the internal combustion engine is in a predetermined operating state, the air-fuel ratio is controlled to a target value leaner (lean side) than the stoichiometric air-fuel ratio (value 14.7) (for example, a value 22 or more), and the fuel efficiency characteristics and the like of the engine are controlled. Is known. In such a lean air-fuel ratio control method, there is a problem that NOx (nitrogen oxide) in exhaust gas cannot be sufficiently purified by the conventional three-way catalyst.
[0003]
To solve this problem, in an oxygen excess state (oxidation atmosphere) by attaching NOx in the exhaust gas as nitrate X-NO 3 occludes, the stored NOx with CO (carbon monoxide) over state (reduction atmosphere) It is possible to reduce the amount of NOx emitted into the atmosphere by using an exhaust purification catalyst having a characteristic of reducing to N 2 (nitrogen) (carbonate X-CO 3 is generated at the same time), that is, a so-called occlusion type NOx catalyst. Are known. In this storage type NOx catalyst, NOx is stored during the lean air-fuel ratio control as described above. However, if the lean combustion operation is continuously performed for a long time, the NOx storage amount of the catalyst is limited. When the occlusion amount reaches the saturation amount, NOx in the exhaust gas is discharged to the atmosphere without being occluded by the catalyst.
[0004]
Therefore, before the storage amount of the storage-type NOx catalyst reaches saturation, the air-fuel ratio is periodically switched to a rich air-fuel ratio operation for controlling the air-fuel ratio to a stoichiometric air-fuel ratio or a value close to the stoichiometric air-fuel ratio (this is referred to as a rich spike). 2. Description of the Related Art An exhaust gas purifying apparatus configured to purify and reduce NOx (NOx purge) in an atmosphere (rich state) to regenerate an occluded NOx catalyst is known from Japanese Patent Application Laid-Open No. Hei 7-166913.
[0005]
In addition, the exhaust gas contains a sulfur component (S component), and when the storage NOx catalyst stores NOx, it also stores sulfur oxides (SOx). There is a problem that the purification efficiency of the fuel is reduced. Therefore, it is necessary to make the air-fuel ratio rich as in the case of the NOx purge in order to release SOx from the NOx catalyst and regenerate the purification efficiency of the catalyst. As an example of this, Japanese Patent Application Laid-Open No. 6-66129 discloses a technique of estimating the amount of sulfur adsorbed, setting the catalyst temperature to a high temperature by an electric heater or the like, and changing the air-fuel ratio to a rich state over a predetermined period of time.
[0006]
[Problems to be solved by the invention]
By the way, when switching the air-fuel ratio from the lean air-fuel ratio to the stoichiometric air-fuel ratio or the rich air-fuel ratio, if the switching is performed and the fuel amount is increased at a stretch as in the latter publication, the in-cylinder pressure rises rapidly and the internal combustion engine There is a problem that the output torque temporarily largely fluctuates. Therefore, in the former publication, the air-fuel ratio is tailed as slowly as possible to a desired rich air-fuel ratio by gradually increasing the fuel injection amount, thereby suppressing output torque fluctuation. Apart from this, the fuel injection amount is increased and the intake air amount is appropriately changed to gradually shift the air-fuel ratio to the rich air-fuel ratio to suppress fluctuations in output torque.
[0007]
However, when the air-fuel ratio is tailed in this manner, if the tailing is gentle enough to suppress fluctuations in output torque, it takes time for the air-fuel ratio to reach a desired rich air-fuel ratio. In this case, the amount of generated CO is small and the NOx purge is not performed favorably, that is, the start of the NOx purge is delayed, which is not preferable. In other words, the slower the tailing, the longer the time required for NOx purging as a whole, which affects the original operating state of the internal combustion engine, which is not preferable.
[0008]
Further, NOx is most frequently generated when the air-fuel ratio is near the value 16, and when the air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio as described above, the NOx always passes through the vicinity of the value 16. If the tailing period of the air-fuel ratio is long as described above, the period in which the air-fuel ratio is near the value 16 is inevitably increased, and a large amount of NOx is generated during the switching of the air-fuel ratio (this is called a NOx spike). There is also a problem that many NOx are emitted without being purified.
[0009]
Also, if the stored NOx amount is large, a large amount of NOx may be released from the storage type NOx catalyst when the air-fuel ratio is near the stoichiometric air-fuel ratio, but a reducing agent for reducing NOx near the stoichiometric air-fuel ratio may be used. (CO, HC, etc.) is small, and therefore, when the period in which the tailing is gentle and the vicinity of the stoichiometric air-fuel ratio is long as described above is long, the emission amount of the NOx is inevitably increased, whereby the NOx is discharged into the atmosphere. There is also a problem that the amount of NOx increases.
[0010]
The present invention has been made in order to solve such problems, and an object of the present invention is to provide an exhaust gas purification apparatus equipped with a storage NOx catalyst, in which the storage NOx catalyst is subjected to torque fluctuations or accidental NOx reduction. It is an object of the present invention to provide an exhaust gas purification device for an in-cylinder injection internal combustion engine that can be quickly regenerated without emission.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 regenerates a storage-type NOx catalyst provided in an internal combustion engine having a main injection means for directly supplying fuel into a cylinder in an intake stroke or a compression stroke. At this time, the air-fuel ratio of the internal combustion engine is gradually changed between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio by the air-fuel ratio switching means, and the air-fuel ratio including a large amount of NOx generated during the air-fuel ratio control is included. In the air-fuel ratio range, fuel is additionally supplied into the cylinder by the sub-injection means.
[0012]
According to the present invention, the air-fuel ratio gradually changes at the time of air-fuel ratio switching related to catalyst regeneration, and the fluctuation of the engine output torque due to the air-fuel ratio change is suppressed. On the other hand, fuel is additionally supplied into the cylinder by the sub-injection means to enrich the air-fuel ratio and promote the reduction of the storage type NOx catalyst, whereby the NOx purge period required for catalyst regeneration (air-fuel ratio enrichment period) Is shortened. Moreover, the additional supply of fuel by the sub-injection means is performed in the air-fuel ratio range including the air-fuel ratio where a large amount of NOx is generated, and the air-fuel ratio in the cylinder becomes the air-fuel ratio including the air-fuel ratio where a large amount of NOx is generated. Area within a short period of time, and therefore the NOx emissions are greatly reduced.
[0013]
According to a second aspect of the present invention, the air-fuel ratio of the internal combustion engine is gradually changed between a lean air-fuel ratio and a stoichiometric air-fuel ratio or a stoichiometric air-fuel ratio by the air-fuel ratio switching means during regeneration of the storage NOx catalyst provided in the internal combustion engine. On the other hand, in the air-fuel ratio range including the air-fuel ratio in which the reducing agent that can be used to reduce NOx released from the catalyst is reduced, the fuel is additionally supplied into the cylinder by the sub-injection means.
[0014]
According to the present invention, when the air-fuel ratio is switched in the catalyst regeneration, the air-fuel ratio gradually changes to suppress the fluctuation of the engine output torque, and fuel is additionally supplied into the cylinder by the sub-injection means, and the storage NOx catalyst Is promoted, and the NOx purge period is shortened. In addition, in the air-fuel ratio range in which the air-fuel ratio that changes under the air-fuel ratio switching control includes the air-fuel ratio in which the reducing agent used for NOx reduction is insufficient, fuel is additionally supplied by the sub-injection means, and the air-fuel ratio in the cylinder is reduced. The reducing agent passes through the air-fuel ratio range including the air-fuel ratio in which the amount of the reducing agent is insufficient, so that the NOx emission is significantly reduced.
[0015]
According to a third aspect of the present invention, the air-fuel ratio control is performed while the air-fuel ratio of the internal combustion engine having the main injection means for directly supplying the fuel into the cylinder is controlled to the stoichiometric air-fuel ratio or the rich air-fuel ratio by the air-fuel ratio control means. The amount of fuel corresponding to the difference between the target air-fuel ratio and the predetermined rich air-fuel ratio is additionally supplied into the cylinder by the auxiliary injection means during the expansion stroke of the internal combustion engine.
[0016]
According to the present invention, when fuel is additionally supplied by the sub-injection means while the internal combustion engine is operated at the stoichiometric air-fuel ratio or the rich air-fuel ratio, the overall air-fuel ratio in the cylinder becomes the predetermined rich air-fuel ratio, NOx released from the catalyst can be sufficiently reduced, and thus regeneration of the catalyst is promoted. In addition, since the additional supply of fuel is performed during the expansion stroke, this fuel supply does not contribute to an increase in engine output torque, and therefore, the catalyst regeneration is performed without causing torque fluctuation.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust purification device for a direct injection internal combustion engine according to the present invention mounted on a vehicle, and the configuration of the exhaust purification device according to the present invention will be described based on the drawing. Will be described.
[0018]
As shown in FIG. 1, as an engine body (hereinafter simply referred to as an engine) 1, for example, by switching a fuel injection mode (operation mode), fuel injection in an intake stroke or fuel injection in a compression stroke (main injection means) is performed. ) Is applicable to an in-cylinder injection spark ignition type in-line four-cylinder gasoline engine. The in-cylinder injection type engine 1 can be easily operated at a stoichiometric air-fuel ratio (stoichiometric ratio), at a rich air-fuel ratio (rich air-fuel ratio operation), or at a lean air-fuel ratio (lean air-fuel ratio operation). Is feasible.
[0019]
As shown in FIG. 1, an electromagnetic fuel injection valve 6 is attached to a cylinder head 2 of an engine 1 together with a spark plug 4 for each cylinder, whereby fuel can be directly injected into a combustion chamber. ing.
An ignition coil 8 that outputs a high voltage is connected to the ignition plug 4. Further, a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. More specifically, the fuel supply device is provided with a low-pressure fuel pump and a high-pressure fuel pump, whereby the fuel in the fuel tank is supplied to the fuel injection valve 6 at a low fuel pressure or a high fuel pressure. From the fuel injection valve 6 into the combustion chamber at a desired fuel pressure. At this time, the fuel injection amount is determined from the fuel discharge pressure of the high-pressure fuel pump and the valve opening time of the fuel injection valve 6, that is, the fuel injection time Tinj.
[0020]
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 10 is connected to communicate with each intake port. An exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of an exhaust manifold 12 is connected to communicate with each exhaust port.
[0021]
The in-cylinder injection type engine 1 is already known, and the details of its configuration will not be described here.
As shown in FIG. 1, an exhaust pipe (exhaust passage) 14 is connected to the intake manifold 10, and a muffler (not shown) is connected to the exhaust pipe 14 via an exhaust purification catalyst device 20. . The exhaust pipe 14 is provided with an O 2 sensor 18. The O 2 sensor 18 mainly detects the air-fuel ratio A / F in the combustion chamber based on the amount of O 2 in the exhaust gas.
[0022]
The exhaust purification catalyst device 20 includes two catalysts, a storage NOx catalyst 20a and a three-way catalyst 20b. The three-way catalyst 20b is disposed downstream of the storage NOx catalyst 20a. ing.
The storage NOx catalyst 20a has a function of temporarily storing NOx in an oxidizing atmosphere and reducing NOx to N 2 (nitrogen) or the like mainly in a reducing atmosphere in which CO is present. More specifically, the storage NOx catalyst 20a is configured as a catalyst having platinum (Pt), rhodium (Rh) or the like as a noble metal, and an alkali metal such as barium (Ba) or an alkaline earth metal as a storage material. Has been adopted.
[0023]
Further, an ECU (electronic control unit) 30 including an input / output device, a storage device (ROM, RAM, nonvolatile RAM, and the like), a central processing unit (CPU), a timer counter, and the like is installed. Comprehensive control of the exhaust gas purifying apparatus according to the present invention, including the method 1, is performed. The input side of the ECU 30, various sensors such as O 2 sensor 18 described above are connected, the detection information from these sensors is input. Further, a distance meter 32 for detecting a traveling distance of the vehicle is connected to the input side.
[0024]
On the other hand, the output side is connected to the above-described fuel injection valve 6, the ignition coil 8, and the like. The fuel injection valve 6, the ignition coil 8, and the like are connected to a fuel calculated based on detection information from various sensors. The optimum values such as the injection amount and the ignition timing are output. As a result, an appropriate amount of fuel is injected from the fuel injection valve 6, and ignition is performed by the ignition plug 4 at an appropriate timing.
[0025]
Next, the operation of the exhaust gas purification apparatus according to the present invention configured as described above will be described. Here, a case will be described as an example where the engine 1 performs fuel injection (main injection) in the compression stroke and operates at a lean air-fuel ratio.
First, the general operation will be described.
When the engine 1 is operated at the lean air-fuel ratio, the amount of generated NOx is increasing. However, here, as described above, the storage NOx catalyst 20a and the three-way catalyst 20b are arranged in series, and the storage-type NOx catalyst 20a purifies NOx because the three-way catalyst 20b cannot purify NOx. become. Therefore, not only HC and CO but also NOx is almost completely purified without leakage as exhaust gas purification characteristics.
[0026]
However, for the occlusion-type NOx catalyst 20a, since the NOx occluding an oxidizing atmosphere decreases the NOx occlusion capacity reaches the saturation amount, I'll removed by reduction to N 2 and the like in a reducing atmosphere as a NOx obtained by suction storehouse above There is a need.
Therefore, in the exhaust gas purification apparatus having the storage type NOx catalyst 20a, for example, the target air-fuel ratio (main-injection air-fuel ratio) is reduced and the fuel injection amount (main injection amount) is temporarily increased at a predetermined cycle. A rich air-fuel ratio operation is performed for a predetermined period of time (this is referred to as a rich spike), thereby forcibly generating a CO excess state, that is, a reducing atmosphere, in the storage NOx catalyst 20a, and releasing the stored NOx to reduce and remove it ( (NOx purge).
[0027]
Actually, the predetermined period is measured by a timer counter in the ECU 30, and the ECU 30 controls the valve opening time of the fuel injection valve 6, that is, the fuel injection time Tinj to increase by a predetermined amount at each predetermined period. As a result, the storage NOx catalyst 20a is regenerated and kept in a state where NOx can be purified at all times, and NOx purification is stably and continuously performed.
[0028]
The predetermined period is set in advance based on the time when it is estimated that the NOx occluded in the occlusion type NOx catalyst 20a has reached the saturation amount during normal operation. It can also be estimated based on the detected travel distance of the vehicle. In other words, the rich air-fuel ratio operation may be performed after traveling a predetermined distance.
[0029]
In the present invention, the target air-fuel ratio is tailed from the lean air-fuel ratio to the rich air-fuel ratio and from the rich air-fuel ratio to the lean air-fuel ratio for the purpose of suppressing the output torque fluctuation during the NOx purging. Further, fuel is injected (sub-injection) into the combustion chamber during the expansion stroke of the engine 1 in accordance with the tailing of the target air-fuel ratio (sub-injection means). Hereinafter, the air-fuel ratio switching control (rich spike control) according to the present invention will be described with reference to the time chart of FIG. Here, the case where the target air-fuel ratio switches from the lean air-fuel ratio to the rich air-fuel ratio will be mainly described.
[0030]
When the predetermined period is counted, as shown in FIG. 2A, an air-fuel ratio switching command is issued inside the ECU 30 at the time A (air-fuel ratio switching means), and the air-fuel ratio mode (A / F mode) becomes lean. The mode is switched from the air-fuel ratio mode to the rich air-fuel ratio mode. As a result, the target air-fuel ratio (target A / F) switches from the lean air-fuel ratio to a predetermined rich air-fuel ratio (for example, A / F = 12). At this time, as shown in FIG. Then, the target air-fuel ratio is tailed as described above and gradually becomes a rich air-fuel ratio (air-fuel ratio switching means or air-fuel ratio control means). The degree (tilt) of the tailing, that is, the tailing coefficient is set in advance to such an extent that the output torque does not fluctuate.
[0031]
Further, in accordance with the tailing, the fuel is injected from the fuel injection valve 6 when the engine 1 is in the expansion stroke, as shown in FIG.
In this sub-injection, as shown in (d), the overall air-fuel ratio (all A / F) becomes a predetermined rich air-fuel ratio (for example, A / F = 12) according to the degree of tailing of the target air-fuel ratio. Fuel is injected as follows. That is, in the sub-injection, an amount of fuel corresponding to the difference between the target air-fuel ratio changed by tailing and a predetermined rich air-fuel ratio (for example, A / F = 12) is calculated in the ECU 30, and the amount corresponding to this difference is calculated. Is injected from the fuel injection valve 6 to make up for the target air-fuel ratio that changes due to tailing. Note that the entire A / F is constantly detected by the O 2 sensor 18, also the timing of the sub injection is arbitrary as long as during the expansion stroke.
[0032]
As described above, when the sub-injection is performed such that the total A / F finally becomes a predetermined rich air-fuel ratio (for example, A / F = 12) in the expansion stroke at the time of switching the air-fuel ratio, a part of the sub-injected fuel is Burns due to the presence of residual O 2 in the combustion chamber, but because of the fuel excess, a large amount of HC and CO is emitted as in the case where the injection amount of the normal main injection without performing the sub-injection is increased.
[0033]
In other words, by performing the sub-injection, the CO required for NOx reduction starts to be supplied to the storage NOx catalyst 20a immediately after the point A at which the air-fuel ratio switching command is issued, and the NOx purge is promptly performed without delay. Will be started.
If the NOx purge is started without delay, the execution period of the NOx purge can be shortened as a result, whereby the influence of the NOx purge on the normal operation state of the internal combustion engine can be suppressed as small as possible.
[0034]
By the way, when the sub-injection is performed in the expansion stroke as described above, the sub-injection additionally supplies the fuel after the piston starts descending. Therefore, as shown in FIG. Pe, that is, with little contribution to the output torque of the engine 1. Therefore, the output torque of the engine 1 is not inadvertently changed by the sub-injection.
[0035]
Further, when the sub-injection is performed in this manner, all the A / F instantaneously becomes a predetermined rich air-fuel ratio (for example, A / F = 12), and thus the air-fuel ratio (A / F) at which the NOx is generated most is the air-fuel ratio. = 16) and the air-fuel ratio that releases the stored NOx but cannot be reduced sufficiently (A / F = 14.5) does not stay. Therefore, as shown in (f), when the air-fuel ratio is switched, There is no fluctuation in the NOx amount, that is, no NOx spike, and no inadvertent emission of NOx into the atmosphere. However, while the NOx purge is being performed, the NOx exhausted from the engine 1 cannot be processed by the storage NOx catalyst 20a, but during this time the air-fuel ratio is surely rich as described above. Since the air-fuel ratio is set, NOx is favorably purified by the three-way catalyst 20b.
[0036]
That is, in the exhaust gas purifying apparatus for a direct injection internal combustion engine according to the present invention, when performing NOx purging of the storage type NOx catalyst 20a, an air-fuel ratio switching command is issued for the NOx purging without fluctuation of the output of the engine 1. Immediately after the start, it is possible to carry out satisfactorily immediately, so that the occupants of the vehicle do not feel uncomfortable, such as torque shock, and it is possible to always properly suppress NOx emission even during NOx purging.
[0037]
Note that when a predetermined period elapses after the target air-fuel ratio has become a predetermined rich air-fuel ratio (for example, A / F = 12) and the NOx purge has been performed, the air-fuel ratio switching command for the target air-fuel ratio is stopped. Up to this point, tailing is performed from a predetermined rich air-fuel ratio toward a lean air-fuel ratio. In this case, the sub-injection is performed in the same manner as described above.
[0038]
By the way, recently, a catalyst that easily converts HC into CO has been developed. As shown in FIG. 3, by providing such a catalyst 20c upstream of the occluded NOx catalyst 20a, a better effect can be obtained. As a catalyst which easily converts HC into CO, there is, for example, a catalyst disclosed in JP-A-6-221140.
Hereinafter, the operation and effect when the catalyst 20c that easily converts the HC into CO will be described.
[0039]
If the sub-injection is performed in the latter half of the expansion stroke when performing the sub-injection in the expansion stroke, almost all of the injected fuel will not be burned and the unburned fuel, that is, HC Will be discharged as it is.
At this time, if the catalyst 20c is a catalyst that easily converts HC into CO, most of the HC discharged from the engine 1 without being burned is converted into CO. Then, the CO thus converted is favorably used for NOx purging in the storage NOx catalyst 20a.
[0040]
In other words, when the catalyst that easily generates CO is used and the sub-injection is performed in the latter half of the expansion stroke, the air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio only by the main injection, or as in the above-described embodiment. The NOx purge can be performed with more CO present than in the case of performing the sub-injection, and the NOx stored in the storage type NOx catalyst 20a can be reduced and removed almost completely at an early stage. Therefore, the time of the NOx purge can be shortened as much as possible, and the influence of the NOx purge on the original operating state of the engine 1 can be further reduced.
[0041]
In the above embodiment, the air-fuel ratio at the time of NOx purge is set to a predetermined rich air-fuel ratio (for example, A / F = 12). However, the predetermined rich air-fuel ratio may be changed as needed. .
Further, in the above embodiment, the sub-injection amount is the fuel amount corresponding to the difference between the target air-fuel ratio changing by tailing and the predetermined rich air-fuel ratio. However, the fuel amount is used as the engine speed, the in-cylinder pressure Pe, A / The correction may be made according to N, engine cooling water temperature, intake air temperature, catalyst temperature, exhaust gas temperature, and the like. As a result, the NOx purge can be performed more favorably.
[0042]
In the above embodiment, the NOx purge is performed during the lean air-fuel ratio operation and the sub-injection is performed. However, the NOx purge may be performed during the stoichiometric air-fuel ratio operation or the rich air-fuel ratio operation. At the same time, the sub-injection may be performed.
In the above embodiment, only the purging of the NOx stored in the storage NOx catalyst 20a has been described. However, the present invention can be applied to the purge of the SOx stored in the storage NOx catalyst 20a. That is, in purging SOx, the amount of SOx stored in the storage NOx catalyst 20a is estimated, and when the amount of SOx exceeds a predetermined amount, the catalyst temperature is increased by an electric heater or the like to increase the air-fuel ratio from the lean air-fuel ratio. Although the switching to the rich air-fuel ratio is performed, the same sub-injection as described above may be performed at the time of switching the air-fuel ratio.
[0043]
Thus, even when purging SOx, fluctuations in the output torque of the engine 1 can be suppressed, so-called NOx spikes can be prevented, and unintentional emission of NOx can be prevented.
Further, in the above embodiment, the main injection and the sub-injection are performed by one injection valve, but the main injection and the sub-injection injection valves are provided respectively, and the main injection and the sub-injection are respectively performed. The injection valve may be used.
[0044]
【The invention's effect】
As described above in detail, according to the exhaust gas purifying apparatus for a direct injection type internal combustion engine of the first and second aspects of the present invention, the air-fuel ratio is gradually changed when the air-fuel ratio is switched for the catalyst regeneration, and the sub-injection means is used. As a result, the catalyst can be regenerated in a short period of time without causing fluctuations in the engine output torque. In addition, since the additional fuel is supplied in an air-fuel ratio range including an air-fuel ratio in which a large amount of NOx is generated or an air-fuel ratio in which a reducing agent capable of reducing NOx is reduced, the amount of NOx emission can be reduced.
[0045]
In the third aspect of the invention, during the control to the stoichiometric air-fuel ratio or the rich air-fuel ratio, the amount of fuel corresponding to the difference between the target air-fuel ratio related to the air-fuel ratio control and the predetermined rich air-fuel ratio is supplied by the sub-injection means. Since the fuel is additionally supplied in the expansion stroke, the air-fuel ratio can be enriched without increasing the engine output torque to promote the release of NOx from the catalyst and the reduction of NOx, and thus the catalyst can be regenerated without torque fluctuation. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an exhaust purification device for a direct injection internal combustion engine according to the present invention.
FIG. 2 is a time chart showing the relationship between the target A / F and the sub-injection amount and the total A / F when the rich spike control according to the present invention is performed and the NOx purge is performed, and the effect thereof.
FIG. 3 is a schematic configuration diagram illustrating an exhaust gas purification device in the case where a catalyst that easily converts HC into CO is provided upstream of a storage NOx catalyst.
[Explanation of symbols]
1. Engine body (in-cylinder injection internal combustion engine)
6 fuel injection valve 14 exhaust pipe (exhaust passage)
18 O 2 sensor 20a Storage type NOx catalyst 20b Three-way catalyst 20c Catalyst 30 Electronic control unit (ECU)

Claims (3)

内燃機関の排気通路に配設され、前記内燃機関がリーン空燃比運転状態にあるとき排気中のNOxを吸蔵させ、理論空燃比運転またはリッチ空燃比運転状態にあるとき前記吸蔵させたNOxを還元する吸蔵型NOx触媒と、
機関運転状態に基づき前記内燃機関の吸気行程及び圧縮行程のいずれかにおいて燃料を直接筒内に供給する主噴射手段と、
前記吸蔵型NOx触媒の再生時に、前記内燃機関の空燃比を前記リーン空燃比と前記理論空燃比または前記リッチ空燃比との間で徐々に変化させるように制御する空燃比切換手段と、
前記空燃比切換手段による空燃比の制御中に、NOxが多量に発生する空燃比を含む空燃比域において燃料を前記筒内に追加供給する副噴射手段と、
を備えたことを特徴とする筒内噴射型内燃機関の排気浄化装置。
It is disposed in an exhaust passage of the internal combustion engine, and stores NOx in exhaust gas when the internal combustion engine is in a lean air-fuel ratio operation state, and reduces the stored NOx when the internal combustion engine is in a stoichiometric air-fuel ratio operation state or a rich air-fuel ratio operation state. A storage-type NOx catalyst,
Main injection means for supplying fuel directly into the cylinder in one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operating state;
Air-fuel ratio switching means for controlling the air-fuel ratio of the internal combustion engine to gradually change between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio during regeneration of the storage NOx catalyst;
Sub-injection means for additionally supplying fuel into the cylinder in an air-fuel ratio range including an air-fuel ratio where a large amount of NOx is generated during control of the air-fuel ratio by the air-fuel ratio switching means;
An exhaust purification device for a direct injection internal combustion engine, comprising:
内燃機関の排気通路に配設され、前記内燃機関がリーン空燃比運転状態にあるとき排気中のNOxを吸蔵させ、理論空燃比運転またはリッチ空燃比運転状態にあるとき前記吸蔵させたNOxを還元する吸蔵型NOx触媒と、
機関運転状態に基づき前記内燃機関の吸気行程及び圧縮行程のいずれかにおいて燃料を直接筒内に供給する主噴射手段と、
前記吸蔵型NOx触媒の再生時に、前記内燃機関の空燃比を前記リーン空燃比と前記理論空燃比または前記リッチ空燃比との間で徐々に変化させるように制御する空燃比切換手段と、
前記空燃比切換手段による空燃比の制御中に、前記吸蔵型NOx触媒から前記吸蔵させたNOxが放出されるが還元剤が少なく十分に還元できない空燃比を含む空燃比域において燃料を前記筒内に追加供給する副噴射手段と、
を備えたことを特徴とする筒内噴射型内燃機関の排気浄化装置。
It is disposed in an exhaust passage of the internal combustion engine, and stores NOx in exhaust gas when the internal combustion engine is in a lean air-fuel ratio operation state, and reduces the stored NOx when the internal combustion engine is in a stoichiometric air-fuel ratio operation state or a rich air-fuel ratio operation state. A storage-type NOx catalyst,
Main injection means for supplying fuel directly into the cylinder in one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operating state;
Air-fuel ratio switching means for controlling the air-fuel ratio of the internal combustion engine to gradually change between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio during regeneration of the storage NOx catalyst;
During the control of the air-fuel ratio by the air-fuel ratio switching means, the stored NOx is released from the storage-type NOx catalyst, but the fuel is supplied to the cylinder in an air-fuel ratio region including an air-fuel ratio including an air-fuel ratio that is small in reducing agent and cannot be sufficiently reduced. Auxiliary injection means for additionally supplying
An exhaust purification device for a direct injection internal combustion engine, comprising:
内燃機関の排気通路に配設され、前記内燃機関がリーン空燃比運転状態にあるとき排気中のNOxを吸蔵させ、理論空燃比運転またはリッチ空燃比運転状態にあるとき前記吸蔵させたNOxを還元する吸蔵型NOx触媒と、
機関運転状態に基づき前記内燃機関の吸気行程及び圧縮行程のいずれかにおいて燃料を直接筒内に供給する主噴射手段と、
機関運転状態に基づき、前記内燃機関の空燃比を前記理論空燃比または前記リッチ空燃比に制御する空燃比制御手段と、
前記空燃比制御手段による空燃比の制御中に、前記空燃比制御手段により制御された目標空燃比と所定のリッチ空燃比との差分に相当する量の燃料を前記内燃機関の膨張行程において前記筒内に追加供給する副噴射手段と、
を備えたことを特徴とする筒内噴射型内燃機関の排気浄化装置。
It is disposed in an exhaust passage of the internal combustion engine, and stores NOx in exhaust gas when the internal combustion engine is in a lean air-fuel ratio operation state, and reduces the stored NOx when the internal combustion engine is in a stoichiometric air-fuel ratio operation state or a rich air-fuel ratio operation state. A storage-type NOx catalyst,
Main injection means for supplying fuel directly into the cylinder in one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operating state;
Air-fuel ratio control means for controlling an air-fuel ratio of the internal combustion engine to the stoichiometric air-fuel ratio or the rich air-fuel ratio based on an engine operating state;
During the control of the air-fuel ratio by the air-fuel ratio control means, an amount of fuel corresponding to the difference between the target air-fuel ratio controlled by the air-fuel ratio control means and a predetermined rich air-fuel ratio is supplied to the cylinder during the expansion stroke of the internal combustion engine. Sub-injection means for additionally supplying into the
An exhaust purification device for a direct injection internal combustion engine, comprising:
JP2000213996A 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine Expired - Fee Related JP3582582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213996A JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP02569398A JP3334592B2 (en) 1998-02-06 1998-02-06 Exhaust gas purification device for in-cylinder injection internal combustion engine
JP2000213996A JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02569398A Division JP3334592B2 (en) 1998-02-06 1998-02-06 Exhaust gas purification device for in-cylinder injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001059440A JP2001059440A (en) 2001-03-06
JP3582582B2 true JP3582582B2 (en) 2004-10-27

Family

ID=33436365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213996A Expired - Fee Related JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3582582B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885545B2 (en) 2001-10-12 2007-02-21 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
KR100482050B1 (en) * 2001-11-07 2005-04-13 현대자동차주식회사 Method for exhaust gas reduction controlling after cold-start of engine in vehicle
JPWO2004097200A1 (en) 2003-04-30 2006-07-13 株式会社日立製作所 Control device for internal combustion engine
JP4730175B2 (en) * 2006-04-03 2011-07-20 日産自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2001059440A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
EP1067277B1 (en) Exhaust emission control device for internal combustion engines
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
EP1065351B1 (en) Exhaust gas purifying apparatus of internal combustion engine
JP4221125B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP3584798B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP3582582B2 (en) Exhaust purification system for in-cylinder injection internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP3702937B2 (en) Exhaust gas purification device for internal combustion engine
JP3334592B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP2001349230A (en) Exhaust emission control device of internal combustion engine
JP4867694B2 (en) Engine exhaust purification system
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP3911917B2 (en) Exhaust gas purification device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP3997740B2 (en) Exhaust gas purification device for internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
JP4061817B2 (en) Exhaust gas purification device for internal combustion engine
JP2000080914A (en) Internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP4244510B2 (en) Exhaust gas purification device for internal combustion engine
JP4457442B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees